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Abstract

We reconsider the two related problems: distribution of the diagonal elements of a Hermitian
n ˆ n matrix of known eigenvalues (Schur) and determination of multiplicities of weights in a
given irreducible representation of SUpnq (Kostka). It is well known that the former yields a
semi-classical picture of the latter. We present explicit expressions for low values of n that
complement those given in the literature [11, 1], recall some exact (non asymptotic) relation
between the two problems, comment on the limiting procedure whereby Kostka numbers are
obtained from Littlewood–Richardson coefficients, and finally extend these considerations to the
case of the B2 algebra, with a few novel conjectures.
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1 Introduction

1.1 Overview

It has been known for long that multiplicity problems in representation theory have an asymp-
totic limit that may be treated by semi-classical methods [13, 11]. For example, the behavior for
large representations of generalized Littlewood–Richardson (LR) coefficients, i.e., coefficients of de-
composition into irreducible representations (irreps) of the tensor product of two irreps, admits a
semi-classical description in terms of Horn’s problem. For a review and a list of references, see [6].
Similarly, one may consider the Kostka numbers multλpδq, i.e., the multiplicity of weight δ in the
irrep of highest weight λ. As also well known [11, 1], the asymptotics (for large λ and δ) of those
numbers is related to Schur’s problem, which deals with the properties and distribution of diagonal
elements of a Hermitian matrix of given spectrum.

In the following, we first reexamine that classical Schur problem: in the case where the original
Hermitian matrix is taken at random uniformly on its orbit, we recall (sect. 2) how the probability
density function (PDF) of its diagonal elements is determined by a volume function I, which has as
a support the permutahedron determined by the eigenvalues and is a piecewise polynomial function
of these eigenvalues and of the diagonal elements, with non analyticities of a prescribed type on
an a priori known locus. We give quite explicit expressions of that function for the cases of SUp3q
and SUp4q (coadjoint) orbits (sect. 3). In sect. 4, we turn to the parallel representation-theoretic
problem, namely the determination of Kostka numbers. We rederive (sect. 4.2) in this new context
an exact relationship between these multiplicities and the aforementioned volume function, which
was already discussed in the Horn problem [8, 6]. That relation leads in a natural way to the
semi-classical asymptotic limit mentioned above (sect. 4.6). A guiding thread through this work is
the (fairly obvious and well known) fact that Kostka numbers may be obtained as a certain limit of
Littlewood–Richardson coefficients when two of their arguments grow large with a finite difference.
In fact that limit is approached quite fast, and it is an intriguing problem to find values for the
threshold value sc of the scaling parameter beyond which the asymptotic Kostka number is reached.
We address that question in sect. 4.4 and propose a (conservative) upper bound on that threshold
in the case of SU(4). We also recall the combinatorial interpretation of Kostka’s numbers, in terms
of reduced Knutson–Tao honeycombs aka Gelfand–Tsetlin triangles, or of reduced O-blades (sect.
4.3, 4.5). The latter may be recast in a new picture of “forests of lianas”, as discussed in the
Appendix. Finally, sect. 5 is devoted to a discussion of what can be said or conjectured in the case
of the B2 case.

Several of these results have already appeared in some guise in the literature. The domains of
polynomiality of the Duistermaat–Heckman measure and the transitions between them have been
discussed for SUpnq, with emphasis on n “ 3 and 4, in [11]. The parallel analysis of multiplicities
has been carried out in [1], using the method of vector partition functions. A general discussion
making use of Littelmann’s paths [16] has been done by Bliem [2], with an illustration in the case
of the B2 “ sop5q algebra. We believe, however, that several aspects of our approach are original,
that our results for the case SUp4q, resp. B2, complement those of [11, 1], resp. [2], that the
discussion of the threshold value sc is novel, and that the liana picture may give a new insight in
the combinatorial aspects of the problem.

This Schur problem –as its sibling the Horn problem– presents a unique and fascinating mix of
various ingredients, algebraic, geometric and group theoretic. As such, we hope that our modest
contribution would have pleased our distinguished colleague Boris Dubrovin, who, all his life, paid
an acute attention to the interface between mathematics and physics.
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1.2 Notations

In the following, we use two alternative notations for the objects pertaining to SUpnq. First in the
classical Schur problem, the ordered eigenvalues of a n ˆ n Hermitian matrix will be denoted by
α “ pα1, ¨ ¨ ¨ , αnq, with round brackets, and its diagonal elements by ξ “ pξ1, ¨ ¨ ¨ , ξnq, with clearly
ř

i αi “
ř

i ξi. At the possible price of an overall shift of all αi, one may assume they are all non
negative. In the case they are all non negative integers, one may regard them as defining a partition
and encode them in a Young diagram.

A vector λ of the weight lattice of SUpnq may be denoted by its pn´ 1q (Dynkin) components
in the fundamental weight basis: λ “ tλ1, ¨ ¨ ¨ , λn´1u, with curly brackets, or as a partition, with
n “Young components” equal to the lengths of rows of the corresponding Young diagram: α “
pα1, ¨ ¨ ¨ , αnq. The former is recovered from the latter by λi “ αi ´ αi`1, i “ 1, ¨ ¨ ¨ , n´ 1.

Conversely, when dealing with the highest weight λ of an irreducible representation (irrep) of
SUpnq, it is natural to define a decreasing partition α with αi “

řn´1
j“i λj , i “ 1, ¨ ¨ ¨ , n ´ 1, and

αn “ 0. For a weight δ of that irrep, one defines the sequence ξ “ pξ1, ¨ ¨ ¨ , ξnq, also called weight,
with ξi “

řn´1
j“i δj ` c, i “ 1, ¨ ¨ ¨ , n´ 1, ξn “ c, and one chooses c “ 1

n

řn´1
i“1 ipλi ´ δiq, an integer,

in such a way that
řn
i“1 αi “

řn
i“1 ξi. So ξ is a non necessarily decreasing partition of

řn
i“1 αi. It

is well known that multλpδq is equal to the number of SUpnq semi-standard Young tableaux with
fixed shape α and weight ξ. In what follows, we shall use both languages interchangeably, and use
the notations pλ, δq or pα, ξq with the above meaning, without further ado, writing for instance
multλpδq “ multαpξq. Actually, we shall use the same notations and conventions, even if λ and δ
are not integral (so that α and ξ are no longer partitions in the usual sense). We hope that the
context will prevent possible confusions.

2 Schur’s problem

Schur’s problem deals with the following question: If A is a n-by-n Hermitian matrix with known
eigenvalues α1 ě . . . ě αn, what can be said about the diagonal elements ξi :“ Aii, i “ 1, ¨ ¨ ¨ , n? As
shown by Horn [14], the ξ’s lie in the closure of the permutahedron Pα, i.e., , the convex polytope in
Rn whose vertices are the points pαP p1q, αP p2q, ¨ ¨ ¨ , αP pnqq, P P Spnq. Note that by a translation of
A by a multiple of the identity matrix, we could always manage to have

ř

i ξi “
ř

i αi “ trA “ 0 1,
but we shall not generally assume this tracelessness in the following.

A more specific question is the following: if A is drawn randomly and uniformly on its SUpnq-
orbit Oα, what is the PDF of the ξ’s ? It turns out that this PDF is, up to a factor, the (inverse)
Fourier transform of the orbital integral, i.e., the density of Duistermaat–Heckman’s measure. To
show that, we follow the same steps as in [21]. The characteristic function of the random variables
ξ, i.e., the Fourier transform of the desired PDF, is

ϕpxq “ Epei
ř

j xjAjj q “

ż

dU exp i
n
ÿ

j“1

xj pU.α.U
:qjj

with dU the normalized SUpnq Haar measure, and x belongs to the Rn´1 hyperplane defined as
ř

j xj “ 0. From this ϕpxq we recover the PDF p of ξ by inverse Fourier transform

ppξ|αq “

ż

dn´1x

p2πqn´1
dU exp i

ÿ

j

xjppU.α.U
:qjj ´ ξjq

1This would be quite natural since the Lie algebra of SUpnq is the set of traceless skew-Hermitian matrices.
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which is indeed the (inverse) Fourier integral of the orbital (HCIZ) integral Hpα, ixq “
ş

dUei tr pxUαU
:q

ppξ|αq “

ż

dn´1x

p2πqn´1
e´i

ř

j xjξj Hpα, ixq (1)

“
∆pρq

∆pαq

ż

dn´1x

p2πqn´1
1

∆pixq

ÿ

wPSpnq

εpwqei
ř

j xjpαwpjq´ξjq . (2)

In the above expressions εpwq is the signature of w, ∆ stands for the Vandermonde determinant,
∆pαq “

ś

1ďiăjďnpαi ´ αjq and ρ denotes the Weyl vector, written here in partition components

ρ “ pn ´ 1, n ´ 2, . . . , 0q. In the present case of supnq, ∆pρq is the superfactorial
śn´1
j“1 j!. For a

general simple Lie algebra, ∆pξq “
ś

αą0xα, ξy, a product over the positive roots; in the simply-
laced cases ∆pρq is the product2 of factorials of the Coxeter exponents of the algebra.

It turns out that this may be recovered heuristically in a different way. Recall the connection between
Schur’s and Horn’s problems [5]. Consider Horn’s problem for two matrices A P Oα and B P Oβ and assume
that α ! β and that the βj are distinct, βj ´ βj`1 " 1. The eigenvalues of C “ A`B, to the first order of
perturbation theory, are of the form γi “ βi `Aii “ βi ` ξi. The β’s being given, the PDF of the γ’s is the
PDF of the ξ’s. The former, namely

ppγ|α, βq “
1

n!

∆pγq2

∆pρq2

ż

dn´1x

p2πqn´1
∆pxq2 Hpα, ixqHpβ, ixqHpγ,´ixq (3)

reduces in the limit to (1). To prove it, we expand as usual ppγ|α, βq as

ppγ|α, βq “
∆pγq∆pρq

∆pαq∆pβq

ż

dn´1x

p2πqn´1

1

∆pixq

ÿ

w,w1PSpnq

εpw.w1qei
ř

j xjpαwpjq`βw1pjq´γjq (4)

and notice that for α.x „ Op1q, β.x " 1, all terms ei x.βw1 , w1 ‰ 1 are rapidly oscillating and are suppressed,

leaving only the term w1 “ 1 for which the exponential reduces to ei
ř

j xjpαwpjq´ξjq while ∆pγq{∆pβq « 1,

thus reducing (4) to (2).

In these expressions, the integration is over the hyperplane Rn´1 defined by
ř

i xi “ 0 (in
fact, the Cartan algebra of SUpnq). As usual, we change variables ui “ xi ´ xi`1, and denote
∆̃puq :“ ∆pxq. We thus write

ppξ|αq “
∆pρq

∆pαq
Ipα; ξq (5)

Ipα; ξq “
ÿ

wPSpnq

εpwq

ż

dn´1u

∆̃piuq
ei

řn
j“1 uj

řj
k“1pαwpkq´ξkq , (6)

and focus our attention on that function I, that, for reasons explained later, we may call “the volume
function of the Schur–Kostka problem”. As everywhere in this paper we freely use notations that
may refer either to Dynkin components (weights: λ, δ) or to Young components (partitions: α, ξ),
so that with the conventions defined in (sect. 1.2) we may write, for instance, Ipλ; δq “ Ipα; ξq.

It is first clear that, by definition, p and I must be symmetric functions of the ξi, i “ 1, ¨ ¨ ¨ , n.
By a priori arguments [13, 9], or by explicit computation of (6), it is clear that I is a piece-wise

polynomial of its arguments α and ξ, homogeneous of degree pn ´ 1qpn ´ 2q{2. By Riemann–
Lebesgue theorem (i.e., looking at the decay of the integrand of (6) at large u), its differentiability
class is Cn´3, just like in the parallel Horn’s problem.

By using the same arguments as in [6], or by applying the previous limiting procedure to the
J function of Horn’s problem, we can assert a priori that the loci of non-analyticity of I (i.e., the
places where its polynomial determination changes) are contained in the hyperplanes

ξi “ αwpiq, or ξi ` ξj “ αwpiq ` αwpjq, w P Spnq , (7)

2In the non simply-laced cases one has to divide this product by an appropriate scaling coefficient (see for instance
[6]) which is equal to 2r for Br, so that for B2 considered in sect. 5, one gets ∆pρq “ p1!ˆ 3!qp22

q “ 3{2.
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or more generally
ÿ

iPI

ξi “
ÿ

jPJ

αj (8)

with I, J Ă t1, 2, ¨ ¨ ¨ , nu, |I| “ |J | ď tn2 u.
The relationship between the degree of non-differentiability and the cardinality of the sets I and

J in 8 has been addressed in the fundamental work of Guillemin–Lerman–Sternberg [11] §3.5 . It is
proven there that the “jump” (i.e., the change of determination) of I across a singular hyperplane
is of the form

∆I “ const. p
ÿ

I

ξi ´
ÿ

J

αjq
m´1 ` ¨ ¨ ¨ (9)

where m is an integer depending on k “ |I| “ |J |, which we will now determine, thus showing that
I is of class Cm´2 across that singularity. Let’s compute that number m´1 in the case of a singular
hyperplane of the form (8). A generic orbit of SUpnq has dimension dn :“ pn2´1q´pn´1q “ npn´1q.
Let k “ |I| “ |J |, with k ď tn2 u, then

m´ 1 “ pdn ´ dk ´ dn´kq{2´ 1 “ nk ´ k2 ´ 1 “ kpn´ kq ´ 1 . (10)

Thus for SUp4q, k “ 1, resp. 2, leads to m ´ 1 “ 2, resp. 3, i.e., corresponds to a C1, resp. C2

differentiability class; for SUp5q, k “ 1, resp. 2, leads to m ´ 1 “ 3, resp. 5, and differentiability
class C2, resp. C4, etc. This will be fully corroborated by the explicit expressions given below.

In parallel to the study of the “volume function” I, one may consider the properties of the
multiplicity function multλpδq. It is known that it is also a piece-wise polynomial function of λ
and δq [13]. Quite remarkably, it has been proved that its singularities (changes of polynomial
determination) as a function of δ occur on the same locus as those of Ipα; ξq, see Theorem 3.2 in
[1]. This change of determination is a product of kpn ´ kq ´ 1 distinct factors of degree 1, to be
compared with (9-10).

3 Explicit value for low n

3.1 n “ 2

In that case, the PDF and the associated I functions are easily determined. Let α “ pα1,´α1q,
then

A “ Upθqdiag pα1,´α1qU
:pθq, p0 ď θ ď πq ξ1 “ A11 “ α1 cos θ ,

whence a support ξ1 P p´α1, α1q with a density

ppξ|αq “
1

2

sin θ dθ

dξ1
“

1

2α1
, I “ 1

2
.

As expected, the functions p and I are constant and discontinuous at the edges of their support.

Remark. The parallel computation in the case of a real symmetric matrix with action of SOp2q
leads to a density singular on the edges of its support: p “ 1

π
?
α2

1´ξ
2
1

.

3.2 n “ 3

For n “ 3, the function I is readily computed and given by the function displayed in red on Fig. 1.
It is normalized by

ş

d2ξ Ipα; ξq “ ∆pαq{∆pρq as it should, see (5). Equivalent formulae have been
given in [11].

There is an alternative way of presenting this result. Instead of giving the value of I in each
cell, start from the value 0 at the exterior of the permutahedron and give the rule for the change

4
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Figure 1: Piecewise polynomial determination of the function Isup3q :“ PDFˆ∆pαq of the ξi :“ Aii,

for SU(3). We assume α1 ą α2 ą α3. Left: α2 ą
1
2pα1 ` α3q. Right: α2 ă

1
2pα1 ` α3q.

of polynomial determination as one crosses a wall. The rule is as follows: if the equation of a wall
is ξi ´ αj “ 0, the function I is incremented by ξi ´ αj when the wall is crossed in the direction of
the arrow, see Fig. 1. (Here one should remember that

ř3
i“1 ξi “

ř3
i“1 αi.)

We conclude that in the case n “ 3, the changes of determination are by affine functions of
ξ that vanish on the hyperplanes (here lines) of singularity, in accordance with the C0 class of
differentiability.

Remark. From the constraints on the honeycomb parameter, see below sect. 4.3, eq. (35), we
may derive another expression of the same function

Isup3qpα; ξq “ minpα1, α1 ` α2 ´ ξ1q ´maxpα2, ξ2, ξ3, α1 ` α3 ´ ξ1q

“ minpα1 ´ α2, α2 ´ α3, α1 ´ ξi, ξi ´ α3q i “ 1, 2, 3 , (11)

which is manifestly non negative and fully symmetric in the ξ’s.
Consider now two weights of SU(3), whose difference belongs to the root lattice. As explained

above, we denote them either by the 2-dimensional vector of their (integral) Dynkin components
λ “ tλ1, λ2u and δ “ tδ1, δ2u, or equivalently by their partition (Young) components α and ξ. Then
the number of integer points in the interval (36) is the Kostka multiplicity, denoted multαpξq or
multλpδq, and reads

multαpξq “ Isup3qpα; ξq ` 1 . (12)

Expressed in Dynkin coordinates, this reads, if pδ2 ´ δ1q ě pλ2 ´ λ1q

multλpδq “ 1`minr
1

3
p2λ1` λ2` δ1´ δ2q, λ2,

1

3
pλ1` 2λ2` 2δ1` δ2q,

1

3
pλ1` 2λ2´ δ1´ 2δ2qs (13)

Otherwise, one should replace pλ, δq by the conjugate pair pλ, δq in the above expression and use
the fact that multλpδq “ multλpδq.

These expressions are equivalent to those given in [1], sect. 7.1, for the multiplicities.

3.3 n “ 4

The permutahedron may be regarded as the convex polytope of points ξ satisfying the inequalities

α4 ď ξi ď α1 , 1 ď i ď 4 , α3 ` α4 ď ξi ` ξj ď α1 ` α2, 1 ď i ă j ď 4 .
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It has thus four pairs of hexagonal faces ξi “ α1 or α4, i “ 1, ¨ ¨ ¨ , 4; and 3 pairs of rectangular
faces ξi ` ξj “ α1 ` α2 or α3 ` α4, see Fig. 2. (Note that ξi ` ξj “ α1 ` α2 ô ξk ` ξ` “ α3 ` α4,
i, j, k, ` all distinct, since

ř

i ξi “
ř

i αi “ trA.) Moreover, we expect the function to be piecewise
polynomial, with possible changes of determination across the hyperplanes of equation

(i): ξi “ α2 or α3;
or

(ii): ξi ` ξj “ α1 ` α3 or α1 ` α4.
These hyperplanes yield a partition of the permutahedron into (open) polyhedral cells.

Figure 2: The permutahedron for n “ 4 and α “ p5, 4, 2,´11q.
The four coordinates ξi run between -11 and 5 along the four blue axes.

From the expressions given in [21, 8] for the Horn volume, and taking the limit β, γ " α « ξ “
γ ´ β, one finds (notation Ai :“ αwpiq ´ ξi, Aij “ Ai `Aj , A123 “ A1 `A2 `A3)

Isup4qpα; ξq “
ÿ

wPSp4q

εpwqεpA1q (14)

ˆ

εpA2q

´1

6

`

|A123|
3
´ |A13|

3
` |A23|

3
´ |A3|

3 ˘
´

1

2
A2pA123 |A123| `A3 |A3|q

¯

`εpA12q

´1

2
A12pA123 |A123| `A3 |A3|q `

1

3
p|A3|

3
´ |A123|

3
q

¯

˙

,

where εpwq is the signature of w and εp¨q is the sign function.

In principle, there is an alternative expression of Isup4q, though not explicit, coming from its
interpretation as the volume of a 3d polytope, see sect. 4.3.

Finally we have yet another expression, which makes explicit the location of the singular (hy-
per)planes and the piecewise polynomial determinations. This will be described now.

In accordance with the results of [11], see above (9), we expect that the change of polynomial
determination of Isup4q is (at least) quadratic across the hyperplanes of type (i), and cubic across
those of type (ii). This applies also to the vanishing of the function on the external faces, with a
quadratic, resp. cubic behavior on hexagonal, resp. rectangular faces. This is confirmed by the
detailed and explicit expression of the jumps of Isup4q that we discuss now.
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In the vicinity of an hexagonal face, internal or external, ξi “ αj , i, j “ 1, ¨ ¨ ¨ , 4, Isup4q undergoes
a change of determination ∆Isup4qpξq of the form

∆Isup4qpξq “
1

2
pξi ´ αjq

2 pcpξq (15)

with pcpξq a degree 1 polynomial. ∆Isup4qpξq thus vanishes with its first order derivatives on that
face, hence Isup4q is of class C1. More precisely, as ξ1 ´ α3 increases through 0, for instance, which
we denote by ξ1 “Õ α3, I is incremented by

ξ2 ´ α2 ξ3 ´ α2 ξ4 ´ α2

∆Isup4qpξq
ˇ

ˇ

ˇ

ξ1“Õα3

“ ´
1

6
pξ1 ´ α3q

2 ˆ

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

3pξ2 ´ α4q ` pξ1 ´ α3q if ă 0 ą 0 ą 0

3pξ3 ´ α4q ` pξ1 ´ α3q if ą 0 ă 0 ą 0

3pξ4 ´ α4q ` pξ1 ´ α3q if ą 0 ą 0 ă 0

3pα2 ´ α4q if ą 0 ą 0 ą 0

3pα1 ´ α2q if ă 0 ă 0 ă 0

3pα1 ´ ξ4q ´ pξ1 ´ α3q if ă 0 ă 0 ą 0

3pα1 ´ ξ3q ´ pξ1 ´ α3q if ă 0 ą 0 ă 0

3pα1 ´ ξ2q ´ pξ1 ´ α3q if ą 0 ă 0 ă 0

(16)

or, in a more compact form,

∆Isup4qpξq
ˇ

ˇ

ˇ

ξ1“Õα3

“ ´
1

2
pξ1 ´ α3q

2
´

Isup3qppα1, α2, α4q; pξ2, ξ3, ξ4qq `
η13
3
pξ1 ´ α3q

¯

, (17)

in terms of the function defined above in Fig. 1 or in eq. (11), and where η13 “ `1, 0,´1 depending
on the case, as read off the expression (16): η13 “ 1 on the first three lines of (16), then 0 on the
next two, and ´1 on the last three. In other words, if

hppβ1, β2, β3q; pζ1, ζ2, ζ3qq :“

$

’

&

’

%

`1 if sign pζ1 ´ β2q ` sign pζ2 ´ β2q ` sign pζ3 ´ β2q “ `1

0 if sign pζ1 ´ β2q ` sign pζ2 ´ β2q ` sign pζ3 ´ β2q “ ˘3

´1 if sign pζ1 ´ β2q ` sign pζ2 ´ β2q ` sign pζ3 ´ β2q “ ´1

, (18)

then η13 “ hppα1, α2, α4q, pξ2, ξ3, ξ4qq, or more generally, ηij “ hppα1, ¨ ¨ ¨ ,xαj , ¨ ¨ ¨ , α4q, pξ1, ¨ ¨ ¨ , pξi, ¨ ¨ ¨ , ξ4qq.
(As usual, the caret means omission.)

The analogous increments through ξ1 “ α2 are given by similar expressions, where α2 and α3

have been swapped, and the overall sign changed, thus

∆Isup4qpξq
ˇ

ˇ

ˇ

ξ1“Õα2

“
1

2
pξ1 ´ α2q

2
´

Isup3qppα1, α3, α4q; pξ2, ξ3, ξ4qq `
η12
3
pξ1 ´ α2q

¯

, (19)

with now η12 determined by the signs of the three differences ξi ´ α3, i “ 2, 3, 4.
These formulae also apply to the external hexagonal faces, for example ξ1 “ α4, but now I

vanishes on one side, thus the formula actually gives the value of I:

∆Isup4qpξq
ˇ

ˇ

ˇ

ξ1“Õα4

“ Isup4qpξq
ˇ

ˇ

ˇ

ξ1“α4`0
“

1

2
pξ1´α4q

2
´

Isup3qppα1, α2, α3q; pξ2, ξ3, ξ4qq`
η14
3
pξ1´α4q

¯

,

(20)
where η14 determined by the signs of the three differences ξi´α2, i “ 2, 3, 4. Note that the overall
sign is in agreement with the positivity of the functions Isup4q and Isup3q. Likewise, across the
“upper” face ξ1 “ α1,

∆Isup4qpξq
ˇ

ˇ

ˇ

ξ1“Õα1

“ ´Isup4qpξq
ˇ

ˇ

ˇ

ξ1“α1´0
“ ´

1

2
pξ1´α1q

2
´

Isup3qppα2, α3, α4q; pξ2, ξ3, ξ4qq`
η11
3
pξ1´α1q

¯

.

(21)
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Finally, since Isup4q is a symmetric function of the ξi, i “ 1, ¨ ¨ ¨ , 4, the changes of determination
across walls of equation ξ2,3,4 “ αj are obtained from the previous expressions by a permutation of
the ξ’s.

We now turn to the rectangular faces. Across a rectangular face of equation ξi ` ξj “ αk ` αl,
Isup4q is of class C2, hence its change of determination ∆Isup4q vanishes cubically. We find

∆Isup4q
ˇ

ˇ

ˇ

ξi`ξj“Õαk`αl
“ ˘

1

6

`

ξi ` ξj ´ αk ´ αl
˘3

The overall sign is determined by the positivity for external faces ξi`ξj “ α1`α2 or ξi`ξj “ α3`α4

∆Isup4q
ˇ

ˇ

ˇ

ξi`ξj“Õα1`α2

“ ´Ipξq
ˇ

ˇ

ˇ

ξi`ξj“α1`α2´0
“

1

6
pξi ` ξj ´ α1 ´ α2q

3 , (22)

∆Isup4q
ˇ

ˇ

ˇ

ξi`ξj“Õα3`α4

“ Ipξq
ˇ

ˇ

ˇ

ξi`ξj“α3`α4`0
“

1

6
pξi ` ξj ´ α3 ´ α4q

3 . (23)

Internal walls of type (ii) may be written as ξi`ξj “ α1`α3 or ξi`ξj “ α2`α3, with 1 ď i ă j ď 4.
As ξi ` ξj ´ α 1

2
´ α3 increases through 0, the change of polynomial determination is given by

∆Isup4q
ˇ

ˇ

ˇ

ξi`ξj“Õα1`α3

“ ´
1

6
pξi ` ξj ´ α1 ´ α3q

3 (24)

∆Isup4q
ˇ

ˇ

ˇ

ξi`ξj“Õα2`α3

“

#

1
6pξi ` ξj ´ α2 ´ α3q

3 if α3 ď ξi, ξj ď α2

0 otherwise .
(25)

Example. Fig. 3 displays a cross-section of the permutahedron for α “ t5, 4, 2,´11u at ξ3 “
pα1`α2q{2. The hyperplanes ξi` ξj “ α1`α3, resp. “ α2`α3 intersect these cross-sections along
the green lines, resp. the orange lines. There are 1 ` 3 ˆ p9 ` 3q “ 37 cells of polynomiality for
maxpα2, pα1 ´ α2 ` α3qq ď ξ3 ď α1.

Remarks.
1. The above expressions have been obtained in a semi-empirical way, checking on many cases
their consistency with the original expression (6). A direct and systematic proof would clearly be
desirable.
2. Denote by ti, j, k, `u a permutation of t1, 2, 3, 4u. The first case (24) above, (green lines on Fig. 3),
occurs only if α3 ď ξi, ξj ď α1 and α4 ď ξk, ξ` ď α2. Indeed if ξi`ξj “ α1`α3 ô ξk`ξ` “ α2`α4,
then ξi “ pα1 ´ ξjq

loooomoooon

ě0

`α3 ě α3 and of course ξi ď α1, while ξk “ α2 ` pα4 ´ ξ`q
loooomoooon

ď0

ď α2 and of course

ξk ě α4. In other words, the planes ξi ` ξj “ α1 ` α3 do not intersect the permutahedron if those
conditions are not fulfilled.
3. In contrast, in the second case (25) (orange lines on Fig. 3), there is a change of polynomial
determination only if α3 ď ξi, ξj ď α2 although the planes ξi ` ξj “ α2 ` α3 intersect the permu-
tahedron irrespective of that condition.
This illustrates the well known fact that the forms given above in (8) for the loci of change of
polynomial determinations are only necessary conditions. It may be that the function I is actually
regular across some of these (hyper)planes.

4 Relation of I with multiplicities

4.1 The Kostant multiplicity formula

The multiplicity of the weight δ in the irreducible representation of highest weight λ, aka the Kostka
number, may be written in various ways, e.g. following Kostant [15]

multλpδq “
ÿ

wPW

εwP pwpλ` ρq ´ δ ´ ρq (26)
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ξ2=α1+α2-ξ3

ξ2=α4

ξ 1
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Figure 3: SU(4): A cross-section of the permutahedron, again for for α “ t5, 4, 2,´11u, along the
plane at fixed ξ3 “ pα1 ` α2q{2. (Recall that ξ4 “

ř

i αi ´ ξ1 ´ ξ2 ´ ξ3.) There are
1 ` 3 ˆ p9 ` 3q “ 37 cells of polynomiality. Note that the orange lines (of equation
ξi ` ξj “ α2 ` α3, i, j “ 1, 2, 4) do not extend to the boundary of the permutahedron,
reflecting the condition (25).

where P is Kostant’s partition function ([12], Theorem 10.29). P pβββq gives the number of ways an
element βββ of the root lattice may be decomposed as a non-negative integer linear combination of
positive roots.

On the other hand, it has been pointed out by Heckman ([13], see also [11]) that asymptotically,
for large weights λ and δ, one may write a semi-classical approximation of multλpδq. We shall
recover below this result from the more general formula (39).

The Kostant partition functions for rank 2 Lie algebras are given in [20] and in [3]. The first
reference also gives the partition function for A3. The expression obtained by [3] for B2 is more
compact and this is the one that we give below. We used these formulae to check the consistency
of expressions obtained by other means, using honeycombs or other pictographs, or counting the
integer points in Berenstein-Zelevinsky (BZ) polytopes, see below.

If κ is a weight, with components ki in the basis of simple roots (“Kac labels”) (warning: not
the basis of fundamental weights (“Dynkin labels”)!), P pκq is given by:

SUp3q: P pk1, k2q “

#

minpk1, k2q ` 1 if k1 ě 0 and k2 ě 0

0 otherwise

SUp4q: P pk1, k2, k3q “
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 k1 ă 0_ k2 ă 0_ k3 ă 0
1
6 pk2 ` 1qpk2 ` 2qpk2 ` 3q k2 ď k1 ^ k2 ď k3

1
6 pk1 ` 1qpk1 ` 2qp´2k1 ` 3k2 ` 3q k1 ď k2 ď k3
1
6 pk1 ` 1qpk1 ` 2qp´k1 ` 3k3 ` 3q k1 ď k3 ď k1 ` k3 ď k2

1
6 pk1 ` 1qpk1 ` 2qp´k1 ` 3k3 ` 3q ´

`

k1´k2`k3`2
3

˘

k1 ď k3 ď k2 ď k1 ` k3
1
6 pk3 ` 1qpk3 ` 2qp3k2 ´ 2k3 ` 3q k3 ď k2 ď k1
1
6 pk3 ` 1qpk3 ` 2qp3k1 ´ k3 ` 3q k3 ď k1 ď k1 ` k3 ď k2

1
6 pk3 ` 1qpk3 ` 2qp3k1 ´ k3 ` 3q ´

`

k1´k2`k3`2
3

˘

k3 ď k1 ď k2 ď k1 ` k3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Notice that for SUp4q there are seven cases (Kostant chambers of polynomiality) and that the last three
cases are obtained from the previous three by exchanging k1 and k3.
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B2: P pk1, k2q “

¨

˚

˚

˝

0 k1 ă 0_ k2 ă 0
bpk2q k2 ď k1

1
2 pk1 ` 1qpk1 ` 2q 2k1 ď k2

1
2 pk1 ` 1qpk1 ` 2q ´ bp2k1 ´ k2 ´ 1q k1 ď k2 ď 2k1

˛

‹

‹

‚

Here the function b is defined by bpxq “
`

´tx`1
2 u` x` 1

˘ `

tx`1
2 u` 1

˘

, in terms of the integer part function.

4.2 The I–multiplicity relation

We follow here the same steps as in the case of the relation betweeen the Horn volume and LR
coefficients [6, 5]. Take λ1 “ λ` ρ, where λ is the h.w. of the irrep Vλ and ρ is the Weyl vector.

Ipλ1; δq “
∆pλ1q

∆pρq

ż

Rn´1

dx

p2πqn´1
Hpλ1; δqe´i xx,δy (27)

“

ż

Rn´1

dx

p2πqn´1
Hpλ1; δq dimVλ
loooooooomoooooooon

∆̂pei xq
∆pi xq

χλpei xq

e´i xx,δy

“

ż

Rn´1{2πP_

dx

p2πqn´1

ÿ

ψP2πP_

∆̂pei px`ψqq

∆pi px` ψqq
χλpe

i px`ψqqe´i xpx`ψq,δy

“

ż

Rn´1{2πP_

dx

p2πqn´1

ÿ

ψP2πP_

ei xλ`ρ´δ,ψy
∆̂peixq

∆pi px` ψqq
χλpe

ixqe´i xx,δy

Following Etingof and Rains [10] one writes

ÿ

ψP2πP_

ei xρ,ψy
∆̂peixq

∆pi px` ψqq
“

ÿ

κPK

rκχκpe
ixq (28)

ÿ

ψP2πP_

∆̂peixq

∆pi px` ψqq
“

ÿ

κPK̂

r̂κχκpe
ixq ,

where the finite sets of weights K and K̂ and the rational coefficients rκ, r̂κ have been defined in
[6, 5], and one finds, with Q the root lattice,

Ipλ1; δq “

#

ř

κPK rκ
ř

τ C
τ
λκ multτ pδq if λ´ δ P Q

ř

κPK̂ r̂κ
ř

τ C
τ
λκ multτ pδq if λ` ρ´ δ P Q .

(29)

For su(3), the two formulae boil down to the same simple expression, since ρ P Q and K “ K̂ “ t0u,
hence

Isup3qpλ1; δq “ multλpδq . (30)

This expression is compatible with that given in (12), thanks to a peculiar identity that holds in
su(3): Isup3qpλ ` ρ; δq “ Isup3qpλ; δq ` 1 or equivalently multλ`ρpδq “ multλpδq ` 1 . The latter is

itself obtained in the large µ, ν “ µ ` δ limit of the more general identity Cν`ρλ`ρµ`ρ “ Cνλµ ` 1
already mentioned in [7, 8].

For su(4), we have two distinct relations

Isup4qpλ1; δq “

$

&

%

1
24

´

9 multλpδq `
ř

τ C
τ
λ t1,0,1umultτ pδq

¯

if λ´ δ P Q

1
6

ř

τ C
τ
λ t0,1,0umultτ pδq if λ´ δ ´ ρ P Q .

(31)

In particular for λ “ 0,

Isup4qpρ; δq “

#

1
24

`

9 δδ0 `multt1,0,1upδq
˘

if δ P Q
1
6multt0,1,0upδq if δ ´ ρ P Q

(32)
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α3 β1

´α3 ´ β1

α3 ` β1
´x

x

α2

´α2 ´ α3 ´ β1`x ´β2´x

β2

α1

β1 ` ξ1
´α1

ř

i αi
´ξ1 ´ x

β2 ´ ξ3
`x

ξ3

β3

´β1 ´ ξ1 ´β2 ´ ξ2 ´β3 ´ ξ3

Figure 4: Knutson–Tao’s honeycomb for n “ 3 for γ, β " α, ξ “ γ ´ β. Thick lines carry the large
values β1 ą β2 ą β3 " αi, ξi.

thus for δ “ 0, Isup4qpρ; 0q “ 1
2 and for δ “ t1, 0, 1u (or any of its Weyl images), Isup4qpρ; δq “ 1

24 ,

while for δ “ t0, 1, 0u (or any of its Weyl images), Isup4qpρ; δq “ 1
6 .

Remark. Inverting the I–multiplicity formula (29) is an interesting question that has been
addressed in [17], sect. 6.

4.3 Polytopes and reduced KT honeycombs

Recall that Knutson–Tao (KT) honeycombs or other pictographs relevant for the LR coefficients of
supnq depend on pn´1qpn´2q{2 parameters. For example, in the KT honeycombs, the 3n external
edges carry the components of α, β, γ, while each internal line carries a number, such that at each
vertex the sum of the incident numbers vanishes. Moreover, for each of the 3npn ` 1q{2 internal
edges, one writes a certain inequality between those numbers. In the limit β „ γ " α, ξ, one third
of these inequalities is automatically satisfied and one is left with npn ` 1q linear inequalities on
the pn´ 1qpn´ 2q{2 parameters.

This is illustrated on Fig. 4 for n “ 3. There, the choice of the parameters is such that the
large numbers of order Opβ, γq are carried by North–South and NE–SO lines (heavy lines on the
figure), while the NO–SE lines carry numbers of order Opα, ξq. Inequalities attached to the latter
are automatically satisfied.

In general, the surviving inequalities are of the type c ď a ď b for all patterns of the type

a
c

bwithin the honeycomb.

One then sees that the KT honeycomb boils down to a Gelfand–Tsetlin (GT) triangle, see Fig.
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αn β1

x
pn´1q
n´1

αn´1 β2

αn´2
x
pn´2q
n´2x

pn´1q
n´2

β3

”

αn

αn´1

...

α2

α1

ξ1

x
pn´1q
n´1

x
pn´1q
n´2

...

x
pn´1q
2

x
pn´1q
1

ξ2

x
pn´2q
n´2

x
pn´2q
n´3

...

x
pn´2q
1

ξ3

¨ ¨ ¨

¨ ¨ ¨

ξn´2

x
p2q
2

x
p2q
1

ξn´1

ξn

Figure 5: A Knutson–Tao’s honeycomb for γ, β " α, ξ “ γ ´ β reduced to a GT triangle.

5, and one is left with the GT inequalities

αn ď x
pn´1q
n´1 ď αn´1 ď ¨ ¨ ¨ ď x

pn´1q
1 ď α1 (33)

x
pj`1q
i`1 ď x

pjq
i ď x

pj`1q
i , 1 ď i, j ď n´ 2

together with the n´ 2 conservation laws

n
ÿ

i“1

αi “ ξ1 `
n´1
ÿ

j“1

x
pn´1q
j “ ξ1 ` ξ2 `

n´2
ÿ

j“1

x
pn´2q
j “ ¨ ¨ ¨ “

n´2
ÿ

i“1

ξi ` x
p2q
1 ` x

p2q
2 “

n
ÿ

i“1

ξi . (34)

According to the well-known rules, the semi-standard tableaux corresponding to that triangle must have

x
p1q
1 “ ξn boxes containing 1 (necessarily in the first row); x

p2q
1 ` x

p2q
2 ´ x

p1q
1 “ ξn´1 boxes containing 2 (in

the first two rows); etc; and ξ1 boxes containing n.

Relations (33-34) define a polytope Ppα; ξq in Rpn´1qpn´2q{2, whose volume is the function
Isupnqpα; ξq, as we show below in sect. 4.6.

Example. For n “ 3, these relations reduce to

α3 ď x
p2q
2 ď α2 ď x

p2q
1 ď α1

x
p2q
2 ď ξ3 ” x

p1q
1 ď x

p2q
1 (35)

3
ÿ

i“1

αi “ ξ1 ` x
p2q
1 ` x

p2q
2 “

3
ÿ

i“1

ξi ,

hence to the following bounds on, say, x
p2q
1

maxpα2, ξ2, ξ3, ξ2`ξ3 ´ α2q ď x
p2q
1 ď α1 ´ ξ1 `minpξ1, α2q (36)

which leads to the expression (11) of Isup3qpα; ξq.

A similar discussion may be carried out for the other algebras, based on the BZ inequalities.
For example for B2, see below sect. 5.
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4.4 The Kostka multiplicity as a limit of LR coefficients

In the same spirit as the large β, γ limit above, we have

multλpδq “ lim
sÑ8

Cµ`sρ`δλ µ`sρ (37)

independently of the choice of µ. Actually we can choose µ “ ρ, so that the above formula reads

multλpδq “ lim
sÑ8

Csρ`δλ sρ (38)

One can find an integer sc such that @s ě sc, multλpδq “ Csρ`δλ sρ . In the case A3 for example, taking
λ “ t4, 5, 3u, δ “ t´4,´2, 5u, one has multλpδq “ 26, whereas taking s “ 4, 5, 6, 7, 8, 9, . . . one finds

Csρ`δλ sρ “ 6, 19, 24, 26, 26, 26, . . ., so sc “ 7.
It is interesting to find a general upper bound for sc (we are not aware of any attempt of this

kind in the literature). We shall find such a bound in the case of the Lie algebra A3. As the
reader will see, our method relies on a brute-force calculation; it would be nice to find a more
elegant approach that could be generalized to An, or more generally, to any simple Lie algebra.
For a given highest weight λ and any weight δ belonging to its weight system, we calculate the
Littlewood-Richardson coefficient Spλ, δ, sq “ Csρ`δλ sρ from the Kostant-Steinberg formula, using the
Kostant partition function for A3 given in sect. 4.1, and show explicitly (this is indeed a brute-force
calculation !) that the difference Spλ, δ, s ` 1q ´ Spλ, δ, sq vanishes, equivalently, that Spλ, δ, sq is
stationary, for values of λ, δ, s obeying the following set of constraints:

λ1 ě 0, λ2 ě 0, λ3 ě 0, λ1`λ2`λ3 ą 0, s ą 0, 4ps`1q ą X1 ě 0, 2ps`1q ą X2 ě 0, 4ps`1q ą X3 ě 0.

where

X1 “ pλ1 ` 2λ2 ` 3λ3q ´ pδ1 ` 2δ2 ` 3δ3q,

X2 “ pλ1 ` 2λ2 ` λ3q ´ pδ1 ` 2δ2 ` δ3q,

X3 “ p3λ1 ` 2λ2 ` λ3q ´ p3δ1 ` 2δ2 ` δ3q.

The s-independent inequalities relating λ and δ are nothing else than the Schur inequalities;
equivalently, they can be obtained by writing that the partition α is larger than the weight
ξ for the dominance order on partitions — as everywhere in this paper, α and ξ refer to the
Young components (partitions) associated with the weights λ and δ. In the previous set of con-
straints, one can replace the s-independent inequalities relating λ and δ by the following ones:
´pλ1`λ2`λ3q ď φ ď pλ1`λ2`λ3q, where φ can be δ1, δ2, δ3 or pδ1` δ2` δ3q. The latter, namely
the one with φ “ pδ1 ` δ2 ` δ3q, expresses the fact that λ (resp. ´λ) is the highest weight (resp. is
the lowest weight). The obtained s-dependent inequalities imply 4psc`1q ă maxpX1, 2X2, X3q`1.

For a given highest weight λ this allows us to obtain a bound independent of the choice of the
weight δ. One finds sc ď 2pλ1 ` λ2 ` λ3q. Indeed, one can check explicitly that, given λ, and for
any δ of its weight system, the function Spλ, δ, sq is stationary for s ě 2

ř

j λj .

4.5 Reduced O-blades and reduced isometric honeycombs

The general discussion carried out in section 4.3 could be expressed in terms of other pictographs,
for instance BZ-triangles, O-blades, or isometric honeycombs (see our discussion in [7] or [8] for a
presentation of the last two). We have seen how KT honeycombs are “reduced” to GT patterns
when one moves from the Horn problem to the Schur problem. An analogous reduction holds if we
use isometric honeycombs or rather, their O-blades partners. We shall illustrate this with SU(4) by
choosing the (dominant) weight λ “ t4, 5, 3u and the weight δ “ t´4,´2, 5u; here components are
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expressed in terms of Dynkin labels3. Equivalently, in terms of partitions, we have α “ p12, 8, 3, 0q,
and ξ “ p´1, 3, 5, 0q ` p4, 4, 4, 4q “ p3, 7, 9, 4q.

λ is the highest weight of an irreducible representation (of dimension 16500), and the weight
subspace associated with δ has dimension 26. There is a basis in this representation space for which
every basis vector can be attached to a semi-standard Young tableau with filling 1, 2, 3, 4 and shape
(partition) α, or, equivalently, to a Gelfand–Tsetlin pattern. Here is one of them, and one sees
immediately that its associated basis vector indeed belongs to the weight subspace defined by δ (or
ξ):

Young tableau :
1 1 1 2 2 2 2 3 3 3 3 3
2 2 2 3 3 3 4 4
3 4 4

with GT pattern :

12, 8, 3, 0
12, 6, 1

7, 3
3

Remember that the sequence of lines of the GT pattern is obtained from the chosen Young
tableau by listing the shapes of the tableaux obtained by removing successive entries, starting from
the largest one (here 4): tt1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3u, t2, 2, 2, 3, 3, 3u, t3uu, tt1, 1, 1, 2, 2, 2, 2u, t2, 2, 2uu, tt1, 1, 1uu.

Using s “ 1000 in (38), we display in (Fig. 6, Left) one4 of the O-blades describing the space
of intertwiners for the triple5 ppsρ, sρ` δq Ñ λqq. It is a member of a one-parameter (s) family of
O-blades for which the integers carried by the horizontal edges are s-dependent and for which the
other edge values stay constant as soon as s ą sc. What remains in the limit of large s (meaning
s ą sc) is only the “reduced O-blade” given in (Fig. 6, Middle) where we have removed the 0’s and
the values carried by the s-dependent horizontal edges since they are irrelevant.
The net result is that we have as many distinct reduced O-blades (for instance those obtained by
reducing the ones associated with the triple ppsρ, sρ` δq Ñ λ)) as we have distinct GT patterns,
namely, a number equal to the dimension multλpδq of the weight subspace defined by δ. Those (26
of them) associated with the example chosen above are displayed on Fig. 12.
Isometric honeycombs cannot be displayed on a page if s is large (because they are isometric !),
so we choose s “ 8 and display on Fig. 6 (Right) the isometric honeycomb partner of the O-blade
obtained, in the same one-parameter family, for this value of s (here sc “ 7 so that taking s “ 8
is enough). Now the integers carried by the vertical edges are irrelevant (they would change with
s): what matters are the integers carried by the non-vertical edges of the –possibly degenerate–
parallelo-hexagons.

The particular reduced O-blade displayed in Fig. 6 (Middle) can also be obtained directly,
by a simple combinatorial rule, from the Young tableau displayed previously, or from the corre-
sponding GT pattern, without any appeal to the limit procedure (38) using Littlewood-Richardson
coefficients, and without considering their associated pictographs: see the Appendix “Lianas and
forests”.

4.6 Asymptotics of the I–multiplicity formula: I as a volume and stretching
polynomials.

We may repeat the same chain of arguments as in Horn’problem [8, 6]: upon scaling by p " 1 of
λ, δ in (29)

3Remember that external sides of KT honeycombs are labelled by integer partitions whereas external sides of
O-blades or of isometric honeycombs are labelled by the Dynkin labels of the chosen weights.

4As we shall see below, this choice (among the 26 O-blades obtained when s ą sc) is not arbitrary but dictated
by our wish to establish a link with the previously chosen Young tableau.

5In order to ease the discussion of the correspondence with Young tableaux, and also to draw the weight λ on the
bottom of each pictograph, it is better to display the O-blades (or their isometric honeycombs partners) associated
with the Littlewood-Richardson coefficient Cλsρ`δ,sρ or with Cλsρ,sρ`δ rather than those associated with Csρ`δλ,sρ . Notice
that the numbers of such pictographs are all equal to multλpδq when s is big enough. The choice made in Fig. 6, 12
corresponds to the triple ppsρ, sρ` δq ÞÑ λq.
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Figure 6: Left : One of the 26 O-blades associated with Cλsρ`δ,sρ for λ “ t4, 5, 3u, δ “ t´4,´2, 5u,
s “ 1000. Middle: same, with the 0’s and the s-dependent labeling of horizontal lines
removed. Right: The corresponding isometric honeycomb for the choice s “ 8 ą sc.

Ippλ` ρ, pδq « Ippλ, pδq “ ppn´1qpn´2q{2Ipλ, δq
“

ÿ

κPK

rκ
ÿ

τ

Cτpλ κmultτ ppδq

«
ÿ

κPK

rκ
ÿ

τ

ÿ

kPrκs

δτ,pλ`kmultτ ppδq

“
ÿ

κPK

rκ
ÿ

kPrκs

multpλ`kppδq

“
ÿ

κPK

rκ dimκ

looooomooooon

“1

multpλppδq

“ multpλppδq “ pdvoldpPpλ; δqq ` ¨ ¨ ¨ (39)

where Ppλ; δq is the polytope defined in sect. 4.3 or associated with one of the pictographs mentioned
in sect. 4.5. Thus for generic cases for which d “ pn´ 1qpn´ 2q{2, we have the identification

Ipλ, δq “ voldpPpλ; δqq , (40)

(while for the non generic cases, both I and volpn´1qpn´2q{2 vanish).

For illustration we consider the weights λ “ t4, 5, 3u and δ “ t´4,´2, 5u of SU(4) already
chosen in a previous section. The multiplicities obtained by scaling them by a common factor
p “ 1, 2, 3, . . . lead to the sequence 26, 120, 329, 699, 1276, 2106, 3235, 4709, 6574, 8876, . . ., which
can be encoded by the cubic polynomial 1

6p6 ` 35p ` 69p2 ` 46p3q whose dominant term is 23{3,
which is indeed the value of the Schur volume function Ipλ, δq.

Another way to obtain this value is to use the volume function for the Horn problem, that
we called J pλ, µ, νq in refs [8] and [6]. In the generic case this function gives the volume of the
hive polytope associated with the triple pλ, µq Ñ ν i.e., the polytope whose Cνλ,µ integer points
label the honeycombs for this specific space of intertwiners. It also gives the leading coefficient
of the Littlewood-Richardson polynomial (a polynomial6 in the variable p) giving, when p is a
non-negative integer, the LR coefficient Cpνpλ,pµ for highest weights scaled by p. Since the Kostka
numbers (multiplicities of weights) can be obtained as a limit of LR coefficients for special arguments

6We assume here that the chosen Lie group is SU(n), otherwise, this object may be a quasi-polynomial.
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(see (38)), the same is true under scaling. For s ą sc (determined by the choice of λ and δ), we have
therefore Ipλ, δq “ J pλ, sρ, sρ`δq. We check, on the same example as before, that we have indeed,
J pt4, 5, 3u, ts, s, su, ts´ 4, s´ 2, s` 5uq “ 13{3, 7, 23{3, 23{3, 23{3, 23{3, . . . for s “ 5, 6, 7, 8, . . . As
expected, the values of J stabilize, and the asymptotics, i.e., Ipλ, δq, is reached for s “ 7. Notice
the various kinds of scalings involved here: 1) a scaling of ρ by s, with the weights λ and δ remaining
constant, 2) a scaling of λ and δ by the non-negative integer p, 3) a simultaneous scaling of the
three arguments of J by a non-negative integer p giving rise to a polynomial (in p) encoding the

LR coefficients Cpsρ`pδpλ,psρ .

5 The case of B2
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Figure 7: The Schur polytope O in the B2 case, with its singular lines, in the three cases α “ p4, 1q,
α “ p4, 32q and α “ p4, 3q.

5.1 The Schur octagon

Consider the orbit Oα of the group SOp5q acting by conjugation on a block-diagonal skew symmetric
matrix

A “ diag

ˆ„

0 αi
´αi 0



i“1,2

, 0

˙

with real αi. Note that one may choose 0 ď α2 ď α1. Schur’s

problem reads: what can be said about the projections ξi of a matrix of Oα on an orthonormal
basis Xi of the Cartan algebra, ξi “ trO.A.OT .Xi, i “ 1, 2, where O P SOp5q? More specifically, if
the matrix O is taken randomly and uniformly distributed in SO(5), what is the PDF of the ξ’s?
There is again a connection with the corresponding Horn problem, as discussed for example in [6].
Taking the limit β, γ " α, ξ “ γ ´ β finite, in the expressions and figures of [6], we find that the
support of the Schur volume is the octagon

O : ´α1 ď ξ1, ξ2 ď α1 , ´pα1 ` α2q ď ξ1 ˘ ξ2 ď α1 ` α2 , (41)

and that the singular lines of the PDF, or of the associated volume function, are

ξ1, ξ2 “ ˘α2 , ξ1 ˘ ξ2 “ ˘pα1 ´ α2q ,

see Fig. 7. Three cases occur, depending on whether the ratio α2{α1 belongs to p0, 1{3q, p1{3, 1{2q
or p1{2, 1q. For a given value of that ratio, 1` 4ˆ 6 “ 25 cells occur, and in total, one should have
1` 4ˆ 8 “ 33 possible cells, in accordance with Bliem’s result [2].
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Working out this same limit in the expressions of the Horn volume given in [6], we find a
(relatively) simple expression for the Schur volume function

IB2pα; ξq “ 0 if ξ R O

∆IB2pα; ξq “

#

˘1
2pξi ´ αjq

2 across any line ξi “ αj i, j “ 1, 2

˘1
4pξ1 ` εξ2 ´ ε

2pα1 ` ε
1α2qq

2 across any line ξ1 ` εξ2 “ ε2pα1 ` ε
1α2q

(42)

ε, ε1, ε2 “ ˘1, and with the overall sign of the change determined by the prescription of Fig. 8.

Figure 8: Prescriptions for the changes of IB2 across the lines emanating from a vertex: the sign
in (42) is ` if the line is crossed along the direction of the arrow, ´ otherwise. This holds
for any rotated configuration of that type.

One may finally plot the resulting PDF ppξ|αq “ 3
2α1α2pα2

1´α
2
2q
IB2pα, ξq for a given value of α

and compare it with the “experimental” histogram of a large random sampling of matrices of Oα,
see Fig. 9.

Figure 9: Comparing the plot of the PDF with the histogram of ξ values obtained from 106 matrices
of the orbit Oα, for α “ p4, 3q.

Repeating the steps followed in sect. 4.2 and making use of results in sect. 3 of [6], one derives
a relation between IB2 and multiplicities:

IB2pλ
1; δq “

$

&

%

1
8

´

3 multλpδq `
ř

τ C
τ
λ t1,0umultτ pδq

¯

if λ´ δ P Q

1
4

ř

τ C
τ
λ t0,1umultτ pδq if λ´ δ ´ ρ P Q .

(43)

In particular for λ “ 0,

IB2pρ; δq “

#

1
8

`

3 δδ0 `multt1,0upδq
˘

if δ P Q
1
4multt0,1upδq if δ ´ ρ P Q

(44)
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For example, take for δ the short simple root, δ “ p0, 1q “ t´1, 2u P Q, IB2pρ; δq “ 1
8 , multt1,0upδq “

1.
Remarks.

1. A general piece-wise polynomial expression of multλpδq has been given by Bliem [2]. His expres-
sions should be consistent with the relation (43) and our implicit expression of IB2 in (42).
2. One should also notice that (38) holds true in general, and thus in the current B2 case. For ex-

ample, multt20,12upt18,´6uq “ 56 may be recovered asymptotically as C
ts`18,s´6u
t20,12qu ts,su, which takes the

values 0, 0, 0, 0, 0, 3, 8, 14, 20, 26, 31, 36, 40, 44, 47, 50, 52, 54, 55, 56, 56, 56, 56, 56, 56 as s grows from 1
to 25. Hence here sc “ 20.

5.2 A3 versus B2

It is well known that the B2 root system may be obtained by folding that of A3. It is thus suggested
to compare Kostka multiplicities for cases that enjoy some symmetry in that folding. Consider in
particular the special case of λ “ tλ1, 1, λ1u. Inequalities on the three parameters i, j, k of A3

oblades for multtλ1,λ2“1,λ1uptδ1, δ2, δ1uq reduce to

ti ď λ1, δ2 ď 2k ` 1, δ1 ` k ď i, δ1 ` j ` k ` λ1 ě i, ´1 ď δ2 ´ 2pj ` kq ď 1, (45)

i ě 0, i` j ě 0, δ1 ` j ` k ď i, δ1 ` j ` 2k ď i, δ2 ` 1 ě 2j, i ě ku

Consideration of a large number of examples then suggest the following
Conjecture 1:
i) the number of triplets pi, j, kq satisfying these inequalities is a square integer, viz

multtλ1,1,λ1uptδ1, δ2, δ1uq “ m2 ;

ii) the corresponding B2 multiplicity is then multtλ1,1uptδ1, δ2uq “ m .

5.3 Stretching (quasi)polynomial for the B2 multiplicity

Let κ “ λ ´ δ. As well known, multλpδq vanishes if κ R Q, the root lattice, i.e., if κ2 (in Dynkin
indices) is odd. Now consider the stretched multiplicity multsλpsδq, s P N. It is in general a quasi-
polynomial of s. Again, we have found a fairly strong evidence for, and we propose the following
Conjecture 2:
i) for λ2 and δ2 both even, multsλpsδq is a polynomial of s for κ1 even, and, except for a finite
number of cases, a quasi-polynomial for κ1 odd;
ii) for λ2 and δ2 both odd, generically it is a quasi-polynomial, except if 2IB2 (twice the Schur
volume) is an integer.

5.4 Pictographs for B2 ?

A combinatorial algorithm based on Littelmann’s paths [16] has been proposed by Bliem[2]. We
tried (hard) to invent a B2 analog of O-blades, either degenerate (Kostka coefficients) or not (LR
coefficients). It seems that it cannot be done without introducing edges carrying both positive and
negative integers, and the result is not particularly appealing, so we leave this as an open problem !
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Appendix : Lianas and forests

We now explain how to obtained directly a reduced O-blade from an SUpnq Young tableau. We do
not assume that the given tableau is semi-standard, but its entries along any chosen column should
increase when going down.
Draw an equilateral triangle with sides of length n, choose one side (“ground level”) and mark
the inner points 1, . . . , n ´ 1. To every column (with j elements) of the chosen tableau, associate
a zigzag line (a liana) going upward, but only north-west or north-east, from the marked point j
located on the ground level of the triangle. When going up, there are n ` 1 consecutive levels
for SUpnq, the ground level being the first. An entry marked p in the chosen column makes the
associated liana to grow upward to the left between levels pn`1q´p and pn`1q´pp´1q, otherwise,
it grows upward to the right. When it reaches the boundary of the surrounding triangle, the liana
continues upward, following the boundary. One finally superimposes the lianas rooted in the same
points (the positions 1, 2, . . . , n´1), formally adding the characteristic functions of their sets, when
they grow from the same point, and obtain in this way a liana forest.

As in sect. 4.5 we consider the SUp4q example
1 1 1 2 2 2 2 3 3 3 3 3
2 2 2 3 3 3 4 4
3 4 4

. We have 12

lianas with five levels. Reading this Young tableau from right to left we see that left-going directions
occur between levels specified by tt3u, t3u, t3u, t3u, t3, 4u, t2, 4u, t2, 3u, t2, 3u, t2, 3u, t1, 2, 4u, t1, 2, 4u, t1, 2, 3uu,
to which we associate the lianas displayed in Fig. 10. For instance the 6th liana, which is rooted in
the second point, is described by t2, 4u, so it grows upward to the left above levels 3 “ 5 ´ 2 and
1 “ 5´ 4, otherwise it grows to the right.

1 1 1 1 2 2 2 2 2 3 3 3

Figure 10: SU(4): Lianas associated with the Young tableau chosen in the text.

When superimposing the lianas rooted in the same points we recover the reduced O-blade
displayed of Fig. 6, (Middle), as a liana forest: see Fig. 11. Notice that the labels 9, 3, 5, 3, 1, on
the boundary of the triangle given in Fig. 11 (Right), are absent in the reduced O-blade, but they
can be obtained immediately from the latter by using the property that when a liana reaches the
boundary, it continues upward, following the boundary.

The chosen dominant weight (the highest weight λ “ t4, 5, 3u), with associated Young diagram
of shape p12 “ 4` 5` 3, 8 “ 5` 3, 3, 0q, a (decreasing) partition of 23, appears at the first level of
the liana forest. The weight ξ can be read from the sequence giving the total number of left-going
edges, when one moves downward, level after level; namely p3, 7, 9 “ 8 ` 1, 4q, a (non-decreasing)
partition of 23, for which the associated weight is indeed δ “ t´4,´2, 5u “ t3 ´ 7, 7 ´ 9, 9 ´ 4u.
This could also be read from the Young tableau given at the beginning of sect. 4.5. Notice that the
sequence of lianas (given by Fig. 10) or the indexed liana forest (that keeps track of the origin of each
liana, see Fig. 11, Left) has the same information contents as the Young tableau we started from.
Part of this information is lost when we superimpose the lianas and remove the indices that give
the point they grow from (Fig. 11, Right): several distinct sequences of lianas (i.e., distinct Young
tableaux, not necessarily semi-standard, or distinct indexed liana forests) may give rise to the same
(unindexed) liana forest. If we are only interested in multiplicities and not in the construction of
explicit basis vectors in representation spaces, one may forget about indexed liana forests because of
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Figure 11: SU(4): Liana forest associated with the Young tableau chosen in the text.
Left: With the origin of lianas marked as a superscript.
Right: With the origin removed. The corresponding O-blade is in position 19 of Fig. 12.

the existence of a one-to-one correspondence between reduced O-blades and liana forests (compare
for instance Fig. 6, (Middle) and Fig. 11, (Right)). The number of liana forests being the same
as the number of reduced O-blades (in our example they are all displayed on Fig. 12), it is also
equal to the dimension of the weight subspace defined by δ in the representation space of highest
weight λ. A more detailed analysis of the combinatorics underlying these constructions clearly falls
beyond the scope of the present paper, and we shall stop here.

This way of encoding Young tableaux was explained to one of us (R.C.), more than ten years
ago, by A. Ocneanu [18], who also invented the “O-blades” to display the intertwiners that appear
in the combinatorics of LR coefficients. Other aspects of the above forests are summarized in a
video lecture: see [19]. The terminology “lianas” is ours. It was a pleasure (but not so much of
a surprise) to rediscover this particular kind of graphical encoding in our discussion of the Schur
problem.
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Figure 12: SU(4): All the reduced O-blades for the example discussed in the text
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