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The polymer relaxation dynamic of a sample, stretched up to the stress hardening regime, is
measured, at room temperature, as a function of the strain λ for a wide range of the strain rate
γ̇, by an original dielectric spectroscopy set up. The mechanical stress modi�es the shape of the
dielectric spectra mainly because it a�ects the dominant polymer relaxation time τ , which depends
on λ and is a decreasing function of γ̇. The fastest dynamics is not reached at yield but in the
softening regime. The dynamics slows down during the hardening, with a progressive increase of τ .
A small in�uence of γ̇ and λ on the relative dielectric strength cannot be excluded.

Mechanical and dynamical properties of polymers are
intensively studied, due to their fundamental and tech-
nological importance [1]. When strained at a given strain
rate, beyond the elastic regime in which the stress is pro-
portional to strain, glassy polymers exhibit a maximum
in the stress-strain curves (yield point) at a strain of a
few percents [2] and the deformation becomes irreversible
(see Fig.1). At larger strains, depending on the history of
the sample [3], the stress drops (strain-softening regime)
before reaching a plateau corresponding to plastic �ow.
Strain-hardening may then occur at even larger strains,
depending on the molecular weight and on the cross-
linking of the polymer [4]. The key new insights obtained
either by numerical simulations [5�7] or experiments [8�
11] are that strain hardening appears to be controlled by
the same mechanisms that control plastic �ow [12�15].
However the microscopic mechanisms leading to such a
mechanical behavior are not fully understood [16, 17].
For example it is unclear to what extent the relaxation
dynamics in polymer glasses is modi�ed when the sam-
ple is stretched into the plastic region (see for example
refs.[18�21]).
The purpose of this letter is to bring new insight into

this problem by presenting the results of experiments in
which we performed dielectric spectroscopy of polymer
samples stretched till the strain hardening regime. Di-
electric spectroscopy, allows the investigation of the dy-
namics of relaxation processes by means of the polar-
ization of molecular dipoles. It is directly sensitive
to polymer mobility and probes directly the segmental
motion. It can be used to quantify the mobile fraction
of polymers. Measuring the dielectric response of poly-
mers in situ had been pioneered by Venkataswamy et al.

[22]. It is complementary to other techniques, such as Nu-
clear Magnetic Resonance [23] and the di�usion of probe
molecules [24�26], used to study the molecular dynamics
of polymers under stress. The dielectric spectroscopy has
already been used in combination with mechanical defor-
mation to study the dynamics in the amorphous phase of
polymer under stress [27, 28]. The results of these experi-
ments were limited to the yield point whereas the experi-
mental studies of the microscopic behavior and processes
during strain hardening are more scarce.

FIG. 1. Stress evolution over a wide range of λ at several
constant strain rates : 2.5 × 10−3s−1 (black), 2.5 × 10−4s−1

(red), 2.5 × 10−5s−1 (green) and 2.5 × 10−6s−1 (blue). Sev-
eral identical specimens have been measured for each strain
rate. Inset: tensile machine for dielectric measurements un-
der stress : motor (A), load cell (B), linear transducer (C),
sample fastening cylinders with the stretched polymer �lm
(D) and electrodes (E) connected to the dielectric spectrom-
eter (not sketched).

In this letter we present the results obtained by
our original experimental apparatus which can measure
with high accuracy the evolution of the Dielectric Spec-
trum(DS) of a sample stretched, till the strain hardening
regime, at di�erent strain rates. Thus we can precisely
compare the DSsobtained as a function of stress at room
temperature with those (named DST ) obtained as a func-
tion of temperature in an unstressed sample. This com-
parison allows us to extract useful informations on the
relaxation dynamics under stress at various strain rates.
Our experimental results bring new important informa-
tions because they clearly show an acceleration of the
dynamics which reaches a maximum in the softening re-
gions. Instead the molecular mobility slows down again
during the strain hardening regimes.

Our experimental setup is composed by a home-made
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dielectric spectrometer coupled with a tensile machine
for uniaxial stretching of �lms [28, 29]. The scheme of
the experimental setup is presented in the inset of Fig. 1.
More details are given in Annex I.1.
The dielectric measurements are performed by con�n-

ing the polymer �lm between two disc-shaped electrodes
of 10 cm diameter. The good contact between the elec-
trodes and the sample, during the whole experiment, is
assured by an aqueous gel, which has very low electrical
resistivity compared to the sample. We checked that the
gel does not perturb the sample response because water
absorption in our samples is only 0.2% and by compar-
ing the response in the presence of the aqueous gel and
in the presence of mineral oil [29].
Dielectric spectroscopy allows the investigation of the

dielectric response of a material as a function of the angu-
lar frequency ω. It is expressed by the complex dielectric
permittivity or dielectric constant: ε(ω) = ε′(ω)−iε′′(ω),
with ε′(ω) the real component of the dielectric constant
which is related to the electric energy stored by the
sample, and ε′′(ω) the imaginary component which in-
dicates the energy losses. The loss tangent is tnδ(ω) =
tan δ(ω) = ε′′(ω)/ε′(ω), where δ is the phase shift be-
tween the electric �eld applied for measuring ε and the
measured dielectric polarization.
We investigated an extruded �lm MAKROPOL® DE

1-1 000000 (from BAYER) based on Makrolon® poly-
carbonate (PC) with a Tg of about 150 ◦C. The sam-
ple sheets had a thickness of 125 µm. The tensile ex-
periments are performed at T = 25◦C much below Tg.
We �xed four di�erent strain rates: 2.5 × 10−3 s−1,
2.5× 10−4 s−1, 2.5× 10−5 s−1 and 2.5× 10−6 s−1. Typ-
ical strain curves at the di�erent strain rates are plot-
ted in Fig.1. Initially, the stress increases almost lin-
early up to its maximum (yield stress) which is reached
at λ ' 1.08. The stress decreases after the yield strain
softening regime for 1.09 < λ < 1.2. For λ > 1.2, the
material is inside the strain hardening regime, where the
force increases up to the �lm crack.
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FIG. 2. Dependence on λ of ε′n (a) and tnδ (b) measured
at several frequencies during the stretching experiment at
γ̇ = 2.5×10−4s−1. In both panels the solid lines (left hand or-
dinate) represent ε′n(a) and tnδ(b) as a function of λ, whereas
the dashed line (right hand ordinate) show the corresponding
evolution of the stress, which reveals that the low frequency
components of DSshave a maximum in the softening regime
of the polymer �lm.

In this article we focus on the measurement at λ > 1.09

being the results at λ ≤ 1.08 already discussed in [28].
For each value of the strain rate the measurement of the
dielectric and mechanical properties have been repeated
on at least 3 samples, in order to check the reproducibility
of the results. The maximum �uctuations of the results
observed in di�erent samples is at most 11%. In order to
compensate for the change of the thickness of the sample
we study ε′n(f) = ε′(f, λ)/ε′(400Hz, λ) because above
400Hz the only e�ect of the applied stress on the dielec-
tric measurement is related to the change of the sample
thickness induced by the large applied stress. The qual-
ity of this compensation can be checked looking at Figs.2
where we plot ε′n(f, λ) and tnδ(f, λ) measured at various
frequencies as a function of λ. We clearly see that the ef-
fect of the stretching on the DS decreases a lot by increas-
ing the measuring frequency and it almost disappears at
60Hz. This means that ε′n cancels the dependence of the
sample thickness d(λ) and correctly estimates the varia-
tion of ε induced by the strain. This �gure also shows
that both ε′n and tnδ reach the maximum in the soft-
ening regime then they decrease and remain constant in
the hardening regimes. Fig.3 shows that the e�ect of the
strain on ε increases with γ̇ as already shown in ref.[28].
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FIG. 3. Normalized real part ε′n (a) and tnδ (b) as a function
of λ measured at 7Hz for di�erent strain rates : 2.5×10−3s−1

(black triangles), 2.5 × 10−4s−1 (red circles), 2.5 × 10−5s−1

(green squares) and 2.5× 10−6s−1 (blue diamonds).

It is useful to study the evolution of the whole
DSsmeasured at γ̇ = 2.5 × 10−4s−1 for which the e�ect
of the strain on ε is very pronounced (see Fig.2) and at
the same time the measure lasts enough time to have a
good low frequency resolution of the DS. Figures 4 show
ε′n(f) and tnδ(f) as a function of frequency measured at
various λ at γ̇ = 2.5× 10−4s−1. The DSsrecorded dur-
ing the tensile test are compared to the DST , i.e. the DS
measured as a function of temperature in the unstressed
sample. This �gure summarizes one the most impor-
tant �ndings of this investigation, that we will explain.
First we notice that the low frequency part of DSshas
roughly the same amplitude as DSTmeasured at tem-
peratures close to Tg. However the tnδ(f) of DSsand of
DSThave a very di�erent dependence on f indicating that
a simple relationship between γ̇ and an e�ective tempera-
ture ( presented in several articles [26, 28, 30, 31]) cannot
be easily established as we discuss later on. However in
Figs.4,2 we notice several other important results. We
clearly see that in the stressed sample the maximum am-
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FIG. 4. The normalized real part ε′n (a) and tnδ (b) as
a function of frequency measured, at T = 25◦C, during a
stretching experiment at 2.5× 10−4s−1 at di�erent values of
the strain : λ = 1.00 (equilibrium), λ = 1.08 (plastic yield),
λ = 1.17 (softening regime) and λ = 1.70 (hardening regime).
In the background, continuous orange lines represent ε′n (a)
and tnδ (b) measured at λ = 1 in the temperature range be-
tween 137◦C, (bottom orange curve) and 152◦C (top orange
curve) at 1◦C increment [28].

plitude of ε′n(f) and tnδ at low frequencies is not reached
at the yield but in the softening regime at λ = 1.17 and
most importantly the amplitude of DSsdecreases in the
hardening regime at λ = 1.70. This is a new and to-
tally unexpected result, i.e. the e�ect of the strain on the
dielectric constant is not monotonous.

In order to have a more detailed description of these
experimental observations, we study the behavior of
tnδ(f, λ, γ̇), which is not a�ected by any geometrical ef-
fect. We plot, in Fig.5, tnδ(f) versus frequency mea-
sured at λ = 1.17 at various γ̇. We notice that the low fre-
quency parts decrease as a power law which can be �tted
with tnδ(ω) = 1/(ωτeff )β where τeff and β are �tting
parameters and ω = 2πf . We �nd that β ' 0.50± 0.05
is independent of γ̇ (continuous lines in Fig.5a), with an
accuracy of about 10% . The measured time scale τeff ,
which is a function of γ̇ and λ, is plotted in Fig.5b). Look-
ing at this �gure we see that with a very good accuracy
τeff = a(λ)/γ̇ where a(λ) has a minimum at λ ' 1.17 in
the stress softening regime.

We can consider the power law behavior of tnδ as the
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FIG. 5. (a) Dependence on frequency of tnδ, measured in
the softening regime λ = 1.17, at di�erent γ̇: 2.5 × 10−3s−1

(black triangles), 2.5 × 10−4s−1 (red circles), 2.5 × 10−5s−1

(green squares) and 2.5 × 10−6s−1 (blue diamonds). The
low frequency parts of each curve are �tted by a power law
(straight lines) tnδ = 1/(ωτeff )

β The time scale τeff de-
pends on γ̇ but the scaling power β = 0.50 ± 0.05 is found
to be constant within experimental errors. (b) The �tted
time scale τeff as a function of the strain rate γ̇ measured
at several strains: λ = 1.17 (softening regime), λ = 1.30 and
λ = 1.70 (hardening regime). The relaxation time follows the
law τeff = a(λ)/γ̇ (dashed lines) with the coe�cient a(λ)
plotted in the inset.

high frequency part of the Cole-Cole (Havriliak-Negami)
model [32] for the α peak of the dielectric constant. In-
deed, calling τ the characteristic time of the α peak, at
frequencies ω >> 1/τ the Cole-Cole model takes the
form:

ε′

ε∞
− 1 ' (εo − ε∞)

ε∞

cos(βπ/2)

(ωτ)β
(1)

and

tnδ ' (εo − ε∞)

ε∞

sin(βπ/2)

(ωτ)β
(2)

where ε∞ and εo are respectively the high and low fre-
quency dielectric constants. In our experiment β ' 0.5
thus the two equations become:

ε′

ε∞
− 1 ' (εo − ε∞)

ε∞

1

(2ωτ)1/2
, (3)

tnδ ' (εo − ε∞)

ε∞

1

(2ωτ)1/2
. (4)

These two equations show that tnδ ' ( ε′

ε∞
− 1) which

is rather well veri�ed by the experimental data for all
λ. This indicates that they are a rather good model
of the dielectric constant under stress. Using eq.4, we
identify the �tting parameter as τeff = 2τ/∆2 where
∆ = (εo − ε∞)/ε∞. At this level we cannot distinguish
whether the increase of ε′ and tnδ is induced by a decreas-
ing of τ or an increase of the relative dielectric strength
∆[33].
We suppose �rst that the stress has no in�uence on τ

but only on ∆. Keeping for τ the value of the unstressed
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sample we can estimate the value of ∆ under stress from
the previous expression ∆ =

√
2τ/τeff . To give a lower

bound on the value of τ at 22oC we rely upon the high
temperature measurements of the dielectric properties of
PC and on the estimation based on the WLF law [28, 34].
For example at T = 130oC, which is the minimum tem-
perature at which the WLF law for PC can be tested, one
�nds using WLF τ ' 107s. Thus, as τ increases by low-
ering temperature, we simply assume that at T = 22oC,
τ > 107s, which, in addition, is coherent with the fact
that our samples are more than one year old [35].
From the data of �g.5b) we obtain τeff ' 1/γ̇ at λ =
1.17. Thus in the hypothesis of constant τ , we �nd ∆ > 7
at γ̇ = 2.5×10−6 and ∆ > 223 at γ̇ = 2.5×10−3s−1. This
value is 1000 times larger than that of the unstressed sam-
ple for which ∆ ' 0.12. This is nonphysical because ∆
cannot change of such a large amount even at very large
strain (see refs.[33, 36, 37] and appendix I.2). Therefore
one has to conclude that, although a small increase of
the ∆ cannot be excluded, the observations cannot be
explained without a decreasing of τ with the mechani-
cal stress, i.e. an acceleration of the dynamics, which
agrees with other experimental results based on other
techniques and other polymers [24, 25, 38]. Using our
data we can estimate τ ' 0.5∆2a(λ)/γ̇, assuming that
∆ = 0.2, i.e. keeping �x the value of the unstressed
sample. At λ = 1.17 we see that a(λ) ' 1 and using
γ̇ = 2.5× 10−3 one �nds τ = 8s, which implies that one
would not observe a clear power law at the highest strain
rate because the approximation ω >> 1/τ will be not
fully satis�ed for the low frequencies of our frequency
range. Therefore at the highest γ̇, one concludes that
τ >> 8 s and ∆ > 0.2. At this point we can safely say
that the main e�ect of the strain is a reduction of τ of
several orders of magnitude although a small in�uence
on ∆ is necessary for the consistency of the observations.

Finally we compare these results with those that one
extracts from the values tnδ(f) measured in the un-
stressed sample at di�erent temperatures. In the range
137oC < T < 152oC, where we observe an overlap of
DSsand DST in �g.2 the tnδ(f) has a power law depen-
dence on f but the exponent β is a function of temper-
ature: speci�cally 0.25 < β < 0.35 for 137oC < T <
152oC. The observation that the β exponent measured
under stress is larger than the one measured in the un-
stressed sample at temperature close to Tg, has impor-
tant consequences. Indeed in the Cole-Cole expression
the smallest is the value of the exponent β the broadest
is the distribution of relaxation times. Thus we conclude
that our measurements are compatible with a narrow-
ing of the distribution of relaxation times under stress
observed in refs.[25, 38] with other techniques in other
polymers.

Let us point out that in the frequency window of our
measurements there are no other relaxations which may
in�uence the results. The beta relaxation is not a�ected
by the stress because DSsdoes not change above 400Hz.
The gamma relaxation time is at very high frequencies at

room temperature (see ref[36]) Structural changes that
might also in�uence the results are absent. Indeed we
checked by Di�erential Scanning Calorimetry (DSC) that
polycarbonate does not crystallize under strain in the
range considered here. Microscopic damaging may also
contribute to the dielectric response. It has been shown
that damaging occurs indeed during the strain hardening
regime, but the volume fraction corresponding to these
damages is very small (< 10−4 for cellulose acetate [39]
and for polycarbonate [40]) and the corresponding per-
turbation regarding the interpretation of the results is
negligible.

Summarizing, we have studied the DSsof a sample of
polycarbonate at room temperature submitted to an ap-
plied stress at di�erent strain rates covering three order
of magnitude range. In our frequency window we ob-
serve that, with respect to the unstressed sample, tnδ
increases at low frequencies as a function of γ̇, whereas
at high frequencies it remains unchanged. The increase
is not monotonous and reaches its maximum in the soft-
ening regime. From the data we extract an e�ective time
scale τeff ∝ 1/γ̇ which depends on λ and reaches its
minimum in the softening regime to increase again in the
hardening. We have also shown that the distribution of
relaxation times is narrower under stress than in the un-
stressed sample at T close to Tg. The large variation
of τeff cannot be explained only by the increase of the
∆, but it implies that the stress induces a shift towards
high frequencies of the α peak without in�uencing the
high frequency part of the DS. Thus we con�rm that the
stress accelerates the polymer dynamics as already ob-
served in other experiments [23�28], which were limited
to the yield points. We have extended the analysis to
high values of strain in a polymer which presents stress
hardening, �nding two very important and unexpected
results. Firstly the smallest τeff is not reached at yield
but in the stress softening regime (see Figs.2,3). Secondly
the stress hardening regime is associated to a progressive
increase of the e�ective relaxation time τeff = 2τ/∆2.
This increase may again be due either to an increase of
τ or to a decrease of ∆ of at least a factor of 3 (see
�g.5), which, on the basis of the previous arguments,
is too large. Furthermore this decrease of ∆ will im-
ply a non monotonous dependence of ∆ as a function
of λ, which contradicts previous measurements [37, 41].
Speci�cally in ref. [41] the authors measured by NMR
a segmental orientation for stretched polycarbonate at
room temperature, observing a monotonous increase of
the orientational order parameter, whereas we observe a
non monotonous behaviour of τeff versus λ. Thus it is
conceivable to say that such a behavior is induced by an
increase of τ in the hardening regime.

As a conclusion our experimental results impose strong
constrains on the theoretical models on strain softening
and hardening.
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I. APPENDIX

I.1. Experimental methods

The mechanical part is composed by two cylinders
(21 cm long, 1.6 cm of diameter) used to fasten the sam-
ple, a load cell of 2000 N capacity, a precision linear trans-
ducer to measure the strain over a range of 28 cm, and a
brushless servo motor with a coaxial reducer. This device
allows the investigation of polymer �lm samples of a max-
imum width of 21 cm. We use dog-bone shaped sheets
with the e�ective dimensions of the area under defor-
mation of 16X16 cm2, in order to focus the deformation
of the �lm between the electrodes used to measure the
DS. The sample is stretched at �xed relative strain rate
γ̇ = d

dt (L/Lo) Where L(t) is the length of the stretched
sample and Lo the initial length at zero applied force
F . Measurements are performed at room temperature
at constant γ̇, till a stretch ratio λ = L(t)/L0 of about
1.8 (80 % strain) is reached. The force F (λ) applied to
the sample is measured during all the experiment by a
load cell. The value of the applied stress is de�ned as
σ = F (λ)/(Wo do) where Wo and do are the initial width
and thickness of the sample.

We use an innovative dielectric spectroscopy technique
(see ref. [29]), which allows the simultaneous mea-
surement of the dielectric properties in a four orders
of magnitude frequency window chosen in the range of
10−2 − 103 Hz. This multi-frequency experiment is very
useful in the study of transient phenomena such as poly-
mer �lms deformation (see [29] for more details), because
it gives the evolution of the DS on a wide frequency
range instead of a single frequency. Speci�cally the de-
vice measures the complex impedance of the capacitance
C formed by the electrodes and the sample. In all the
frequency range the device has an accuracy better than

1% on the measure of C and it can detect values of tnδ
smaller than 10−4. The real part of the dielectric con-
stant of the sample is ε′ = Cd(λ)/(Sεo) where S is the
electrode surface, εo the vacuum dielectric constant and
d(λ) the thickness of the sample whose dependence on
λ must be taken into account to correctly estimate the
value of ε′. This compensation is not necessary for tnδ(f)
because it does not depend on the geometry being the ra-
tio of ε′′/ε′.

I.2. Kirkwood factor

The low frequency dielectric constant εo is related to
ε∞ via the Kirkwood factor g = 1+z < cos θi,j > where<
. > stands for mean value, θi,j is the angle between dipole
i and dipole j, and z is the number of relevant nearest
dipoles, which is usually taken to be about 10 (see ref.
[33]). Speci�cally one �nds that εo = ε∞ + A g where
A is a material dependent factor. Therefore using this
relationship, the quantity ∆ de�ned in the text becomes:
∆ = εo/ε∞ − 1 = Ag/ε∞.
We notice that, independently of the probability distri-

bution of θi,j , the value of < cos θi,j > is limited between
0 and 1 and as a consequence 1 < g < 11. This means
that, being ∆ = 0.2 in the unstressed sample, the max-
imum value of ∆ under stress is ∆ = 2.2. This value is
much smaller than the values of ∆ estimated in the main
text in order to explain the observations, assuming that
only ∆ is a�ected by the strain. Thus on the basis of the
experimental data, we have to conclude that τ decreases
in the stressed sample, i.e. the dynamics accelerates un-
der strain. However this acceleration is associated to a
small increase of ∆ as we discuss in the main text.

∗ Present address of Riad Sahli: INM-Leibniz Institute
for New Materials, 66123, Saarbrücken, Germany
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