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Introduction to the Special Section on
Induction Heating Systems

INDUCTION heating (IH) systems are a faster, cleaner,
and more efficient alternative to conventional heating sys-

tems. Its contactless nature provides superior heating per-
formance that has been successfully applied in industrial,
domestic, and medical applications. Since the early IH devel-
opments in the late 19th century, technology has evolved to
provide high-performance and reliable equipment with a wider
application spectrum. Nowadays, the number of applications
and installed power makes IH of great interest not only from
an industrial and economic point of view but also considering
its social and environmental impact.

Following this interest, the Annual Conference of the IEEE
Industrial Electronics Society (IECON) has organized since
2011 a special session devoted to IH technology. During these
years, the main achievements and research lines in the fields
of power electronics and semiconductor technology, magnetic
component design, and control of power converters for IH
have been presented and discussed in these sessions. After
these experiences, it is now a pleasure for us to introduce
this “Special Section on Induction Heating Systems” of the
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS. This
Special Section aims at bringing some of the most recent
and interesting ideas in this area by the worldwide research
community and at presenting some of the latest advancements
and developments in the field of IH technology.

The first paper of this Special Section is a review paper
written by the Special Section Guest Editors Lucia et al. [1],
which covers some of the most relevant IH research papers
published in recent years, details the current state of the art of
IH systems, and identifies some future design trends for such
systems. This paper categorizes the main enabling technologies
that have made possible the advancement and spread of IH
systems and its main applications. Following this classification,
the remaining papers of this Special Section can be classified
according to the enabling technology focused upon and its main
application (see Table I). From this point of view, IH systems
can be subdivided into the power electronic system, which
generates the required medium frequency currents; the inductor
system, which creates the alternating magnetic field to heat up
the IH target; and the control system. Papers [2]–[6] are focused
on the power electronic systems, papers [7]–[9] are focused
on the inductor system, and papers [10]–[12] are focused on
the control system. From the application point of view, papers
[2] and [5]–[8] are intended for industrial applications, papers
[2]–[4] and [10]–[12] detail domestic applications, and finally,
in [9], a medical application is discussed.

The first part of this Special Section is focused on the
power electronic system. It is usually composed of a resonant
inverter to generate the required alternating magnetic field with
high efficiency and power density. Depending on the power

TABLE I
SPECIAL SECTION PAPERS ACCORDING TO THEIR FOCUS ON

APPLICATIONS AND ENABLING TECHNOLOGIES

range and/or applications, different topologies are applied, as
explained in [1]. The first paper of this part is written by
Sarnago et al. [2], and it proposes a single-switch resonant
inverter applied to IH appliances. The proposed converter com-
bines the benefits of direct ac–ac conversion [13] with the
cost-effective implementation of single-switch quasi-resonant
inverters. Moreover, a multicycle modulation is proposed to im-
prove the output power control. This allows alleviating control
limitations of other previous class-E proposals such as [14] and
[15]. This converter takes advantage of wide band-gap power
devices [16], [17] to improve the converter efficiency and high-
temperature performance.

It is important to note that one key design point when dealing
with resonant converters for IH systems is to ensure soft-
switching conditions and high efficiency in the complete opera-
tion range [18]. This can be difficult in some applications, such
as domestic ones, due to the highly variable load and output
power range. In order to address these issues, Mishima et al.
[3] propose a current phasor-controlled resonant converter. This
converter is based on a dual half-bridge structure, and it uses
the phase shift between converters, in a similar way in [19]
and [20], to perform the power control. This converter achieves
a wider soft-switching operation area and improved output
power control, being particularly suitable for variable load IH
applications.

Following the same goals of the previous paper,
Sarnago et al. propose in [4] a full zero current switching
(ZCS) quasi-resonant inverter. This converter is based on a
half-bridge structure and achieves ZCS during both turn-on
and turn-off transitions, regardless of the required switching
frequency and output power. As a consequence, a significant
reduction on switching losses is obtained, leading to higher
efficiency in the complete operation range. In addition, the
output power control is simplified, allowing the implementation
of efficient and reliable systems.

In [5], Namadmalan and Moghani propose a tunable self-
oscillating inverter [21] that features an improved start-up
operation. Unlike the previous converters, this approach fea-
tures a current-source inverter with parallel resonance, which



is suitable for industrial IH applications. Compared with clas-
sical solutions, the converter proposed in this paper achieves
faster dynamics with reduced component stress, improving its
reliability.

The last paper of this part is devoted to the power converter
reliability [22], which is a general concern among power elec-
tronic designers. Esteve et al. present in [6] a comprehensive
study of a high-power (100 kW) resonant converter. The authors
analyze the operation of a full-bridge inverter operating with
a modified phase-shift modulation strategy. The efficiency and
power cycling capability is deeply studied using a calorimetric
method, and as a conclusion, the authors prove that a significant
lifetime extension can be obtained.

The second part of this Special Section is devoted to the
inductor system, which is the most important magnetic compo-
nent of an IH system. It is responsible for creating the required
alternating magnetic field and, as a consequence, heating up the
induction target. Moreover, it is usually a part of the power-
converter resonant tank, determining the power-converter oper-
ation and performance. Consequently, significant attention has
been paid to the design and modeling of the inductor system. In
this Special Section, papers [7]–[9] present some models and
designs aimed at different IH applications.

Usually, one of the main challenges when designing an
IH system is to provide an accurate model of the inductor-
load system, particularly when complex and/or variable geome-
tries are present. An example of this is shown in [7], where
Kennedy et al. present an accurate model for short-coil
geometries. This geometry present complex dependence of the
coil and IH target geometries, and the prediction of the heating
rate becomes difficult. The authors propose an analytical–
empirical model that provides good accuracy in a wide fre-
quency operating range. This proposal is thoroughly validated
with finite-element method (FEM) simulations and a complete
set of experimental measurements.

The design of IH systems intended to heat nonmagnetic
elements is particularly challenging. Heating such elements
usually entails high current levels, significantly degrading the
power converter, the efficiency of the inductor, and the relia-
bility of the nonmagnetic elements, as shown in [23]. In order
to address this issue, Mach et al. propose in [8] an alternative
method for heating such nonmagnetic elements. Instead of
generating an alternating magnetic field, the authors propose
to use a static magnetic field plus the rotation of the IH target.
The proposed system is modeled and numerically solved, and
the accuracy of the results is experimentally verified. The most
remarkable achievements are the simplicity and robustness of
the proposed system, and the efficiency improvement obtained
when heating nonmagnetic elements.

Finally, Chen et al. detail in [9] a specific inductor design for
tumor thermotherapy. This treatment requires the precise and
deep generation of a magnetic field to heat up a needle in order
to cauterize the targeted tumor tissues [24]. The authors propose
in this paper a high-permeability inductor coating to precisely
focus the magnetic field, increasing the magnetic flux density.
The proposed IH apparatus is modeled and analyzed through
FEM simulation and experimentation, showing a significant
performance improvement.

The third and last part of this Special Section is focused on
the control system. Modern IH systems highly rely on advanced
control systems to optimize the power control and heating

quality [25], [26], to guarantee the proper converter operation
[27], and to ensure the process safety [28], [29]. This part of
the Special Section contains three papers [10]–[12] that show
some of the current research lines being followed to improve
IH systems.

In order to ensure the proper converter operation and mea-
sure important parameters, such as the current through the
coil and the output power, several currents/voltages need to
be measured. Jimenez et al. propose in [10] an accurate and
cost-effective sigma–delta analog-to-digital (ADC) converter
applied to induction appliances. The proposed design is a
second-order single-bit sigma–delta ADC that takes advantage
of field-programmable gate array (FPGA) technology [30]–[32]
for its implementation. A design procedure is fully explained,
and in order to assess the accuracy of the ADC, a calibration
process with a complete set of experimental measurements
is performed. As a conclusion, the proposed ADC is a cost-
effective and accurate solution, particularly indicated for con-
sumer goods such as IH appliances.

One of the main difficulties when dealing with IH control
systems is the highly variable load [33], [34], which makes the
output power control complicated and potentially unstable. In
order to address this challenge, Dominguez et al. propose in
[11] an inverse-based control strategy. The proposed strategy
combines different modulation strategies, as in [35], to deal
with the load uncertainty and to optimize the response time
while ensuring stability. As a consequence, more reliable and
higher performance IH systems can be achieved.

Finally, modern control techniques of IH systems includes
the control of not only the output power but also of the tem-
perature of the IH target [26], [36]. For instance, advanced
control scheme of IH cookers [37] include the control of
the pan temperature to provide superior user performance. To
implement such feature, Imaz et al. propose in [12] an infrared
thermometry system based on an InGaAs p-i-n photodiode to
detect the pan temperature. To achieve this, a radiation model
of the complete system is proposed, including the pan and the
vitroceramic glass effects. The accuracy of the proposed sensor
has been tested in a domestic IH system, obtaining adequate ac-
curacy for the application with a cost-effective implementation.
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