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ABSTRACT
Seabirds are highly vocal on land where acoustic communication plays a crucial
role in reproduction. Yet, seabirds spend most of their life at sea. They have
developed a number of morphological, physiological and behavioural adaptations to
forage in the marine environment. The use of acoustic signals at sea could
potentially enhance seabirds’ foraging success, but remains largely unexplored.
Penguins emit vocalisations from the sea surface when commuting, a behaviour
possibly associated with group formation at sea. Still, they are unique in their
exceptional diving abilities and feed entirely underwater. Other air-breathing
marine predators that feed under water, like cetaceans, pinnipeds and marine
turtles, are known to emit sound underwater, but such behaviour has not yet been
described in seabirds. We aimed to assess the potential prevalence and diversity of
vocalisations emitted underwater by penguins. We chose three study species from
three different genera, and equipped foraging adults with video cameras with built-in
microphones. We recorded a total of 203 underwater vocalisation from all three
species during 4 h 43 min of underwater footage. Vocalisations were very short in
duration (0.06 s on average), with a frequency of maximum amplitude averaging
998 Hz, 1097 Hz and 680 Hz for King, Gentoo and Macaroni penguins, respectively.
All vocalisations were emitted during feeding dives and more than 50% of them were
directly associated with hunting behaviour, preceeded by an acceleration (by 2.2 s on
average) and/or followed by a prey capture attempt (after 0.12 s on average).
The function of these vocalisations remain speculative. Although it seems to
be related to hunting behaviour, these novel observations warrant further
investigation.

Subjects Animal Behavior, Ecology, Marine Biology, Zoology
Keywords Bioacoustics, Biologging, Foraging, Feeding, Seabirds, Spheniscidae, Penguin,
Underwater vocalisation, Marine predators

INTRODUCTION
Seabirds are highly vocal on land where acoustic communication often plays a crucial role
in reproduction. While breeding, adults regularly commute between their foraging
grounds at sea and their breeding colonies on land where they engage in nest care and
chick provisioning. Every time they return to the colony, they must find and identify their
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partner and/or their offspring. In this context, acoustic signals are necessary for individual
recognition (White & White, 1970; Charrier et al., 2001; Aubin & Jouventin, 2002; Curé,
Aubin & Mathevon, 2011).

However, seabirds spend most of their time at sea. They have developed a
number of morphological (Pütz et al., 1998; Weimerskirch et al., 2000), physiological
(Nevitt, 2008; Angelier et al., 2008) and behavioural (Weimerskirch et al., 1994;
Wakefield et al., 2013; Thiebault et al., 2016b) adaptations to forage in the marine
environment. Their use of acoustic signals in this remote environment is poorly known.
Recent studies have started to describe the use of aerial vocalisations in foraging
seabirds. Gannets emit acoustically distinct vocalisations in different behavioural
contexts when at sea, suggesting that each of these vocalisations convey distinct
information (Thiebault et al., 2016a, 2019). Recent work has also shown that
penguins emit vocalisations from the sea surface when commuting, a behaviour possibly
associated with group formation and group foraging (Choi et al., 2017; McInnes et al.,
in press).

Penguins are unique among birds in their exceptional aquatic adaptations. They
have lost the ability to fly but have developed extreme diving abilities (Williams &
Williams, 1995). Using their modified wings for propulsion, they can perform serial dives
to depths of 20–500 m in search of prey (Kooyman & Kooyman, 1995; Ropert-Coudert
et al., 2006). A number of species have been observed to forage in groups (Norman &
Ward, 1993; Takahashi et al., 2004; Copeland, 2008; McInnes et al., 2017), a behaviour in
which vocal communication emitted from the sea surface could play a crucial role
(Choi et al., 2017; McInnes et al., in press). Other air-breathing marine predators that
feed under water, like cetaceans (Tyack & Clark, 2000), pinnipeds (Riedman, 1990) and
marine turtles (Ferrara et al., 2017) are known to emit sound underwater, but such
behaviour has not yet been described in seabirds.

In the current study, we aimed to assess the potential prevalence and diversity of
vocalisations emitted underwater by foraging penguins. We chose three study species
spanning three different genera–King penguins Aptenodytes patagonicus, Macaroni
penguins Eudyptes chrysolophus and Gentoo penguins Pygoscelis papua—for the diversity
of their vocalisations on land (Aubin & Jouventin, 2002; Searby, Jouventin & Aubin, 2004;
Kriesell et al., 2018) and their diverse foraging ecology. King penguins dive to the
lower limit of the photic zone generally between 100 m and 250 m (Pütz et al., 1998), where
they feed mainly on myctophid fish (Adams & Klages, 1987). Macaroni penguins
forage within the upper 100 m of the water column and predominantly target small
crustaceans (Brown & Klages, 1987; Pichegru et al., 2011). In contrast to the former two
species, Gentoo penguins tend to feed on a wide range of prey (Adams & Brown, 1989;
Handley et al., 2017), in both pelagic and benthic habitat (Carpenter-Kling et al., 2017).
We deployed video cameras with built-in microphones on foraging penguins of these
three species to study their underwater vocal production. The behaviour of penguins was
observed and quantified from video observations, and the vocalisations were analysed in
the temporal and frequency domains.
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MATERIALS AND METHODS
Data collection
Fieldwork was conducted on penguins breeding at Marion Island, under a permit from the
Nelson Mandela University Research Ethics Committee (Animal) (A14-SCI-ZOO-012/
Extension). Deployments coincided with the brood phase of chick rearing; occurring
August–September 2017 for Gentoo penguins, December 2017 for Macaroni penguins
and February–March for King penguins. All species were sampled at Funk Bay
(S 46�57.697′, E 37�51.518′), with Gentoo penguins additionally sampled at Bullard Beach
(S 46�55.584′, E 37�52.949′) and Duikers Point (S 46�52.042′, E 37�51.423′).

Brooding adults were fitted with a modified Replay XD 1080 action camera
(http://www.replayxd.com), housed within a custom aluminium tube pressure-tested to
300 m, for a total mass of 100 g and dimensions 104 × 26 × 28 mm. The cameras recorded
footage at 1,920 × 1,080 p resolution, 30 frames s−1 and 120� field of view. They were
further modified to include a flexible initial recording delay of up to 72 h, with recordings
being split into six 15 min bins, each separated by 30 min. The camera recorded
sounds at a 32 kHz sampling frequency with an internal microphone. The frequency
response of this microphone was tested in a laboratory under water with the camera
housed in the aluminium waterproof case. It measured to be 100–10.000 Hz (±14 dB).
The cameras were deployed together with a combined resin-encased GPS (CatLog2;
Catnip Technologies, Anderson, SC, USA; mass 30 g) logger and TDR (G5; CEFAS
Technology Limited, England, UK; mass 2.7 g) for Gentoo and King penguins, or with
a GPS-TDR-Accelerometer (Axy-Trek; Technosmart, Rome, Italy; mass 25 g) for
Macaroni penguins. The total mass attached to penguins (including all devices and
fastening materials) approximated 135 g for Macaroni penguins and 145 g for King and
Gentoo penguins. The devices were secured to the plumage along the central line of the
lower back (Fig. S1), placing the camera in such a way that the feeding behaviour of
penguins was recorded in the field of view, while other devices were placed in a more
caudal position in order to reduce drag and turbulence (Bannasch, Wilson & Culik, 1994).
Previous studies have shown that similar deployment procedures have limited impact
on penguin behaviour (Ballard et al., 2001) and subsequent breeding success (Agnew et al.,
2013). Unfortunately, due to inconsistencies in recording and lack of adherence to
pre-programmed schedules in the cameras, synchronisation of data between devices
proved problematic. As a consequence, only data recorded from video cameras were used
in this study.

Deployed individuals were chosen based on the likelihood that the camera would
start recording while the bird was at sea. For Gentoo and King penguins, we deployed
devices in the afternoon and selected birds likely to depart the following day, estimated
from time spent at the nest (assuming daily foraging trips for Gentoo penguins
(Carpenter-Kling et al., 2017), and weekly trips for King penguins (Charrassin et al., 1998)).
We performed Macaroni penguin deployments in the early morning, choosing females
(discernible by relative bill size) from present pairs and assuming a same-day departure
(Whitehead, 2017). Based on this, our cameras were set to start recording the same day, the
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following morning or after 3 days for Macaroni, Gentoo and King penguins respectively.
Method of birds’ capture for deployment and retrieval depended on species. Both Gentoo
and Macaroni penguins were captured by hand from the nest. For Gentoo penguins,
exposed chicks were covered with cloth for the duration of the deployment or retrieval to
prevent heat loss and predation. In six instances, returning Gentoo penguins were
intercepted for device removal before their arrival at the nest. In this case, birds were
caught using a telescopic pole with a crook on the end. Male Macaroni penguins remain at
the nest for the duration of the brood phase. Male penguins therefore resumed nest duties
while female Macaroni deployments and retrievals were being performed. For King
penguins, individuals were not captured; only the bird’s head was covered to reduce stress.
Device attachment and removal was conducted in place (i.e., while the bird continued
to brood its chick). Devices were attached using overlapping layers of waterproof TESA�

tape (Beiersdorf AG, GmbH, Hamburg, Germany) with the ends fixed using cyanoacrylate
glue (Loctite 401�). A cable-tie was fastened around the tape to further secure the
units. The whole procedure was completed within 15 min. Following deployment, nests
were checked daily for initial departure and returns. Devices were retrieved within 1 day of
an individual’s return.

Quantification of hunting behaviour
The behaviour of diving penguins was observed and quantified from video observations.
All videos were annotated and analysed by a single person (AT). Footage was processed
using the software Boris (Friard, 2019) and VLC media player (VideoLAN, Paris,
France) so that the timing of each event of interest was recorded, using slow motion and
frame-by-frame modes as necessary. Feeding dives were identified as those in which
penguins dived straight down towards the depth, as opposed to performing shallow and
directional commuting dives. Each dive was classified as pelagic when the penguin
was moving exclusively in the water column, or benthic when the penguin was
visibly feeding at the seabed. Prey capture attempts were identified as a jerky head
movement (Videos S1–S3). They were classified as pelagic if they took place within the
water column (during pelagic dives or during the descent or ascent of benthic dives), and
benthic if they associated with the seabed. When prey items could be observed, they
were identified as ‘crustacean’, ‘fish’ or ‘cephalopods’. Prey capture attempts were
more easily observed when pelagic, with the penguin head moving upwards (towards the
field of view of the camera), as opposed to when the penguin was browsing on the
seabed with its head down. As a consequence, we assumed benthic prey capture to be
largely underestimated. For this reason, the positions of prey captures within each
dive were recorded only for pelagic dives, provided the recording started in the early
stages of the dive (before or at the very beginning of the descent). Conspecifics in the
vicinity of the equipped bird were also recorded (underwater during a dive or at the
sea surface just before or after a dive). We acknowledge the fact that in some cases
conspecifics could have been present but not observed in the limited field of view of the
camera.

Thiebault et al. (2019), PeerJ, DOI 10.7717/peerj.8240 4/16

http://dx.doi.org/10.7717/peerj.8240/supp-5
http://dx.doi.org/10.7717/peerj.8240/supp-7
http://dx.doi.org/10.7717/peerj.8240
https://peerj.com/


Furthermore, the hunting technique of penguins often involves prey pursuit (Ropert-
Coudert et al., 2000). A number of associated accelerations (or ‘dashes’, Ropert-Coudert
et al., 2000) were observed during the feeding dives and were used as a proxy for prey
capture attempts (when they could have occurred outside of the field of view of the
cameras). Accelerations were observed in both the video and the spectrograms extracted
from the sound recorded on cameras. However, the timing of accelerations was more easily
identified from the spectrograms (Fig. 1A).

Figure 1 Underwater vocalisations in a hunting context. (A) Sound data including the oscillogram
(i.e., amplitude over time) on top and the related spectrogram (i.e., frequency over time) just below, as
displayed in Avisoft-SASLab Pro software. An acceleration is shortly followed with a vocalisation and
then a prey capture attempt as observed on the video footage. (B) Distribution of the time lapse between
the end of an acceleration and the start of a vocalisation (N = 104 in total, including one Macaroni,
29 King, 14 Gentoo pelagic and 60 Gentoo benthic vocalisations). (C) Distribution of time lapse between
the start of a vocalisation and the prey capture attempt (N = 40 in total, including one Macaroni, 20 King,
13 Gentoo pelagic and six Gentoo benthic vocalisations). Histograms designed using the ‘ggplot2’
package in R (Wickham, 2016); dashed lines indicate the median values of the distribution. Colours on
histograms relate to species and vocalisation context: dark blue, pelagic vocalisations by King penguins;
green, pelagic vocalisation by Macaroni penguin; light blue, pelagic vocalisations by Gentoo penguins;
orange, benthic vocalisations by Gentoo penguins. (D–G) Illustration of vocalisations emitted under-
water by King, Macaroni and Gentoo (pelagic and benthic) penguins. All vocalisations chosen for
illustration were observed to be immediately followed with a prey capture attempt. Spectrograms
designed using the ‘Seewave’ package in R (Sueur, Aubin & Simonis, 2008), with Hamming function, FFT
512 points window size, 90% overlap. (H–K) Snapshots of prey capture attempts from video footage.
Saturation, contrast and brightness of images were adjusted for better visualisation.

Full-size DOI: 10.7717/peerj.8240/fig-1
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Acoustic measurements on vocalisations
Sound data were extracted from the camera recordings. They were resampled at 16 kHz
as no vocalisation was observed to contain energy at frequencies higher than 7 kHz.
All the vocalisations were analysed using Avisoft-SASLab Pro (version 5.2.13; Avisoft
Bioacoustics, Glienicke/Nordbahn, Germany). The spectrogram of each recording
(Hamming function, FFT 512 points window size, 75% overlap) was visualised over a
sliding window of 10 s length to identify and label all the vocalisations. They were selected
for frequency measurements wherever the quality of the recordings allowed (i.e., low
background noise, no overlap with another sound).

The recording devices were first aimed at collecting behavioural data on the foraging
activities of penguins, but because the cameras included a built-in microphone, we also
had the opportunity to study penguin vocalisations at sea. However, the quality of the
frequency response of the microphone (camera fitted in an aluminium waterproof case)
was not sufficient for an exhaustive acoustic analysis. As a consequence, to give the best
possible general description of these underwater vocalisations, given the data, we chose
only three acoustic parameters for which we were confident of the accuracy of their
measurements. These included the duration of the vocalisation (DurCall, s) measured on
the oscillogram, the fundamental frequency (F0, Hz) and the frequency of maximum
amplitude (Fmax, Hz) both measured on the frequency spectrum.

Statistics
All analyses were conducted in R software (R Core Team, 2019). The distributions of
variables were tested for normality using the Shapiro–Wilk test. Since the hypothesis of
normality was rejected for most data, the median and variance of distribution among
groups were compared using non-parametric tests, the Fligner–Killeen test of homogeneity
of variance and the Kruskal–Wallis rank sum test, respectively. Results are shown as
mean ± standard deviation.

RESULTS
We recorded a total of 10 h 14 min 43 s of footage showing penguins at sea, among which a
total of 93 dives (not commuting) were recorded for all three species for an accumulated
duration of 4 h 43 min 26 s underwater (Table 1). From this footage, 26 feeding pelagic
dives were recorded from six King penguins, 13 from twoMacaroni penguins, and a mix of
54 pelagic and benthic dives were recorded from 12 Gentoo penguins. King penguin
feeding dives were the longest, lasting 4.9 ± 0.9 min. They comprised between zero and 22
prey capture attempts, with a total of 114 attempts observed across 13 feeding dives. When
prey items were observed, they were all fish. Conspecifics were observed during nine of the
26 King penguin feeding dives, either on the sea surface before or after a dive, or
underwater showing unsynchronised diving behaviours (i.e., the study penguin is
descending while a conspecific is ascending).

Macaroni penguin dives were the shortest, lasting 2.2 ± 0.3 min (Table 1). They
comprised between zero and 74 prey capture attempts, with a total of 155 attempts
observed across 10 feeding dives. Both Macaroni penguins fed on schooling krill.
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Conspecifics were observed during seven of the 13 Macaroni penguin feeding dives, either
on the sea surface before or after a dive, or underwater showing synchronised diving
behaviours (i.e., penguins are descending and surfacing together).

Of the 54 Gentoo penguin feeding dives, 23 were classified as pelagic and 31 as benthic.
Pelagic dives lasted on average 2.7 ± 0.7 min and comprised between zero and 69 prey
capture attempts, with a total of 352 attempts observed across 17 dives (Table 1). Benthic
dives were longer, lasting 4.2 ± 0.5 min, with only 74 prey capture attempts observed across
22 dives (possibly limited by the field of view of the camera looking forward, while the
penguin’s head was facing downward). Gentoo penguins fed on fish, cephalopods and
small crustaceans. No conspecifics were observed in the surroundings of any of the Gentoo
penguin feeding dives.

Behavioural contexts of underwater vocalisations
A total of 203 underwater vocalisations were recorded: 34 from two King penguins, a single
one from a Macaroni penguin and 168 from Gentoo penguins (60 classified as pelagic
vocalisations and 108 as benthic vocalisations). Based on the camera footage, penguins
were mostly solitary while vocalising underwater. Only five of all vocalisations, all
from King penguins, were emitted in feeding dives where conspecifics were observed.
The underwater vocalisation recorded from a Macaroni penguin was emitted in a dive
with no conspecifics, while no vocalisations were recorded in another dive where
synchronised diving behaviour with conspecifics was observed. Conspecifics were never
observed in the surroundings of Gentoo penguins.

Table 1 Penguin dives as observed from bird-borne video cameras. Summary of the dives (not commuting) observed from video cameras
deployed on penguins. Duration of footage only includes parts where penguins were diving. Dives were classified as pelagic if the penguin was
moving exclusively in the water column, or benthic if feeding on the seabed. Prey capture attempts were identified as a jerky head movement, and
were most probably underestimated in benthic dives (due to the limited field of view of the camera). Conspecifics were observed in the vicinity either
underwater water or at the sea surface just before or after a dive. N, number of measured vocalisations; SD, standard deviation.

Species Dive
type

Duration of
diving footage

N dives
(N individuals)

Duration of dives (min) Conspecifics Vocalisations Prey capture attempts

N dives
complete

Mean ±
SD

Range N dives N dives
(N individuals)

N
vocalisations
per dive
phase

N
dives

N
captures

Prey type

King
penguin

Pelagic 1 h 37 min 39 s 26 (6) 11 4.9 ± 0.9 (4.0–7.4) 9 10 (2) 5 Descent 13 114 Fish

29 Bottom

0 Ascent

Macaroni
penguin

Pelagic 25 min 42 s 13 (2) 8 2.2 ± 0.3 (1.7–2.6) 7 1 (1) 0 Descent 10 155 Crustaceans

1 Bottom

0 Ascent

Gentoo
penguin

Pelagic 54 min 17 s 23 (8) 10 2.7 ± 0.7 (1.5–3.6) 0 6 (4) 2 Descent 17 352 Fish,
crustaceans,
cephalopods

10 Bottom

0 Ascent

Gentoo
penguin

Benthic 1 h 45 min 47 s 31 (9) 15 4.2 ± 0.5 (3.2–5.2) 0 20 (6) 35 Descent 22 74 Fish,
crustaceans108 Bottom

13 Ascent
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All vocalisations were emitted during feeding dives, mostly during the bottom phase
of the dives (148/203 vocalisations vs 42 during the descent and 13 during the ascent).
More than 50% of the recorded vocalisations were directly associated with a hunting
behaviour: immediately following acceleration (supposedly chasing prey) and/or
immediately followed by a prey capture attempt. Not all vocalisations were preceded with
an acceleration, and not all accelerations were followed with a vocalisation. Accelerations
preceded vocalisations in 104 (60 benthic vocalisations and 44 pelagic vocalisations)
out of 203 cases, and lasted 6.2 ± 4.4 s (range 0.5–17.0 s). Those included one vocalisation
from a Macaroni penguin, 29 from King penguins, 14 and 60 from Gentoo penguins in a
pelagic and benthic context, respectively. The accelerations preceded the vocalisations
by 2.2 ± 2.1 s, with two vocalisations emitted within the last 2 s of the acceleration
(range −1.6 to 8.4 s, Fig. 1A). Within the limited field of view of the camera, we observed
40 vocalisations to be immediately followed with a prey capture (others could have
been missed if outside of the field of view). Those included one vocalisation from a
Macaroni penguin, 20 from King penguins, 13 and six from Gentoo penguins in a pelagic
and benthic context, respectively. The time lapse between the start of a vocalisation
and prey capture averaged 0.12 ± 0.13 s (range 0.02–0.68 s, Fig. 1C). For 30 of these 40 prey
capture attempts the prey could be identified: four as crustaceans (1 + 3 hunted by
Macaroni and Gentoo penguins respectively) and 26 as fish (16 + 10 hunted by King and
Gentoo penguins respectively). Based on the entire number of prey capture attempts, only
a small proportion of them were preceded with a vocalisation, and this varied greatly
with the prey type: <1% for hunted crustaceans (4/463) vs 19% for hunted fish (26/134).
In the case of fish (enabled through sufficient data), vocalisations were more likely at
the first (67%, 8/12) vs following (10%, 9/87, range per position 0–33%) prey capture
attempts within a dive.

Acoustics of underwater vocalisations
Recorded vocalisations were very short in duration, lasting 0.06 s on average (Table 2),
and did not vary much between species (Kruskal–Wallis chi-squared = 1.530, df = 1,
p-value = 0.216; Fligner–Killeen chi-squared = 1.047, df = 1, p-value = 0.306; N = 34
King + 168 Gentoo). Calls showed a harmonic structure and the values of the fundamental
frequency, F0, averaged 500–600 Hz for all species (Table 2) with no significant

Table 2 Penguins underwater vocalisations. Summary of the distribution of acoustic variables measured on underwater vocalisations. DurCall,
duration of the vocalisation (s); F0, fundamental frequency (Hz); Fmax, frequency of maximum amplitude (Hz); N, number of measured
vocalisations; SD, standard deviation.

Acoustic variables King penguin
Pelagic vocalisations

Macaroni penguin
Pelagic vocalisation

Gentoo penguin
Pelagic vocalisation

Gentoo penguin
Benthic vocalisation

N Mean ± SD Range N Value N Mean ± SD Range N Mean ± SD Range

DurCall (s) 34 0.06 ± 0.03 (0.02–0.18) 1 0.05 60 0.07 ± 0.05 (0.02–0.33) 108 0.05 ± 0.03 (0.02–0.18)

F0 (Hz) 23 535 ± 169 (309–850) 1 697 27 628 ± 418 (139–1539) 64 475 ± 249 (140–1441)

Fmax (Hz) 28 998 ± 389 (648–1980) 1 680 39 1136 ± 413 (625–2011) 81 1078 ± 354 (480–1890)
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differences in distributions between species (Kruskal–Wallis chi-squared = 2.157, df = 1,
p-value = 0.142; Fligner–Killeen chi-squared = 0.029, df = 1, p-value = 0.865; N = 34
King + 168 Gentoo). The frequency of highest energy, Fmax, averaged 998 Hz for
King penguins and 1,097 Hz for Gentoo penguins, and their distribution significantly
varied in median (Kruskal–Wallis chi-squared = 4.280, df = 1, p-value = 0.039;N = 34 King
+ 168 Gentoo). Notably, one Gentoo individual performed whistle calls (seven whistles
recorded during two successive feeding dives, Video S3). The single vocalisation recorded
from a Macaroni penguin was emitted with a lower Fmax at 680 Hz (Table 2).

DISCUSSION
Penguins are known for their remarkable diving abilities. Our study further demonstrates
their aquatic abilities and adaptation to the marine environment. Each of the three
species studied here is classified in a different genus of the Spheniscidae family and
exhibits varied foraging behaviour (Adams & Klages, 1987; Brown & Klages, 1987;
Adams & Brown, 1989). Yet, all studied species vocalised under water in the various
feeding contexts. This suggests that such underwater vocal behaviour may exist in all
penguin species. However, underwater vocalisations were recorded in much higher
proportion when penguins were feeding on fish, compared to crustaceans or cephalopods.
As a consequence, underwater vocalisations may be expected to be more common in
piscivorous penguins.

The production of sound under water
As the first record of underwater vocalisations in seabirds, these observations raise a
number of questions regarding the emission of such sounds. How are penguins able to
produce sound at deep depth, given the high pressure of the water? In saltwater, the
pressure would vary between approximately 1,100,000 Pa (11 bar) at 100 m and 3,600,000
Pa (36 bar) at 350 m depth. Penguins must have physiological and anatomical adaptations
to prevent their trachea from collapsing when diving. They feed and ingest prey under
water, so their trachea must also be resistant to the passing of food through the oesophagus
at high pressure. One possible adaptation could be the septum trachealis medialis
(STM) which medially divides the trachea. STM was described in another marine species
feeding under water, the leatherback turtles (Davenport et al., 2014), but also exists in
King penguins (H. Kriesell, T. Aubin, 2019, personal communication). The STM contains
ossified plates in its caudal third and may play a vital role in preventing the compression of
the trachea while penguins ingest prey or emit sounds at deep depth.

Another question to be addressed is whether these sounds were emitted intentionally
by the penguins or, instead, could they be mechanistically released by a breath-holding
diving predator? Among all recorded dives, vocalisations were recorded exclusively when
prey captures were also observed in the same dive and mostly during the bottom phase of
the dives (when prey captures occur the most often). This shows a strong association
between underwater vocalisations and hunting behaviour and suggests that the sounds
were not passively produced but rather controlled to be emitted in specific situations.
In addition, vocalisations were recorded in combination of only a small proportion of
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the observed prey captures and a small proportion of accelerations, suggesting they were
not mechanistically emitted as a consequence of increased movement or every time a
penguin opened its beak under water. Vocalisations furthermore did not have structures
similar to noise or pulse but displayed clear harmonic structures, sometimes with
frequency and amplitude modulations (Fig. 1D–1G). As a consequence, the recorded
vocalisations seemed to be produced under control.

Now, to assess whether sound production is intentional and associated with a
specific function remains a challenge. Below we propose and develop some hypotheses.
Vocalisations could simply be an expression of excitement of finding food. Or else, they
could fulfil physiological needs related to diving and feeding in apnoea. Finally, they could
have a function for social communication or for capturing prey.

Underwater vocalisations as a by-product of physiological needs?
Penguins have physiological adaptations for diving, with lungs and air sacs capacities
higher than allometric predictions (Ponganis, Leger & Scadeng, 2015). They can control
their buoyancy (i) by adjusting the amount of air inhaled prior to a dive depending on the
depth of the expected dive and (ii) by exhaling air during the ascent to slow down their
speed (Sato et al., 2002). Accordingly, in two instances we observed a Gentoo penguin
exhaling air, and thus emitting sound, during the last part of the ascent phase. However
only 6% of vocalisations were recorded during the ascent of dives showing that this
mechanism was rarely used, contrary to what has been reported in seals (Hooker et al.,
2005). Vocalisations were most often recorded during the bottom phase of dives, where the
pressure is highest and buoyancy should be negligible (Sato, Watanuki & Naito, 2006).
Alternatively, vocalisations could result from the occasional need to expel an air bubble
from the trachea in order to be able to ingest prey under water.

Underwater vocalisations for social communication?
Some species of penguins have been observed feeding in groups (Norman & Ward, 1993;
Takahashi et al., 2004; McInnes et al., 2017), a behaviour in which vocalisations emitted
from the sea surface can play a role (Choi et al., 2017; McInnes et al., in press).
Vocalisations emitted under water could be used to further coordinate or synchronise
feeding activities. The limit to this hypothesis is that we did not record underwater
vocalisations concomitantly to synchronised diving activity (even when such activity was
recorded). As a consequence, it seems unlikely that these vocalisations could have been
used to coordinate feeding activities. However, we cannot exclude the possibility of
penguins being present in looser aggregations and making use of underwater acoustic cues.
The hearing abilities of penguins is not yet known, although penguins are known to react
to underwater sounds (Pichegru et al., 2017). Studies on other diving birds, like cormorants
or sea ducks, have shown that they can hear underwater despite an in-air adapted ear
(Therrien, 2014; Johansen et al., 2016). In this context, the vocalisations emitted at the first
prey encounter within a dive could inform conspecifics of the presence of prey, as well as
its localisation. Indeed, animals can develop extreme abilities to locate sound by ear
(Griffin, 1958; Schusterman et al., 2000). Since sound travels much further than light under
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water and visual cues are limited at depth, the vocalisations emitted by penguins when
capturing prey could be used as acoustic cues for locating feeding conspecifics.

Underwater vocalisations for capturing prey?
The fact that underwater vocalisations were clearly associated with feeding and hunting
behaviour raises the question of the adaptive value of this behaviour. Since only a small
proportion of the observed capture attempts were preceded with a vocalisation, they
cannot be a prerequisite for efficient prey capture, but rather are probably used in some
specific situations. Vocalisations could potentially be used in response to a prey escaping or
showing avoidance behaviour (Handley et al., 2018). For example, in one instance we
recorded a King penguin successively emitting three vocalisations in what seemed like a
repeated prey capture attempt (Video S4). Most fishes have hearing abilities ranging
between 30 and 3,000 Hz (Popper & Schilt, 2008). Similarly, the hearing abilities of various
species from the Order Decapoda (classified in the Superorder Eucarida, together with
Euphausiacea) is situated between 100 and 3,000 Hz (Popper, Salmon & Horch, 2001).
Those hearing values fall within the range of production of penguin underwater
vocalisations. The ability for the prey to receive the sound wave also depends on the
pressure and particle motion of the vocalisation (Radford et al., 2012). But because they
were emitted from such a short distance (0.1 s before capture), we can assume that
they could be heard or felt (vibration) by the prey. In a situation where the penguin
has come so close to the prey, but the prey is about to escape, a vocalisation or a vibrational
wave might be enough to startle the prey (as shown in herrings Nestler et al., 1992)
and immobilise it for a split second, just enough to allow prey capture. The ability of
marine mammals to stun prey using sounds has long been hypothesised and debated
(Norris & Mohl, 1983; Marten et al., 2001; Benoit-Bird, Au & Kastelein, 2006;
Fais et al., 2016). In particular, some specific sounds emitted by dolphins over low
frequencies (most energy under 5 kHz, so more similar to what we recorded from
penguins) can disorientate or change the behaviour of the prey, if not stun them (Marten
et al., 2001).

CONCLUSION
We have here provided the first observations of underwater penguin vocalisations while
foraging at sea. As intriguing as these observations are, we failed to demonstrate the
adaptive significance of this behaviour, although it seems likely to enhance foraging
success. Our study was restricted by the quality of sound recordings and the limited field of
view of mounted cameras. We strongly encourage further research on this intriguing
behavioural phenomenon, which contributes to the debates on the uses of underwater
vocalisations by diving predators.

ACKNOWLEDGEMENTS
We thank Jennifer Vonk (editor), Ole Næsbye Larsen (reviewer) and an anonymous
reviewer for their comments, which improved the manuscript.

Thiebault et al. (2019), PeerJ, DOI 10.7717/peerj.8240 11/16

http://dx.doi.org/10.7717/peerj.8240/supp-8
http://dx.doi.org/10.7717/peerj.8240
https://peerj.com/


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Funding support for this project was provided by South Africa’s National Research
Foundation (Grant number SNA093071). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
South Africa’s National Research Foundation: SNA093071.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Andréa Thiebault analysed the data, prepared figures and/or tables, authored or
reviewed drafts of the paper, approved the final draft.

� Isabelle Charrier conceived and designed the experiments, contributed reagents/
materials/analysis tools, authored or reviewed drafts of the paper, approved the final draft.

� Thierry Aubin conceived and designed the experiments, contributed reagents/materials/
analysis tools, authored or reviewed drafts of the paper, approved the final draft.

� David B. Green performed the experiments, authored or reviewed drafts of the paper,
approved the final draft.

� Pierre A. Pistorius conceived and designed the experiments, contributed reagents/
materials/analysis tools, authored or reviewed drafts of the paper, approved the final
draft.

Animal Ethics
The following information was supplied relating to ethical approvals (i.e. approving body
and any reference numbers):

Permit for fieldwork: Nelson Mandela University Research Ethics Committee (Animal)
(A14-SCI-ZOO-012/Extension).

Data Availability
The following information was supplied regarding data availability:

Datasets are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.8240#supplemental-information.

REFERENCES
Adams NJ, Brown CR. 1989. Dietary differentiation and trophic relationships in the sub-Antarctic

penguin community at Marion Island. Marine Ecology Progress Series 57:249–258
DOI 10.3354/meps057249.

Thiebault et al. (2019), PeerJ, DOI 10.7717/peerj.8240 12/16

http://dx.doi.org/10.7717/peerj.8240#supplemental-information
http://dx.doi.org/10.7717/peerj.8240#supplemental-information
http://dx.doi.org/10.7717/peerj.8240#supplemental-information
http://dx.doi.org/10.3354/meps057249
http://dx.doi.org/10.7717/peerj.8240
https://peerj.com/


Adams NJ, Klages NT. 1987. Seasonal variation in the diet of the king penguin (Aptenodytes
patagonicus) at sub-Antarctic Marion Island. Journal of Zoology 212(2):303–324
DOI 10.1111/j.1469-7998.1987.tb05992.x.

Agnew P, Lalas C, Wright J, Dawson S. 2013. Effects of attached data-logging devices on little
penguins (Eudyptula minor). Marine Biology 160(9):2375–2382
DOI 10.1007/s00227-013-2231-7.

Angelier F, Bost C-A, Giraudeau M, Bouteloup G, Dano S, Chastel O. 2008. Corticosterone and
foraging behavior in a diving seabird: the Adélie penguin, Pygoscelis adeliae. General and
Comparative Endocrinology 156(1):134–144 DOI 10.1016/j.ygcen.2007.12.001.

Aubin T, Jouventin P. 2002. How to vocally identify kin in a crowd: the penguin model.
In: Slater PJB, Rosenblatt JS, Snowdon CT, Roper TJ, eds. Advances in the Study of Behavior.
San Diego: Academic Press, 243–277.

Ballard G, Ainley DG, Ribic CA, Barton KR. 2001. Effect of instrument attachment and other
factors on foraging trip duration and nesting success of Adélie penguins. Condor
103(3):481–490 DOI 10.1093/condor/103.3.481.

Bannasch R, Wilson RP, Culik B. 1994. Hydrodynamic aspects of design and attachment of a
back-mounted device in penguins. Journal of Experimental Biology 194:83–96.

Benoit-Bird KJ, Au WWL, Kastelein R. 2006. Testing the odontocete acoustic prey debilitation
hypothesis: no stunning results. Journal of the Acoustical Society of America 120(2):1118–1123
DOI 10.1121/1.2211508.

Brown CR, Klages NT. 1987. Seasonal and annual variation in diets of Macaroni (Eudyptes
chrysolophus chrysolophus) and Southern rockhopper (E. chrysocome chrysocome) penguins at
sub-Antarctic Marion Island. Journal of Zoology 212(1):7–28
DOI 10.1111/j.1469-7998.1987.tb05111.x.

Carpenter-Kling T, Handley JM, Green DB, Reisinger RR, Makhado AB, Crawford RJM,
Pistorius PA. 2017. A novel foraging strategy in gentoo penguins breeding at sub-Antarctic
Marion Island. Marine Biology 164(2):33 DOI 10.1007/s00227-016-3066-9.

Charrassin J-B, Bost CA, Pütz K, Lage J, Dahier T, Zorn T, Le Maho Y. 1998. Foraging strategies
of incubating and brooding king penguins Aptenodytes patagonicus. Oecologia 114(2):194–201
DOI 10.1007/s004420050436.

Charrier I, Mathevon N, Jouventin P, Aubin T. 2001. Acoustic communication in a black-headed
gull colony: how do chicks identify their parents? Ethology 107(11):961–974
DOI 10.1046/j.1439-0310.2001.00748.x.

Choi N, Kim J-H, Kokubun N, Park S, Chung H, Lee WY. 2017. Group association and vocal
behaviour during foraging trips in Gentoo penguins. Scientific Reports 7(1):7570
DOI 10.1038/s41598-017-07900-7.

Copeland K. 2008. Concerted small-group foraging behavior in gentoo. Marine Ornithology
36:193–194.

Curé C, Aubin T, Mathevon N. 2011. Sex discrimination and mate recognition by voice in the
Yelkouan shearwater puffinus yelkouan. Bioacoustics 20(3):235–249
DOI 10.1080/09524622.2011.9753648.

Davenport J, Jones TT, Work TM, Balazs GH. 2014. Unique characteristics of the trachea of the
juvenile leatherback turtle facilitate feeding, diving and endothermy. Journal of Experimental
Marine Biology and Ecology 450:40–46 DOI 10.1016/j.jembe.2013.10.013.

Fais A, Johnson M, Wilson M, Aguilar Soto N, Madsen PT. 2016. Sperm whale predator-prey
interactions involve chasing and buzzing, but no acoustic stunning. Scientific Reports 6(1):28562
DOI 10.1038/srep28562.

Thiebault et al. (2019), PeerJ, DOI 10.7717/peerj.8240 13/16

http://dx.doi.org/10.1111/j.1469-7998.1987.tb05992.x
http://dx.doi.org/10.1007/s00227-013-2231-7
http://dx.doi.org/10.1016/j.ygcen.2007.12.001
http://dx.doi.org/10.1093/condor/103.3.481
http://dx.doi.org/10.1121/1.2211508
http://dx.doi.org/10.1111/j.1469-7998.1987.tb05111.x
http://dx.doi.org/10.1007/s00227-016-3066-9
http://dx.doi.org/10.1007/s004420050436
http://dx.doi.org/10.1046/j.1439-0310.2001.00748.x
http://dx.doi.org/10.1038/s41598-017-07900-7
http://dx.doi.org/10.1080/09524622.2011.9753648
http://dx.doi.org/10.1016/j.jembe.2013.10.013
http://dx.doi.org/10.1038/srep28562
http://dx.doi.org/10.7717/peerj.8240
https://peerj.com/


Ferrara CR, Vogt RC, Eisemberg CC, Doody JS. 2017. First evidence of the pig-nosed turtle
(Carettochelys insculpta) vocalizing underwater. Copeia 105(1):29–32 DOI 10.1643/CE-16-407.

Friard O. 2019. Behavioral observation research interactive software. Torino: Universita Degli Studi
Di Torino.

Griffin DR. 1958. Listening in the dark: the acoustic orientation of bats and men. Oxford:
Yale University Press.

Handley JM, Connan M, Baylis AMM, Brickle P, Pistorius P. 2017. Jack of all prey, master of
some: influence of habitat on the feeding ecology of a diving marine predator. Marine Biology
164(4):82 DOI 10.1007/s00227-017-3113-1.

Handley JM, Thiebault A, Stanworth A, Schutt D, Pistorius P. 2018. Behaviourally mediated
predation avoidance in penguin prey: in situ evidence from animal-borne camera loggers.
Royal Society Open Science 5(8):171449 DOI 10.1098/rsos.171449.

Hooker SK, Miller PJO, Johnson MP, Cox OP, Boyd IL. 2005. Ascent exhalations of Antarctic fur
seals: a behavioural adaptation for breath–hold diving? Proceedings of the Royal Society B:
Biological Sciences 272(1561):355–363 DOI 10.1098/rspb.2004.2964.

Johansen S, Larsen ON, Christensen-Dalsgaard J, Seidelin L, Huulvej T, Jensen K, Lunneryd S-
G, Boström M, Wahlberg M. 2016. In-air and underwater hearing in the great cormorant
(Phalacrocorax carbo sinensis). In: Popper AN, Hawkins A, eds. The Effects of Noise on Aquatic
Life II: Advances in Experimental Medicine and Biology. New York: Springer, 505–512.

Kooyman GL, Kooyman TG. 1995. Diving behavior of emperor penguins nurturing chicks at
Coulman Island, Antarctica. Condor 97(2):536–549 DOI 10.2307/1369039.

Kriesell HJ, Aubin T, Planas-Bielsa V, Benoiste M, Bonadonna F, Gachot-Neveu H, Maho YL,
Schull Q, Vallas B, Zahn S, Bohec CL. 2018. Sex identification in king penguins Aptenodytes
patagonicus through morphological and acoustic cues. Ibis 160(4):755–768
DOI 10.1111/ibi.12577.

Marten K, Herzing D, Poole M, Newman Allman K. 2001. The acoustic predation hypothesis:
linking underwater observations and recordings during odontocete predation and observing the
effects of loud impulsive sounds on fish. Aquatic Mammals 27:56–66.

McInnes AM, McGeorge C, Ginsberg S, Pichegru L, Pistorius PA. 2017. Group foraging
increases foraging efficiency in a piscivorous diver, the African penguin. Royal Society Open
Science 4(9):170918 DOI 10.1098/rsos.170918.

McInnes AM, Thiebault A, Cloete T, Pichegru L, Aubin T, McGeorge C, Pistorius PA.
Social context and prey composition are associated with calling behaviour in a diving seabird.
Ibis (in press) DOI 10.1111/ibi.12806.

Nestler JM, Ploskey GR, Pickens J, Menezes J, Schilt C. 1992. Responses of blueback herring to
high-frequency sound and implications for reducing entrainment at hydropower dams. North
American Journal of Fisheries Management 12:667–683
DOI 10.1577/1548-8675(1992)012<0667:ROBHTH>2.3.CO;2.

Nevitt GA. 2008. Sensory ecology on the high seas: the odor world of the procellariiform seabirds.
Journal of Experimental Biology 211(11):1706–1713 DOI 10.1242/jeb.015412.

Norman FI, Ward SJ. 1993. Foraging group size and dive duration of Adelie penguins Pygoscelis
adeliae at sea off Hop Island, Rauer Group, East Antarctica. Marine Ornithology 21:37–47.

Norris KS, Mohl B. 1983. Can odontocetes debilitate prey with sound? American Naturalist
122(1):85–104 DOI 10.1086/284120.

Pichegru L, Nyengera R, McInnes AM, Pistorius P. 2017. Avoidance of seismic survey activities
by penguins. Scientific Reports 7(1):16305 DOI 10.1038/s41598-017-16569-x.

Thiebault et al. (2019), PeerJ, DOI 10.7717/peerj.8240 14/16

http://dx.doi.org/10.1643/CE-16-407
http://dx.doi.org/10.1007/s00227-017-3113-1
http://dx.doi.org/10.1098/rsos.171449
http://dx.doi.org/10.1098/rspb.2004.2964
http://dx.doi.org/10.2307/1369039
http://dx.doi.org/10.1111/ibi.12577
http://dx.doi.org/10.1098/rsos.170918
http://dx.doi.org/10.1111/ibi.12806
http://dx.doi.org/10.1577/1548-8675(1992)012%3C0667:ROBHTH%3E2.3.CO;2
http://dx.doi.org/10.1242/jeb.015412
http://dx.doi.org/10.1086/284120
http://dx.doi.org/10.1038/s41598-017-16569-x
http://dx.doi.org/10.7717/peerj.8240
https://peerj.com/


Pichegru L, Ropert-Coudert Y, Kato A, Takahashi A, Dyer BM, Ryan PG. 2011. Diving patterns
of female macaroni penguins breeding on Marion Island, South Africa. Polar Biology
34(7):945–954 DOI 10.1007/s00300-010-0950-5.

Ponganis PJ, St Leger J, Scadeng M. 2015. Penguin lungs and air sacs: implications for
baroprotection, oxygen stores and buoyancy. Journal of Experimental Biology 218(5):720–730
DOI 10.1242/jeb.113647.

Popper AN, Salmon M, Horch KW. 2001. Acoustic detection and communication by decapod
crustaceans. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology
187(2):83–89 DOI 10.1007/s003590100184.

Popper AN, Schilt CR. 2008. Hearing and acoustic behavior: basic and applied considerations.
In: Webb JF, Fay RR, Popper AN, eds. Fish Bioacoustics, Springer Handbook of Auditory
Research. Vol. 32. New York: Springer, 17–48.

Pütz K, Wilson RP, Charrassin J-B, Raclot T, Lage J, Le Maho Y, Kierspel MAM, Culik BM,
Adelung D. 1998. Foraging strategy of king penguins (Aptenodytes patagonicus) during summer
at the Crozet Islands. Ecology 79(6):1905–1921
DOI 10.1890/0012-9658(1998)079[1905:FSOKPA]2.0.CO;2.

R Core Team. 2019. R: a language and environment for statistical computing. Vienna:
R Foundation for Statistical Computing. Available at http://www.R-project.org/.

Radford CA, Montgomery JC, Caiger P, Higgs DM. 2012. Pressure and particle motion detection
thresholds in fish: a re-examination of salient auditory cues in teleosts. Journal of Experimental
Biology 215(19):3429–3435 DOI 10.1242/jeb.073320.

RiedmanM. 1990. The Pinnipeds: Seals, Sea Lions, andWalruses. Berkeley: University of California
Press.

Ropert-Coudert Y, Kato A, Wilson RP, Cannell B. 2006. Foraging strategies and prey encounter
rate of free-ranging little penguins. Marine Biology 149(2):139–148
DOI 10.1007/s00227-005-0188-x.

Ropert-Coudert Y, Sato K, Kato A, Charrassin J-B, Bost C, Le Maho Y, Naito Y. 2000.
Preliminary investigations of prey pursuit and capture by king penguins at sea. Polar Bioscience
13:101–112.

Sato K, Naito Y, Kato A, Niizuma Y, Watanuki Y, Charrassin JB, Bost C-A, Handrich Y,
Maho YL. 2002. Buoyancy and maximal diving depth in penguins do they control inhaling air
volume? Journal of Experimental Biology 205:1189–1197.

Sato K, Watanuki Y, Naito Y. 2006. The minimum air volume kept in diving Adelie penguins:
evidence for regulation of air volume in the respiratory system. Coastal Marine Science
30:439–442 DOI 10.15083/00040735.

Schusterman RJ, Kastak D, Levenson DH, Reichmuth CJ, Southall BL. 2000. Why Pinnipeds
don’t echolocate. Journal of the Acoustical Society of America 107(4):2256–2264
DOI 10.1121/1.428506.

Searby A, Jouventin P, Aubin T. 2004. Acoustic recognition in macaroni penguins: an original
signature system. Animal Behaviour 67(4):615–625 DOI 10.1016/j.anbehav.2003.03.012.

Sueur J, Aubin T, Simonis C. 2008. Seewave : a free modular tool for sound analysis and synthesis.
Bioacoustics: International Journal of Animal Sound and its Recording 18(2):213–226
DOI 10.1080/09524622.2008.9753600.

Takahashi A, Sato K, Naito Y, Dunn MJ, Trathan PN, Croxall JP. 2004. Penguin–mounted
cameras glimpse underwater group behaviour. Proceedings of the Royal Society of London. Series
B: Biological Sciences 271(Suppl._5):S281–S282 DOI 10.1098/rsbl.2004.0182.

Thiebault et al. (2019), PeerJ, DOI 10.7717/peerj.8240 15/16

http://dx.doi.org/10.1007/s00300-010-0950-5
http://dx.doi.org/10.1242/jeb.113647
http://dx.doi.org/10.1007/s003590100184
http://dx.doi.org/10.1890/0012-9658(1998)079[1905:FSOKPA]2.0.CO;2
http://www.R-project.org/
http://dx.doi.org/10.1242/jeb.073320
http://dx.doi.org/10.1007/s00227-005-0188-x
http://dx.doi.org/10.15083/00040735
http://dx.doi.org/10.1121/1.428506
http://dx.doi.org/10.1016/j.anbehav.2003.03.012
http://dx.doi.org/10.1080/09524622.2008.9753600
http://dx.doi.org/10.1098/rsbl.2004.0182
http://dx.doi.org/10.7717/peerj.8240
https://peerj.com/


Therrien SC. 2014. In-air and underwater hearing of diving birds. College Park: University of
Maryland.

Thiebault A, Charrier I, Pistorius P, Aubin T. 2019. At sea vocal repertoire of a foraging seabird.
Journal of Avian Biology 50(5):27 DOI 10.1111/jav.02032.

Thiebault A, Pistorius P, Mullers R, Tremblay Y. 2016a. Seabird acoustic communication at sea: a
new perspective using bio-logging devices. Scientific Reports 6(1):30972 DOI 10.1038/srep30972.

Thiebault A, Semeria M, Lett C, Tremblay Y. 2016b. How to capture fish in a school? Effect of
successive predator attacks on seabird feeding success. Journal of Animal Ecology 85(1):157–167
DOI 10.1111/1365-2656.12455.

Tyack PL, Clark CW. 2000. Communication and acoustic behavior of dolphins and whales.
In: Au WWL, Fay RR, Popper AN, eds. Hearing by Whales and Dolphins. New York: Springer
Handbook of Auditory Research, 156–224.

Wakefield ED, Bodey TW, Bearhop S, Blackburn J, Colhoun K, Davies R, Dwyer RG, Green JA,
Grémillet D, Jackson AL, Jessopp MJ, Kane A, Langston RHW, Lescroël Aélie, Murray S,
Le Nuz Mélanie, Patrick SC, Péron C, Soanes LM, Wanless S, Votier SC, Hamer KC. 2013.
Space partitioning without territoriality in gannets. Science 341(6141):68–70
DOI 10.1126/science.1236077.

Weimerskirch H, Chastel O, Ackermann L, Chaurand T, Cuenot-Chaillet F, Hindermeyer X,
Judas J. 1994. Alternate long and short foraging trips in pelagic seabird parents. Animal
Behaviour 47(2):472–476 DOI 10.1006/anbe.1994.1065.

Weimerskirch H, Guionnet T, Martin J, Shaffer SA, Costa DP. 2000. Fast and fuel efficient?
Optimal use of wind by flying albatrosses. Proceedings of the Royal Society of London. Series B:
Biological Sciences 267(1455):1869–1874 DOI 10.1098/rspb.2000.1223.

White SJ, White REC. 1970. Individual voice production in gannets. Behaviour 37(1–2):40–54
DOI 10.1163/156853970X00222.

Whitehead TO. 2017. Comparative foraging ecology of macaroni and rockhopper penguins at the
Prince Edward Islands. Cape Town: University of Cape Town.

Wickham H. 2016. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag.

Williams TD. 1995. The penguins: spheniscidae. Oxford: Oxford University Press.

Thiebault et al. (2019), PeerJ, DOI 10.7717/peerj.8240 16/16

http://dx.doi.org/10.1111/jav.02032
http://dx.doi.org/10.1038/srep30972
http://dx.doi.org/10.1111/1365-2656.12455
http://dx.doi.org/10.1126/science.1236077
http://dx.doi.org/10.1006/anbe.1994.1065
http://dx.doi.org/10.1098/rspb.2000.1223
http://dx.doi.org/10.1163/156853970X00222
http://dx.doi.org/10.7717/peerj.8240
https://peerj.com/

	First evidence of underwater vocalisations in hunting penguins
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusion
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


