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Abstract. We introduce a new database to promote visibility enhance-
ment techniques intended for spectral image dehazing. SHIA (Spectral
Hazy Image database for Assessment) is composed of two real indoor
scenes M1 and M2 of 10 levels of fog each and their corresponding haze-
free (ground-truth) images, taken in the visible and the near infrared
ranges every 10nm starting from 450 to 1000nm. Thus, the number of
images that form SHIA is 1540 with a size of 1312 × 1082 pixels. The
hazy images and the haze-free images are captured under the same il-
lumination conditions. Three of the well-known dehazing image meth-
ods belonging to different categories were adjusted and applied on the
spectral hazy images. This study confirms once again a strong depen-
dency between dehazing methods and fog densities. It urges the design
of spectral-based image dehazing able to handle simultaneously the ac-
curate estimation of the parameters of the visibility degradation model
and the limitation of artifacts and post-dehazing noise.
The database can be downloaded freely at http://chic.u-bourgogne.fr.

1 Introduction

In computer vision applications, dehazing is applied to enhance the visibility
of outdoor images by reducing the undesirable effects due to scattering and
absorption caused by atmospheric particles.

Dehazing is needed for human activities and in many algorithms like objects
recognition, objects tracking, remote sensing [18] and sometimes in computa-
tional photography [26]. Applications that are of interest in this scope include
fully autonomous vehicles typically use computer vision for land or air navi-
gation, monitored driving [12, 30, 24] or outdoor security systems [25]. In bad
visibility environments, such applications require dehazed images for a proper
performance.

Image dehazing is a transdisciplinary challenge, as it requires knowledge from
different fields: meteorology to model the haze, optical physics to understand how
light is affected through haze and computer vision as well as image and signal
processing to recover the parameters of the scene. Researchers have been always
searching for an optimal method to get rid of degradation by light scattering
along aerosols. Many methods have been proposed and compared to each other.
Despite the large collection of methods available today, they still do not meet
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efficient recovery standards and show a varying performance depending on the
density of haze [8].

Earlier approaches involve multiple inputs to break down the mathematical
ill-posed problem. Narasimhan et al. [21] calculates the haze model parameters
by considering the variation of the color of pixels under different weather con-
ditions. Feng et al. [11] take advantage of the deep penetration of near-infrared
wavelength to unveil the details that could be completely lost in the visible band.
Other ways consist in employing depth data [15] or images differently polarized
[28]. Later techniques mainly focus on single image dehazing approach, which
is more challenging but more suitable for the purpose of real time and cost-
less computer vision applications. Single image dehazing was promoted through
the work of He et al. [14], the well-known Dark Channel Prior, which gained
its popularity thanks to its simple and robust real assumption based on a sta-
tistical characteristic of outdoor natural images. Therefore, numerous versions
were released later, some of them propose an improvement in estimating one or
more of the model’s parameters and others extend the approach to other fields
of application [16]. This approach, like others such as filtering based method
[29], estimates explicitely transmission and airlight. Other methods overlook the
physical model and improve contrast through multi-scale fusion [3], variational
[13] or histogram equalization approaches [34]. Recently, like many research do-
mains, a several machine learning approaches for image dehazing have come to
light [6, 27, 17]. These models are trained on synthetic images built upon a sim-
plistic model comparing to reality [5]. Hence the importance to build a large
number of real hazy images.

To evaluate all of these various methods, some databases of hazy images are
available. An early outdoor urban scene database was created on 2002, called
WILD (Weather and Illumination Database) [22]. Its acquisition lasted 5 months.
Thus, for one scene it contains a variety of uncontrolled weather and illumination
conditions provided with scene depth and temporal data. A few years later, Tarel
et al. [31, 30] used FRIDA and FRIDA2 as two dehazing evaluating databases
dedicated to driving assistance applications. They are formed of synthetic images
of urban road scenes with uniform and heterogenous layers of fog. There exist also
databases of real outdoor haze-free images, for each, different weather conditions
are simulated [35].

Given the significant research that has been conducted through the last
decade, it turns out that synthetic images formed upon a simplified optical model
do not simulate faithfully the real hazy images [7]. Therefore, several databases
of real images and real fog with the groundtruth images have emerged. The real
fog was produced using a fog machine. This was first used in our previous work
presented in [10, 9] and it was used later by Ancuti et al. [4, 2] to construct a
good number of outdoor and indoor real hazy images covering a large variation of
surfaces and textures, and lately they introduced a similar database containing
33 pairs of dense haze images and their corresponding haze-free outdoor images
[1].
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The main contribution of this paper is SHIA, which is inspired from our
previous color image database CHIC [10]. To the best of our knowledge, SHIA
is the first database that presents for a given haze-free image, a set of spectral
images with various densities of real fog. We believe that such database will
promote visibility enhancement techniques for drone and remote sensing images.
It will represent also a useful tool to valid future methods of spectral image
dehazing. Although it contains only 2 scenes, it stands for an example to consider
and to integrate efforts on a larger scale to increase the number of such complex
databases.

After the description of the used material and the acquisition process of the
scenes, we provide a qualitative evaluation of the three color dehazing methods
that have been applied to single spectral images. Our experimental results under-
lines a strong dependency between the performance of dehazing image methods
and the density of fog. Comparing to color images, the difference between dehaz-
ing methods is minor, since color shifting, which is usually caused by dehazing
methods is not present here. The difference is mainly due to the decrease of
intensity, especially induced by the physical based methods and the boost of
noise.

2 Data Recording

2.1 Used material

The hyperspectral data was obtained using the Photon focus MV1-D1280I-120-
CL camera based on e2v EV76C661 CMOS image sensor with 1280 × 1024 pixel
resolution.

In order to acquire data in visible and Near-infrared (VNIR) ranges, two
models of VariSpec Liquid Crystal Tunable Filters (LCTF) were used: VIS,
visible-wavelength filters with a wavelength range going from 400 to 720 nm.
NIR, near-infrared wavelength filter with a wavelength range going from 730 to
1100 nm. The captured VNIR images have the same size of 1312 × 1082 pixels
and the same resolution.

Every 10 nm in the VIS range and in the NIR range, we captured a picture
with a single integration time of 530 ms, which allows a sufficient light to limit
the noise without producing saturated pixels over channels. This reduces as well
the complexity of the preprocessing spectral calibration step (cf. Section 2.3).

In order to provide the image depth of the captured scenes, a Kinect device
was used. Usually, the Kinect can detect objects up to 10m but it induces some
inaccuracies beyond 5m [19]. Therefore, the camera was stand at 4.5m from the
furthest point at the center of the scene.

To generate fog, we used the fog machine FOGBURST 1500 with the flow
rate 566m3/min and a spraying distance of 12m, which emits a dense vapor that
appears similar to fog. The particles of the ejected fog are water droplets whose
radius is close to the radius size of the atmospheric fog (1 − 10µm) [23].
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2.2 Scenes

Scenes were set up in a closed rectangular room (length = 6.35m, width = 6.29m,
height = 3.20m, diagonal = 8.93m) with a window (length = 5, 54m, height =
1.5m), which is large enough to light up the room with daylight. The acquisition
session was performed on a cloudy day to ensure an unfluctuating illumination.
The objects forming the scenes were placed in front of the window, by which the
sensors were placed. This layout guarantees a uniform diffusion of daylight over
the objects of the scenes.

After the set up of each scene and before introducing fog, a depth image was
first captured using the Kinect device, and it was then replaced by the Photon
focus camera, which kept the same position through the capture of images of the
fog-free scene and the foggy images at various fog densities of the same scene.
The different densities of fog were generated by spreading first an opaque layer
of fog, which was then evacuated progressively through the window. The same
procedure was adopted for the acquisition of visible and near infrared images.

Hence, the dataset consists of two scenes, M1 and M2. The images of the
scene M1 are aquired over the visible range (450 − 720nm) only. M2’s images
are captured in visible and NIR (730−1000nm) ranges. In the first set the lamp
in the middle of the scene is turned off and turned on in the second. For each
acquisition set, 10 levels of fog were generated besides the haze-free scene. As
result, there are 308 images for M1: 11 levels (10 levels of fog + haze-free level),
in each there are 28 spectral images taken at every 10nm from 450 to 720nm).
On the other hand, there are 1232 images for M2: on the basis of M1’s images
claculation, M2 VIS and M2 NIR’s images are 616 each (308 for lamp on scene
and 308 for lamp off scene).

2.3 Data processing

We performed a dark correction to get rid of the offset noise that appears all over
the image, and a spectral calibration to deal with the spectral sensitivities of the
sensor and the used filters. The dark correction consists in taking several images
in the dark at the same integration time. For each pixel, we calculate the median
value over these images. Therefore, we obtain the dark image. We then subtract
the dark image from the spectral images taken with the same integration time.
The negative values are set equal to zero [20].

For the spectral calibration, we considered the relative spectral response of
the camera and the filter provided in the user manuals. For each captured image
at each wavelength band with an integration time of 530 ms, we divided by the
maximum peak value of the spectral response of the sensor and the corresponding
filter.

3 Evaluation of dehazing techniques

The images of SHIA database have been used to evaluate three of the most rep-
resentative categories of simple image dehazing approaches: DCP [14], MSCNN
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Fog-free Low Medium High

Fig. 1: M2 VIS Lamp off. Visible image at 550nm with its corresponding im-
ages taken under low, medium and high levels of fog.

Fog-free Low Medium High

Fig. 2: M2 NIR Lamp on. NIR image at 850nm with its corresponding images
taken under low, medium and high levels of fog.

[6], and CLAHE [34]. These methods have been adjusted to be applied on spec-
tral images rather than color images. In other words, the parameters that are
usually estimated through the three color bands, were estimated from the sin-
gle spectral image. For the sake of readability, we have selected three levels of
fog, which are denoted by low, medium and high levels (figures 1 and 2). In
this article, we only display the dehazed images of the scene M2 VIS Lamp off
at 550nm (figure 3) and the scene M2 NIR lamp on at 850nm (figure 4). The
first row in these figures represent the foggy image at the low selected level of
fog, in addition to the corresponding fog-free image and the dehazed images re-
sulted from the three selected dehazing methods. Similarly, the second and the
third rows represent the foggy image at the medium and low levels, respectively.
We have calculated the scores of the classical metrics used to evaluate spectral
images: PSNR, which calculate the absolute error between images; SSIM [32],
which consider the neiborhood dependencies while measuring contrast and struc-
ture similarity; and MS-SSIM, which is a multiscale SSIM [33], and it performs
particularly well in assessing sharpness [8]. A higher quality is indicated by a
higher PSNR and closer SSIM and MS-SSIM to 1. The corresponding values are
written under the images in figures 3 and 4. The average values calculated over
a few selected wavelength in the VNIR range are given in table 1.

Through the visual assessment of the dehazed images presented in figures
3 and 4, we can observe that all methods, regardless their approaches and hy-
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Foggy DCP MSCNN CLAHE Fog-free

(30.63, 0.97, 0.94) (22.81, 0.74, 0.69) (28.80, 0.69, 0.59) (29.86, 0.78, 0.68)

(27.89, 0.96, 0.93) (21.43, 0.72, 0.69) (26.74, 0.68, 0.60) (29.25, 0.77, 0.67)

(24.51, 0.94, 0.89) (18.65, 0.66, 0.61) (22.42, 0.64, 0.56) (23.87, 0.72, 0.62)

Fig. 3: M2 VIS Lamp off taken at 550 nm. Dehazed images processed by
DCP, MSCNN and CLAHE methods, with the foggy images presented in the
first column and the corresponding fog-free images in the last column. The first,
second and third rows correspond to the low, medium and high levels of fog,
respectively. Under each image, its corresponding scores are showed as follows:
(PSNR, SSIM, MS-SSIM).

potheses, perform better at low fog densities, either at visible or near infrared
range. CLAHE, which does not consider the physical model of image degrada-
tion, eliminates well the fog. However, it induces an important amount of noise
that increases with the density of fog. DCP, which is a physical-based approach
fails to estimate accurately the unknown parameters of the image degradation
model, the airlight and the transmission of light [14]. This bad estimate pro-
duces dim dehazed images, especially at high densities of fog, where the dark
channel hypothesis fails. This accords with the observation made on color im-
ages presented in our previous work [8]. MSCNN performs also an inversion of
the physical model of vibility degradation. However, it estimates better the un-
known parameters comparing to DCP since it is trained on a large number of
hazy images. This can be deduced through its dehazed images, which are not as
dark as the DCP’s dehazed images are.

The metrics values provided in figures 3 and 4 have the same trends for color
dehazed images across fog densities [8]. They show an increase in quality when
the density of fog decreases. However, they underline a global low performance
of dehazing methods. This means that haze removal is associated with secondary
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Foggy DCP MSCNN CLAHE Fog-free

(31.79, 0.98, 0.96) (34.37, 0.74, 0.65) (25.31, 0.73, 0.63) (26.53, 0.79, 0.68)

(22.04, 0.93, 0.88) (34.51, 0.72, 0.70) (21.35, 0.70, 0.58) (21.19, 0.68, 0.56)

(21.87, 0.92, 0.88) (33.53, 0.71, 0.70) (21.56, 0.69, 0.59) (21.38, 0.67, 0.57)

Fig. 4: M2 NIR Lamp on taken at 850 nm. Dehazed images processed by
DCP, MSCNN and CLAHE methods, with the foggy images presented in the
first column and the corresponding fog-free images in the last column. The first,
second and third rows correspond to the low, medium and high levels of fog,
respectively. Under each image, its corresponding scores are showed as follows:
(PSNR, SSIM, MS-SSIM).

effects that restrains quality enhancement. This is likely to be handicapped by
the noise and the artifacts induced in the image and the dark effect resulted from
wrong estimation of visibility model parameters. These effects seem to have a
severe impact on image quality more than the fog itself.

From table 1, we can conclude that:

– Foggy images are quantitatively of better quality comparing to the dehazed
images, which suffer from noise, low intensity and structural artifacts.

– The scores resulted from different dehazing methods are very close to each
other across wavelengths.

– The metrics values demonstrate a correlated performance between MSCNN
and CLAHE over wavelengths. Although DCP has relatively higher scores,
this does not mean it is the best performing method. The dimness of its
resulting images seems to minimize the effect of the artifacts.
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Foggy DCP MSCNN CLAHE
PSNR SSIM MS PSNR SSIM MS PSNR SSIM MS PSNR SSIM MS

550 nm 26.98 0.94 0.91 22.34 0.69 0.63 24.51 0.65 0.56 25.03 0.73 0.63
650 nm 21.63 0.88 0.78 23.13 0.77 0.64 21.06 0.61 0.45 20.72 0.63 0.48
750 nm 33.23 0.97 0.95 24.03 0.69 0.66 26.07 0.70 0.63 28.10 0.70 0.66
850 nm 29.53 0.93 0.89 26.71 0.71 0.67 26.92 0.69 0.61 25.90 0.70 0.59

Table 1: The average values of PSNR, SSIM and MS-SSIM (MS) metrics calcu-
lated on the images taken under 10 densities of fog at 550, 650, 750 and 850nm

4 Conclusions

We introduce a new database to promote visibility enhancement techniques
intended for spectral image dehazing. For two indoor scenes, this hard built
database SHIA, contains 1540 images taken at 10 levels of fog, starting from a
very light to a very opaque layer, with the corresponding fog-free images. Al-
though the used dehazing methods are not dedicated to spectral images, they
particularly introduce structural artifacts and produce noisy images. This is un-
derlined by pixelwise quality metrics when they are compared to foggy images.
Accordingly, future works should focus on reducing these effects while enhancing
visibility.
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