Sylvie Kerouédan
email: sylvie.kerouedan@enst-bretagne.fr

Patrick Adde
email: patrick.adde@enst-bretagne.fr

Block Turbo Codes: towards implementation

Keywords: Turbo code, block turbo codes, iterative decoding, turbo decoder, SISO algorithm, product code

This paper presents two implementations of the same block turbo decoding algorithm: on the one band an elementary decoder in association with a sequencer performs the complete turbo decoding process, and on the other band, the circuit contains one elementary decoder per half-iteration. The choice of different parameters for each algorithm implemented bring the results more or less close to the theoretical limit. First, we briefly describe the iterative process which creates the ''turbo" effect and explain the essential choices in order to adapt the algorithm to an ASIC implementation. Tuen we describe the two prototypes.

INTRODUCTION

The concept of turbo codes, first introduced by C. Berrou [1], involves the iterative decoding oftwo concatenated convolutional codes or block codesas shown by R. Pyndiah [START_REF] Pyndiah | Near optimum decoding ofproduct codes[END_REF]. The iterative process, based on a SISO (soft input-soft output) algorithm exhibits performance close to the Shannon limit. We present here the implementation of BTC {block turbo codes) which are especially attractive for applications requiring high code rates or small blocks of data bits.

II. BLOCK TURBO CODE.

In 1972, Chase proposed an algorithm [START_REF] Adde | Black turbo dccodcr desi gn[END_REF] which approximates the optimum sequence decoding of block codes with a low computation complexity and a small performance degradation. This algorithm yields the maximum likelihood sequence D for a given soft input R. In 1994, R. Pyndiah [START_REF] Pyndiah | Near optimum decoding ofproduct codes[END_REF] supplemented this algorithm to compute the soft decisions associated with the maximum likelihood sequence D, which gives a measure of the reliability of each component of D. This reliability function is represented by the Log Likelihood Ratio {LLR) of the decision d j U th element ofD). The iterative turbo decoding process can be achieved by cascading several elementary decoders illustrated in Fig. 1, where k represents the current half-iteration, 1. a vector is a row or a column of a product code depending on the current half-iteration, 2. R is the received vector, 3. W(k) is the vector which contains the extrinsic information (which is the difference between the output information and the input information) given by the previous decoder conceming the reliability of the decoded bit, It is not possible to implement such a complex algorithm without any simplifications. lndeed the increasing test sequences obtains better results but dramatically increase the storage capacity required for the whole process, which is why the algorithm was simplified by P. Adde before its implementation on programmable circuits (FPGA Xilinx) [START_REF] Kerouédan | Comparaison performances/complexité de décodeurs de codes BCH utilises en turbo-décodage[END_REF]. The most significant parameters which act on the complexity of the circuit are the number of iterations, the number of concurrent words, the number of test sequences and the number of quantization bits for data. In [START_REF] Adde | Performance and complexity of black turbo dccoder circuits[END_REF], [START_REF] Kerouédan | Comparaison performances/complexité de décodeurs de codes BCH utilises en turbo-décodage[END_REF] and [START_REF] Adde | Desi gn and performance of a product code turbo encoding dccoding prototype[END_REF] we compare the performances of the algorithm with different parameters, which we can sum up in a few words here: + Processing with 3 concurrent words rather than with 1 concurrent word increases the area by 13.5% for a gain ofO.ldB. We evaluate that the surface increases by 60% with the "16 concurrent words" solution for a gain of only 0.2dB. + If the number of quantization bits is equal to or less than 3, simulations show a significant degradation. The gain between the use of 5 bits instead of 4 bits is in the range of O.ldB for an increase of the area by about 15%. + We notice that the "16 test vectors" solution instead of the "8 test vectors" solution, increases the area by 4% for a gain of about 0.07dB. The "32 test vectors" solution increases the area by 12% with respect to the "16 test vectors" solution for a gain of only 0. 04dB. For our implementations, we choose fix the different parameters as described in TAB.l, we find the value of the different parameters. These parameters modify the complexity and the performance of the elementary decoder shown on The iterative process is achieved by the rebuilding of the matrix after each elementary decoding (or half-iteration) as described in Fig. 2. The first solution, prototype A developed in 1997 [START_REF] Adde | Conception d'un turbo décodeur de code produit[END_REF], is a modular structure where a module integrates the elementary decoder illustrated in Fig. l. Several modules are then pipelined to realize the block turbo decoder. In the second solution, prototype B developed in 2000 [Il], several iterations are realized by a single circuit, the core of this solution being the unique elementary decoder.

Elementary decoder architecture

Following the steps of the algorithm described above, we consider the elementary decoder, described in Fig. l, using the architecture illustrated in Fig. 3. We distinguish five parts in the circuif working in parallel thanks to a sequencer: + the sequential input part, which concems ail the functions where progress calculations are performed at the rate of the input symbols (a counter is used for the timing of the elementary decoder, the parity and the syndrome computing sub-blocks, and the processing unit that deterrnines the rn least reliable binary symbols); + the algebraic decoding part, which determines the optimum code word for a given input binary vector; + the selection part, which selects the maximum likelihood code word (that is, the word having the minimal distance from R'k) and the concurrent code word when it exists; + the output sequential part, which computes the extrinsic information where calculations are performed at the same the rate as the output symbols; + 2 storage elements which are divided into 3

RAMs in order to compute parallel calculation.

Prototype A

The elementary decoder, described above, was implemented in a FPGA circuit (Xilinx 4010), one per half-iteration. lt was validated by VHDL functional simulations, which were compared with initial simulations (C programs). The logic schemes were obtained from VHDL modeling, using automatic synthesis. The noisy data are generated by a C program, stored in a RAM of large size (4x256kbits) and selected randomly. Two breadboards were used:

1. a first one with the encoder, the Gaussian channel simulator and two decoders for the first iteration, 2. a second one, with six decoders for the three following iterations. This second circuit can be duplicated if necessary to increase the number of iterations. The data rate is about 6Mbps and the experimental results are shown in Fig. 6.

Prototype B

As illustrated in Fig. 5, the architecture adopted to implement this solution consists of 3 blocks. The first one, the input unit, is used to store incoming data in the matrices. During the reception of one matrix, the previous matrix (when there is one) is sent to the processing unit which is in charge of the turbo decoding. In this second block, 7.5 iterations are performed.

Tuen the decoded matrix is sent to the output unit, which returns the binary decision. The whole system was described in VHDL, simulated and compared with the results of C program simulations. The circuit is implemented in a FPGA Xilinx (technology VIR TEX, XCV200). It is important to notice that this implementation required 6 storage elements, against only 2 for prototype A. The data rate is slightly less than 1 Mbps for 7 .5 iterations and the experimental results are shown in Fig. 6.

Fig. 6: Results of the two implementations compared to the theoretical limit calculated in [START_REF] Adde | Recent simplification and improvement ofblock turbo code[END_REF].

IV. CONCLUSION

As we can notice in Fig. 6, the results of the second prototype are better than for the first. Nevertheless, choosing prototype B as the best solution can be a mistake because the differences between the two solutions result in particular from the choice of parameters for the elementary decoder as discussed in section III (table 1). Tt is absolutely realistic to implement the more efficient elementary decoder in the modular solution. In this case, the experimental results will certainly be identical for both prototypes. Then the choice between the two implementations of block turbo decoders will depend on the usual compromise between area and speed.

Our solution is not the unique way to implement Block Turbo Decoder, we can notice the work of Dave et al [START_REF] Dave | An efficient decoding algorithm for Bloc Turbo Codes[END_REF] or S. Robert [START_REF] Robert | Les turbo codes en blocs[END_REF] who choose different algorithm or different product code. What we would demonstrate here is that the experimental results corroborate the simulation results and illustrate the real efficiency ofblock turbo decoding for future applications.

Fig. 1 :

 1 Fig. 1 : Block diagram of an elementary decoderThe "optimal" turbo decoding algorithm of linear block codes follows the next steps: 1. Search for the m least reliable binary symbols of R'; their positions are called 11, li, ... I,,,, and their reliabilities are called MF1,MF2, .. ,,MF m , 2. Generate 't test sequences T Q which are a combination of elementary test vectors 'F having

 Fig.1. T AB.1: Different parameters for the two prototypes which implement the decoding of the product code BCH(32,26,4)x BCH(32,26,4).

Fig. 2 :

 2 Fig.2:Decoding structure A first analysis of the block turbo decoder algorithm shows that there are two different structures which can be adopted for hardware implementation [4][9].

Fig. 3 :

 3 Fig.3: Block diagram of the elementary decoder

Fig. 5 :

 5 Fig.5: Principle of the complete turbo decoding on a single chip (Prototype B).