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Lq-weak solutions to the 3D time-dependent Oseen system:
decay estimates.

Paul Deuring

Université du Littoral Côte d’Opale, Laboratoire de Mathématiques Pures et Appliquées
Joseph Liouville, F-62228 Calais, France.

Abstract

This article deals with Lq-weak solutions to the 3D time-dependent Oseen system.
This type of solution is defined in terms of the velocity only. It is shown that the
velocity may be represented by a sum of integrals none of which involves the pressure
and without a surface integral of the spatial gradient of the velocity. On the basis
of this representation formula, an estimate of the spatial decay of the velocity and
its spatial gradient is derived. No boundary conditions have to be imposed for these
results.
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1 Introduction

In this work, we deal with the time-dependent Oseen system

ut −∆xu+ τ ∂x1u+∇xπ = f, divxu = 0 (1.1)

in Ω
c × (0, T0), where Ω is an open, bounded set in R3 with Lipschitz boundary. (Here

and in the following, the notation Ac for A ⊂ R3 stands for the complement R3\A of A in
R3. Thus Ω

c
is an exterior domain.) The preceding system arises as a linearization of the

time-dependent Navier-Stokes system with Oseen term,

ut −∆xu+ τ ∂x1u+ (u · ∇x)u+∇xπ = f, divxu = 0. (1.2)

The latter system is the usual model of the flow of a viscous incompressible fluid around a
rigid body moving with constant velocity and without rotation. The parameter τ ∈ (0,∞)
corresponds to the Reynolds number of the fluid, and the function f : Ω

c × (0, T0) 7→ R3

represents a volume force acting on the fluid. The unknowns in (1.1) are the velocity
u : Ω

c × (0, T0) 7→ R3 and the pressure π : Ω
c × (0, T0) 7→ R, hence T0 ∈ (0,∞] is the

life-span of the solution.

In this work, we consider weak solutions of (1.1). Our aim is to derive bounds for |u(x, t)|
and |∇xu(x, t)| valid for large values of |x| and showing how these quantities tend to zero
for |x| → ∞ (”decay estimates”). Such estimates are interesting because they are often
associated with physical phenomena that can be observed macroscopically, for example the
wake extending downstream behind the rigid body. Our decay bounds improve estimates
established in previous articles.

We study a type of solution involving only the velocity u, which is supposed to fulfill the
relations u ∈ C0

(
[0, T0), L%(Ω

c
)3
)

and ∇xu ∈ L1
loc

(
[0, T0), Lq(Ω

c
)9
)
, for some numbers
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%, q ∈ (1,∞). Equation (1.1) is supposed to be satisfied in the sense that∫ T0

0

∫
Ω

c

(
−γ′(t)u(t) · ϑ+ γ(t)

[
∇xu(t) · ∇ϑ+ τ ∂x1u(t) · ϑ− f(t) · ϑ

])
dx dt (1.3)

−γ(0)

∫
Ω

c
U0 · ϑ dx = 0 for γ ∈ C∞0

(
[0, T0)

)
, ϑ ∈ C∞0,σ(Ω

c
), divxu = 0,

where f ∈ L1
loc

(
[0, T0), Lr(Ω

c
)3
)

and U0 ∈ Lp̃(Ω
c
)3 for some p̃, r ∈ (1,∞), and divU0 = 0

in the sense of distributions. (See Section 2 for the definition of our function spaces.)

We do not impose any boundary conditions on u. In fact, in concrete physical situations
it is not always clear what is the right choice of such conditions. In particular, in some
cases the usual no-slip condition is inappropriate. So it is an interesting feature of our
theory that our decay estimates hold only on the basis of regularity assumptions on u,
irrespective of any boundary conditions.

In order to present these estimates, we introduce two volume potentials, denoted by
R(τ)(g) and I(τ)(V ), mapping from R3 × (0,∞) into R3, and associated with functions
g ∈ L1

loc

(
[0, T ), Lq(A)3

)
and V ∈ Lq(A)3, where A may be any measurable subset of R3,

q ∈ (1,∞) and T ∈ (0,∞]. These potentials are defined by

R(τ)(g)(x, t) :=

∫ t

0

∫
R3

Λ(x− y, t− s) · g̃(y, s) dy ds
(
t ∈ (0,∞), a. e. x ∈ R3

)
, (1.4)

I(τ)(V )(x, t) :=

∫
R3

Λ(x− y, t) · Ṽ (y) dy
(
t ∈ (0,∞), x ∈ R3

)
. (1.5)

Here g̃ and Ṽ stand for the zero extension of g and V to R3× (0,∞) and R3, respectively.
The function Λ, defined in (4.1), is a fundamental solution of the time-dependent Oseen
system (1.1). Some key properties of these volume potentials are presented in Lemma 4.3
and 4.4. In view of stating our estimates, we further have to introduce some parameters and
require some integrability conditions – local in space and global in time – on u, ∇xu and f .
In fact, we fix numbers S0, R0 ∈ (0,∞) with Ω ⊂ BS0 and S0 < R0, abbreviate AR0,S0 :=
BR0\BS0 , and require there are parameters γ1, γ2, γ3 ∈ [0,∞], q ∈ (1,∞) such that the
restriction u|AR0,S0 × (0, T0) belongs to Lγ1

(
0, T0, L

q(AR0,S0)3
)
, ∇xu|AR0,S0 × (0, T0) to

Lγ2
(

0, T0, L
q(AR0,S0)3

)
, and f |AR0,S0 × (0, T0) to Lγ3

(
0, T0, L

q(AR0,S0)3
)
. Actually our

assumptions are somewhat more general (see at the beginning of Section 5 and Theorem
5.2), in view of applications in [18] to a nonlinear problem with (1.2) as special case. But
with the preceding conditions, all the main difficulties of our proofs would already be
present. We note that the parameter S0 is introduced so that Ω need not be more regular
than Lipschitz bounded. In fact, we will consider u|BS0

c
instead of u. Finally define the

function ν : R3 7→ [1,∞) by ν(x) := 1 + |x| −x1 for x ∈ R3. Our main decay estimate may
then be stated as follows:∣∣ ∂αx [u− I(τ)(U0|BS0

c
)−R(τ)

(
f |BS0

c × (0, T0)
) ]

(x, t)
∣∣ (1.6)

≤ C
(
|x| ν(x)

)−3/2−|α|/2+1/(2 min{γ′1, γ′2, γ′3}) for a. e. t ∈ (0, T0), a. e. x ∈ Bc
R0

and α ∈ N3
0 with |α| := α1+α2+α3 ≤ 1, under the assumption that the zero flux condition∫

∂Ω
u(x, t) · n(Ω)(x) dx = 0

(
t ∈ (0, T0)

)
(1.7)
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is fulfilled, with n(Ω) denoting the outward unit normal to Ω. The presence of the function
ν on the right-hand side of (1.6) may be interpreted as a mathematical manifestion of the
wake. The appearance of the parameters γj in (1.6) means that the spatial decay of u
and ∇xu depends on Lp-integrability in time of u, ∇xu and f ; see the assumptions on u
and f specified above. Here and everywhere else in this work, we write C for constants
which do not depend on the parameters whose range is indicated in the inequality under
consideration (here: x, t and α). In particular these constants are always independent of
t, wherever this latter parameter arises, but they frequently depend on τ , as is the case
here.

If (1.7) does not hold, we obtain that∣∣ ∂αx [u− I(τ)(U |BS0

c
)−R(τ)

(
f |BS0

c × (0, T0)
) ]

(x, t)
∣∣ (1.8)

≤ C
[ (
|x| ν(x)

)−3/2−|α|/2+1/(2 min{γ′1, γ′2, γ′3}) + |x|−2−|α| ] for t, x, α as in (1.6).

A more detailed version of these estimates may be found in Theorem 5.2, where we specify
how the constants in (1.6) and (1.8) depend on u, f and U0.

The sum I(τ)(U |BS0

c
) + R(τ)

(
f |BS0

c × (0, T0)
)

is the velocity part of a solution to (1.1)

in R3× (0,∞) with right-hand side f replaced by the zero extension of f |BS0

c× (0, T0) to
R3 × (0,∞), and with the solenoidal part of the zero extension of U0|BS0

c
to R3 as initial

data. We refer to [17, Corollary 3.5, 3.6] as concerns I(τ)(U0|BS0

c
), and to [10, Theorem

2.16, Lemma 2.11]) with respect to R(τ)
(
f |BS0

c×(0, T0)
)
. So this sum may be interpreted

as a background flow independent of the presence of a rigid body, whereas the difference
on the left-hand side of (1.6) and (1.8) corresponds to the perturbation generated in the
flow field by the rigid body far from this body. It is the spatial decay of this perturbation
which is of physical interest, and which we evaluate. Note that inequalities (1.6) and
(1.8) hold without any assumptions on the spatial asymptotics of f and U0. On the other
hand, the behavior for |x| → ∞ of I(τ)(U |BS0

c
)(x, t) and R(τ)

(
f |BS0

c × (0, T0)
)
(x, t) is

determined exclusively by the spatial asymptotics of U0 and f. Thus the influence of the
decay properties of f and U0 has effectively been seperated from the rest of the problem.
Some results are available in literature with respect to the spatial decay of the two volume
potentials ([12, Theorem 1.1], [13, Theorem 3.1], [17, Lemma 4.1, 4.2]). Here we contribute
an improved version of [13, Theorem 3.1] as concerns R(τ)

(
f |BS0

c × (0, T0)
)

(Theorem

4.3), and a decay result for I(τ)(U |BS0

c
) adapted to our situation (Theorem 4.4). Note

that if U0 and f(t) have compact support, uniform with respect to t, and if S0 is sufficiently
large, inequalities (1.6) and (1.8) become estimates of |∂αxu(x, t)|.
Another main result of the work at hand is a representation formula for Lq-weak solutions
to (1.3), stated in (5.21). It is by evaluating the integrals in this representation (Theorem
5.1) that we obtain (1.6) and (1.8).

Let us compare (1.6) and (1.8) with estimates available in literature. Reference [13]
deals with L2-weak solutions to (1.3) under Dirichlet boundary conditions with data –
and hence solutions – satisfying the zero flux condition (1.7). It is shown in this article
that for a certain class of functions f and U0, the left-hand side of (1.6) is bounded by

C
(
|x| ν(x)

)−1−|α|/2
for t, x, α as in (1.6). It is further shown that |∂αxu(x, t)| is majorized

by the same term if f and U0 decay sufficiently fast for |x| → ∞. In the work at hand, for
the same type of solutions to the same problem, we deduce from (1.6) that the left-hand
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side of this inequality admits the bound C
(
|x| ν(x)

)−5/4−|α|/2
, for a class of functions f

and U0 much larger than the one considered in [13]. Moreover, for |∂αxu(x, t)| we derive
the bound C |x|−5/4−|α|/2 ν(x)−5/4−|α|/4 (max{1, ln |x|})|α|n/2, with some fixed n ∈ N. The
latter estimate is valid under assumptions on f slightly weaker than in [13], and for
functions U0 with an asymptotic behavior for |x| → ∞ adapted to the preceding bound on
|∂αxu(x, t)|, which cannot be achieved under the weaker decay conditions on U0 assumed
in [13]. For more details we refer to the remarks at the end of Section 6 and to Theorem
6.1 and 6.2. The first of these two theorems evaluates |∂αxu(x, t)| if f = 0, U0 = 0
(boundary-driven flow), and the second yields a bound of the left-hand side of (1.6) if u
fulfills homogeneous Dirichlet boundary conditions.

In [17], we derived inequalities (1.6) and (1.8) for solutions to (1.1) more regular than
those considered here. In particular we imposed regularity conditions on the pressure
([17, Theorem 6.1]). The task we face here consists in extending these inequalities to
Lq-weak solutions, which constitute a much larger class of solutions.

The present work is the basis of two further articles. In reference [18] we start from the
representation formula (5.21), obtaining convergence estimates for |x| → ∞ of L2-strong
solutions to a generalization of the nonlinear system (1.2). The focus in this latter work
is on improving the decay results in [36], [42] and [14] without requiring specific boundary
conditions. Reference [19] deals with the spatial asymptotics of mild solutions to (1.1)
under homogeneous Dirichlet boundary conditions. It turned out these solutions are Lq-
weak in the sense of the work at hand. It further turned out that if f ∈ L1

(
0,∞, Lqσ(Ω

c
)
)

and U0 ∈ Lqσ(Ω
c
) for some q ∈ (1, 3/2), inequality (1.6) may be applied with γj = 1 for

j ∈ {1, 2, 3}, leading to the bound C
(
|x| ν(x)

)−3/2−|α|/2
, uniformly in t, for the left-hand

side of (1.6).

This bound is also valid for |∂αxΛ(x, t)| (Lemma 4.1), where Λ is the fundamental solution to
(1.1) mentioned above. It seems no stronger decay result may be obtained for |∂αxΛ(x, t)|.
However, the estimate |∂αxΛ(x, t)| ≤ C(R)

(
|x| ν(x)

)−3/2−|α|/2
, with α ∈ N3

0, |α| ≤ 1, x ∈
Bc
R for some R > 0, does involve some loss of accuracy. In fact, the integral

∫
R3 Λ(x, t) dt

yields the standard fundamental solution of the stationary Oseen system (3.4), as may
be seen by [22, Corollary 4.3, Theorem 4.2]. This latter solution is known to decay as
O
(

[|x| ν(x)]−1
)

for |x| → ∞ ([27], [38]), and this decay rate cannot be recovered via the

integral
∫∞

0

(
|x| ν(x)+t

)−3/2
dt, which only yields O

(
[|x| ν(x)]−1/2

)
. An analogous remark

is valid with respect to first-order space derivatives. But the integral
∫∞

0 |∂
α
xΛ(x, t)| dt is

bounded by C(R)
(
|x| ν(x)

)−1−|α|/2
if |x| ≥ R for some R > 0 (Lemma 4.1). So in

the estimate |∂αxΛ(x, t)| ≤ C(R)
(
|x| ν(x)

)−3/2−|α|/2
, a structural element of Λ gets lost,

leading to the slower decrease of
∫∞

0

(
|x| ν(x)

)−3/2
dt compared to that of the integral∫∞

0 |Λ(x, t)| dt.
Since fundamental solutions play a key role in the study of spatial asymptotics, one may
reasonably take the point of view that the decay rates provided by inequalities (1.6) and
(1.8) may not be higher than the one corresponding to the best possible decay bound
of |∂αxΛ(x, t)|. It is true that in view of the preceding remarks on the asymptotics of
|∂αxΛ(x, t)|, the notion of “best possible decay bound of |∂αxΛ(x, t)|” is somewhat ambigu-

ous. Still we think that the inequality |∂αxΛ(x, t)| ≤ C
(
|x| ν(x)

)−3/2−|α|
does constitute
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a suitable yardstick, showing that inequalities (1.6) and (1.8) are indeed the best possi-
ble decay estimates valid for solutions to (1.1) independently of the choice of boundary
conditions. This is analogous to the situation in the stationary case, where the best pos-

sible decay bound independent of boundary conditions is given by C
(
|x| ν(x)

)−1−|α|/2

([3], [27]), corresponding to the behavior mentioned above of the standard fundamental
solution to the stationary Oseen system (3.4).

It is the choice of a representation formula for solutions to (1.1) that is a key difference
between some of the studies mentioned above. References [36] and [42] use an equation
that may be characterized as a Green’s formula involving a fundamental solution of (1.1),
like Λ. This formula has the drawback that it contains an integral on ∂Ω× (0, T0) in which
the stress tensor appears. Such an integral requires a rather high regularity of the solution
and is difficult to control. In [10], [13] and [14], we used an integral representation which
does not contain such a term, but requires solving an integral equation on ∂Ω × (0, T0).
The technical overhead related to this equation is considerable, and we were limited to
what is essentially an L2-framework. In [17], we at first proved the standard formula from
[36] and [42] under assumptions as weak as possible ([17, Theorem 5.2, (5.6)]). Then, by
means of some partial integrations, we obtained a new formula in which the critical term
does not appear any more ([17, (5.7)]). This formula yields a representation of u(x, t) only
at points x situated outside a ball around Ω. But since we are interested in the behavior
of u(x, t) for large values of |x|, this restriction does not matter in our context. However,
the theory in [17] is still inconvenient since the assumptions in the relevant corollary ([17,
Corollary 5.2]) are too strong in order to allow applying [17, (5.7)] to the solution of (1.3)
we consider here. In particular, [17, Corollary 5.2] imposes conditions on the pressure
although this unknown does not appear in [17, (5.7)].

The main effort in the work at hand is directed at showing that the integral representation
in [17, (5.7)] may be extended to Lq-weak solutions of (1.1). As the key difficulty, we have
to eliminate the conditions on the pressure just mentioned. To this end, we will use
Friedrich’s mollifier for functions with values in Banach spaces, smoothing weak solutions
with respect to the time variable. We will consider these smoothed solutions as weak
solutions of the stationary Oseen system (3.4), with the time derivative subsumed into the
right-hand side. In this way we will be able to use the regularity theory of this latter system
in order to construct an associated pressure. Once this result is available, the mollified
version of the Lq-weak solution we started out with will turn out to be sufficiently regular
so that we may apply the integral representation [17, (5.7)]; see Theorem 5.1. By letting
certain parameters tend to zero in this formula, we will then obtain that [17, (5.7)] extends
to our weak solution, in a slightly different form (Corollary 5.4).

In view of (1.3), the function U0 seems to play the role of initial data. However, due to
the lack of boundary conditions, the equation u(0) = U0 need not hold in general (Lemma
5.4). But for the case divU0 = 0 in a distributional sense, we will show that U0−u(0)|BS0

c

is a harmonic function with |∂αx
(
U0−u(0)

)
(x)| = O(|x|−2−|α|) for |x| → ∞, where α ∈ N3

0

with |α| ≤ 1. If U0 − u(0) satisfies a zero flux condition on ∂BR for some R > S0, we will
even get |∂αx

(
U0 − u(0)

)
(x)| = O(|x|−3−|α|) for |x| → ∞ (Corollary 5.5).

Let us mention some references more distantly related to the work at hand. Takahashi
[49] deals with spatial decay of solutions to (1.2) in the case Ω = ∅ under a smallness
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condition. In [4], [5], solutions to (1.1) and (1.2) are estimated in weighted Lp-norms,
with the weights adapted to the wake in the flow field downstream to the rigid body.
Reference [16] presents decay estimates in time and in space for solutions of (1.1) and
(1.2), as a continuation of [13] (Oseen system (1.1)) and [14] (problem (1.2)), under the
same assumptions and with the same methods as in these latter articles. Various technical
aspects of the theory in [13], [14] and [16] are dealt with in predecessor papers [7] – [11].
Questions of existence, regularity and stability related to (1.1), (1.2) or generalizations of
(1.2), in particular Lp −Lq-estimates of Oseen flows, are addressed in [25], [26], [30], [31],
[32], [34], [35], [37], [40], [41], [45], [48].

2 Notation. Some auxiliary results.

The parameters T0 ∈ (0,∞] and τ ∈ (0,∞) introduced in Section 1 are kept fixed through-
out, as is the open, bounded set Ω ⊂ R3 with Lipschitz boundary.

The symbol | | denotes the Euclidean norm of Rn for any n ∈ N, as well as the length
α1 + α2 + α3 of a multi-index α ∈ N3

0. For R ∈ (0,∞), x ∈ R3, put BR(x) := {y ∈ R3 :
|x− y| < R}. In the case x = 0, we write BR instead of BR(0).

Recall that in Section 1, we introduced the function ν : R3 7→ [1,∞) by setting ν(x) :=
1 + |x| − x1 for x ∈ R3.

We fix numbers S0, R0 ∈ (0,∞) with S0 < R0 and Ω ⊂ BS0 , as well as a function ϕ0 ∈
C∞0 (B(R0+S0)/2) with 0 ≤ ϕ0 ≤ 1 and ϕ0|BS0+(R0−S0)/4 = 1. We put R1 := (R0 + S0)/2.

For n ∈ N, I ⊂ Rn, let χI stand for the characteristic function of I in Rn. If A ⊂ R3, we
denote by Ac the complement R3\A of A in R3. Put el := (δjl)1≤j≤3 for 1 ≤ l ≤ 3 (unit
vector in R3). If A is an open bounded set in R3 with Lipschitz boundary, we write n(A)

for the outward unit normal to A. If R, S ∈ (0,∞) with S < R, we write AR,S for the
annular domain BR\BS .

Let p ∈ [1,∞) and n ∈ N. For any open set A ⊂ R3, the norm of the Lebesgue space
Lp(A) is denoted by ‖ ‖p, and the usual norm of the Sobolev space Wm,p(A) of order
m and exponent p is designated by ‖ ‖m,p. Again for an open set A ⊂ R3, we define
C∞0,σ(A) := {V ∈ C∞0 (A)3 : divV = 0}, and write Lploc(A) and Wm,p

loc (A) for the set of

all functions V from A into R such that V |K ∈ Lp(K) and V |K ∈W 1,p(K), respectively,
for any open, bounded set K ⊂ R3 with K ⊂ A. We put ∇V := (∂kVj)1≤j,k≤3 for

V ∈W 1,1
loc (A)3.

Let V a normed space, and let the norm of V be denoted by ‖ ‖. Take n ∈ N. Then we will

use the same notation ‖ ‖ for the norm on Vn defined by ‖(f1, ..., fn)‖ :=
(∑n

j=1 ‖fj‖2
)1/2

for (f1, ..., fn) ∈ Vn. The space V3×3, as concerns its norm, is identified with V9. If

p ∈ (1,∞), n ∈ {1, 3} and A ⊂ R3 open, the dual space of W 1,p′

0 (A)n will be denoted by

W−1,p
0 (A)n, although in the case n > 1 this dual space is not the Cartesian product of

W−1,p
0 (A). We write Lpσ(A) for the closure of C∞0,σ(A) with respect to the norm of Lp(A)3.
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We additionally introduce some weighted Sobolev spaces. To this end, for x ∈ R3 we put

ω(j)
p (x) := (1 + |x|)−j for j ∈ {1, 2}, p ∈ (1,∞)\{3/2, 3},

ω
(1)
3/2(x) := (1 + |x|)−1, ω

(2)
3/2(x) := (1 + |x|)−2

(
ln(2 + |x|)

)−1
,

ω
(j)
3 (x) := (1 + |x|)−j

(
ln(2 + |x|)

)−1
for j ∈ {1, 2}.

Then we set

W 2,p
2 (R3) := {V ∈W 2,1

loc (R3) : ω(2)
p V, ω(1)

p ∂lV, ∂l∂kV ∈ Lp(R3) for 1 ≤ k, l ≤ 3},

W 1,p
1 (R3) := {V ∈W 1,1

loc (R3) : ω(1)
p V, ∂lV ∈ Lp(R3) for 1 ≤ l ≤ 3}

(
p ∈ (1,∞)

)
.

We will not work with a norm of W 2,p
2 (R3). However, the norm of W 1,p

1 (R3) defined by

‖V ‖
W 1,p

1 (R3)
:= (‖ω(1)

p V ‖pp + ‖∇V ‖pp)1/p will be relevant.

Let p ∈ [1,∞], B a Banach space and J ⊂ R an interval. Then the norm of the space
Lp(J,B) is denoted by ‖ ‖Lp(J,B). Let a, b ∈ R∪{∞} with a < b, takem ∈ N and q ∈ [1,∞).

Then we write Lp(a, b, B) and W 1,q(a, b, B) instead of Lp
(

(a, b), B
)

and W 1,q
(

(a, b), B
)
,

respectively. We use the expression Lploc
(

[a, b), B
)

for the space of all functions v : (a, b) 7→
B such that v|(a, T ) ∈ Lp(a, T, B) for any T ∈ (a, b). This space is to be distinguished from
the space Lploc(a, b, B), defined in the usual way. Let T ∈ (0,∞], A ⊂ R3 open, and n ∈ N.
Then we will write ‖ ‖q,p;T and ‖ ‖q,p;R instead of ‖ ‖Lp(0,T, Lq(A)n) and ‖ ‖Lp(R,Lq(A)n),
respectively.

If v ∈W 1,1(a, b, B), then, possibly after a modification on a subset of [a, b) with measure
zero, the function v belongs to C0([a, b), B) ([50, Lemma 3.1.1]). If the latter relation is
already valid, we write v ∈W 1,1(a, b, B) ∩ C0([a, b), B).

Of course, a function v ∈ Lp
(
J, Lq(A)n

)
may be considered also as a function on A× J ,

although there is a minor issue with respect to measurability on A × J , settled in [11,
Lemma 2.1] and [17, Lemma 2.3]. We will write v(t)(x) or v(x, t), depending on whether
we consider v as a function on J with values in Lq(A)n, or as a function on A× J. For an
interval J ⊂ R and a function v : J 7→W 1,1

loc (A)3, the notation ∇xv stands for the gradient
of v with respect to x ∈ A, in the sense that

∇xv : J 7→ L1
loc(A)3×3, ∇xv(t)(x) :=

(
∂xk

(
vj(t)

)
(x)
)

1≤j,k≤3
for t ∈ J, x ∈ A

(spatial gradient of v). Similar conventions are to be valid with respect to the expressions
∆xv, divxv and ∂xjv.

Concerning Bochner integrals, if J ⊂ R is open, B a Banach space and w : J 7→ B an
integrable function, it is convenient sometimes to write B−

∫
J w(t) dt instead of

∫
J w(t) dt

for the corresponding B-valued Bochner integral. For the definition of Bochner integrals,
we refer to [51, p. 132-133], or to [33, p. 78-80.].

We define the Fourier transform f̂ of f ∈ L1(R3) by f̂(ξ) := (2π)−3/2
∫
Rn e

−i ξ·zf(z) dz for
ξ ∈ Rn. An analogous definition is to hold for functions belonging to L2(R3).

We write C for numerical constants and C(γ1, ..., γn) for constants depending exclusively
on paremeters γ1, ..., γn ∈ [0,∞) for some n ∈ N. However, such a precise bookkeeping
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will be possible only at some places. Mostly we will use the symbol C, with the convention
that it stands for a constant which does not depend on quantities pointed out by the
word “for” in the context of the estimate under consideration. This concerns in particular
the parameter t, which never enters in any constant. On the other hand, dependence
on τ is frequent. At some places we state explicitly which are the dependencies of C,
and sometimes we write C(γ1, ..., γn) in order to indicate that the constant in question is
influenced in particular by the quantities γ1, ..., γn.

The following simple version of Young’s inequality for integrals will be used frequently.
Stated here for the convenience of the reader, we will refer to it as “Young’s inequality”.

Lemma 2.1 ([1, Corollary 2.25]) Let n ∈ N and q ∈ [1,∞]. Then(∫
Rn

∣∣∣∫
Rn

U(x− y)V (y) dy
∣∣∣q dx)1/q

≤ C ‖U‖1 ‖V ‖q for U ∈ L1(Rn), V ∈ Lq(Rn).

The next theorem deals with solenoidal W 1,q
0 -functions.

Theorem 2.1 ([29, Theorem III.4.2, III.6.1]) Let n ∈ N, q, r1, ..., rn ∈ (1,∞), A ⊂
R3 open, bounded and with Lipschitz boundary. Let V ∈W 1,q

0 (A
c
)3∩Lrj (Ac)3 for 1 ≤ j ≤ n

with divV = 0. Then there is a sequence (ϑn) in C∞0,σ(A
c
) such that ‖V − ϑn‖1,q → 0 and

‖V − ϑn‖rj → 0 (n→∞) for 1 ≤ j ≤ n.

The ensuing theorem presents a result on Lp-integrability of functions defined in an exterior
domain and possessing an Lq-integrable gradient.

Theorem 2.2 Let A ⊂ R3 be open, bounded and with Lipschitz boundary. Let q ∈ (1, 3)
and V ∈W 1,1

loc (A
c
) with ∇V ∈ Lq(Ac)3. Suppose there is some κ ∈ (1,∞) with V ∈ Lκ(A

c
).

Then V ∈ L3q/(3−q)(A
c
) and ‖V ‖3q/(3−q) ≤ C ‖V ‖q.

Proof: This theorem may be deduced from [29, Theorem II.6.1]; see [15, Theorem 2.4]
and its proof. �

We mention some results about Bochner’s integral. Our basic tool in this context is the
following theorem (compatibility of bounded operators and Bochner integrals).

Theorem 2.3 Let B1, B2 be Banach spaces, A : B1 7→ B2 a linear and bounded operator,
n ∈ N, J ⊂ Rn an open set and f : J 7→ B1 a Bochner integrable mapping. Then
A ◦ f : J 7→ B2 is Bochner integrable, too, and A(B1 −

∫
J f dx) = B2 −

∫
J A ◦ f dx.

Proof: See [51, p. 134, Corollary 2], [33, Theorem 3.7.12 and the remark on p. 84]. �

Next we indicate a compatibility result for Bochner integrals with values in Lp-spaces.

Lemma 2.2 Let J ⊂ R be an interval, n ∈ N, B ⊂ Rn and A ⊂ B open sets, q1, q2 ∈
[1,∞) and f : J 7→ Lq1(B)3 a Bochner integrable mapping with f(t)|A ∈ Lq2(A)3 for
t ∈ J and f |A : J 7→ Lq2(A)3 Bochner integrable as well. Then (Lq1(B)3−

∫
J f(s) ds)|A =

Lq2(A)3 −
∫
J f(s)|Ads.

Proof: Use Theorem 2.3 and note that for ψ ∈ C∞0 (A)3, the mapping V 7→
∫
A ψ · V dx

is linear and bounded as an operator of V ∈ Lq2(A)3 and as an operator of V ∈ Lq1(B)3,
each time with values in R. �

Theorem 2.4 Let B be a Banach space, n ∈ N, p ∈ [1,∞) and J ⊂ Rn measurable.
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Then the set of integrable functions from J into B only taking a finite number of values
(”simple functions”) is dense in Lp(J,B).

Proof: See [24, Section 8.18.1 and Exercise 8.29]. On the basis of Lebesgue’s theorem, the
proof can be done by first approximating f ∈ Lp(J,B) by functions with bounded support,
and then by functions with bounded support and such that their range is bounded with
respect to the norm of B. Functions of the latter kind belong to L1(J,B) and thus, by
the definition of Bochner’s integral, may be approximated in L1(J,B) by simple functions,
which implies approximation in Lp(J,B) in this situation, due to Lebesgue’s theorem. �

Corollary 2.1 Let B be a Banach space, A a dense subset of B, p ∈ [1,∞) and J ⊂ Rn
open. Then the set {

∑k
j=1 ϕj aj : k ∈ N, ϕj ∈ C∞0 (J), aj ∈ A for 1 ≤ j ≤ n} is dense in

Lp(J,B). In particular the set of continuous functions f : J 7→ B with supp(f) compact
is dense in Lp(J,B).

Proof: Use Theorem 2.4 and the density of C∞0 (J) in Lp(J). �

In order to define Friedrich’s mollifier for functions with values in Banach spaces, we fix
a function ρ ∈ C∞0

(
(−1, 1)

)
with ρ ≥ 0 and

∫
R ρ(s) ds = 1, and put ρδ(r) := δ−1 ρ(δ−1 r)

for δ ∈ (0,∞), r ∈ R. If B is a Banach space and f ∈ L1
loc(R, B), define fδ(t) :=

B −
∫
R ρδ(t− s) f(s) ds for t ∈ R, δ ∈ (0,∞).

Key properties of Friedrich’s mollifier of functions with values in R carry over to functions
with values in Banach spaces. Properties of this type needed in the work at hand are
collected in the ensuing Theorem 2.5.

Theorem 2.5 Let B be a Banach space and f ∈ L1
loc(R, B). Then fδ ∈ C∞(R, B) and

f
(n)
δ (t) =

∫
R ρ

(n)
δ (t− s) f(s) ds

(
n ∈ N, t ∈ R, δ ∈ (0,∞)

)
. Moreover, if f ∈ W 1,1

loc (R, B),
then (fδ)

′ = (f ′)δ.

Let p ∈ [1,∞) and g ∈ Lp(R, B). Then ‖gδ‖Lp(R,B) ≤ ‖g‖Lp(R,B) for δ ∈ (0,∞) and
‖gδ − g‖Lp(R,B) → 0 (δ ↓ 0).

Let h ∈ C0(R, B) and t ∈ R. Then ‖(hδ − h)(t)‖ → 0 (δ ↓ 0), where ‖ ‖ denotes the norm
of B.

Proof: The relation fδ ∈ C∞(R, B) and the equation for f
(n)
δ (t) follow from the relation

ρδ ∈ C∞0
(

(−δ, δ)
)
. If f ∈W 1,1

loc (R, B) and t ∈ R, the equation (fδ)
′(t) = (f ′)δ(t) holds due

to the above equation for f
(n)
δ (t) with n = 1, and since the function s 7→ ρδ(t− s) (s ∈ R)

belongs to C∞0 (R). The inequality ‖gδ‖Lp(R,B) ≤ ‖g‖Lp(R,B) for δ > 0 is an immediate
consequence of Young’s inequality and the choice of ρδ. We further note that for ε ∈ (0,∞),
Corollary 2.1 yields existence of a function g(ε) ∈ C0(R, B) with compact support such that
‖g− g(ε)‖Lp(R,B) ≤ ε/2. With this result available, the relation ‖gδ − g‖Lp(R,B) → 0 (δ ↓ 0)
follows by the same arguments as in the case B = R; see [1, p. 37-38] for example. The
same reference yields the last claim of the theorem. �
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3 Some results on the Poisson equation and the stationary
Oseen system.

In the ensuing theorem, we state some properties of the Newton potential. The proof of
this theorem is well known (Hardy-Littlewood-Sobolev’s inequality, Calderon-Zygmund’s
inequality and density arguments). We refer to [39], where the Stokes case is treated, with
details elaborated in [23].

Theorem 3.1 Put N(z) := (4π |z|)−1 for z ∈ R3\{0} (fundamental solution of the Pois-
son equation). Let q ∈ (1, 3/2), F ∈ Lq(R3). Then

∫
R3 N(x − y) |F (y)| dy < ∞ for a.

e. x ∈ R3. Put (N ∗ F )(x) :=
∫
R3 N(x − y)F (y) dy for x ∈ R3 (”Newton potential”).

Then N ∗ F ∈ W 2,q
loc (R3), ∆(N ∗ F ) = −F, N ∗ F ∈ L(1/q−2/3)−1

(R3), ∂k(N ∗ F ) ∈
L(1/q−1/3)−1

(R3)3 and ∂k∂l(N ∗ F ) ∈ Lq(R3)3 (1 ≤ k, l ≤ 3). If F ∈ W 1,q(R3), then
N∗F ∈W 3,q

loc (R3) and ‖∂k∂l∂m(N∗F )‖q+‖∂l∂m(N∗F )‖q ≤ C(q) ‖F‖1,q for 1 ≤ k, l,m ≤ 3.
If F ∈ C∞0 (R3), the function N ∗ F belongs to C∞(R3).

Next we present some technical results on harmonic functions.

Theorem 3.2 (”Weil’s lemma”, [46, Appendix]) Let A ⊂ R3 be open, V ∈ L1
loc(A)

and
∫
A V ∆ϕ = 0 for ϕ ∈ C∞0 (A). Then V ∈ C∞(R3) and ∆V = 0.

Theorem 3.3 Let A ⊂ R3 be open and bounded, with C1-boundary, q ∈ (3,∞), V ∈
C∞(A

c
) with ∆V = 0 and ∇V ∈ Lq(A

c
)3. Then there is a number a ∈ R such that

V − a ∈ Lq(Ac).

Proof: According to [29, Lemma II.6.1], we have V |BR\A ∈ W 1,q(BR\A) for any
R ∈ (0,∞) with A ⊂ BR. In particular the trace V |∂A is well defined and belongs to
W 1−1/q,q(∂A). In this situation, we refer to [46, Theorem I.10.6, 1), (10.43)] and Theorem
3.2 to obtain a function W ∈ C∞(A

c
) such that ∆W = 0, ∇W ∈ Lq(Ac)3, W |BR\A ∈

Lq(BR\A) for R ∈ (0,∞) with A ⊂ BR, and W |∂A = V |∂A, and such that there are num-
bers c0, r0 ∈ (0,∞) with A ⊂ Br0 and |W (x)| ≤ c0 |x|−1 for x ∈ Bc

r0 . It follows by [46,
Theorem II.6.2, iv), vii)] that there is a ∈ R such that the difference W − V − a possesses
the same regularity and decay properties as W does. The decay estimate satisfied by W
and W −v−a yields there is r1 > 0 with A ⊂ Br1 and V +a|Bc

r1 ∈ L
p(Bc

r1) for p ∈ (3,∞).
Since q > 3, the theorem follows. �

Lemma 3.1 Let R, R̃, S ∈ (0,∞) with S < R̃ < R, ϕ ∈ C∞0 (BR) with ϕ|B
R̃

= 1.

Moreover let k0 ∈ N, V ∈ C∞(BS
c
) with ∆V = 0, qj ∈ (1,∞) and V (j) ∈ Lqj (BS

c
) for

1 ≤ j ≤ k0 such that V =
∑k0

j=1 V
(j). Put F := −2∇(1− ϕ) · ∇V −∆(1− ϕ)V.

Then F ∈ C∞0 (BR), V |BR
c

= (N ∗ F )|BR
c

and V |BR
c ∈ Lp(BR

c
) for p ∈ (3,∞).

Proof: DefineW := (1−ϕ)V. ThenW ∈ C∞(R3), −∆W = F andW =
∑k0

j=1(1−ϕ)V (j),

where (1 − ϕ)V (j) ∈ Lqj (R3) for 1 ≤ j ≤ k0. Theorem 3.1 and the obvious relation
F ∈ C∞0 (BR) imply that N ∗ F ∈ C∞(R3) ∩ Lp(R3) for p ∈ (3,∞), and −∆(N ∗ F ) = F.
We claim that W = N ∗ F. To see this, we may for example reason as in [6, p. 1524-
1525]: Since W =

∑k0
j=1(1 − ϕ)V (j) and because (1 − ϕ)V (j) ∈ Lqj (R3) (1 ≤ j ≤ k0)

and N ∗ F ∈ Lp(R3)
(
p ∈ (3,∞)

)
, we may apply Friedrich’s mollifier to W − N ∗ F,

obtaining a bounded function (W −N ∗F )ε, defined in an obvious way for any ε ∈ (0,∞).
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Since ∆(W − N ∗ F ) = 0, we have ∆(W − N ∗ F )ε = 0, also for any ε > 0. Thus
Liouville’s theorem yields (W − N ∗ F )ε = 0

(
ε ∈ (0,∞)

)
. Again due to the equation

W =
∑k0

j=1(1− ϕ)V (j) and the integrability properties of (1− ϕ)V (j) and N ∗ F, we may
conclude that W − N ∗ F = 0. So our claim is proved. Now the choice of ϕ and the
definition of W imply V |BR

c
= (N ∗ F )|BR

c
, so Theorem 3.1 yields V |BR

c ∈ Lp(BR
c
) for

p ∈ (3,∞). �

In the next theorem, we introduce a pressure Π associated with the velocity part U of a
weak solution to the Oseen system (λ = 0) or the Oseen resolvent system (λ 6= 0) in R3.
The case λ 6= 0 is included in view of an application in [18].

Theorem 3.4 Let A ⊂ R3 be open, q ∈ (1,∞), λ ∈ C, U ∈W 1,q
loc (A)3 with∫

A

(
∇U · ∇ϑ+ (τ ∂1U + λU − F ) · ϑ

)
dx = 0 for ϑ ∈ C∞0,σ(A), divU = 0. (3.1)

Then there is a function Π ∈ Lqloc(A) with∫
A

(
∇U · ∇ϑ+ (τ ∂1U + λU − F ) · ϑ−Π divϑ

)
dx = 0

(
ϑ ∈ C∞0 (A)3

)
, divU = 0. (3.2)

If B ⊂ R3 is open, bounded, with Lipschitz boundary and with B ⊂ A, then

‖Π|B‖q ≤ C (‖∇U |B‖q + |λ| ‖U |B‖q + ‖F |B‖q) (3.3)

for λ, U, Π as before, with the additional assumption that and
∫
B Π = 0.

Proof: Let B ⊂ R3 be open and bounded, with B ⊂ A. Since F ∈ Lqloc(A)3, we have

F |B ∈ Lq(B)3, hence F |B ∈W−1,q
0 (B). Obviously −τ ∂1U |B ∈W−1,q

0 (B)3. Thus, by [29,
Lemma IV.1.1], there is a function Π ∈ Lqloc(A) such that (3.2) holds. The last statement
of the theorem follows from [29, Lemma IV.1.1] once more and from Poincaré’s inequality
(estimate of ‖λU + τ ∂1U‖−1,q by ‖λU + τ ∂1U‖q, with ‖ ‖−1,q defined as in [29, Lemma
IV.1.1]). �

Theorem 3.5 Let A ⊂ R3 be open, λ ∈ C, q, s ∈ (1,∞), F ∈ Lqloc(A)3, U ∈ W 1,1
loc (A)3

with ∇U ∈ Lsloc(A)9 such that (3.1) holds. Then U ∈ W 2,q
loc (A)3. Suppose in addition that

Π ∈ Lsloc(A) is such that the pair (U,Π) satisfies (3.2). Then Π ∈W 1,q
loc (A) and

−∆U + τ ∂1U + λU +∇Π = F, divU = 0. (3.4)

Proof: The theorem is a consequence of interior regularity of solutions to the Stokes
system; see [15, Theorem 3.2] and its proof. �

Theorem 3.6 Let A ⊂ R3 be open, λ ∈ C, F ∈ C∞(A)3, q ∈ (1,∞), U ∈ W 1,1
loc (A)3

with ∇U ∈ Lqloc(A)9, and Π ∈ Lqloc(A). Suppose that (3.2) holds. Then U ∈ C∞(A)3, Π ∈
C∞(A), and (3.4) (Oseen system if λ = 0) is valid.

Proof: [15, Corollary 3.2]. The assumption v ∈ Lq(A)3 in that reference should read
v ∈ Lqloc(A)3. �

We will need a solution theory for the Oseen system in weighted Sobolev spaces of functions
defined in the whole space R3. This theory is useful for us because it holds in an Lq-
framework with any q ∈ (1,∞) being admitted.
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Theorem 3.7 Let q ∈ (1,∞). Then for any F ∈ Lq(R3)3, there is a pair of functions(
U(F ), Π(F )

)
such that U(F ) ∈ W 2,q

2 (R3)3, Π(F ) ∈ W 1,q
1 (R3), the pair

(
U(F ), Π(F )

)
solves (3.4) with λ = 0, A = R3, and ‖∂l∂kU(F )‖q + ‖Π‖

W 1,q
1 (R3)

+ ‖∂1U(F )‖q ≤
C(q, τ) ‖F‖q for 1 ≤ k, l ≤ 3.

Proof: The theorem reproduces some of the statements of [2, Theorem 3.3]. �

In [15], we proved uniqueness of the velocity part U of a weak solution to the Oseen
system (equation (3.4) with λ = 0) or to the Oseen resolvent problem (equation (3.4) with
λ ∈ C\{0}, <λ ≥ 0) in the whole space R3, under the assumptions that |λ| ≤ (τ/2)2 and
U |Bc

R ∈
∑3

j=1 L
rj (Bc

R)3, ∇V ∈
∑3

j=1 L
qj (R3)9 for some rj , qj ∈ (1,∞) (j ∈ {1, 2, 3})

and some R ∈ (0,∞) ([15, Theorem 5.1]). In the following theorem, we generalize this
result in the sense that we admit functions U growing polynomially for |x| → ∞. However,
such weak solutions need not vanish, but they turn out to be polynomials. The case λ 6= 0
will not be needed in what follows, but it is included because it can be handled without
additional effort.

Theorem 3.8 Let U ∈W 1,1
loc (R3)3 satisfy (3.1) with A = R3, F = 0 and λ ∈ C with <λ ≥

0, |λ| ≤ (τ/2)2. Suppose there are numbers R ∈ (0,∞), r ∈ [0,∞), k0, m0 ∈ N, %k, qm ∈
(1,∞) for 1 ≤ k ≤ k0, 1 ≤ m ≤ m0, and functions U (k) ∈ L%kloc(R

3)3, V (m) ∈ Lqmloc(R
3)3×3

for k, m as before such that U =
∑k0

k=1 U
(k), ∂µUσ =

∑m0
m=1 V

(m)
µ,σ for 1 ≤ µ, σ ≤ 3, and∫

Bc
R

(
|U (k)(x)| |x|−r

)%k dx < ∞,
∫
Bc

R

(
|V (m)(x)| |x|−r

)qm dx < ∞ for 1 ≤ k ≤ k0, 1 ≤
m ≤ m0. Then U is a polynomial.

Proof: The theorem follows by the standard theory of topological vector spaces ([43,
Section 7.3, 7.11]), as used in the proof of [15, Theorem 5.1]. The only point that should
still be checked in more detail is whether the operators T, S : S(R3)3 7→ R defined by
T (φ) :=

∫
R3(∇U · ∇φ+ τ ∂1U ·φ) dx and S(φ) :=

∫
R3 U ·φdx for φ ∈ S(R3)3, respectively,

are tempered distributions, where S(R3) denotes the set of rapidly decreasing functions
in R3, equipped in the usual way with a topology. So let us show that T is a tempered
distribution. To that end, put R := max{1, R}, r := min{n ∈ N : n ≥ r}, pα,β(φ) :=
sup{|xα ∂βφ(x)| : x ∈ R3}, G(φ) := sup{|x|r+3

∑
γ∈N3

0, |γ|≤1 |∂γφ(x)| : x ∈ Bc
R
} for

φ ∈ S(R3)3, α, β ∈ N3
0. Then we find for φ ∈ S(R3)3 that

G(φ) ≤ C sup
{ ∑
γ∈N3

0, |γ|≤1

3∑
m=1

|xr+3
m ∂γφ(x)| : x ∈ Bc

R

}
,

and thus G(φ) ≤ C
∑

γ∈N3
0, |γ|≤1

∑3
m=1 p(r+3) em, γ(φ). On the other hand,

∫
Bc

R

|x|−r−3
3∑

µ=1

|∂µU(x)| dx ≤ C
m0∑
m=1

3∑
µ,σ=1

∫
Bc

R

|x|−r−3 |V (m)
µσ (x)| dx

≤ C
m0∑
m=1

3∑
µ,σ=1

(∫
Bc

R

|V (m)
µσ (x)|qm |x|−r qm dx

)1/qm (∫
Bc

R

|x|−3 q′m dx
)1/q′m

.

Since
∫
Bc

R

|x|−3 q′m dx <∞ for 1 ≤ m ≤ m0, our assumptions on the functions V (m) imply

that the right-hand side of the preceding estimate is finite. Thus we may conclude that
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the integral
∫
Bc

R

|x|−r−3
∑3

µ=1 |∂µU(x)| dx is finite. As a consequence

∣∣∣∫
Bc

R

(∇U · ∇φ+ τ ∂1U · φ) dx
∣∣∣ ≤ CG(φ)

∫
Bc

R

|x|−r−3
3∑

µ=1

|∂µU(x)| dx
(
φ ∈ S(R3)3

)
,

with the right-hand side being bounded, in turn, by C
∑

γ∈N3
0, |γ|≤1

∑3
m=1 p(r+3) em, γ(φ),

for φ ∈ S(R3)3. Since |
∫
BR

(∇U · ∇φ + τ ∂1U · φ) dx| ≤ C ‖U |BR‖1,1 p0,0(φ), we have

thus found that |T (φ)| is bounded by C
(
p0,0(φ) +

∑
γ∈N3

0, |γ|≤1

∑3
m=1 p(r+3) em, γ(φ)

)
, for

φ ∈ S(R3)3. This shows our claim for T . A similar but simpler reasoning is valid for S. �

In Section 5, when we exploit the preceding theorem, the next two lemmas will be useful.

Lemma 3.2 Let m0 ∈ N, p1, ..., pm0 ∈ (1,∞), p̃ := max{pm : 1 ≤ m ≤ m0}, ε0 ∈
[0, 1/p̃), S1 ∈ (0,∞), W (1), ..., W (m0) ∈ L1

loc(R3)3 such that W :=
∑m0

m=1W
(m) is a

polynomial and
∫
Bc

S1

(
|W (m)(x)| |x|−2−ε0

)pm dx <∞ for 1 ≤ m ≤ m0. Then the degree of

W is at most 1.

Proof: Abbreviate A(x) :=
∑m0

m=1

(
|W (m)(x)| |x|−2−ε0

)pm for x ∈ R3. Suppose there

is R̃ ∈ [S1,∞) such that
∫
∂BR

A(x) dox ≥ 1/R for R ∈ [R̃,∞). Then
∫
Bc

R̃

A(x) dx =∫∞
R̃

∫
∂Br

A(x) dox dr ≥
∫∞
R̃ r−1 dr = ∞. Since

∫
Bc

S1

A(x) dx < ∞ by our assumptions, we

have arrived at a contradiction. Thus there is a sequence (Rn) in [max{S1, 1}, ∞) with∫
∂BRn

A(x) dox ≤ R−1
n for n ∈ N and Rn → ∞. It follows that Kn :=

∫
∂B1

A(Rn x) dox ≤

R−3
n for n ∈ N. But (R−2−ε0

n )pm = (R
−2−ε0+1/p̃
n )pm R

−pm/p̃
n ≥ (R

−2−ε0+1/p̃
n )pm R−1

n for
n ∈ N, 1 ≤ m ≤ m0, where the last inequality holds because Rn ≥ 1 and pm ≤ p̃. Setting

K̃n :=
∫
∂B1

∑m0
m=1

(
|W (m)(Rn y)|R−2−ε0+1/p̃

n

)pm doy for n ∈ N, we get K̃n ≤ KnRn ≤ R−2
n

by the preceding inequalities. On the other hand, for m ∈ {1, ..., m0}, n ∈ N, we

find with Hölder’s inequality that R
−2−ε0+1/p̃
n

∫
∂B1
|W (m)(Rn y)| doy ≤ (4π)1/p′m K̃

1/pm
n . It

follows that R
−2−ε0+1/p̃
n

∫
∂B1

∑m0
m=1 |W (m)(Rn y)| doy → 0 (n → ∞), so we have found

that R
−2−ε0+1/p̃
n

∫
∂B1
|W (Rn y)| doy → 0 (n→∞).

Now suppose that the degree ofW is larger than 1. Then there is k0 ∈ N and for any α ∈ N3
0

with |α| ≤ k0 a number aα ∈ R such that k0 ≥ 2, W (x) =
∑

α∈N3
0, |α|≤k0

aα x
α for x ∈ R3,

and aα0 6= 0 for some α0 ∈ N3
0 with |α0| = k0. Put P (x) :=

∑
α∈N3

0, |α|=k0
aα x

α (x ∈ R3).

We distinguish two cases. In the first, we suppose that
∫
∂B1
|P (y)| doy > 0. Since for

S ∈ (0,∞)∫
∂B1

|W (S y)| doy ≥ Sk0
∫
∂B1

|P (y)| doy −
k0−1∑
l=0

Sl
∑

α∈N3
0, |α|=l

|aα|
∫
∂B1

|yα| doy,

we may conclude there is R̃ ∈ [S1,∞) such that
∫
∂B1
|W (S y)| doy ≥ Sk0

∫
∂B1
|P (y)| doy/2

for S ∈ [R̃,∞). Thus R
−2−ε0+1/p̃
n

∫
∂B1
|W (Rn y)| doy ≥ Rk0−2−ε0+1/p̃

n

∫
∂B1
|P (y)| doy/2 for

n ∈ N with Rn ≥ R̃. On the other hand, since we assumed k0 ≥ 2 and ε0 ∈ [0, 1/p̃),

and because Rn → ∞ and
∫
∂B1
|P (y)| doy > 0, we get R

k0−2−ε0+1/p̃
n

∫
∂B1
|P (y)| doy/2 →

13



∞ (n → ∞). We may thus conclude that R
−2−ε0+1/p̃
n

∫
∂B1
|W (Rn y)| doy → ∞ for n

tending to infinity, which is a contradiction to what was shown above.

In the second case, we assume that
∫
∂B1
|P (y)| doy = 0. Then P (y) = 0 for a. e. y ∈ ∂B1,

and hence for any y on ∂B1 by continuity. Since P is homogeneous, it follows that P = 0
in R3. For x2, x3 ∈ R, the function P ( · , x2, x3) is a polynomial in one variable, so we
may conclude that all coefficients of this polynomial vanish. But this polynomial may be
written as

∑k0
l=0 Pl(x2, x3) rl for r ∈ R, with Pl(x2, x3) :=

∑k0−l
m=0 a(l,m,k0−l−m) x

m
2 xk0−l−m3

for x2, x3 ∈ R, 0 ≤ l ≤ k0. The numbers Pl(x2, x3) are the coefficients of P ( · , x2, x3)
and must therefore vanish (x2, x3 ∈ R). But each function Pl is a polynomial, too. So, in
the next step, the same sort of reasoning may be applied to these polynomials, implying
that their coefficients must vanish as well. In the end we get that aα = 0 for α ∈ N3

0 with
|α| = k0, which is a contradiction to the fact that aα0 6= 0 for some α0 ∈ N3

0 with |α| = k0.
Thus we arrive at a contradiction in any case. This proves that the degree of W cannot
exceed 1. �

Lemma 3.3 Let m0 ∈ N, pm ∈ (1,∞), V (m) ∈ Lpm(R3)3 for 1 ≤ m ≤ m0. Suppose that
V :=

∑m0
m=1 V

(m) is constant. Then V = 0.

Proof: By an argument already used in the proof of [17, Lemma 5.2] and Lemma 3.2, we
may choose a sequence (Rn) in (0,∞) with

∫
∂BRn

∑m0
m=1 |V (m)(x)|pm dox ≤ R−1

n for n ∈ N
and with Rn → ∞. Put An :=

∫
∂B1

∑m0
m=1 |V (m)(Rn y)|pm doy for n ∈ N, so An ≤ R−3

n .

But
∫
∂B1
|V (m)(Rn y)| doy ≤ (4π)1/p′m A

1/pm
n for n ∈ N, 1 ≤ m ≤ m0 by Hölder’s inequality,

hence
∫
∂B1

∑m0
m=1 |V (m)(Rn y)| doy → 0 (n → ∞). Therefore

∫
∂B1
|V (Rn y)| doy → 0 for n

tending to infinity. Since V is constant, this means that V = 0. �

4 Some fundamental solutions and potential functions.

We recall that the fundamental solution N of the Poisson equation (”Newton kernel”)
and a convolution (”Newton potential”) with this fundamental solution was introduced in
Theorem 3.1. We define the usual heat kernel in 3D by setting

H(z, t) := (4π t)−3/2 e−|z|
2/(4t) for z ∈ R3, t ∈ (0,∞), H(z, 0) := 0 for z ∈ R3\{0}.

Thus, in our context, H is defined on B :=
(
R3 × (0,∞)

)
∪
(

(R3\{0})× {0}
)
.

Theorem 4.1 The relations H ∈ C∞(B) and
∫
R3 H(z, t) dt = 1 for t ∈ (0,∞) hold. If

α ∈ N3
0, σ ∈ N0, the inequality |∂αz ∂σt H(z, t)| ≤ C(α, σ) (|z|2 + t)−(3+|α|+2σ)/2 is valid for

z ∈ R3, t ∈ (0,∞).

Proof: See [47] for the preceding estimate. �

The estimate in Theorem 4.1 in the case |α| = 2, σ = 0 allows to define the velocity part
Γ of a fundamental solution to the time-dependent Stokes system,

Γjk(z, t) := H(z, t) δjk +

∫ ∞
t

∂zj∂zkH(z, s) ds for (z, t) ∈ B, j, k ∈ {1, 2, 3}
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([44, p. 310]), as well as the velocity part Λ of a fundamental solution to the time-
dependent Oseen system (1.1),

Λjk(z, t) := Γjk(z − τ t e1, t) for (z, t) ∈ B, j, k ∈ {1, 2, 3} (4.1)

([42, p. 501]). We will need the following properties of Λ and estimates related to Λ.

Lemma 4.1 The relations Λ ∈ C∞(B)3×3 and
∑3

k=1 ∂zkΛjk(z, t) = 0 are valid for 1 ≤
j ≤ 3, z ∈ R3, t ∈ (0,∞).

Moreover |∂αz Λ(z, t)| ≤ C
(
|z − τ t e1|2 + t)−3/2−|α|/2 for t, z as before and α ∈ N3

0 with
|α| ≤ 1.

Let K > 0. Then |∂αz ∂σt Λ(z, t)| ≤ C(K, τ)
(
|z| ν(z) + t)−3/2−|α|/2−σ/2 for z ∈ Bc

K , t ∈
(0,∞), α ∈ N3

0, σ ∈ {0, 1} with |α|+ σ ≤ 1, and |∂αz Λ(z, t)| ≤ C(K, τ)
(
|z|2 + t)−3/2−|α|/2

for z ∈ BK , t ∈ (0,∞), α ∈ N3
0 with |α| ≤ 1.

The estimate
∫
R3 |∂αxΛ(x, t)|q dx ≤ C(τ, q) t−(3+|α|) q/2+3/2 holds for q ∈ (1,∞), t ∈ (0,∞)

and α as before.

Let R ∈ (0,∞), n ∈ (2,∞). Then the integral
∫∞

0 (|z − τ r e1|2 + r)−n/2 dris bounded by

C(R,n, τ)
(
|z| ν(z)

)−(n+1)/2
for z ∈ Bc

R.

Proof: See [17, Lemma 3.3, Corollary 3.4, 3.5, Theorem 4.1]. �

The constant C(K, τ) in the second and third estimate of Λ(x, t) may be specified in more
detail as concerns its dependence on τ . In fact, if for example σ = 0 and α = 0, one may
take C(K, τ) = C(K) max{1, τ}3/2, with the term ν(x) in the second estimate replaced
by 1 + τ (|x| − x1) ([7, Lemma 2]). The following technical observation on the function ν
will be useful.

Lemma 4.2 ([20, Lemma 4.8]) The inequality ν(x) ≤ C (1 + |y|) ν(x − y) holds for
x, y ∈ R3.

We introduce the first of our potential functions.

Lemma 4.3 ([17, Corollary 3.5]) Let A ⊂ R3 be measurable, q ∈ [1,∞), V ∈ Lq(A)3,
and let Ṽ denote the zero extension of V to R3. Then

∫
R3 |∂αxΛ(x − y, t) Ṽ (y)| dy < ∞

for α ∈ N3
0 with |α| ≤ 1, x ∈ R3, t ∈ (0,∞). In particular we may define the function

I(τ)(V ) : R3 × (0,∞) 7→ R3 as in (1.5).

The derivative ∂xlI
(τ)(V )(x, t) exists and equals

∫
R3 ∂xlΛ(x − y, t) · Ṽ (y) dy for x, t as

above, and for l ∈ {1, 2, 3}. The functions I(τ)(V ) and ∂xlI
(τ)(V ) are continuous in

R3 × (0,∞). If q > 1, then ‖I(τ)(V )(t)‖q ≤ C(q, τ) ‖V ‖q for t ∈ (0,∞).

If m0 ∈ N, pl ∈ [1,∞), V (l) ∈ Lpl(A)3 for 1 ≤ l ≤ m0, put I(τ)(
∑m0

l=1 V
(l)) :=∑m0

l=1 I
(τ)(V (l)).

We turn to the definition of another potential function.

Lemma 4.4 Let T0 ∈ (0,∞], A ⊂ R3 measurable, q ∈ [1,∞) and f a function from
L1
loc

(
[0, T0), Lq(A)3

)
. Let f̃ denote the zero extension of f to R3 × (0,∞). Then the

integral
∫
R3 |∂αxΛ(x − y, t − σ) · f̃(y, σ)| dy is finite for any x ∈ R3, t ∈ (0,∞), σ ∈

(0, t), α ∈ N3
0 with |α| ≤ 1. Moreover, for a. e. t ∈ (0,∞) and for α as before, the integral
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∫ t
0

∫
R3 |∂αxΛ(x− y, t− σ) · f̃(y, σ)| dy dσ is finite for a. e. x ∈ R3. Thus we may define the

function R(τ)(f) : R3 × (0,∞) 7→ R3 as in (1.4).

The relation R(τ)(f)(t) ∈ W 1,1
loc (R3)3 holds for a. e. t ∈ (0,∞), and for such t we have

∂xlR
(τ)(f)(t)(x) =

∫ t
0

∫
R3 ∂xlΛ(x − y, t − σ) · f̃(y, σ) dy dσ for l ∈ {1, 2, 3} and a. e.

x ∈ R3.

Moreover the integral
∫ t

0 |
∫
R3 Λ(x− y, t− s) · f̃(y, s) dy| ds is finite for any t ∈ (0,∞) and

for a. e. x ∈ R3. Thus the function R(τ)(f) is well defined even for any t ∈ (0,∞)
(instead of only for a. e. t ∈ (0,∞)) and for a. e. x ∈ R3. In addition the inequality
‖R(τ)(f)(t)‖q ≤ C(q) ‖f̃ |R3 × (0, t)‖q,1;t holds for t > 0.

Let m0 ∈ N, pl ∈ (1,∞) and f (l) ∈ L1
loc

(
[0, T0), Lpl(A)3

)
for 1 ≤ l ≤ m0. Then define

R(τ)(
∑m0

j=1 f
(l)) :=

∑m0
j=1 R(f (l)).

Proof: [17, Lemma 3.8, Corollary 3.7]. �

The next lemma deals with still another potential function, this one defined on the surface
of a space-time cylinder.

Lemma 4.5 Let q ∈ [1,∞], T0 ∈ (0,∞], A ⊂ R3 open and bounded, with Lipschitz
boundary, φ ∈ L1

loc

(
[0, T0), Lq(∂A)3

)
, φ̃ the zero extension of φ to ∂A × (0,∞). For

t ∈ (0,∞), x ∈ R3\∂A, α ∈ N3
0, the term |∂αxΛ(x − y, t − s) · φ̃(y, s)| is integrable as a

function of (y, s) ∈ ∂A× (0, t). Define V(τ)(φ) := V(τ, A)(φ) : (R3\∂A)× (0,∞) 7→ R3 by

V(τ)(φ)(x, t) :=

∫ t

0

∫
∂A

Λ(x− y, t− s) · φ̃(y, s) doy ds for x ∈ R3\∂A, t ∈ (0,∞).

Then, for any t ∈ (0,∞), the integral
∫ t

0

∫
∂A Λ(x−y, t−s)·φ̃(y, s) doy ds as a function of x ∈

R3\A belongs to C∞(R3\A)3, and ∂αxV
(τ)(φ)(x, t) =

∫ t
0

∫
∂A ∂

α
xΛ(x−y, t−s) · φ̃(y, s) doy ds

for α ∈ N3
0, x ∈ R3\A.

Proof: The function Λ is C∞ on R3 × (0,∞) (Lemma 4.1), so the lemma follows from
Lebesgue’s theorem. �

Lemma 4.6 Let φ ∈ L2
(
∂Ω× (0,∞)

)3
. Then the function V(τ)(φ)|Bc

S0
× [0,∞) belongs

to C0
(

[0,∞), L4(Bc
S0

)3
)
.

Proof: Since Ω ⊂ BS0 , we have δ := dist(∂Ω, Bc
S) > 0. It follows for y ∈ ∂Ω, x ∈ Bc

S0
that

|x−y| ≥
(

1−(S0−δ/2)/S0

)
|x|. Thus we may conclude from the second estimate in Lemma

4.1 that |∂σr Λ(x − y, r)| ≤ C(τ, δ, S0) |x|−3/2−σ/2 for x ∈ Bc
S0
, y ∈ ∂Ω, r ∈ [0,∞), σ ∈

{0, 1}. But the right-hand side of the preceding inequality, considered as a function of
x ∈ Bc

S0
, belongs to L4(Bc

S0
). The lemma follows from the preceding observations. �

In the rest of this section, we recapitulate results from [17] that will be needed in what
follows. First we introduce another kernel function, which is a truncated version of Λ,
and whose definition involves the numbers S0, R0, R1 and the function ϕ0 introduced at
the beginning of Section 2. (Recall that S0 < R0, R1 = (R0 + S0)/2 and ϕ0 ∈ C∞0 (BR1)
with ϕ|BS0+(R0−S0)/4 = 1, 0 ≤ ϕ0 ≤ 1.) However, since this definition would need some
preparation and we will not work with it, we do not restate it, referring instead to [17,
(3.13)]. In the ensuing theorem, we collect those properties of this kernel which will be
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relevant here.

Theorem 4.2 There is a function G := GR0,S0,ϕ0 : Bc
R0
×BR1 × [0,∞) 7→ R3×3 with the

following properties.

Let x ∈ Bc
R0
, r ∈ [0,∞). Then G(x, · , r) ∈ C∞0 (BR1)3×3,

∑3
k=1 ∂ykGjk(x, y, r) = 0 for

1 ≤ j ≤ 3, y ∈ BR1 , and G(x, y, r) = Λ(x− y, r) for y ∈ BS0+(R0−S0)/4.

Let x ∈ Bc
R0
, q ∈ (1,∞). Then the mapping r 7→ G(x, · , r)

(
r ∈ [0,∞)

)
belongs

to C1
(

[0,∞), W 1,q(BR1)3×3
)
. Thus a function G′ ∈ C0

(
[0,∞), W 1,q(BR1)3×3

)
may be

defined by the condition ‖
(
G(x, · , r + h) − G(x, · , r)

)
/h − G′(r)‖1,q → 0 (h → 0) for

r ∈ [0,∞). We write ∂rG(x, y, r) instead of G′(r)(y) (r ∈ [0,∞), y ∈ BR1).

Let r ∈ [0,∞), q ∈ (1,∞).

Let σ ∈ {0, 1}, and define L(x) : BR1 7→ R3×3 by L(x)(y) := ∂σrG(x, y, r) for x ∈ Bc
R0
, y ∈

BR1. Then L(x) ∈ C∞0 (BR1)3×3 ∩ W 1,q(BR1)3×3 for x ∈ Bc
R0

, and L as a mapping

from Bc
R0

into W 1,q(BR1)3×3 is partially differentiable on BR0

c
. Thus we may define

DmL : BR0

c 7→W 1,q(BR1)3×3 by the condition ‖
(
L(x+h em)−L(x)

)
/h−DmL(x)‖1,q →

0 (h→ 0), for m ∈ {1, 2, 3}, x ∈ BR0

c
. Instead of DmL(x)(y), we write ∂xm∂

σ
rG(x, y, r).

Let l ∈ {1, 2, 3} and define L̃(x) : BR1 7→ R3×3 by L̃(x)(y) := ∂ylG(x, y, r) for x ∈
Bc
R0
, y ∈ BR1 . Then L̃(x) ∈ C∞0 (BR1)3×3 ∩Lq(BR1)3×3 for x ∈ Bc

R0
, and L̃ considered as

an operator from Bc
R0

into Lq(BR1)3×3 is partially differentiable on BR0

c
. Thus we may

define DmL̃ : BR0

c 7→ Lq(BR1)3×3 by the condition ‖
(
L̃(x+h em)−L̃(x)

)
/h−DmL̃(x)‖q →

0 (h→ 0) (m ∈ {1, 2, 3}, x ∈ BR0

c
). Instead of DmL̃(x)(y), we write ∂xm∂ylG(x, y, r).

Let q ∈ (1,∞), p ∈ [1,∞]. Then∫
BR1

|∂αx ∂σt ∂βyG(x, y, t) · V (y)| dy ≤ C
(
|x| ν(x)

)−(3+|α|+σ)/2 ‖V ‖q (4.2)

for V ∈ Lq(BR1)3, t ∈ (0,∞), x ∈ BR0

c
, α, β ∈ N3

0, σ ∈ {0, 1} with |α| ≤ 1, |β|+ σ ≤ 1,∫ t

0

∫
BR1

|∂αx ∂σt ∂βyG(x, y, t− s) · v(y, s)| dy ds ≤ C
(
|x| ν(x)

)−(3+|α|+σ)/2+1/(2 p′) ‖v‖q,p;t (4.3)

for t, x, α, β, σ as in (4.2), and v ∈ Lp
(

0, t, Lq(BR1)3
)
.

Proof: [17, (3.13), Lemma 3.11, 3.12, 3.13, Theorem 4.2]. �

We note a consequence of the preceding theorem.

Corollary 4.1 ([17, Corollary 4.2]) Let β ∈ N3
0, σ ∈ {0, 1} with |β| + σ ≤ 1. Let

q ∈ (1,∞), and let the function v belong to L1
loc

(
[0,∞), Lq(BR1)3

)
and the function V to

Lq(BR1)3. Define

F (x, t) :=

∫ t

0

∫
BR1

∂σs ∂
β
yG(x, y, t− s) · v(y, s) dy ds, H(x, t) :=

∫
BR1

G(x, y, t) · V (y) dy

for x ∈ BR0

c
, t ∈ [0,∞). Take a number l ∈ {1, 2, 3}. Then the derivatives ∂xlF (x, t)

and ∂xlH(x, t) exist pointwise, and they equal
∫ t

0

∫
BR1

∂xl∂
σ
s ∂

β
yG(x, y, t− s) · v(y, s) dy ds

and
∫
BR1

∂xlG(x, y, t) · V (y) dy, respectively, for x ∈ BR0

c
, t ∈ [0,∞)
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It will be convenient to subsume a number of terms in a single operator, which we define
here, and whose definition makes sense due to the preceding Corollary 4.1. The parameters
T0, S0, R0, R1 and the set Ω appearing in the following were fixed at the beginning of
Section 2.

Let A ⊂ BS0 be open and bounded, with Lipschitz boundary. Put AR := BR\A, ZR,T :=
AR × (0, T ) for R ∈ [S0,∞), T ∈ (0,∞]. Let A ⊂ R3 × R be such that ZR1,T0 ⊂ A.
Let q ∈ (1,∞) and let v : A 7→ R3 with v|ZR1,T0 ∈ C0

(
[0, T0), Lq(AR1)3

)
, v(s)|AR1 ∈

W 1,1
loc (AR1)3 for s ∈ (0, T0) and ∇xv|ZR1,T0 ∈ L1

loc

(
[0, T0), Lq(AR1)9

)
. Then, for t ∈ (0, T0)

and x ∈ BR0

c
, we define

KR0,S0,ϕ0,A,T0(v)(x, t) :=

∫ t

0

∫
AR1

( 3∑
l=1

∂ylG(x, y, t− s) · ∂ylv(y, s) (4.4)

−τ ∂y1G(x, y, t− s) · v(y, s)− ∂sG(x, y, t− s) · v(y, s)
)
dy ds+

∫
AR1

G(x, y, 0) · v(y, t) dy.

Next we reproduce some decay estimates proved in [17], beginning with a decay estimate
of KR0,S0,ϕ0,A,T0(v). We use the same notation as in (4.4).

Corollary 4.2 ([17, Corollary 4.3]) Let p1, p2 ∈ [1,∞] and take A, A, q as in (4.4).
Then, for v : A 7→ R3 such that v|ZR1,T0 ∈ C0

(
[0, T0), Lq(AR1)3

)
, v(s)|AR1 ∈W

1,1
loc (AR1)3(

s ∈ (0, T0)
)

and ∇xv|ZR1,T0 ∈ Lp2
(

0, T0, L
q(AR1)9

)
, and for x ∈ BR0

c
, t ∈ (0, T0), α ∈

N3
0 with |α| ≤ 1, the term |∂αxKR0,S0,ϕ0,A,T0(v)(x, t)| is bounded by

C (‖v|ZR1,t‖q,p1;t + ‖∇xv|ZR1,t‖q,p2;t + ‖v(t)|ΩR1‖q) max
j∈{1, 2}

(
|x| ν(x)

)−(3+|α|)/2+1/(2 p′j)
.

Lemma 4.7 ([17, Lemma 4.3]) Let A, A, q be given as in (4.4), and let p1, p2 ∈ [1,∞].
Then, for functions v : A 7→ R3 with v|ZR1,T0 ∈ Lp1

(
0, T0, L

q(AR1)3
)
, v(s)|AR1 ∈

W 1,1
loc (AR1)3

(
s ∈ (0, T0)

)
and ∇xv|ZR1,T0 ∈ Lp2

(
0, T0, L

q(AR1)9
)
, as well as for x ∈

Bc
R0
, t ∈ (0, T0), α ∈ N3

0 with |α| ≤ 2, l ∈ {1, 2, 3}, the term |∂αxV(τ)(n
(A)
l v)(x, t)| is

bounded by

C (‖v|ZR1,t‖q,p1;t + ‖∇xv|ZR1,t‖q,p2;t) max
j∈{1, 2}

(
|x| ν(x)

)−(3+|α|)/2+1/(2 p′j)
,

where (n
(A)
l v)(y, s) := n

(A)
l (y) v(y, s) for y ∈ ∂A, s ∈ (0, T0).

Lemma 4.8 ([17, Lemma 4.4]) Recall that the Newton kernel N was introduced in The-
orem 3.1. Let q ∈ (1,∞). Then the estimate |

∫
∂BS0

(∂α∇N)(x − y)S−1
0 y · V (y) doy| ≤

C |x|−2−|α| ‖V ‖q holds for V ∈ Lq(AR1,S0)3 ∩ W 1,1(AR1,S0)3 with divV = 0, and for
t ∈ (0,∞), x ∈ Bc

R0
, α ∈ N3

0 with |α| ≤ 1. If
∫
∂BS0

y · V (y) doy = 0, the factor |x|−2−|α|

may be replaced by |x|−3−|α|. The preceding results remain valid if S0 and R1 are replaced
by R1 and S0 + 3(R0 − S0)/4, respectively.

The next two theorems provide conditions – the weakest we could find – on f and U0

such that R(τ)(f) and I(τ)(U0) decay with about the same rate for |x| → ∞ as does the
difference u−R(τ)(f)−I(τ)(U0) in the applications of our theory in Section 6. We indicate
that the ensuing theorem improves [13, Theorem 3.1].
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Theorem 4.3 Let f : Ω
c × (0,∞) 7→ R3 be measurable. Suppose there a numbers q ∈

(1,∞), A, p0 ∈ (2,∞), B ∈ [0, 3/2] and a function γ ∈ L2
(

(0,∞)
)
∩ Lp0

(
(0,∞)

)
such that A + min{1, B} > 3, A + B ≥ 7/2, f |ΩS0 × (0,∞) ∈ L2

(
0,∞, Lq(ΩS0)3

)
and

|f(y, s)| ≤ γ(s) |y|−A ν(y)−B for y ∈ BS0

c
, s ∈ (0,∞). Then there is n ∈ N such that

|∂αxR(τ)
(
f |BS0

c × (0,∞)
)
(x, t)| (4.5)

≤ C(τ, p0, A,B, S0, R0) (‖γ‖2 + ‖γ‖p0) |x|−5/4−|α|/2 ν(x)−5/4−|α|/4 (max{1, ln |x|})|α|n/2

for t ∈ (0,∞), x ∈ BR0

c
, α ∈ N3

0 with |α| ≤ 1. Moreover |∂αxR(τ)
(
f |ΩS0× (0,∞)

)
(x, t)| ≤

C(τ, S0, R0) ‖f |ΩS0 × (0,∞)‖2
(
|x| ν(x)

)−5/4−|α|/2
for t, x, α as before.

Proof: Take t, x, α as in the theorem. It may be deduced from Lemma 4.4 and 4.1 that

|∂αxR(τ)
(
f |BS0

c × (0,∞)
)
(x, t)| ≤ C(τ,R0) (M1 + M2), (4.6)

with M1 :=
∫ t

0

∫
BS0

c∩BR0/2
(x)(|x − y|

2 + t − s)−3/2−|α|/2 |f(y, s)| dy ds, and M2 defined in

the same way as M1, except that the domain of integration BS0

c ∩ BR0/2(x) is replaced

by BS0

c\BR0/2(x), and the term |x− y|2 by |x− y− τ (t− s) e1|2. Hölder’s inequality and
the assumptions on f imply that M1 is bounded by∫

BS0

c∩BR0/2
(x)

(∫ t

0

(
|x− y|2 + t− s

)(−3/2−|α|/2)·p′0ds

)1/p′0
‖γ‖p0 |y|−A ν(y)−B dy. (4.7)

Since |x| ≥ R0, we get for y ∈ BR0/2(x) that |y| ≥ |x| − |x − y| ≥ |x|/2, and with
Lemma 4.2 that ν(x) ≤ C (1 + |x − y|) ν(y) ≤ C(R0) ν(y). Moreover, since p0 > 2,
we have −3 − |α| + 2/p′0 > −3. Therefore we may conclude from (4.7) that M1 ≤
C(R0, S0) ‖γ‖p0 |x|−Aν(x)−B. Due to the assumptions A > 2, A + B ≥ 7/2 and because

|x| ≥ C(R0) ν(x), it follows that M1 ≤ C(R0, A,B)
(
|x| ν(x)

)−5/4−|α|/2
. In order to find

a bound for M2, we use the last inequality in Lemma 4.1, which yields∫ t

0
(|x− y − τ (t− s) e1|2 + t− s)−3−|α| ds ≤ C(R0, τ)

(
|x− y| ν(x− y)

)−5/2−|α|

for y ∈ BS0

c\BR0/2(x). Thus, proceeding as in the estimate of M1, but with the exponent
2 instead of p0, and recalling our assumptions on f, we get

M2 ≤ C(R0, τ) ‖γ‖2
∫
BS0

c\BR0/2
(x)

(
|x− y| ν(x− y)

)−5/4−|α|/2 |y|−A ν(y)−B dy.

Obviously |x− y| ≥ C(R0) (1 + |x− y|) for y ∈ BR0/2(x)c, so we may conclude by Hölder’s

inequality that M2 ≤ C(R0, τ) ‖γ‖2 A(1)(α)1/2 A(2)(α)1/2, where

A(1)(α) :=

∫
BS0

c\BR0/2
(x)

(
(1 + |x− y|) ν(x− y)

)−3/2−|α|/2 |y|−A ν(y)−B dy,

and A(2)(α) is defined in the same way as A(1)(α), but with the exponent −3/2 − |α|/2
replaced by −1 − |α|/2. In the case α = 0, it follows by [38, Theorem 3.1 and 3.2] and

19



their proof, in particular [38, p. 87 above, (3.25)], and by our assumptions on A and

B that A(1)(0) ≤ C(A,B)
(
|x| ν(x)

)−3/2
and A(2)(0) ≤ C(A,B)

(
|x| ν(x)

)−1
, so M2 ≤

C(R0, S0, A,B, τ) ‖γ‖2
(
|x| ν(x)

)−5/4
. Suppose that |α| = 1. Then A(2)(α) = A(1)(0) ≤

C(A,B)
(
|x| ν(x)

)−3/2
. We further note that ν(x−y)−1 ν(y)−1 ≤ C ν(x)−1 for any y ∈ R3,

as follows by assuming for a contradiction that |y|−y1 ≤ (|x|−x1)/4 and |x−y|−(x−y)1 ≤
(|x| − x1)/4. Thus

A(1)(α) ≤ C ν(x)−1/2

∫
BS0

c\BR0/2
(x)

(1 + |x− y|)−2 ν(x− y)−3/2 |y|−A ν(y)−B+1/2 dy.

But A + min{B − 1/2, 1} ≥ 3 because A > 2 and A + B ≥ 7/2, so by [38, Theorem 3.3]
and its proof, we obtain A(1)(α) ≤ C(A,B) |x|−2 ν(x)−3/2 (max{ln(|x|), 1})n, for some
n ∈ N independent of x and α. Thus, combining the preceding estimates, we get in
the case |α| = 1 that M2 ≤ C(A,B,R0, S0, τ) ‖γ‖2 |x|−7/4 ν(x)−3/2 (max{ln(|x|), 1})n/2.
Inequality (4.5) now follows from (4.6) and the preceding estimates of M1 and M2. As for
an estimate of |∂αxR(τ)

(
f |ΩS0 × (0,∞)

)
(x, t)|, we refer to (4.3). Recall that x ∈ BR0

c
, so

G(x, y, r) = Λ(x− y, r) for y ∈ ΩS0 , r ∈ (0,∞). �

Theorem 4.4 Let q ∈ (1,∞), V ∈ Lqσ(Ω
c
), κ0 ∈ (0, 1/2), c0 ∈ (0,∞) such that

V |BS0

c ∈ W 1,1
loc (BS0

c
)3 and |∂αV (y)| ≤ c0 |y|−3/2−|α|/2−κ0 ν(y)−5/4−|α|/2−κ0 for y ∈ BS0

c

and α ∈ N3
0 with |α| ≤ 1. Then the estimate |∂αxI(τ)(V )(x, t)| ≤ C

(
|x| ν(x)

)−5/4−|α|/2

holds for t ∈ (0,∞), x ∈ Bc
R0

and α as before.

Proof: For % ∈ {0, τ}, p ∈ (1,∞), W ∈ Lp(R3)3, define the function H(%)(W ) : R3 ×
(0,∞) 7→ R3 by H(%)(W )(x, t) :=

∫
R3 H(x − y − t % e1, t)W (y) dy (x ∈ R3, t > 0). Then

I(τ)(V ) = H(τ)(V ) by [17, Corollary 3.5]. The spatial decay of H(τ)(V ) is studied in [12].
Following the approach used in that reference, we start from a function b̃ ∈ W 1,1

loc (R3)3

verifying the estimate

|∂αb̃(y)| ≤ γ (1 + |y|)−3/2−|α|/2−κ0 ν(y)−5/4−|α|/2−κ0 for y ∈ R3, α ∈ N3
0 with |α| ≤ 1, (4.8)

where γ is some positive real. Then we show that

|∂αzH(0)(̃b)(z, t)| ≤ C
(
|z| ν(z)

)−5/4−|α|/2
for z ∈ R3\{0}, t ∈ (0,∞), α as before. (4.9)

Note that in (4.9), it is H(0)(̃b) and not H(τ)(̃b) which appears. The transition from
(4.8) to (4.9) corresponds to the part of [12] which begins with the relation |∂αb̃(y)| ≤
γ
(

(1 + |y|) ν(y)
)−1/2−κ0 (see [12, (4.6)]), and ends with the conclusion |∂αzH(0)(̃b)(z, t)| ≤

C
(
|z| ν(z)

)−1/2−|α|/2
([12, (4.41)]). The reasoning in [12] leading to this conclusion may

be modified so as to provide a proof of (4.9) as a consequence of (4.8). However, some
of these modifications are not completely obvious. Our proof of Theorem 4.4 consists
in specifying these less obvious changes. Once (4.9) is established, Theorem 4.4 follows
in almost the same way as the transition in [12] from the relation |∂αzH(0)(̃b)(z, t)| ≤
C
(
|z| ν(z)

)−1/2−|α|/2
for z ∈ R3, t > 0 to the estimate of the term |∂αxH(τ)(V )(x, t)| by

C
(
|x| ν(x)

)−1/2−|α|/2
for x ∈ BR0

c
, t > 0 ([12, p. 322-323]). This is why the passage from

(4.9) to the estimate in Theorem 4.4 need not be elaborated here.
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So let us turn to those parts of the proof of (4.9) that need some additional effort compared
to the theory in [12]. To this end we introduce the notation y′ = (y2, y3) for y ∈ R3, and
we indicate that

|∂αxH(x, t)| ≤ C |x|−3−|α| for x ∈ R3\{0}, t > 0, (1 + |x|) ν(x) ≥ (1 + |x′|)2/8 (4.10)

for x ∈ R3; see Theorem 4.1 and [12, (2.7)]. Moreover we fix t ∈ (0,∞), z ∈ R3\{0} and
α ∈ N3

0 with |α| ≤ 1. The constants C appearing in the rest of this proof are independent
of z, t and α.

Our first aim is to derive the estimate |∂αzH(0)(̃b)(z, t)| ≤ C |z1|−5/2−|α| in the case z1 <
0, a result which corresponds to [12, Lemma 4.7]. So let us suppose z1 < 0. Put
H := {y ∈ R3 : y1 ≤ 0} and consider the splitting |∂αxH(0)(̃b)(x, t)| ≤

∑5
j=1 Aj ,

with A1 :=
∣∣ ∫

R3\H ∂
α
z H(z − y, t) b̃(y) dy

∣∣, A2 :=
∣∣ ∫
B|z|/2(z)∩H H(z − y, t) ∂αb̃(y) dy

∣∣ and

A3 :=
∣∣ ∫
∂B|z|/2(z)∩H H(z − y, t) b̃(y) (α · 2 |z|−1 y) doy

∣∣. The term A4 is defined as A3, but

with the domain of integration ∂B|z|/2(z) ∩H replaced by B|z|/2(z) ∩ ∂H, and the scalar
product α · 2 |z|−1 y by α · e1. Concerning A5, it coincides with A1 except that the set
H\B|z|/2(z) takes the place of R3\H as domain of integration. Note that the terms A2 to
A4 arise due to an integration by parts on B|z|/2(z)∩H. In order to estimate A1, we observe
that inequality (4.10)1 together with the condition z1 < 0 and the definition of H imply
that |∂αz H(z − y, t)| ≤ C (|z1| + y1 + |z′ − y′|)−3−|α| for y ∈ R3\H. Therefore we get with

(4.8) and (4.10)2 that A1 ≤ γ |z1|−5/2−|α| ∫
R3\H y

−1/2
1 (1 + |y1|)−1/2−κ0/2 (1 + |y′|)−2−κ0 dy,

hence A1 ≤ C |z1|−5/2−|α|. For y ∈ H, we have ν(y) ≥ 1 + |y|, so

∂β b̃(y) ≤ γ (1 + |y|)−11/4−|β|−2κ0 for y ∈ H, β ∈ N3
0, |β| ≤ 1. (4.11)

Since |y| ≥ |z|/2 for y ∈ B|z|/2(z), we obtain that A2 ≤ C |z|−11/4−|α|−2κ0
∫
R3 H(z−y, t) dy

by (4.11). But
∫
R3 H(z − y, t) dy = 1, so A2 ≤ C |z|−11/4−|α|−2κ0 . Because of (4.10)1 and

(4.11), and since |z − y| = |z|/2, |y| ≥ |z|/2 for y ∈ ∂B|z|/2(z), the term A3 is majorized

by C |z|−23/4−2κ0 times the surface measure of H ∩ ∂B|z|/2(z), hence A3 ≤ C |z|−15/4−2κ0 .
For y ∈ ∂H ∩ B|z|/2(z), we have y1 = 0 and |y| ≥ |z|/2, hence again by (4.10)1 and

(4.11), we obtain that A4 is bounded by C |z1|−3 |z|−11/4−2κ0 times the surface measure of
∂H ∩B|z|/2(z). Therefore A4 ≤ C |z1|−15/4−2κ0 . If y ∈ H\B|z|/2(z), then |y− z| ≥ |z|/2, so

once more by (4.10)1 and (4.11), A5 ≤ C|z|−5/2−|α| ∫
R3 |z−y|−1/2 (1+ |y|)−11/4−2κ0 dy. The

preceding integral is bounded by C |z|−1/4−2κ0 , as may be seen by integrating seperately
on B2|z|(z)\B|z|/2(z) and B2|z|(z)

c. Thus A5 ≤ C |z|−11/4−|α|−2κ0 . Altogether we obtain in

the case z1 ≤ −1 that |∂αzH(0)(z, t)| ≤ C |z1|−5/2−|α|. If z1 ∈ (−1, 0), this inequality follows
immediately by a partial integration, estimate (4.8) and the equation

∫
R3 H(z−y, t) dy = 1.

So the inequality we looked for does indeed hold if z1 < 0.

Next we assume that |z′| ≥ |z|/2, we put H̃ := {y ∈ R3 : |y′| ≤ |z|/4}, and we are going to
show that Ã :=

∣∣ ∫
H̃
∂αz H(z − y, t) b̃(y) dy

∣∣ ≤ |z|−5/2−|α|; compare [12, (4.20)]. Due to the

condition |z′| ≥ |z|/2, we get |y′− z′| ≥ |z|/4 for y ∈ H̃. Thus by (4.10)1, |∂αz H(z−y, t)| ≤
C |z1 − y1|−1/2 |z|−5/2−|α| for y ∈ H̃. It follows with (4.8) and (4.10)2 that Ã is bounded
by C |z|−5/2−|α| times the integral

∫
R3 |z1 − y1|−1/2 (1 + |y|)−1/2−κ0/2 (1 + |y′|)−2−κ0 dy.

This integral, in turn, may be majorized by C
∫
R |z1 − y1|−1/2 (1 + |y1|)−1/2−κ0/2 dy1. If
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the domain R in that latter integral is replaced by (z1 − 1, z1 + 1), the resulting integral
is obviously bounded independently of z1. An integration on R\(z1 − 1, z1 + 1) may be
performed via Hölder’s inequality, with the exponent p := 2 (1+κ0/4)/(1+κ0), say, acting
on the term (1 + |y1|)−1/2−κ0/2. Using the assumption κ0 < 1/2, we again obtain a bound
independent of z1. Altogether we arrive at the desired estimate Ã ≤ C |z|−5/2−|α|.

Suppose that z1 > 0 and |z| − z1 ≥ 1. Under these conditions it is shown in [12, p. 317-

319] that |∂αzH(0)(z, t)| ≤ C
(
|z| ν(z)

)−1−|α|/2
. As our last aim in this proof, we want to

show that in our situation, the stronger estimate |∂αzH(0)(z, t)| ≤ C
(
|z| ν(z)

)−5/4−|α|/2

holds. To this end, put G := {y ∈ R3 : |y′| > |z′|/2}. Integrating by parts twice,
first on R3 and then on G, we may arrange things in such a way that |∂αzH(0)(z, t)| ≤∑3

j=1 Bj , where B1 :=
∣∣ ∫

R3\GH(y, t) ∂αb̃(z−y) dy
∣∣, B2 :=

∣∣ ∫
G ∂

α
yH(y, t) b̃(z−y) dy

∣∣ and

B3 :=
∣∣ ∫
∂GH(y, t) b̃(z − y)

(
(0, y′) · α

)
2|z′|−1 doy

∣∣. For y ∈ R3\G, we have |y′| ≤ |z′|/2,
so with (4.10)2, (1 + |z − y|) ν(z − y) ≥ C |z′ − y′|2 ≥ C |z′|2. Hence by (4.8) we get
|∂αb̃(z − y)| ≤ C |z′|−5/2−|α|−2κ0 for such y. Since

∫
R3 H(y, t) dy = 1, we may conclude

that B1 ≤ C |z′|−5/2−|α|−2κ0 . Using that |y′| ≥ |z′|/2 for y ∈ G, we deduce from (4.8)
and (4.10) that B2 ≤ C |z′|−5/2−|α| ∫

R3 |y1|−1/2 (1 + |z− y|)−1/2−κ0/2 (1 + |z′− y′|)−2−κ0 dy.
According to what we showed further above, this integral is bounded independently of
z. Thus we may conclude that B2 ≤ C |z′|−5/2−|α|. Turning to B3, we note that |y′| =
|z′|/2 for y ∈ ∂G, so we obtain with (4.10) and (4.8) that H(y, t) ≤ C |z′|−5/2 |y1|−1/2

and in addition |̃b(z − y)| ≤ C (1 + |z1 − y1|−1/2−κ0/2) |z′|−2−κ0 . As a consequence, B3 is
bounded by C |z′|−9/2−κ0 times the integral

∫
R |y1|−1/2 (1 + |y1 − z1|)−1/2−κ0/2 dy1 times

the arc length of {y′ ∈ R2 : |y′| = |z′|/2}. As was shown above, the preceding integral is
bounded independently of z1. Thus we get B3 ≤ C |z′|−7/2−κ0 . Combining the estimates of
B1, B2 and B3, we may conclude that |∂αzH(0)(z, t)| ≤ C(|z′|−5/2−|α|+|z′|−7/2−κ0). But the
assumptions z1 ≥ 0 and |z|−z1 ≥ 1 imply |z| ≥ 1 and |z′|2 = (|z|+z1) (|z|−z1) ≥ |z| ν(z)/2.

Therefore we arrive at the inequality |∂αzH(0)(z, t)| ≤ C
(
|z| ν(z)

)−5/4−|α|/2
we wanted to

show. This completes the proof of Theorem 4.4. �

Next we restate the representation formula proved in [17] for regular solutions of (1.1).

Theorem 4.5 ([17, Corollary 5.2]) Let A ⊂ BS0 be open, bounded, with Lipschitz
boundary, and put AR := BR\A for R ∈ [S0,∞). Let k0 ∈ N, and for 1 ≤ k ≤ k0, let %k ∈
(1,∞) and suppose that u(k) belongs to C0

(
[0, T0), L%k(A

c
)3
)
∩ W 1,1

loc

(
0, T0, L

%k(A
c
)3
)
.

Put u =
∑k0

k=1 u
(k). Let π : (0, T0) 7→ W 1,1

loc (A
c
), n0 ∈ N. For 1 ≤ j ≤ n0, let pj ∈ (1,∞)

and f (j) ∈ L1
loc

(
0, T0, L

pj (A
c
)3
)
. Suppose that u(s) ∈W 2,1

loc (A
c
)3 for a. e. s ∈ (0, T0), and

u′(s)−∆xu(s) + τ ∂x1u(s) +∇xπ(s) = f(s), divxu(s) = 0 for a. e. s ∈ (0, T0), (4.12)

with f :=
∑n0

j=1 f
(j), u′ :=

∑k0
k=1(u(k))′.

In addition suppose there is q1 ∈ (1,∞) such that ∇yu(s)|BR0

c ∈ Lq1(BR0

c
)9 for a. e.

s ∈ (0, T0) and ∇yu|AR0×(0, T0) ∈ L1
loc

(
[0, T0), Lq1(AR0)9

)
. Assume that u|AR0×(0, T0) ∈

L1
loc

(
0, T0, W

2,1(AR0)3
)
, π|AR0×(0, T0) ∈ L1

loc

(
0, T0, W

1,1(AR0)
)
, and there are numbers

a0 ∈ N, γj ∈ (1,∞) as well as functions π(j) : (0, T0) 7→ L1
loc(BR0

c
) for 1 ≤ j ≤ a0 such
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that

π(s)|BR0

c
=

a0∑
j=1

π(j)(s),

a0∑
j=1

∫
BR0

c

(
|π(j)(y, s)|

[
(1 + |y|) ln(2 + |y|)

]−1
)γj

dy <∞

for a. e. s ∈ (0, T0). Then there is a subset TT0 of (0, T0) of measure zero such that for
t ∈ (0, T0)\TT0 , the equation

u(x, t) = R(τ)(f)(x, t) + I(τ)
(
u(0)

)
(x, t)−

3∑
l=1

∂xlV
(τ)
(
n

(A)
l u)(x, t) (4.13)

−
∫
∂A

(∇N)(x− y)
(
n(A)(y) · u(y, t)

)
doy + KR0,S0,ϕ0,A,T0(u)(x, t)

−
∫
AR1

GR0,S0,ϕ0(x, y, t) · u(y, 0) dy −
∫ t

0

∫
AR1

GR0,S0,ϕ0(x, y, t− s) · f(y, s) dy ds

holds for x ∈ BR0

c\Nt, where Nt is some subset of BR0

c
with measure zero. The function

KR0,S0,ϕ0,A,T0(u) is defined in (4.4), and the function GR0,S0,ϕ0 in Theorem 4.2.

Finally we restate a tool which will help to extend the integral representation (4.13) to
solutions of (4.12) that are more general than the ones in the preceding theorem.

Lemma 4.9 ([17, Lemma 5.3]) Let A ⊂ BS0 be open, bounded, with Lipschitz bound-
ary. Let k0 ∈ N, %k ∈ (1,∞), u(k) ∈ C0

(
[0, T0), L%k(A

c
)3
)

for 1 ≤ k ≤ k0, and put

u =
∑k0

k=1 u
(k). Further suppose that u(s) ∈ W 1,1

loc (A
c
)3 for a. e. s ∈ (0, T0), divxu = 0,

and ∇xu|AR1 × (0, T0) ∈ L1
loc

(
[0, T0), Lq1(AR1)9

)
for some q1 ∈ (1,∞). Furthermore

let n0 ∈ N, pj ∈ (1,∞), f (j) ∈ L1
loc

(
[0, T0), Lpj (A

c
)3
)

for 1 ≤ j ≤ n0, and put

f :=
∑n0

j=1 f
(j).

Fix some function ζ ∈ C∞(R) with ζ|(−∞, 1] = 0, ζ|[2,∞) = 1, 0 ≤ ζ ≤ 1 and ζ ′ ≥ 0.

For ε ∈ (0,∞), r ∈ R, define ζε(r) := ζ(r/ε). Put u
(k)
ε (s) := ζε(s)u

(k)(s), uε(s) :=
ζε(s)u(s), fε(s) := ζε(s) f(s) and gε(s) := fε(s)+ζ ′ε(s)u(s) for s ∈ (0, T0), ε ∈ (0,∞), 1 ≤
k ≤ k0.

Let t ∈ (0, T0). Suppose there is some ε0 ∈ (0,∞) such that for ε ∈ (0, ε0], equation (4.13)
holds with u, f replaced by uε and gε, respectively, if x ∈ BR0

c\Nt,ε for some subset Nt,ε of
BR0

c
of measure zero. (This means in particular that the second from last term in (4.13)

vanishes.) Then there is some zero-measure set Nt ⊂ BR0

c
such that equation (4.13)

remains valid for u and f if x ∈ BR0

c\Nt.

5 Weak solutions of the Oseen system: representation for-
mula and pointwise spatial decay.

We begin by introducing a Lq-weak solution to (1.1), with assumptions chosen in such a
way that it will be possible to prove the representation formula (4.13) for this solution.
In order to deduce a decay estimate from this formula, we will require somewhat stronger
conditions (see Theorem 5.2). We again point out that T0, S0, R0, R1, ϕ0 and Ω are
introduced at the beginning of Section 2.
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Fix parameters n0, m0 ∈ N, p̃, q0, q1, p1, ..., pn0 , %1, ..., %m0 ∈ (1,∞), as well as func-
tions u : (0, T0) 7→ W 1,1

loc (Ω
c
)3, f (j) ∈ L1

loc

(
[0, T0), Lpj (Ω

c
)3
)

for 1 ≤ j ≤ n0, G
(l) ∈

C0
(

[0, T0), L%l(BS0

c
)3
)

for 1 ≤ l ≤ m0, U0 ∈ Lp̃(Ω
c
)3 with the following properties:

u|ΩS0 × (0, T0) ∈ L1
loc

(
[0, T0), Lq0(ΩS0)3

)
, divxu(t) = 0 and u(t)|BS0

c
=
∑m0

l=1G
(l)(t) for

t ∈ (0, T0), ∇xu ∈ L1
loc

(
[0, T0), Lq1(Ω

c
)3
)
, and equation (1.3) holds with f =

∑n0
j=1 f

(j).

The case m0 > 1 or n0 > 1 and the distinction between the functions G(l) on BS0

c×(0,∞)
with u(t)|BS0

c
=
∑m0

l=1G
(l)(t) on the one hand and u|ΩS0 × (0, T0) on the other one are

introduced in order to take account of some technical difficulties arising when the theory
in this work is applied to a nonlinear problem in [18] and when it is used in the proof
of Theorem 6.1, and in order to avoid any assumptions on ∂Ω stronger than Lipschitz
regularity. Any reader who wants to avoid these technicalities may consider the case that
∂Ω is smooth, u ∈ C0

(
[0, T0), Lq0(Ω

c
)3
)
, m0 = n0 = 1 and p1 = q1. All the main

difficulties of our proofs will then still be present.

Until further notice, we suppose that T0 =∞. It is only at the end of the present section
that we will turn to the case T0 <∞ (Corollary 5.2).

In the ensuing lemma, we cut off the functions u, f (j) and G(l) near the instant t = 0,
and then present the version of (1.3) satisfied by the extension of these modified functions
to the whole real axis. In the lemma after that, we apply Friedrich’s mollifier to these
extensions. Both lemmas mainly serve to introduce notation and collect obvious facts
which constitute the basis for the rest of this section.

Lemma 5.1 Fix some q ∈ (1,∞) with

q ≤ min({q0, q1, 5/4} ∪ {%l : 1 ≤ l ≤ m0} ∪ {pj : 1 ≤ l ≤ n0}).

Then the function u|ΩR × (0,∞) belongs to L1
loc

(
[0,∞), Lq(ΩR)3

)
and u|AR,S0 × [0,∞)

to C0
(

[0,∞), Lq(AR,S0)3
)
, for R ∈ [S0,∞).

Choose functions ζε for ε ∈ (0,∞) as in Lemma 4.9 For s, ε ∈ (0,∞), define uε(s) :=

ζε(s)u(s), f
(j)
ε (s) := ζε(s) f

(j)(s) (1 ≤ j ≤ n0) and G
(l)
ε (s) := ζε(s)G

(l)(s) (1 ≤ l ≤ m0),

pn0+1 := q, f
(n0+1)
ε := ζ ′ε(s)χΩS0

u(s), pn0+1+l := %l, f
(n0+1+l)
ε (s) := ζ ′ε(s) G̃

(l)(s) for

1 ≤ l ≤ m0, where G̃(l) denotes the zero extension of G(l) : BS0

c × [0,∞) 7→ R3 to

Ω
c×[0,∞). Then f

(n0+k)
ε ∈ L1

loc

(
[0,∞), Lpn0+k(Ω

c
)3
)

for 1 ≤ k ≤ m0+1, and ζ ′ε(s)u(s) =∑m0+1
k=1 f

(n0+k)
ε (s)

(
s ∈ (0,∞)

)
.

The functions uε(t), f
(j)
ε (t), G

(l)
ε (t), G̃

(l)
ε (t)

(
t ∈ (0,∞)

)
are extended by zero to the

real axis R (1 ≤ j ≤ n0 + m0 + 1, 1 ≤ l ≤ m0), without change of notation. Then

f
(j)
ε ∈ L1

loc

(
R, Lpj (Ωc

)3
)

for j ∈ {1, ..., n0 + m0 + 1}, G(l)
ε ∈ C0

(
R, L%l(BS0

c
)3
)

and

G̃
(l)
ε ∈ C0

(
R, L%l(Ωc

)3
)

for 1 ≤ l ≤ m0. In addition uε|ΩR × R ∈ L1
loc

(
R, Lq(ΩR)3

)
and uε|AR,S0 × R ∈ C0

(
R, Lq(AR,S0)3

)
for R ∈ [S0,∞), uε = χΩS0

uε +
∑m0

j=1 G̃
(l)
ε

and uε|BS0

c × R =
∑m0

l=1G
(l)
ε , u(s) ∈ W 1,1

loc (Ω
c
)3 for s ∈ R, divxuε = 0, ∇xuε ∈
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L1
loc

(
R, Lq1(Ω

c
)9
)
,∫

R

∫
Ω

c

(
−γ′(t)uε(t) · ϑ+ γ(t)

[
∇xuε(t) · ∇ϑ+ τ ∂x1uε(t) · ϑ (5.1)

−
n0+m0+1∑

j=1

f (j)
ε (t) · ϑ

])
dx dt = 0 for γ ∈ C∞0

(
R
)
, ϑ ∈ C∞0,σ(Ω

c
).

We remark that the functions f
(n0+1)
ε , ..., f

(n0+m0+1)
ε are perturbation terms which arise in

(5.1) due to the cut-off function ζε and the decomposition of u(s) into the sum χΩS0
u(s)+∑m0

l=1 G̃
(l). In the ensuing lemma, we use Friedrich’s mollifier with respect to the time

variable, as defined in the passage preceding Theorem 2.5. This mollifier is applied to
functions with domain R and values in Banach spaces, in this context spaces Lr(A)3, for
certain r ∈ (1,∞) and certain open subsets A of R3. The functions with index ε are those
introduced in Lemma 5.1.

Concerning uε, there is no Banach space B which we deem useful and which is such that
uε ∈ L1

loc(R, B). So we cannot directly apply our definition of Friedrich’s mollifier to uε.

Instead we use the equation uε = χΩS0
uε +

∑m0
j=1 G̃

(l)
ε in order to define a more regular

version of uε, denoted by uε,δ. Note that due to the relation ∇xuε ∈ L1
loc

(
R, Lq1(Ω

c
)3
)
,

no such problem arises with ∇xuε.

Lemma 5.2 Let ε, δ ∈ (0,∞). Put f
(j)
ε,δ := (f

(j)
ε )δ (1 ≤ j ≤ n0 + m0 + 1), G

(l)
ε,δ :=

(G
(l)
ε )δ, G̃

(l)
ε,δ := (G̃

(l)
ε )δ (1 ≤ l ≤ m0). Then, for j, l as before, the relations f

(j)
ε,δ ∈

C∞
(
R, Lpj (Ωc

)3
)
, G

(l)
ε,δ ∈ C

∞(R, L%l(BS0

c
)3
)

and G̃
(l)
ε,δ ∈ C

∞(R, L%l(Ωc
)3
)

hold. De-

fine uε,δ := (χΩS0
uε)δ +

∑m0
l=1 G̃

(l)
ε,δ. Then uε,δ|ΩR×R = (uε|ΩR×R)δ ∈ C∞

(
R, Lq(ΩR)3

)
for R ∈ [S0,∞), and uε,δ|BS0

c × R =
∑m0

l=1G
(l)
ε,δ. Moreover uε,δ(t) ∈ W 1,1

loc (Ω
c
)3 for

t ∈ R, ∂xkuε,δ = (∂xkuε)δ ∈ C∞
(
R, Lq1(Ω

c
)3
)

for 1 ≤ k ≤ 3, and divxuε,δ = 0.

Define s0 := n0 + 2m0 + 2, f
(n0+m0+2)
ε,δ := −(χΩS0

uε)
′
δ, pn0+m0+2 := q, f

(n0+m0+2+l)
ε,δ :=

−(G̃
(l)
ε,δ)
′ and pn0+m0+2+l := %l for 1 ≤ l ≤ m0. Then f

(j)
ε,δ ∈ C∞

(
R, Lpj (Ω

c
)3
)

for
n0 +m0 + 2 ≤ j ≤ s0.

For t ∈ R, the function uε,δ(t) satisfies (3.1) with A, U, F replaced by Ω
c
, uε,δ(t) and∑s0

j=1 f
(j)
ε,δ (t), respectively, and with λ = 0.

The last statement of the lemma is the crucial one. It means that uε,δ(t) is a weak solution
in Ω

c
of the stationary Oseen system, with right-hand side F as indicated.

Proof of Lemma 5.2: The regularity properties of f
(j)
ε,δ , G

(l)
ε,δ, G̃

(l)
ε,δ and uε,δ|ΩR×R follow

with Theorem 2.5 from the properties of f
(j)
ε , G

(l)
ε , G̃

(l)
ε and uε|ΩR × R, respectively, as

stated in Lemma 5.1 (1 ≤ j ≤ s0, 1 ≤ l ≤ m0 and R ∈ [S0,∞)). Lemma 2.2 and the

equation uε|BS0

c × R =
∑m0

l=1G
(l)
ε (t) (Lemma 5.1) yield that (uε|ΩR × R)δ = uε,δ|ΩR × R

for R ∈ [S0,∞) and uε,δ|BS0

c × R =
∑m0

l=1G
(l)
ε,δ.

Due to Theorem 2.3 and because the operator Ap,ψ : V 7→
∫

Ω
c ψ · V dx

(
V ∈ Lp(Ωc

)3
)

is linear and bounded if p ∈ (1,∞) and ψ ∈ C∞0 (Ω
c
)3, it is not hard to show that
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uε,δ(t) ∈ W 1,1
loc (Ω

c
)3 for t ∈ R and ∂xkuε,δ = (∂xkuε)δ for 1 ≤ k ≤ 3. It follows with

Theorem 2.5 and Lemma 5.1 that ∂xkuε,δ ∈ C∞
(
R, Lq1(Ω

c
)3
)

and divxuε,δ = 0. In
particular equation (3.1)2 holds.

Put K(1) := χΩS0
·uε, K(l) := G̃

(l)
ε for 2 ≤ l ≤ m0+1. Using the equation uε =

∑m0+1
l=1 K(l)

(Lemma 5.1), the linearity and boundedness of the operators Ap,ψ defined above, as well
as Theorem 2.3, we obtain∫

R

∫
Ω

c
∂s
(
ρδ(t− s)

)
uε(s) · ϑ dx ds = −

m0+1∑
l=1

∫
R

∫
Ω

c
ρ′δ(t− s)K(l)(x, s) · ϑ(x) dx ds

= −
m0+1∑
l=1

∫
Ω

c
ϑ ·
(
Lpm0+n0+1+j (Ω

c
)3 −

∫
R
ρ′δ(t− s)K(l)(s) ds

)
dx.

But by Theorem 2.5 and the definition of f
(j)
ε,δ for m0 + n0 + 2 ≤ j ≤ s0, the right-

hand side of the preceding equation equals
∑s0

j=m0+n0+2

∫
Ω

c f
(j)
ε,δ (t) · ϑ dx. This explains

the appearance of the terms f
(j)
ε,δ (t) with m0 + n0 + 2 ≤ j ≤ s0 on the right-hand side of

(3.1)1 with the replacements indicated in the lemma. All the other terms, on the left- and
right-hand side, arise from (5.1) in an obvious way, due to Theorem 2.3, the linearity and
boundedness of the operators Ap,ψ, and because of the equation ∂xkuε,δ = (∂xkuε)δ. �

Now we are in a position to deal with the main difficulty of this section, that is, to show
that uε,δ satisfies the representation formula (4.13). The notation from Lemma 5.1 and
5.2 will be used without further notice.

Theorem 5.1 Let ε, δ ∈ (0,∞). Then, for any t ∈ (0,∞), there is a set Nt ⊂ BR0

c
of

measure zero such that equation (4.13) holds for x ∈ BR0

c\Nt, with T0 = ∞, A = BS0

and u, f replaced by uε,δ|BS0

c × (0,∞) and
∑n0+m0+1

j=1 f
(j)
ε,δ |BS0

c × (0,∞), respectively.

Proof: Since Ω ⊂ BS0 by the choice of S0 at the beginning of Section 2, we may fix

S1 ∈ (0, S0) with Ω ⊂ SS1 . Let t ∈ R. For brevity, we set U := uε,δ(t), F
(j) := f

(j)
ε,δ (t)

for 1 ≤ j ≤ s0. Due to the choice of q in Lemma 5.1 and by the properties of uε,δ and

f
(j)
ε,δ (Lemma 5.2), we have U ∈ W 1,q

loc (Ω
c
)3, ∇U ∈ Lq1(Ω

c
)9, F (j) ∈ Lqloc(Ω

c
)3 ∩ Lpj (Ωc

)3

for 1 ≤ j ≤ s0, and the function U satisfies (3.1) with λ = 0 and with A, F replaced by
Ω
c

and
∑s0

j=1 F
(j), respectively. Thus, by Theorem 3.4, there is Π ∈ Lploc(Ω

c
)3 such that

(3.2) holds with A = Ω
c
, λ = 0 and F =

∑s0
j=1 F

(j). Since the latter equation remains
valid when we replace Π by Π + c, for any number c ∈ R, we may assume in addition that∫
AS0,S1

Π dx = 0. Equation (3.2) is valid in particular for ϑ ∈ C∞0 (AS0,S1)3. Therefore,

according to Theorem 3.4, this function Π satisfies the estimate

‖Π|AS0,S1‖q ≤ C(q, S0, S1) (‖∇U |AS0,S1‖q + ‖
s0∑
j=1

F (j)|AS0,S1‖q). (5.2)

Due to (3.2) and the regularity properties indicated above for U, F (j) and Π, Theorem
3.5 now yields that U ∈ W 2,q

loc (Ω
c
)3, Π ∈ W 1,q

loc (Ω
c
) and the pair (U,Π) solves (3.4) in Ω

c

with λ = 0 and F =
∑s0

j=1 F
(j). We may choose a function ϕ̃ ∈ C∞(R3) with 0 ≤ ϕ̃ ≤
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1, ϕ̃|BS1+(S0−S1)/4 = 0, ϕ̃|Bc
S1+(S0−S1)/2 = 1. Since Ω ⊂ BS1 and supp(∂αϕ̃) ⊂ AS0,S1 for

α ∈ N3
0 with α 6= 0, and by the regularity properties of U and Π just derived, the function

F̃ := −∆ϕ̃ U − 2(∇ϕ̃ · ∇Uj)1≤j≤3 + τ ∂1ϕ̃ U + Π∇ϕ̃ (5.3)

belongs to W 1,q(R3), as does ∇ϕ̃ · U. In addition supp(F̃ ) ∪ supp(∇ϕ̃ · U) ⊂ AS0,S1 . Put

W̃ := N ∗ (∇ϕ̃ · U); see Theorem 3.1. Since q < 3/2 by the choice of q in Lemma 5.1, we

know by Theorem 3.1 that W̃ is well defined and

W̃ ∈W 3,q
loc (R3), ∇W̃ ∈ L(1/q−1/3)−1

(R3)3, ∂l∂mW̃ ∈W 1,q(R3)9, (5.4)

∆W̃ = −∇ϕ̃ · U, ‖∂k∂l∂mW̃‖q + ‖∂k∂lW̃‖q ≤ C(q) ‖∇ϕ̃ · U‖1,q (1 ≤ k, l,m ≤ 3).

We put

Ũ := ϕ̃ U +∇W̃ , Π̃ := ϕ̃Π, F̃ (j) := ϕ̃ F (j) for 1 ≤ j ≤ s0, (5.5)

ps0+1 := q, F̃ (s0+1) := F̃ −∆∇W̃ + τ ∂1∇W̃ .

Note that div∇W̃ = ∆W̃ = −∇ϕ̃ · U, hence div Ũ = 0. As a consequence of these
observations and definitions, we have Ũ ∈ W 2,q

loc (R3)3, Π̃ ∈ W 1,q
loc (R3), F̃ (j) ∈ Lpj (R3)3 for

1 ≤ j ≤ s0 + 1, ϕ̃ U |Bc
S0

= U |Bc
S0
, Π̃|Bc

S0
= Π|Bc

S0
, and the pair (Ũ , Π̃) solves (3.4) in R3

with λ = 0 (stationary Oseen system) and with F =
∑s0+1

j=1 F̃ (j). Since F̃ (j) ∈ Lpj (R3)3

for 1 ≤ j ≤ s0 + 1, Theorem 3.7 yields functions W (j) ∈ W 2,pj
2 (R3)3, Π(j) ∈ W 1,pj

1 (R3)
such that ∂1W

(j) ∈ Lpj (R3)3, equation (3.4) is satisfied in R3 with U, Π, F replaced by
W (j), Π(j), F̃ (j), respectively, and the inequality

‖∂l∂mW (j)‖pj + ‖Π(j)‖
W

1,pj
1 (R3)

≤ C(τ, pj) ‖F̃ (j)‖pj (1 ≤ l,m ≤ 3, 1 ≤ j ≤ s0 + 1) (5.6)

holds. Then U := Ũ −
∑s0+1

j=1 W (j) ∈ W 2,q
loc (R3)3, Π := Π̃ −

∑s0+1
j=1 Π(j) ∈ W 1,q

loc (R3), and

−∆U + τ ∂1U +∇Π = 0, divU = 0 in R3. It follows with Theorem 3.6 that Π is a C∞-
function. Let us specify in which way the function U satisfies the assumptions of Theorem
3.8. Put qj(0) := qj(1) := pj for j ∈ {1, ..., s0 + 1}. Then the definition of the space

W
2,pj
2 (R3) implies that

∫
Bc

R0

(
|∂αW (j)(x)|

[
(1 + |x|)2−|α| ln(2 + |x|)

]−1 )qj(|α|)
dx <∞ for

α ∈ N3
0 with |α| ≤ 1 and 1 ≤ j ≤ s0 + 1. Put

q̃ := max({pj : 1 ≤ j ≤ n0} ∪ {(1/q − 1/3)−1} ∪max({%l : 1 ≤ l ≤ m0}) (5.7)

and ε0 := 1/(2 q̃). By the choice of pn0+1, ..., ps0+1 (Lemma 5.1, 5.2, (5.5)), this means in
particular that q̃ ≥ pj for 1 ≤ j ≤ s0 + 1, and q̃ ≥ q. Obviously 1 + |x| ≤ C(R0) |x| and
ln(2 + |x|) ≤ C(R0, ε0) |x|ε0 for x ∈ Bc

R0
. Thus we may conclude for 1 ≤ j ≤ s0 + 1 that∫

Bc
R0

(
|∂αW (j)(x)| |x|−2−ε0 )qj(|α|)

dx <∞ for α ∈ N3
0 with |α| ≤ 1. (5.8)

Next we put W (s0+2) := −∇W̃ , qs0+2(0) := (1/q − 1/3)−1, qs0+2(1) := q. Then, due
to (5.4), the relation in (5.8) is valid for j = s0 + 2 as well. Since ∇U ∈ Lq1(Ω

c
)3 as
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mentioned above, ϕ̃|Bc
S0

= 1 and R0 > S0, we get
∫
Bc

R0

(
|∇(ϕ̃ U)(x)| |x|−2−ε0|

)q1 dx <∞.
We further note that by the definition of Ũ (see (5.5)), U and W (s0+2), the equation ∇U =
∇(ϕ̃ U)−

∑s0+2
j=1 ∇W (j) holds. Thus, if in Theorem 3.8 we replace U, m0,

(
V (m)

)
1≤m≤m0

by U, s0+3,
(

(∂µ[ϕ̃ Uσ])1≤µ, σ≤3, (∂µW
(1)
σ )1≤µ, σ≤3, ..., (∂µW

(s0+2)
σ )1≤µ, σ≤3

)
, respectively,

the assumptions on ∇U are satisfied with r = 2 + ε0. Concerning those on U , we recall
that by the definition of U and uε,δ, we have ϕ̃ U = −

∑s0+3+m0
j=s0+3 W (j), with W (s0+3) :=

−ϕ̃ (χΩS0
uε)δ(t), W

(s0+3+l) := −ϕ̃ G̃(l)
ε,δ(t) for 1 ≤ l ≤ m0. Lemma 5.2 yields W (j) ∈

Lpj(0)(R3)3 for s0 + 3 ≤ j ≤ s0 + 3 + m0, with ps0+3(0) := q, ps0+3+l(0) := %l for
1 ≤ l ≤ m0. It follows the relation in (5.8) holds for s0 + 3 ≤ j ≤ s0 + 3 +m0 with α = 0.
Moreover, with the definition of Ũ and W (s0+2) we get that Ũ = −

∑s0+3+m0
j=s0+2 W (j). Now

the definition of U yields that U = −
∑s0+m0+3

j=1 W (j). Therefore the assumptions on U

in Theorem 3.8 are satisfied with U, s0 + m0 + 3, (−W (k))1≤k≤s0+m0+3 in the role of
U, k0, (U (k))1≤k≤k0 , respectively, and with r = 2 + ε0. At this point Theorem 3.8 yields
that U is a polynomial. By the definitions in (5.7) and the choice of the exponents qj(0),
we have q̃ = max{qj(0) : 1 ≤ j ≤ s0 + 3 + m0} and ε0 ∈ (0, 1/q̃). Thus it follows from
(5.8) with α = 0, 1 ≤ j ≤ s0 +m0 + 3 and from Lemma 3.2 that the degree of U cannot
exceed 1. As a first consequence of this result, we get ∂αU = 0 for α ∈ N3

0 with |α| = 2.

Since U = ϕ̃ U −
∑s0+2

j=1 W (j), ϕ̃|Bc
S0

= 1 and W (s0+2) = −∇W̃ , we thus find

∂αU |Bc
S0

= −∂α(∇W̃ ) +
∑s0+1

j=1
∂αW (j)|Bc

S0
for α ∈ N3

0 with |α| = 2. (5.9)

It further follows there is c1 ∈ R with ∂1U = c1. Again we recall that ϕ̃|Bc
S0

= 1, S0 < R0

and ∇U ∈ Lq1(Ω
c
)9, so ∂1(ϕ̃ U)|Bc

R0
∈ Lq1(Bc

R0
)3. Moreover ∂1W

(s0+2) = ∂1∇W̃ ∈
Lq(R3)3 (see (5.4)), and ∂1W

(j) ∈ Lpj (R3)3 for 1 ≤ j ≤ s0 +1 because W (j) ∈W 2,pj
2 (R3)3.

It follows from Lemma 3.3 and the equation U = ϕ̃ U −
∑s0+2

j=1 W (j) that c1 vanishes.

Recalling that −∆U + τ ∂1U +∇Π = 0, we thus obtain ∇Π = 0. Since Π ∈ C∞(R3), as
shown above, we may conclude there is c ∈ R with Π = c. But Π = ϕ̃Π −

∑s0+1
j=1 Π(j) by

the definition of Π, so we arrive at the equation

Π− c|BS0

c
=
∑s0+1

j=1
Π(j)|BS0

c
. (5.10)

We have ‖Π(j)|AR0,S0‖1 ≤ C(R0, S0, pj) ‖Π(j)|AR0,S0‖pj by Hölder’s inequality, and obvi-
ously

‖Π(j)|AR0,S0‖pj ≤ C(R0, S0, pj)
(∫

AR0,S0

(
|Π(j)(x)|

[
(1 + |x|) ln(2 + |x|)

]−1 )pj dx)1/pj
,

so ‖Π(j)|AR0,S0‖1 ≤ C(R0, S0, pj) ‖Π(j)‖
W

1,pj
1 (R3)

, for 1 ≤ j ≤ s0 + 1. Similarly

‖∇Π(j)|AR0,S0‖1 ≤ C(R0, S0, pj) ‖∇Π(j)|AR0,S0‖pj ≤ C(R0, S0, pj) ‖∇Π(j)‖pj ,

hence ‖∇Π(j)|AR0,S0‖1 ≤ C(R0, S0, pj) ‖Π(j)‖
W

1,pj
1 (R3)

(1 ≤ j ≤ s0 + 1). These estimates

and (5.6) yield ‖Π(j)|AR0,S0‖1,1 ≤ C(S0, R0, pj , τ) ‖F̃ (j)‖pj for j as before. Due to (5.10),
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we thus get

‖Π− c|AR0,S0‖1,1 ≤ C(S0, R0, p1, ..., ps0+1, τ)
∑s0+1

j=1
‖F̃ (j)‖pj . (5.11)

In the rest of this proof, the constants denoted by C only depend on S1, S0, R0, q, q1, p1,
..., ps0 or τ . Once more starting with Hölder’s inequality, then using (5.4) and the relations
q ≤ q1 (Lemma 5.1) and ∂lU = (∂xluε)δ(t) (Lemma 5.2), we get

‖∂k∂l∂mW̃ |AR0,S0‖1 ≤ C ‖∂k∂l∂mW̃ |AR0,S0‖q ≤ C ‖∂k∂l∂mW̃‖q ≤ C ‖∇ϕ̃ · U‖1,q (5.12)

≤ C ‖U |AS0,S1‖1,q ≤ C (‖U |ΩS0‖q + ‖∇U‖q1) ≤ C (‖U |ΩS0‖q +
∑3

l=1
‖(∂xluε)δ(t)‖q1).

Obviously with (5.6), ‖∂αW (j)|AR0,S0‖1 ≤ C ‖∂αW (j)|AR0,S0‖pj ≤ C ‖F̃ (j)‖pj for 1 ≤ j ≤
s0 + 1, α ∈ N3

0, |α| = 2. Now we may conclude with (5.9) that

‖∂αU |AR0,S0‖1 ≤ C (‖U |ΩS0‖q +
∑3

l=1
‖(∂xluε)δ(t)‖q1 +

∑s0+1

j=1
‖F̃ (j)‖pj ) (5.13)

for α as before. As in the last two inequalities in (5.12), we obtain that ‖U |AR0,S0‖1,1 is
bounded by the right-hand side of (5.12). This observation, (5.13) and (5.11) yield

‖U |AR0,S0‖2,1 + ‖Π− c|AR0,S0‖1,1 (5.14)

≤ C(τ, S0, R0, q, q1, p1, ..., ps0) (‖U |ΩS0‖q +

3∑
l=1

‖(∂xluε)δ(t)‖q1 +

s0+1∑
j=1

‖F̃ (j)‖pj ).

Let us estimate ‖F̃ (s0+1)‖ps0+1 . (See (5.5) for the definition of F̃ (s0+1) and ps0+1.) By (5.4)
and the last four inequalities in (5.12), we get

‖∆∇W̃‖q + ‖∂1∇W̃‖q ≤ C(q) ‖∇ϕ̃ · U‖1,q ≤ C (‖U |ΩS0‖q +
3∑
l=1

‖(∂xluε)δ(t)‖q1). (5.15)

With F̃ defined in (5.3), we further find that ‖F̃‖q ≤ C (‖U |AS0,S1‖1,q + ‖Π|AS0,S1‖q).
The quantity ‖Π|AS0,S1‖q was evaluated in (5.2). In view of the right-hand side of this
inequality, and by an estimate of ‖U |AS0,S1‖1,q as in the last two inequalities in (5.12), we

may conclude that ‖F̃‖q ≤ C (‖U |ΩS0‖q +
∑3

l=1 ‖(∂xluε)δ(t)‖q1 +
∑s0

j=1 ‖F (j)|AS0,S1‖q). It
follows with the preceding inequality, (5.15), (5.5) and the choice of q in Lemma 5.1 that

‖F̃ (s0+1)‖ps0+1 = ‖F̃ (s0+1)‖q ≤ C (‖U |ΩS0‖q +

3∑
l=1

‖(∂xluε)δ(t)‖q1 +

s0∑
j=1

‖F (j)‖pj ). (5.16)

Since 0 ≤ ϕ̃ ≤ 1, we deduce from the definition of F̃ (j) in (5.5) that ‖F̃ (j)‖pj ≤ ‖F (j)‖pj
for 1 ≤ j ≤ s0. Returning to the notation uε,δ(t) and f

(j)
ε,δ (t) introduced at the beginning

of this proof to replace U and F (j), respectively (1 ≤ j ≤ s0), and putting πε,δ(t) := Π− c,
we thus obtain from (5.16) and (5.14) that

‖uε,δ(t)|AR0,S0‖2,1 + ‖πε,δ(t)|AR0,S0‖1,1 (5.17)

≤ C(τ, S1, S0, R0, q, q1, p1, ..., ps0) (‖uε,δ(t)|ΩR0‖q +
3∑
l=1

‖(∂xluε)δ(t)‖q1 +

s0∑
j=1

‖f (j)
ε,δ (t)‖pj ).
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In addition, equation (5.10) takes the form πε,δ(t)|BS0

c
=
∑s0+1

j=1 Π(j)|BS0

c
. Since Π(j) ∈

W 1,1
1 (R3), we have in particular that

∫
BS0

c

(
|Π(j)(y)|

[
(1 + |y|) ln(2 + |y|)

]−1 )pj dy <

∞ (1 ≤ j ≤ s0 + 1). By what was shown for U and Π at the beginning of this proof, the
relations uε,δ(t) ∈ W 2,q

loc (Ω
c
)3 and πε,δ(t) ∈ W 1,q

loc (Ω
c
) hold, and the pair

(
uε,δ(t), πε,δ(t)

)
solves (3.4) in Ω

c
, with λ = 0 (stationary Oseen system) and F =

∑s0
j=1 f

(j)
ε,δ (t).

Recall that G
(l)
ε,δ ∈ C

∞(R, L%l(BS0

c
)3
)

for 1 ≤ l ≤ m0, uε,δ|BS0

c × R =
∑m0

j=1G
(l)
ε,δ and

f
(j)
ε,δ ∈ C

∞(R, Lpj (Ωc
)3
)

for 1 ≤ j ≤ n0+m0+1 (Lemma 5.2). Since f
(n0+m0+2)
ε,δ (t)|BS0

c
=

0 and f
(n0+m0+2+l)
ε,δ (t)|BS0

c
= −(G

(l)
ε,δ)
′(t) for 1 ≤ l ≤ m0, t ∈ R (Lemma 5.2), we obtain

that (uε,δ|BS0

c × R)′(t) = −
∑n0+2m0+2

j=n0+m0+2 f
(j)
ε,δ (t)|BS0

c
. This equation, the relation s0 =

n0 + 2m0 + 2 and the fact that the pair
(
uε,δ(t), πε,δ(t)

)
solves (3.4) in Ω

c
with λ = 0

and F =
∑s0

j=1 f
(j)
ε,δ (t) and with t arbitrary in R, allow us to conclude that the pair(

uε,δ|BS0

c × (0,∞), πε,δ|BS0

c × (0,∞)
)

solves the time-dependent Oseen system (4.12)

with A = BS0 and f =
∑n0+m0+1

j=1 f
(j)
ε,δ |BS0

c × (0,∞), without any exceptional values of
t. In particular the equation divxu(t) = 0 holds for any t ∈ (0,∞), without exceptional
values.

Lemma 5.2 states in particular that the function ∇xuε,δ belongs to C∞
(
R, Lq1(Ω

c
)9
)

and uε,δ|ΩR0 × R to C∞
(
R, Lq(ΩR0)3

)
. Thus the right-hand side of (5.17) is integrable

with respect to t ∈ J for any bounded interval J ⊂ R. Therefore we may conclude from
(5.17) that uε,δ|AR0,S0 × (0,∞) ∈ L1

loc

(
[0,∞), W 2,1(AR0,S0)3

)
and πε,δ|AR0,S0 × (0,∞) ∈

L1
loc

(
[0,∞), W 1,1(AR0,S0)

)
.

Thus all assumptions of Theorem 4.5 are verified with obvious replacements, in particular
with BS0 in the role of A. The theorem now follows from Theorem 4.5. �

Next we show that (4.13) remains valid when δ tends to zero.

Lemma 5.3 Let ε, t ∈ (0,∞). Then there is a set Nt,ε ⊂ BR0

c
of measure zero such that

equation (4.13) holds for x ∈ BR0

c\Nt,ε, with T0 = ∞, A = BS0 and u, f replaced by

uε|BS0

c × (0,∞) and
∑n0+m0+1

j=1 f
(j)
ε |BS0

c × (0,∞), respectively.

Proof: Abbreviate G := GR0,S0,ϕ0 , with GR0,S0,ϕ0 defined in Theorem 4.2. Recall that
R1 := (S0 + R0)/2, as defined at the beginning of Section 2. Let l ∈ {1, ..., m0}, k ∈
{1, 2, 3}, j ∈ {1, ..., n0 + m0 + 1}, v ∈ {G(l)

ε , ∂xkuε, f
(j)
ε }. Put p := %l, A := BS0

c

if v = G
(l)
ε , p := q1, A := Ω

c
if v = ∂xkuε, and p := pj , A := Ω

c
if v = f

(j)
ε . Due

to this choice of p and A, and by Lemma 5.1, the relation v ∈ L1
loc

(
R, Lp(A)3

)
holds.

As a consequence χ(−1, t+1) v ∈ L1
(
R, Lp(A)3

)
. Therefore we get by Theorem 2.5 that

‖χ(−1, t+1) v − (χ(−1, t+1) v)δ‖p,1;R → 0 (δ ↓ 0). But for δ ∈ (0, 1], s ∈ (0, t), we have
(χ(−1, t+1) v)δ(s) = vδ(s), so ‖vδ − v|A× (0, t)‖p,1;t → 0 (δ ↓ 0). Thus we have shown that

‖G(l)
ε,δ −G

(l)
ε |BS0

c × (0, t)‖%l,1;t → 0, ‖(∂xkuε)δ − ∂xkuε|Ω
c × (0, t)‖q1,1;t → 0, (5.18)

‖f (j)
ε,δ − f

(j)
ε |Ω

c × (0, t)‖pj ,1;t → 0 (δ ↓ 0) for 1 ≤ l ≤ m0, 1 ≤ k ≤ 3, 1 ≤ j ≤ n0 +m0 + 1.

In particular, since ∂xkuε,δ = (∂xkuε)δ according to Lemma 5.2, we deduce from (5.18)
that ‖∂xkuε,δ − ∂xkuε|Ω

c× (0, t)‖q1,1;t → 0 (δ ↓ 0) for 1 ≤ k ≤ 3. At this point, recall that
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uε|BS0

c×R =
∑m0

l=1G
(l)
ε (Lemma 5.1), and uε,δ|BS0

c×R =
∑m0

l=1G
(l)
ε,δ (Lemma 5.2). Using

the parameter q introduced in Lemma 5.1, and observing that q ≤ %l for 1 ≤ l ≤ m0, we
may thus further conclude from (5.18) that ‖uε,δ − uε|AR,S0 × (0, t)‖q,1;t → 0 (δ ↓ 0) for

any R ∈ [S0,∞). For l ∈ {1, ..., m0}, since G̃
(l)
ε (t) = uε(0) = 0 if t ∈ (−∞, ε], we have

G̃
(l)
ε,δ(t) = (χΩS0

uε)δ(t) = 0 for t ∈ (−∞, ε/2], δ ∈ (0, ε/2], hence (uε,δ − uε)(0) = 0, and

thus I(τ)
(

(uε,δ − uε)(0)|BS0

c )
= 0, for δ ∈ (0, ε/2]. Since G(l) ∈ C0

(
R, L%l(BS0

c
)3
)
, the

last statement in Theorem 2.5 yields that ‖(G(l)
ε,δ −G

(l)
ε )(t)‖%l → 0 (δ ↓ 0) for 1 ≤ l ≤ m0.

Again because q ≤ %l, it follows that ‖(G(l)
ε,δ − G

(l)
ε )(t)|AR,S0‖q → 0 (δ ↓ 0) for 1 ≤ l ≤

m0, R ∈ [S0,∞), and thus with Lemma 5.2 ‖
(
uε,δ − uε|AR,S0 × (0,∞)

)
(t)‖q → 0 (δ ↓ 0)

for the same range of R.

Let x ∈ Bc
R0
. By Theorem 4.2, the function y 7→ G(x, y, 0) (y ∈ BR1) belongs to

Lq
′
(BR1)3, so we may conclude that

∫
AR1,S0

G(x, y, 0) · (uε,δ − uε)(y, t) dy → 0 for δ ↓ 0.

Since ‖uε,δ − uε|ΩR × (0, t)‖q,1;t → 0 and ‖∂ykuε,δ − ∂ykuε|Ω
c × (0, t)‖q1,1;t → 0 for

δ ↓ 0 if 1 ≤ k ≤ 3, R ∈ [S0,∞), as shown above, inequality (4.3) in Theorem 4.2
yields that

∫ t
0

∫
AR1,S0

∂yσk∂
1−σ
s G(x, y, t − s) · (∂yµkuε,δ − ∂y

µ
kuε)(y, s) dy ds → 0 (δ ↓ 0) for

σ, µ ∈ {0, 1}, k ∈ {1, 2, 3}. Altogether we arrive at the relation K(uε,δ − uε)(x, t) →
0 (δ ↓ 0), with K(uε,δ − uε) = KR0,S0,ϕ0,BS0

,T0(uε,δ − uε) defined in (4.4). Recall that

(uε,δ − uε)(0) = 0 for δ ∈ (0, ε/2], so
∫
AR1,S0

G(x, y, t) · (uε,δ − uε)(y, 0) dy → 0 (δ ↓ 0).

Since ‖f (j)
ε,δ − f

(j)
ε ‖pj ,1;t → 0 (δ ↓ 0) (see above), we may apply (4.3) again, to obtain that∫ t

0

∫
AR1,S0

G(x, y, t − s) · (f (j)
ε,δ − f

(j)
ε )(y, s) dy ds → 0 (δ ↓ 0) (j ∈ {1, ..., n0 + m0 + 1}).

Using the function ϕ0 ∈ C∞0 (BR1) fixed at the beginning of this section, we set E(y) :=(
−(∂jN)(x− y) ∂kϕ0(y) + (∂k∂jN)(x− y)ϕ0(y)

)
1≤j,k≤3

for y ∈ BR1 . Since x ∈ Bc
R0
, this

function E is well defined and belongs to C1(BR1)3×3. Hence, by the Divergence theorem
and because divx(uε,δ − uε) = 0,∫

∂S0

(∇N)(x− y) ·
(
S−1

0 y · (uε,δ − uε)(y, t)
)
doy =

∫
AR1,S0

E(y) · (uε,δ − uε)(y, t) dy.

Again referring to the relation ‖
(
uε,δ − uε|AR1,S0 × (0,∞)

)
(t)‖q → 0 (δ ↓ 0), it follows

that
∫
∂S0

(∇N)(x− y) ·
(
S−1

0 y · (uε,δ − uε)(y, t)
)
doy → 0 (δ ↓ 0). By Lemma 4.7, we find

Kδ :=
∣∣∣ 3∑
l=1

∂xlV
(τ,BS0

)
(
n

(BS0
)

l (uε,δ − uε)
)
(x, t)

∣∣∣
≤ C

(
‖uε,δ − uε|AR1,S0 × (0, t)‖q,1;t + ‖∇y(uε,δ − uε)|AR1,S0 × (0, t)‖q,1;t

)
for δ ∈ (0,∞), with the constant C independent of u (and also of x and t, but this is not
relevant here). Hence Kδ → 0 (δ ↓ 0) by what we have proved above for the convergence
of uε,δ − uε and ∇x(uε,δ − uε), and because q ≤ q1.

Up to this point, x was arbitrary but fixed in Bc
R0
. Since ‖f (j)

ε,δ − f
(j)
ε |Ω

c × (0, t)‖pj ,1;t → 0

for δ ↓ 0 by (5.18), Lemma 4.4 yields ‖R(τ)(f
(j)
ε,δ − f

(j)
ε )(t)‖pj → 0 (δ ↓ 0), for 1 ≤

j ≤ n0 + m0 + 1. Recalling that ‖
(
uε,δ − uε|AR,S0 × (0,∞)

)
(t)‖q → 0 (δ ↓ 0) for R ∈

[S0,∞), we see there is a zero-measure set Mt,ε ⊂ R3 and a sequence (δn) in (0,∞) with
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δn → 0 such that R(τ)(f
(j)
ε,δn
− f

(j)
ε )(x, t) → 0 (n → ∞) and (uε,δ − uε)(x, t) → 0 for

x ∈ BS0

c\Mt,ε, 1 ≤ j ≤ n0 + m0 + 1. By Theorem 5.1, for any n ∈ N, there is a set
Nt,n ⊂ BR0

c
of measure zero such that equation (4.13) holds for x ∈ BR0

c\Nt,n, with
A = BS0 , with uε,δn |BS0

c× (0,∞), πε,δn |BS0

c× (0,∞) in the role of u and π, respectively,

with n0 replaced by n0 + m0 + 1, and the functions f (j) (1 ≤ j ≤ n0) by f
(j)
ε,δn
|BS0

c ×
(0,∞) (1 ≤ j ≤ n0 +m0 +1). (The function π only appears in the assumptions of equation
(4.13), not in the equation itself.) Letting n tend to zero in that equation, we may conclude

by the preceding convergence results that (4.13) is satisfied by uε, πε, f
(j)
ε as well, in the

way stated in the lemma. �

Finally we let ε tend to zero in (4.13).

Corollary 5.1 Let t ∈ (0,∞). Then there is a zero-measure set Nt ⊂ BR0

c
such that

equation (4.13) holds for x ∈ BR0

c\Nt, with T0 =∞, A = BS0 , and with u, f replaced by
u|BS0

c × (0,∞), f =
∑n0

j=1 f
(j)|BS0

c × (0,∞), respectively,

Proof: By definitions in Lemma 5.1, the equation ζ ′ε u(s)|BS0

c
=
∑n0+m0+1

j=n0+1 f
(j)
ε (s)|BS0

c

holds for s ∈ (0,∞). (Actually f
(n0+1)
ε |BS0

c × R = 0, but this does not matter here.)
Therefore Lemma 5.3 implies that for any ε ∈ (0,∞), there is a set Nt,ε ⊂ BR0

c
of

measure zero such that equation (4.13) holds for x ∈ BR0

c\Nt,ε with T0 = ∞, A = BS0

and with u, f replaced by uε|BS0 × (0,∞) and gε, respectively, where the function gε is

defined by gε(s) :=
∑n0

j=1 f
(j)
ε (s) + ζ ′ε(s)u(s)|BS0

c
for s ∈ (0,∞). We recall that G(l) ∈

C0
(

[0,∞), L%l(BS0

c
)3
)

for 1 ≤ l ≤ m0 and u(s)|BS0

c
=
∑m0

l=1G
(l)(s) for s ∈ (0,∞). Thus

we see that all assumptions of Lemma 4.9 are valid with A, u, f (j) (1 ≤ j ≤ n0) replaced
by BS0 , u|BS0

c × (0,∞) and f (j)|BS0

c × (0,∞) (1 ≤ j ≤ n0), respectively, with m0 in the
role of k0 and G(l) (1 ≤ l ≤ m0) in that of u(l) (1 ≤ l ≤ k0). Lemma 4.9 implies that there
is a measurable set Nt ⊂ BR0

c
with properties as stated in the corollary. �

Up to now, we considered the case T0 = ∞ in our assumptions at the beginning of this
section. But in the present context, the transition from this case to the case T0 < ∞ is
easy to perform:

Corollary 5.2 Suppose that T0 < ∞. Then, for t ∈ (0, T0), there is a zero-measure
set Nt ⊂ BR0

c
such that equation (4.13) holds for x ∈ BR0

c\Nt, with A = BS0 , f =∑n0
j=1 f

(j)|BS0

c × (0, T0), and with u replaced by u|BS0

c × (0, T0).

Proof: Let T ′ ∈ (0, T0), and choose a function ζ ∈ C∞(R) such that ζ equals 1 on the
interval

(
−∞, T ′ + (T0 − T ′)/4

)
and vanishes on

(
T ′ + (T0 − T ′)/2, ∞

)
. Define ũ(s) :=

ζ(s)u(s), f̃ (j)(s) := ζ(s) f (j)(s), G̃(l)(s) := ζ(s)G(l)(s), f̃ (n0+1)(s) := ζ ′(s)χΩS0
u(s)

and f̃ (n0+1+l)(s) := ζ ′(s)G
(l)

(s), for 1 ≤ j ≤ n0, 1 ≤ l ≤ k0, s ∈ (0, T0), where G
(l)

denotes the zero extension of G(l) to Ω × (0, T0). On [T0,∞), the value zero is assigned
to these functions. Then all assumptions listed at the beginning of this section are valid
with T0, n0 replaced by ∞ and n0 + m0 + 1, respectively, and with ũ, f̃ (j) (1 ≤ j ≤
n0 + m0 + 1), G̃(l) (1 ≤ l ≤ m0) in the role of u, f (j) (1 ≤ j ≤ n0), G(j) (1 ≤ l ≤ m0),
respectively. Now Corollary 5.1 yields Corollary 5.2 with T ′ in the place of T0. Since T ′

was taken arbitrarily in (0, T0), the proof is complete. �
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Let us consider the relationship between U0 and u(0).

Corollary 5.3 For x ∈ BR0

c
, t ∈ (0,∞), the equation

I(τ)
(
u(0)− U0|BS0

c
)(x, t) +

∫
AR1,S0

G(x, y, t) ·
(
U0(y)− u(y, 0)

)
dy = 0 (5.19)

and the inequality∣∣ ∂αx [ I(τ)
(
U0 − u(0)|BS0

c ) ]
(x, t)

∣∣ ≤ C ‖U0 − u(0)|AR1,S0‖min{p̃,q}
(
|x| ν(x)

)−3/2−|α|/2

hold, with the parameter q defined in Lemma 5.1, and with p̃ introduced at the beginning
of this section in the assumption U0 ∈ Lp̃(Ω

c
)3. The constant C is independent of u, U0, x

and t. There is a function Π ∈W 1,1
loc (BS0

c
) such that U0 − u(0)|BS0

c
= ∇Π.

Proof: Let ϑ ∈ C∞0,σ(BS0

c
). We show that

∫
BS0

c U0 · ϑ dx =
∫
BS0

c u(0) · ϑ dx. Take T ∈
(0, T0). Since ∇xu is in L1

loc

(
[0, T0), Lq1(Ω

c
)9
)

and f (j) in L1
loc

(
[0, T0), Lpj (Ω

c
)3
)

for 1 ≤
j ≤ n0, the function K(s) :=

∫
BS0

c

(
∇xu(s) ·∇ϑ+τ ∂x1u(s) ·ϑ−f(s) ·ϑ

)
dx
(
s ∈ (0, T0)

)
,

with f :=
∑n0

j=1 f
(j), belongs to L1

loc

(
[0, T0)

)
, in particular K|(0, T ) ∈ L1

(
(0, T )

)
. On

the other hand, since u|BS0

c × (0, T0) =
∑m0

l=1G
(l) and G(l) ∈ C0

(
[0, T0), L%l(BS0

c
)3
)

for

1 ≤ l ≤ m0, the function H(s) :=
∫
BS0

c u(s) · ϑ dx with s ∈ [0, T0) is in C0
(

[0, T0)
)3
.

Moreover, due to equation (1.3), we get∫ ∞
0

(
−γ′(s)H(s) + γ(s)K(s)

)
ds = γ(0)

∫
BS0

c
U0 · ϑ dx for γ ∈ C∞0

(
[0, T0)

)
. (5.20)

This equation for γ ∈ C∞0
(

(0, T )
)

and the relations H|[0, T ] ∈ C0([0, T ]) and K|(0, T ) ∈
L1
(

(0, T )
)

yield that H|(0, T ) ∈W 1,1
(

(0, T )
)

and H ′(s) = −K(s) for a. e. s ∈ (0, T ). Let
γ ∈ C∞0

(
[0, T )

)
. It follows that γ H ∈ C0([0, T ])∩W 1,1

(
(0, T )

)
and (γ H)′ = −γ K+γ′H,

hence
∫ T

0 (γ K − γ′H) ds = γ(0)H(0). Comparing this equation with (5.20) and recalling
that H(0) =

∫
BS0

c u(0) · ϑ dx, we arrive at the result
∫
BS0

c U0 · ϑ dx =
∫
BS0

c u(0) · ϑ dx
we wanted to show. According to [29, Lemma III.1.1], the preceding equation implies
existence of a function Π with properties as stated at the end of the corollary.

Now let t ∈ (0,∞) and x ∈ BR0

c
, and put Y (y) := Λ(x−y, t)−G(x, y, t) for y ∈ BR1 . Recall

that G(x, ·, t) ∈ C∞0 (BR1)3×3, G(x, y, t) = Λ(x − y, t) for y ∈ BS0+(R0−S0)/4 (Theorem

4.2), and Λ|R3 × (0,∞) ∈ C∞
(
R3 × (0,∞)

)3×3
(Lemma 4.1). Thus we get supp(Y ) ⊂

Bc
S0+(R0−S0)/4 and Y ∈ C∞(R3)3×3. Moreover

∑3
k=1 ∂ykYjk(y) = 0 for y ∈ R3, 1 ≤ j ≤ 3

(Lemma 4.1, Theorem 4.2), and Y ∈ W 1,r(R3)3×3 for r ∈ (1,∞) by Lemma 4.1 and
because G(x, ·, t) ∈ C∞0 (BR1)3×3. Therefore, for 1 ≤ µ ≤ 3, Theorem 2.1 provides a

sequence (ϑ
(µ)
n )n≥1 in C∞0,σ(BS0

c
) such that in particular ‖(Yµk)1≤k≤3−ϑ

(µ)
n ‖r → 0 (n→∞)

for r = p̃ and r ∈ {%m : 1 ≤ m ≤ m0}. But
∫
BS0

c ϑ
(µ)
n · U0 dx =

∫
BS0

c ϑ
(µ)
n · u(0) dx (1 ≤

µ ≤ 3, n ∈ N) by what has already been proved, and u(0)|BS0

c
=
∑m0

l=1G
(l)(0), G(l)(0) ∈

L%l(BS0

c
)3 (1 ≤ l ≤ m0) by our assumptions. Hence, by letting n tend to infinity, we

obtain
∫
BS0

c Y · U0 dy =
∫
BS0

c Y · u(0) dy. Due to the definition of Y, this implies (5.19).

The estimate stated in the corollary follows from (5.19) and (4.2). �

Corollary 5.1, 5.2 and 5.3 yield the final form of our representation formula:
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Corollary 5.4 Let t ∈ (0, T0). Then there is a zero-measure set Nt ⊂ BS0

c
such that

u(x, t) = R(τ)(f)(x, t) + I(τ)
(
U0|BS0

c
)(x, t) (5.21)

−
3∑
l=1

∂xlV
(τ,BS0

)(n
(S0)
l u)(x, t)−

∫
∂BS0

(∇N)(x− y)
(
n(S0)(y) · u(y, t)

)
doy

+K(u)(x, t)−
∫
AR1,S0

G(x, y, t) · U0(y) dy −
∫ t

0

∫
AR1,S0

G(x, y, t− s) · f(y, s) dy ds

for x ∈ BR0

c\Nt, with f =
∑n0

j=1 f
(j)|BS0

c × (0, T0), where G = GR0,S0,ϕ0 was introduced
in Theorem 4.2, and K(u) = KR0,S0,ϕ0,BS0

,T0(u) in (4.4).

Let us consider the relation between U0 and u(0).

Corollary 5.5 Suppose that
∫
BS0

c U0 · ∇ϕ = 0 for ϕ ∈ C∞0 (BS0

c
). Then U0 − u(0)|BS0

c

belongs to C∞(BS0

c
)3, and the inequality

∣∣ ∂αx (U0−u(0)|BS0

c )
(x)
∣∣ ≤ C |x|−2−|α| holds for

x ∈ BR0

c
, α ∈ N3

0 with |α| ≤ 1. If
∫
∂BR

(
U0(x)−u(x, 0)

)
·x dox = 0 for some R ∈ (S0,∞),

the factor
(
|x| ν(x)

)−2−|α|
may be replaced by

(
|x| ν(x)

)−3−|α|
.

Proof: Since divxu = 0, we have
∫
BS0

c u(t) · ∇ϕdx = 0 for t ∈ (0, T0), ϕ ∈ C∞0 (BS0

c
).

By the assumptions on U0, the continuity of the functions G(l) : [0, T0) 7→ L%l(BS0

c
)3 and

because u|BS0

c× [0, T0) =
∑m0

j=1G
(l), we may conclude that

∫
BS0

c

(
U0−u(0)

)
·∇ϕdx = 0

for ϕ as before. It further follows that U0 − u(0)|BS0

c
= U0 −

∑m0
j=1G

(l)(0). Choose

Π as in Corollary 5.3. Then
∫
BS0

c Π ∆ϕdx = 0 for ϕ as before, so Theorem 3.2 yields

Π ∈ C∞(BS0

c
) and ∆Π = 0. As a consequence ∂jΠ =

(
U0 −

∑m0
j=1G

(l)(0)
)
j
, ∂jΠ ∈

C∞(BS0

c
) and ∆∂jΠ = 0 for 1 ≤ j ≤ 3. Due to Lemma 3.1 with S, R̃, R, ϕ, V replaced

by S0, S0 + (R0 − S0)/4, R1, ϕ0, ∂jΠ, respectively, where R0, R1, ϕ0 were introduced at
the beginning of Section 2, we may conclude that ∇Π|BR1

c ∈ Lp(BR1

c
)3 for p ∈ (3,∞).

Since Π is a C∞-function, it follows with the abbreviation B := BS0+(R0−S0)/8
c

that
∇Π|B ∈ Lp(B)3 for p > 3.

At this point we may apply Theorem 3.3 to obtain Π|B ∈ Lp(B) for p > 3, possibly
after subtraction of a constant from Π. Again by Lemma 3.1, this time with S, R̃, R, ϕ, V
replaced by S0 + (R0−S0)/8, S0 + (R0−S0)/4, R1, ϕ0, Π, respectively, we may conclude
that Π|BR1

c
= (N ∗ F )|BR1

c
, where F := −2∇(1 − ϕ0) · ∇Π − ∆(1 − ϕ0) Π. Note that

F ∈ C∞0 (BR1). By the properties of ϕ0 and because of the equations ∆Π = 0, ∆N = 0
and Π|BR1

c
= (N ∗ F )|BR1

c
, some integrations by parts on BR1\BS0 yield that Π(x) =∫

∂R1
(Z(1)+Z(2))(x, y) doy, with Z(1)(x, y) := −N(x−y)∇Π(y)·R−1

1 y doy and Z(2)(x, y) :=

∇yN(x− y) ·R−1
1 yΠ(y) for x ∈ Bc

R0
, y ∈ ∂BR1 . Since U0 − u(0)|BS0

c
= ∇Π, we thus get

∂αx
(
U0 − u(0)

)
(x) =

∫
∂BR1

∂αx∇x(Z(1) + Z(2))(x, y) dy. On the other hand,

|∂αx∇xZ(1)(x, y)| ≤ C(R0, R1) |x|−2−|α| |∇Π(x)|, (5.22)

|∂αx∇xZ(2)(x, y)| ≤ C(R0, R1) |x|−3−|α| |Π(x)| for x ∈ BR0

c
, y ∈ ∂BR1 α ∈ N3

0, |α| ≤ 1.

Thus |∂αx
(
U0 − u(0)

)
(x)| ≤ C|x|−2−|α| for x, α as in (5.22). Suppose there is some R ∈

(S0,∞) such that
∫
∂BR

(
U0(x) − u(x, 0)

)
· x dox vanishes. Since div

(
U0 − u(0)

)
|BS0

c
=

34



∆Π = 0, we see that U0 − u(0) has zero flux also on ∂BR1 . Thus, referring to Lemma 4.8
with q, V replaced by min{q, p̃}, U0 − u(0)|BS0+3(R0−S0)/4\BR1 (q chosen in Lemma 5.1),

and recalling that ∇Π = U0 − u(0)|BS0

c
, we obtain that

∣∣ ∫
∂BR1

∂αx∇xZ(1)(x, y) doy
∣∣ ≤

C |x|−3−|α| for x, α as in (5.22). Due to the second inequality in (5.22), the preceding
estimate also holds with Z(2) in the role of Z(1). Thus the last claim of the corollary
follows from the equation for ∂αx

(
U0 − u(0)

)
(x) in the line preceding (5.22). �

In Section 1 we indicated that the equation u(0) = U0 need not hold in general. This may
be seen by the ensuing lemma.

Lemma 5.4 Let %, q, p̃, u, f and U0 be given as in (1.3). Suppose in addition that % >
3/2. Then there is function v having exactly the same properties as u – in particular
satisfying (1.3) with U0 unchanged –, but with v(0) 6= u(0).

Proof: Take ϕ ∈ C∞0 (Ω) with ϕ 6= 0, ϕ ≥ 0. Put ψ := N∗ϕ; see Theorem 3.1. That latter
theorem yields that ψ ∈ C∞(R3), −∆ψ = ϕ, ∂αψ ∈ Lp(R3) for p ∈ (3,∞) if α = (0, 0, 0),
for p ∈ (3/2, ∞) in the case α ∈ N3

0, |α| = 1, and for p ∈ (1,∞) if α ∈ N3
0, |α| = 2. Put

v(x, t) := u(x, t) +∇ψ(x) for x ∈ Ω
c
, t ∈ (0, T0), and note that

∫
Ω

c ∂α∇ψ · ∂βϑ dx = 0 for

ϑ ∈ C∞0,σ(Ω
c
), α, β ∈ N3

0. The lemma follows from this observation. �

In order to exploit our representation formula (5.21) for the purpose of decay estimates,
we need somewhat stronger assumptions on u. The ensuing theorem gives the details.

Theorem 5.2 Abbreviate A := AR1,S0 × (0, T0), f :=
∑n0

j=1 f
(j)|BS0

c × (0, T0). In ad-
dition to the assumptions at the beginning of this section, suppose that the function u|A
belongs to L∞

(
0, T0, L

q(AR1,S0)3
)

and to Lγ1
(

0, T0, L
q(AR0,S0)3

)
, the function ∇xu|A

to Lγ2
(

0, T0, L
q(AR1,S0)9

)
, and f |A is in the space Lγ3

(
0, T0, L

q(AR1,S0)3
)
, for certain

parameters γ1, γ2, γ3 ∈ [1,∞], with q chosen in Lemma 5.1. Then there is a zero-measure
set ST0 ⊂ (0, T0) such that

|∂αx
[
u−R(τ)

(
f |BS0

c × (0, T0)
)
− I(τ)(U0|BS0

c
)
]
(x, t)| (5.23)

≤ C (‖u|A‖q,∞;T0 + ‖u|A‖q,γ1;T0 + ‖∇xu|A‖q,γ2;T0 + ‖f |A‖q,γ3;T0 + ‖U0|AR1,S0‖p̃)((
|x| ν(x)

)−3/2−|α|/2+1/(2 min{γ′1,γ′2,γ′3}) + |x|−γ−|α|)
)

for t ∈ (0, T0)\ST0 , x ∈ BR0

c\Nt with some set Nt ⊂ BR0

c
of measure zero, and for

α ∈ N3
0 with |α| ≤ 1, where γ = 3 if condition (1.7) is valid, and γ = 2 else. If γ = 3, the

last line in (5.23) may be replaced by
(
|x| ν(x)

)−3/2−|α|/2+1/(2 min{γ′1,γ′2,γ′3}). The constant
C in (5.23) is independent of u, f, U0, x, t and α.

Proof: Since q ≤ min{%l : 1 ≤ l ≤ m0}, u|BS0

c × (0, T0) =
∑m0

l=1G
(l) and G(l) ∈

C0
(

[0, T0), L%l(BS0

c
)3
)

for 1 ≤ l ≤ m0, we have u|A ∈ C0
(

[0, T0), Lq(AR1,S0)3
)
. As a

consequence, we get ‖u(t)|AR1,S0‖q ≤ ‖u|A‖q,∞;T0 for t ∈ [0, T0). Thus inequality (5.23)
follows from Corollary 5.4, 4.1, (4.2), (4.3), Corollary 4.2, Lemma 4.7 and 4.8. Note that
since u(t)|ΩS0 ∈W 1,q(ΩS0)3 for t ∈ (0, T0) and divx = 0, condition (1.7) holds if and only∫
∂BS0

u(t) · n(Ω) dox = 0 for such t. Obviously |x| ≥ C(R) ν(x) for x ∈ Bc
R, R ∈ (0,∞), so

in the case γ = 3, inequality (5.23) holds without the term |x|−γ−|α| in the last line. �

We note that if T0 < ∞, the parameters γ1, γ2 and γ3 may be taken equal to 1. Thus, if
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γ = 3, we obtain the optimal decay bound −3/2− |α|/2.

6 Some applications

In this section we use Theorem 5.2 in order to determine the spatial asymptotics of L2-
weak solutions to the Oseen system (1.1) under Dirichlet boundary conditions. This type
of solutions are studied in [13], so the results in this section may be compared with what is
obtained in this reference. Let us first consider the case f = 0, U0 = 0 (boundary-driven
flow).

Theorem 6.1 For ϕ ∈ C∞0 (R4)3 with ϕ|R3×(−∞, 0] = 0, define the fractional derivative

∂
1/2
t ϕ by (∂

1/2
t ϕ)(x, t) := π−1/2 ∂t

( ∫ t
0 (t− s)−1/2 ϕ(x, s) ds

)
for t ∈ (0,∞), x ∈ R3.

Put ST0 := ∂Ω×(0, T0). Let b ∈ L2(ST0)3 with
∫
∂Ω b(t)·n

(Ω) dox = 0 for t ∈ (0, T0). Suppose
there is a sequence (ϕn) in C∞0 (R4)3 such that ϕn|R3×(−∞, 0] = 0 for n ∈ N, ‖b−ϕn‖2 →
0 (n → ∞) and

∫ T0
0 ‖(ϕn − ϕm)(t)|∂Ω‖2H1(∂Ω)3 dt → 0,

∫ T0
0 ‖∂

1/2
t (ϕn − ϕm)(t)|∂Ω‖22 dt →

0,
∫ T0

0 ‖∂t(ϕn − ϕm)(t) · n(Ω)‖2H1(∂Ω)′ dt → 0 for m, n → ∞. Here the space H1(∂Ω) is to

be defined in the usual way, and the symbol ‖ ‖H1(∂Ω)3 denotes the usual norm of H1(∂Ω)3

with respect to some local coordinates (see [28, Section III.6.7] for example). The symbol
‖ ‖H1(∂Ω)′ stands for the canonical norm of the dual space of H1(∂Ω).

Then there is a unique function u ∈ L2
loc

(
[0, T0), H1(Ω

c
)3
)

such that divxu(t) = 0 and
u(t)|∂Ω = b(t) for t ∈ (0, T0), and such that equation (1.3) is satisfied with f = 0 and
U0 = 0. Moreover u ∈ L∞

(
0, T0, L

2(Ω
c
)3
)

and ∇xu ∈ L2
(

0, T0, L
2(Ω

c
)9
)
. In addition

|∂αxu(x, t)| ≤ C
(
|x| ν(x)

)−5/4−|α|/2
for t, x, α as in (5.23).

Proof: The uniqueness statement follows as in the Stokes case; see [11, Theorem 3.7]
and its proof. For the existence result we refer to [13, Theorem 2.26], which yields a
function u ∈ L2

loc

(
[0, T0), H1(Ω

c
)3
)

such that divu(t) = 0, u(t)|∂Ω = b(t) for t ∈
(0, T0) and equation (1.3) is valid with f = 0, U0 = 0. According to [13, (2.13)] and [8,
Theorem 2.3], this function u additionally belongs to L∞

(
0, T0, L

2(Ω
c
)3
)
, and ∇xu ∈

L2
(

0, T0, L
2(Ω

c
)9
)
. Reference [13] reduces its existence result to a solution theory for a

boundary integral equation related to the time-dependent Stokes system. The key point
of this theory, which is due to Shen [44], states that for any b ∈ L2(ST0)3 satisfying the
conditions in Theorem 6.1, the integral equation in question admits a unique solution in
the space {ϕ ∈ L2(ST0)3 :

∫
∂Ω ϕ(t) · n(Ω) dox = 0 for a. e. t ∈ (0, T0)} ([44, p. 365]). This

explains the choice of assumptions imposed on b in Theorem 6.1.

We still have to consider the estimate stated at the end of Theorem 6.1. Theorem 2.2
implies that u ∈ L2

(
0, T0, L

6(Ω)3
)
. In addition, by [13, (2.17)] and Lemma 4.6 we have

u|BS0

c× (0, T0) ∈ C0
(

[0, T0), L4(BS0

c
)3
)
. Therefore the estimate in question follows from

Theorem 5.2 with U0 = 0, n0 = 1, p1 = 2, f (1) = 0, m0 = 1, %1 = 4, G(1) =
u|BS0

c × (0, T0), q0 = q1 = p̃ = γj = 2 for j ∈ {1, 2, 3}. �

In the situation of Theorem 6.1, and for t, x, α as in (5.23), reference [13] yields the

estimate |∂αxu(x, t)| ≤ C
(
|x| ν(x)

)−1−|α|/2
; see [13, (2.17), Lemma 3.2].
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As another application of Theorem 5.2, we consider standard L2-weak solutions to (1.1)
with homogeneous Dirichlet boundary conditions, under assumptions that are only slightly
more restrictive than the conditions needed for the usual existence result. In fact, we
suppose f ∈ L2

(
0, T0, L

q
σ(Ω

c
)
)

for some q ∈ [6/5, 2] instead of f ∈ L2
(

0, T0, V ′
)
, with V ′

defined below. Here are the details.

Theorem 6.2 Put V := {V ∈ W 1,2
0 (Ω

c
)3 : divV = 0}, equip V with the norm of

W 1,2(Ω
c
)3, and let V ′ denote the dual space to V. Let U0 ∈ L2

σ(Ω
c
) and f ∈ L2

(
0, T0, V ′

)
.

Then there is a unique function u : (0, T0) 7→ V such that u ∈ L∞
(

0, T0, L
2(Ω

c
)3
)
, ∇u ∈

L2
(

0, T0, L
2(Ω

c
)9
)
, and equation (1.3) is fulfilled with the modification that the term f(t)·ϑ

is dropped, and instead the term f(t)(ϑ) is added outside the integral over Ω
c
. This function

u is in C0
(

[0, T0), L2(Ω
c
)3
)
, and u(0) = U0.

If f ∈ L2
(

0, T0, L
r(Ω

c
)3
)

for some r ∈ [6/5, 2], then f ∈ L2
(

0, T0, V ′
)
, and we have for

x, t, α as in (5.23) that∣∣ ∂αx [u−R(τ)
(
f |BS0

c × (0,∞)
)
− I(τ)(U0|BS0

c
)
]
(x, t)

∣∣ ≤ C
(
|x| ν(x)

)−5/4−|α|/2
. (6.1)

Proof: As in the proof of the preceding theorem, we refer to [13, Theorem 3.7] and its
proof as regards uniqueness, which follows as in the Stokes case. Concerning existence,
the argument is also the same as in the Stokes case. We refer to [50, p. 171-176 and
p. 180], in particular [50, p. 175, (1.65)]. The equation

∫
Ω

c ∂1V · V dx = 0 valid for

V ∈ W 1,2
0 (Ω

c
)3 is the reason why the Oseen term does not generate a major problem.

Note that according to [29, Theorem III.4.2], the space V in [50, Section3.1] (closure of
C∞0,σ(Ω

c
) with respect to the norm of W 1,2(Ω

c
)3) coincides with the space V defined in

the theorem. In order to show that u ∈ C0
(

[0, T0), L2(Ω
c
)3
)
, we consider v as a weak

solution of the time-dependent Stokes system, in an analogous way as stated in (1.3) for
the Oseen system, but now with the right-hand side f−τ ∂x1u ∈ L2

(
0, T0, V ′

)
. Then [50,

Theorem 3.1.1] yields continuity of u on [0, T0) with values in L2(Ω
c
)3, and the equation

u(0) = U0. Suppose that f ∈ L2
(

0, T0, L
r(Ω

c
)3
)

for some r ∈ [6/5, 2]. Since Theorem 2.2

with κ = q = 2 implies u ∈ L2
(

0, T0, L
6(Ω

c
)3
)
, we see that all the assumptions imposed

at the beginning of Section 5 and in Theorem 5.2 are satisfied if we take n0 = 1, p1 =
r, f (1) = f, m0 = 1, %1 = 2, G(1) = u|BS0

c × (0, T0), q0 = q1 = p̃ = γj = 2 for
1 ≤ j ≤ 3, q = min{r, 5/4}. Therefore inequality (6.1) follows from (5.23). �

In order to compare the preceding theorem with the results in [13], we indicate that
I(τ)(U0)(x, t) =

∫
Ω

c H(x − y − τ t e1, t)U0(y) dy for U0 ∈ L2
σ(Ω

c
), x ∈ R3, t ∈ (0,∞)

([17, (3.9)]). If this equation is taken into account, the theory in [13] ([13, Theorem 2.26,
Corollary 2.28, inequality (3.7)]) yields the estimate

∣∣ ∂αx [u−R(τ)(f)− I(τ)(U0)
]
(x, t)

∣∣ ≤
C
(
|x| ν(x)

)−1−|α|/2
for t, x, α as in (5.23), under conditions on f and U0 that are more re-

strictive than those in Theorem 6.2. The preceding estimate is equivalent to the inequality∣∣ ∂αx [u −R(τ)
(
f |BS0

c × (0,∞)
)
− I(τ)(U0|BS0

c
)
]
(x, t)

∣∣ ≤ C
(
|x| ν(x)

)−1−|α|/2
, again for

t, x, α as in (5.23). This equivalence follows from the second estimate in Theorem 4.3 and

because |∂αxI(τ)(U0|ΩS0)(x, t)
∣∣ ≤ C

(
|x| ν(x)

)−3/2−|α|/2
for x ∈ BR0

c
, t ∈ (0,∞), α ∈ N3

0

with |α| ≤ 1 ([17, Lemma 4.1]). So, compared to the theory in [13], Theorem 6.2 yields
stronger convergence for |x| → ∞ under weaker assumptions on U0 and f .
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As for ∂αxR
(τ)
(
f |BS0

c × (0,∞)
)
(x, t), Theorem 4.3 improves the decay bound in [13,

Theorem 3.1] – even under slightly more general assumptions on f – to almost the same
level as that of ∂αx

[
u − R(τ)

(
f |BS0

c × (0,∞)
)
− I(τ)(U0|BS0

c
)
]
(x, t) in the preceding

theorem.

If U0 ∈ L2
σ(Ω

c
), the function I(τ)(U0) maps continuously from [0,∞) into L2(Ω

c
)3, with

I(τ)(U0)(0) = U0 ([17, Corollary 3.6]). Therefore it cannot be expected that the term
|∂αxI(τ)(U0)(x, t)

∣∣ converges more rapidly for |x| → ∞ than |∂αU0(x)| does, if the con-
vergence of the former term is to be uniform with respect to t. In [13] it is assumed that

U0|BS0

c ∈W 1,1
loc (BS0

c
)3 and there is κ0 ∈ (0, 1] with |∂αxU0(x)| = O

( [
|x| ν(x)

]−1−|α|/2−κ0 )
for |x| → ∞. This allows to apply [12, Theorem 1.1], which yields that |∂αxI(τ)(U0)(x, t)

∣∣ ≤
C
(
|x| ν(x)

)−1−|α|/2
for x ∈ BR0

c
, t ∈ (0,∞), α ∈ N3

0, |α| ≤ 1. In Theorem 4.4 this result

is adapted to our situation: If |∂αxU0(x)| = O
(
|x|−3/2−κ0 ν(x)−1−|α|/2−κ0

)
for |x| → ∞,

then the term |∂αxI(τ)(U0)(x, t)
∣∣ is bounded by C

(
|x| ν(x)

)−5/4−|α|/2
for t, x, α as be-

fore. It seems that in the assumptions on U0, the factor |x|−3/2−κ0 cannot be replaced by
|x|−5/4−κ0 , and κ0 cannot be taken as zero.
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