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In this work we present an a posteriori high-order nite volume scheme for the computation of compressible turbulent ows. An automatic dissipation adjustment (ADA) method is combined with the a posteriori paradigm, in order to obtain an implicit subgrid scale model and preserve the stability of the numerical method. Thus, the numerical scheme is designed to increase the dissipation in the control volumes where the ow is under-resolved, and to decrease the dissipation in those cells where there is excessive dissipation. This is achieved by adding a multiplicative factor to the dissipative part of the numerical ux. In order to keep the stability of the numerical scheme, the a posteriori approach is used. It allows to increase the dissipation quickly in cells near shocks if required, ensuring the stability of the scheme. Some numerical tests are performed to highlight the accuracy and robustness of

Introduction

Compressible turbulent ows are important in many scientic and engineering applications, such as scramjet propulsion, supersonic aircraft design, high-temperature reactive ows, inertial connement fusion, and starforming clouds in galaxies. In turbulent ows of engineering interest, it is not suitable to simulate the complete range of scales that are present in the ow, since the number of degrees of freedom of turbulence grows with the Reynolds number faster than O(Re 11/4 ) [START_REF] Sagaut | Large Eddy Simulation for Compressible Flows[END_REF]. This huge number of degrees of freedom, is far out of the possibilities of computation using current computers and this situation is expected to continue, at least, for the next decades.

In this context, Large Eddy Simulation (LES) is the most suitable approach for the computation of these ows. However, the numerical simulation of compressible turbulent ows is a very challenging task, due to the complexity of the involved physical processes. Since LES simulations do not solve the complete range of scales of the ow, the eect of the unresolved scales should be adequately modeled in order to get the most accurate solution on a given grid. This is the reason for the existence of the so-called subgrid scale (SGS) models. The development of SGS models is a very active area of research. However, most of the subgrid models existing in the literature have been developed for incompressible ows, and they do not account for the intermodal energy transfer which takes place in compressible turbulence [START_REF] Sagaut | Large Eddy Simulation for Compressible Flows[END_REF]. The physical mechanism driving this transfer is completely dierent to the corresponding one to the interscale energy transfer, which is the basis of SGS models for incompressible ows. Yet another problem of the simulation of turbulent compressible ows is the possible presence of shocks, that makes mandatory the use of stabilization methods, which may introduce additional dissipation [START_REF] Venkatakrishnan | Convergence to steady state solutions of the Euler equations on unstructured grids with limiters[END_REF][START_REF] Tsoutsanis | Extended bounds limiter for high-order nite-volume schemes on unstructured meshes[END_REF][START_REF] Nogueira | A high-order density-based nite volume method for the computation of allspeed ows[END_REF]. Thus, the main issue is how to introduce the right amount of numerical dissipation for stabilization with minimal interference in vortical dynamics. Moreover, the accuracy of a LES computation does not depend on only one aspect, but it is also dependent on the combination and coupling of several factors, as the discretization scheme (time and spatial), the resolution and quality of the grid and the SGS model (if used). In particular, the dissipation of the numerical scheme is a key feature that determines if a given numerical method is suitable for LES computations. In this context, Implicit Large Eddy Simulation (ILES) proposes to use the truncation error of discretization schemes for modeling the eect of subgrid scales on resolved scales [START_REF] Boris | On large eddy simulation using subgrid turbulence models[END_REF][START_REF] Boris | New insights into Large Eddy Simulation[END_REF][START_REF] Fureby | Monotonically Integrated large eddy simulation of free shear ows[END_REF][START_REF] Fureby | Large Eddy Simulation of High-Reynolds-Number Free and and Wall-Bounded Flows[END_REF][START_REF] Grinstein | Recent Progress on MILES for high Reynolds Number ows[END_REF]. Thus, in ILES computations, the numerical scheme plays implicitly the role of the SGS model. However, not all the schemes are suitable for ILES computations [START_REF] Drikakis | Large eddy simulation using high-resolution and high-order methods[END_REF]. Standard second-order schemes are over-dissipative, and thus, they are not well suited for LES (nor ILES) computations. Higher-order approximations are an alternative [START_REF] Uranga | Implicit Large Eddy Simulation of transition to turbulence at low Reynolds numbers using a Discontinuous Galerkin method[END_REF][START_REF] Hughes | Large-eddy simulation of turbulent channel ows by the variational multiscale method[END_REF][START_REF] Nogueira | Implicit Large Eddy Simulation of non-wall-bounded turbulent ows based on the multiscale properties of a high-order nite volume method[END_REF][START_REF] Nogueira | High-Resolution Finite Volume Methods on Unstructured Grids for Turbulence and Aeroacoustics[END_REF], but a number of authors have noted that the discretization scheme needs to be designed specically for ILES in order to obtain better results than explicit SGS models [START_REF] Garnier | On the use of shock-capturing schemes for large-eddy simulation[END_REF]. In [START_REF] Hickel | An adaptive local deconvolution method for implicit LES[END_REF][START_REF] Egerer | Ecient implicit LES method for the simulation of turbulent cavitating ows[END_REF], in the framework of the Adaptive Local Deconvolution Method (ALDM), the numerical viscosity of the method is optimized in order to minimize the dierence with the spectral eddy vis-cosity of Eddy Damped Quasi-Normal Markovian (EDQNM) theory. Other approaches have also been presented in the literature for DNS and LES computations. Hybrid schemes that blend a high order non-dissipative scheme and high order shock-capturing have been developed based on the dierent nature of turbulence and shock waves [START_REF] Johnsen | Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[END_REF]. A shock sensor based on vorticity and dilatation is used for switching to one of the dierent schemes. Yet a dierent approach is to use a non-dissipative scheme as a base scheme and then a post-processing step to nonlinearly ltering the solution by a dissipative portion of a high-order shock-capturing scheme with a local ow sensor [START_REF] Yee | Comparative Study of Three High Order Schemes for LES of Temporally Evolving Mixing Layers[END_REF][START_REF] Yee | Proceedings of ICOSAHOM 09[END_REF][START_REF] Kotov | Numerical dissipation control in high order shock-capturing schemes for LES of low speed ows[END_REF].

Finite volumes (FV) are the most commonly used methods for the simulation of compressible ows. These methods are based on the use of Riemann solvers [22]. In this context, the Roe scheme [START_REF] Roe | Approximate Riemann solvers, parameter vectors and dierence schemes[END_REF] is one of the numerical uxes which is most widely used for compressible ow computations. If some corrections are included in the original formulation [START_REF] Nogueira | A high-order density-based nite volume method for the computation of allspeed ows[END_REF][START_REF] Thornber | An improved reconstruction method for compressible ows with low Mach number features[END_REF][START_REF] Rieper | A low-Mach number x for Roe's approximate Riemann solver[END_REF], it is also suitable for low Mach computations.

In a number of contributions [START_REF] Ciardi | A dynamic nite volume scheme for large-eddy simulation on unstructured grids[END_REF][START_REF] Tajallipour | Paraschivou Self-adaptive upwind for large eddy simulation of turbulent ows on unstructured elements[END_REF], self-adaptive upwind methods are proposed to reduce the dissipation introduced by the Roe scheme as much as possible. In [START_REF] Li | An implicit turbulence model for low-Mach Roe scheme using truncated Navier-Stokes equations[END_REF] an Automatic Dissipation Adjustment method (ADA) for low Mach computations using the LMRoe scheme was presented. In this method, the energy ratio (ER) criteria [START_REF] Tantikul | Large eddy simulations using truncated Navier-Stokes equations with the automatic ltering criterion[END_REF] is used to automatically adjust the amount of viscosity introduced by the numerical ux. In this work, we aim to extend the ADA method for the computation of compressible ows with shock waves. In order to address the problem of stabilization due to shocks we propose to use the a posteriori paradigm [START_REF] Clain | Loubère A high-order nite volume method for systems of conservation laws-Multidimensional Optimal Order Detection (MOOD)[END_REF][START_REF] Diot | Improved detection criteria for the Multidimensional Optimal Order Detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF]. The ER criteria adjusts the dissipation in the smooth zones of the ow, whereas the a posteriori paradigm preserves the stability by increasing the dissipation if the computations fail or spurious oscillations appear. Thus, in this work, we determine numerically if the scheme should introduce more dissipation or not, avoiding the use of specic sensors to discern between turbulent uctuations or shocks. The results obtained show a great accuracy improvement in terms of the distribution of energy in the wavenumber spectrum as well as in the decay of kinetic energy, and thermodynamic variables. The only constraint of the numerical ux in order to apply the proposed methodology is that it must be possible to write the ux as a sum of a central part and a dissipation part. In this work we show the applicability of the proposed methodology to the numerical uxes of Roe and Rusanov.

Note that in this work we have used a numerical scheme which is thirdorder of accuracy in space and in time. Most of the state-of-the-art methods for DNS and LES present a higher order of accuracy [START_REF] Johnsen | Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[END_REF][START_REF] Kotov | Numerical dissipation control in high order shock-capturing schemes for LES of low speed ows[END_REF][START_REF] Fu | Implicit large eddy simulations with a high-order TENO scheme[END_REF][START_REF] Fu | A targeted eno scheme as implicit model for turbulent and genuine subgrid scales[END_REF]. Moreover, most of these methods are developed for structured grids. However, in industrial applications of compressible CFD, second or third order nite volume methods are the standard. One of the objectives of this work is to show that using the proposed methodology with a third-order scheme it is possible to obtain results comparable to those obtained using very highorder schemes. In particular, we will show that using the proposed scheme the physics of the turbulent decay phenomena is reproduced.

The paper is structured as follows. In section 2 the governing equations are presented. In section 3 the formulation of the proposed methodology is exposed, and in section 4 some numerical tests are presented to show the ac-curacy and robustness of the proposed methodology. Finally, the conclusions are drawn.

Governing equations

The 3D Navier-Stokes equations written in non-dimensional variables and expressed in conservative form read as

∂U U U ∂τ + ∂F F F x ∂x + ∂F F F y ∂y + ∂F F F z ∂z = 1 Re ∂F F F V x ∂x + ∂F F F V y ∂y + ∂F F F V ρE = ρe + 1 2 ρ (v v v • v v v) (4) 
H = E + p ρ ( 5 
)
where ρ is the density, v v v = (u, v, w) is the velocity, µ is the eective viscosity of the uid, H is the enthalpy, E is the total energy, e is the internal energy and ρ is the density. The viscous stress tensor is dened as Using this form of the equations, the important ow parameters are the Reynolds number (Re) and the Mach number (M a ). In order to determine the pressure and temperature we use the following non-dimensional ideal-gas

τ xx = 2µ ∂u ∂x - 2 
EOS p = (γ -1)ρe = RρT (7) 
where

R = 1/(γM a 2 ) is the non-dimensional gas constant, with γ = c p /c v .
The speed of sound is computed as c = γp/ρ. We assume that the viscosity depends on the temperature following a power law

µ(T ) = T 0.75 (8) 
Thermal ux q q q = (q x , q y , q z ), is computed using Fourier's law

q x = -λ ∂T ∂x q y = -λ ∂T ∂y q z = -λ ∂T ∂z ( 9 
)
where λ is the non-dimensional thermal conductivity dened as

λ = µ(T ) (γ -1)M a 2 P r (10) 
We have used a value of the Prandtl number P r = 0.72. Note that no explicit SGS model is used throughout this work.

Numerical method

In this work we propose a new methodology for the computation of compressible turbulent ows. The new methodology is based on two key aspects.

On one hand, the Automatic Dissipation Adjustment (ADA) model [START_REF] Li | An implicit turbulence model for low-Mach Roe scheme using truncated Navier-Stokes equations[END_REF] that automatically adjust the amount of numerical dissipation following a criterium based on the Energy Ratio [START_REF] Tantikul | Large eddy simulations using truncated Navier-Stokes equations with the automatic ltering criterion[END_REF]. On the other hand, the a posteriori paradigm [START_REF] Clain | Loubère A high-order nite volume method for systems of conservation laws-Multidimensional Optimal Order Detection (MOOD)[END_REF][START_REF] Diot | Improved detection criteria for the Multidimensional Optimal Order Detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF] which allow us to identify the problematic points where the numerical viscosity is not large enough to avoid oscillations. It is important to remark that the ADA method adjusts the numerical dissipation as an implicit SGS model [START_REF] Li | An implicit turbulence model for low-Mach Roe scheme using truncated Navier-Stokes equations[END_REF], whereas the a posteriori approach ensures the stability of the numerical method. In all the computations of the present work, the third-order FV-MLS method [START_REF] Cueto-Felgueroso | Finite volume solvers and Moving Least-Squares approximations for the compressible Navier-Stokes equations on unstructured grids[END_REF][START_REF] Nogueira | On the simulation of wave propagation with a higher-order nite volume scheme based on Reproducing Kernel Methods[END_REF][START_REF] Khelladi | Toward a Higher Order Unsteady Finite Volume Solver Based on Reproducing Kernel Methods[END_REF][START_REF] Chassaing | Accuracy assessment of a high-order moving least squares nite volume method for compressible ows[END_REF], and we have applied the proposed methodology to both Roe [START_REF] Roe | Approximate Riemann solvers, parameter vectors and dierence schemes[END_REF] and Rusanov [START_REF] Rusanov | The calculation of the interaction of non-stationary shock waves and obstacles[END_REF] numerical uxes.

However, the proposed methodology is applicable to any other numerical method based on Riemann solvers provided that the numerical ux could be written combining central dierencing of the non-linear inviscid uxes with a smoothing term.

The integral form of the Navier-Stokes system (1) for each control volume

I is Ω I ∂U U U ∂t dΩ + Γ I F F F H + F F F V • n n n dΓ = Ω I S S S dΩ (11) 
where Ω I is the volume of the control volume, Γ I is the area of the control volume cells and n n n = (n x , n y , n z ) T is the unitary exterior normal of the contour. U U U is the vector of variables,

F F F H = (F x , F y , F z ) and F F F V = (F V x , F V y , F V z ) is the viscous ux vector.
Equation [START_REF] Uranga | Implicit Large Eddy Simulation of transition to turbulence at low Reynolds numbers using a Discontinuous Galerkin method[END_REF] can be written in semi-discrete form as

Ω I ∂U U U h ∂t dΩ + Γ I Θ Θ Θ(u u u hb+ , u u u hb-) dΓ + Γ I F F F hV • n n n dΓ = Ω I S S S(u u u h ) dΩ (12) 
where Θ Θ Θ(u u u hb+ , u u u hb-) is a suitable numerical ux, and + andrefers to the left and right states of the cell I.

In this work we use an explicit Runge-Kutta (RK) schemes for time integration, as indicated in section 4.

Automatic Dissipation Adjustment method

The ADA method was recently developed as an implicit SGS model, and it was applied for the computation of low mach ows [START_REF] Li | An implicit turbulence model for low-Mach Roe scheme using truncated Navier-Stokes equations[END_REF]. It is based on the local Energy Ratio (ER) introduced by Tantikul and Domaradzki [START_REF] Tantikul | Large eddy simulations using truncated Navier-Stokes equations with the automatic ltering criterion[END_REF] in the context of the Truncated Navier-Stokes (TNS) procedure [START_REF] Domaradzki | Large eddy simulations using the subgrid-scale estimation model and truncated Navier-Stokes dynamics[END_REF]. In this work, we aim to extend its range of application to all range of Mach number ows.

The ADA method uses a multiplicative coecient to the dissipation part of the numerical ux of the Riemann solver. For example, in the case of the numerical ux of Roe, it can be written as a central ux plus a dissipation part as

Θ Θ Θ ij = 1 2 (F F F hH+ + F F F hH-) • n n n - 1 2 4 k=1 αk | λk |r r r k (13) 
In equation ( 13) Θ Θ Θ ij is the numerical ux at the interface between cells i and j, λk and r r r k are the eigenvalues and eigenvectors of the approximated Jacobian [START_REF] Roe | Approximate Riemann solvers, parameter vectors and dierence schemes[END_REF], and α k are the wave strengths. For the sake of brevity, we refer the interested reader to [START_REF] Roe | Approximate Riemann solvers, parameter vectors and dierence schemes[END_REF]40] for nding the analytic expressions of these quantities.

Thus, we introduce a coecient to adjust the dissipation added by the numerical ux

Θ Θ Θ ij = 1 2 (F F F hH+ + F F F hH-) • n n n - 1 2 ij 4 k=1 αk | λk |r r r k (14) 
This technique can be applied to any other Riemann solver if it can be expressed as a sum of a central ux plus a dissipation part. In this work, we also apply the proposed algorithm to the numerical ux of Rusanov [START_REF] Rusanov | The calculation of the interaction of non-stationary shock waves and obstacles[END_REF].

The expression used for this numerical ux is

Θ Θ Θ ij = 1 2 (F F F hH+ + F F F hH-) • n n n -ij 1 2 S + ∆(U U U ) (15) 
with

S + = max(|v v v + | + c + , |v v v -| + c -) (16) 
In equation ( 16) c is the sound velocity and |v v v| is the modulus of the velocity vector at integration point and

∆(U U U ) = (U U U + -U U U -).
Such approach to reduce the dissipation of the Riemann solver has been proposed by several authors [START_REF] Ciardi | A dynamic nite volume scheme for large-eddy simulation on unstructured grids[END_REF][START_REF] Tajallipour | Paraschivou Self-adaptive upwind for large eddy simulation of turbulent ows on unstructured elements[END_REF]. The key idea of the ADA method is to link the reduction of the dissipation part with the Energy Ratio (ER) [START_REF] Tantikul | Large eddy simulations using truncated Navier-Stokes equations with the automatic ltering criterion[END_REF] 

ER = 3 i=1 (u i -u i ) 2 3 i=1 (u i -u i ) 2 (17) 
In equation ( 17), u i is the velocity eld obtained as a result of the computations to solve the Navier-Stokes equation on a given grid using the Riemann solver. Moreover, u i and ûi are two ltered velocity elds, obtained through ltering of u i using a low-pass lter with dierent widths. Thus, in equation ( 17) u i and u i are obtained using a dierent lter width.

In this work we propose a modication for compressible ows, by including the eect of density uctuations. Thus, we compute the energy ratio as follows

ER = 3 i=1 (ρ i u i -ρ i u i ) 2 3 i=1 (ρ i u i -ρ i u i ) 2 (18) 
Dierently from what is performed in [START_REF] Li | An implicit turbulence model for low-Mach Roe scheme using truncated Navier-Stokes equations[END_REF][START_REF] Tantikul | Large eddy simulations using truncated Navier-Stokes equations with the automatic ltering criterion[END_REF][START_REF] Cadieux | Periodic ltering as a subgrid-scale model for LES of laminar separation bubble ows[END_REF] where a top-hat lter is used, in this work we use Moving Least Squares (MLS) based lters. We refer the reader to [START_REF] Wagner | Turbulence simulation and multiple scale subgrid models[END_REF][START_REF] Nogueira | A new shock-capturing technique based on Moving Least Squares for higher-order numerical schemes on unstructured grids[END_REF] for a complete description of these lters. Here, we only comment that a MLS approximation of a variable can be seen as a low-pass ltering of the variable. This can be written, for a given variable Φ, as

Φ I = n j=1 N j (x x x)Φ j ( 19 
)
where n is the number of neighbors of the stencil of cell I, and we use the notation Φ to indicate a ltered variable. In equation ( 19) N N N T (x x x) are the MLS shape functions, which are computed as exposed in [START_REF] Cueto-Felgueroso | Finite volume solvers and Moving Least-Squares approximations for the compressible Navier-Stokes equations on unstructured grids[END_REF]. To compute the MLS shape functions we dene an m-dimensional basis, which in this case is dened as p p p T (x x x) = (1, x, y, z, x 2 , y 2 , z 2 , xy, ...) ∈ R m . Then, the MLS-shape funtions are dened as [START_REF] Cueto-Felgueroso | Finite volume solvers and Moving Least-Squares approximations for the compressible Navier-Stokes equations on unstructured grids[END_REF] N N N T (x x x) = p p p T (x x x)M M M -1 (x x x)P P P

(x x x)W W W (x x x) (20) 
where P P P = [p p p T (x j x j x j )] j , is a m × n i matrix where the basis functions are evaluated at each point of the stencil, and M M M (x x x) is the m × m moment matrix

given by M M M (x x x) = P P P (x x x)W W W (x x x)P P P T (x x x).

The kernel function W W W determines the properties of the lter, required in the computation of N N N T (x x x). We have chosen to use an exponential kernel, dened as [START_REF] Nogueira | A new shock-capturing technique based on Moving Least Squares for higher-order numerical schemes on unstructured grids[END_REF] W

(x, x * , κ x ) = e -( s c ) 2 -e -( dm c ) 2 1 -e -( dm c ) 2 (22) with s = |x j -x * |, d m = max (|x j -x * |), with j = 1, . . . , n x * , c = dm 2κ ,
x is the position of every cell centroid of the stencil and κ is a shape parameter.

As stated in equation ( 18) ER can be seen as a ratio of the spatial highfrequency components of the velocity eld for two dierent lters. Here, when the ER has a value larger than 0.55, it is considered that there is excessive energy at small scales of the ow, which should be dissipated. When this happens, is increased. When ER is smaller than 0.5 the dissipation introduced by the numerical ux is excessive, and is reduced. It is important to remark that we have chosen dierent values to dene the range of ER than those presented in [START_REF] Li | An implicit turbulence model for low-Mach Roe scheme using truncated Navier-Stokes equations[END_REF]. The reason is that we have used dierent lters than those presented in previous works. However, it is important to note that it is possible to get similar results using another conguration of the lters if an adequate ER interval is found, since the range of validity is completely dependent of the lter chosen [START_REF] Sun | Implicit LES using adaptive ltering[END_REF]. Here, we use two dierent MLS lters to compute ER. One lter with parameters κ = 4 for the computation of ρ i u i and other with κ = 3 to compute ρ i u i . The transfer function of these lters is plotted in gure 1. In order to automatically adjust the parameter, we follow the rule proposed in [START_REF] Li | An implicit turbulence model for low-Mach Roe scheme using truncated Navier-Stokes equations[END_REF] 

             ER < 0.5, = max[( -φ), 0] ER > 0.55, = min[( + φ), 1] 0.5 ≤ ER ≤ 0.55, does not change (23)
Here, a value of φ = 0.05 is used, to adjust the value of continuously and gradually. In order to keep the conservative character of the numerical scheme, we have to ensure a single value of the coecient at the interface between cells i and j. In order to ensure the robustness of the numerical scheme, it is dened as

ij = max[ i , j ] (24) 
It is important to remark that, when applied to non-smooth ows, this method alone may lead to spurious oscillations and eventually to the crash of computations, since the reduced viscosity may not be enough to stabilize the computations near shocks. In order to extend the applicability of this method to turbulent compressible ows, we propose to combine the ADA method with the a posteriori paradigm [START_REF] Clain | Loubère A high-order nite volume method for systems of conservation laws-Multidimensional Optimal Order Detection (MOOD)[END_REF][START_REF] Diot | Improved detection criteria for the Multidimensional Optimal Order Detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF]. This will be addressed in the next section.

The a posteriori paradigm

The use of the ADA method in the framework of compressible ow is problematic, since the algorithm of equation ( 23) may not be fast enough to introduce dissipation in the presence of a shock wave. Moreover, in the context of high-order methods, even a value of = 1 could be not enough for stabilization since high-order schemes are not monotonic. Thus, a methodology for stabilizing the computations is required if shocks appear in the solution, but with the minimum interference to the ADA method. In this work we adapt the a posteriori paradigm [START_REF] Clain | Loubère A high-order nite volume method for systems of conservation laws-Multidimensional Optimal Order Detection (MOOD)[END_REF][START_REF] Diot | Improved detection criteria for the Multidimensional Optimal Order Detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF] to the computation of compressible turbulent ows with the ADA method.

The main idea of this approach is to compute, each step of time integration algorithm, the cell averaged values using the most accurate available scheme. This solution is called candidate solution. Then, we use a chain of dierent criteria to evaluate if the candidate solution is admissible or not.

In this context, admissible means that it gives positive densities and pressures, and that the level of unphysical oscillations is low. In the original version of this methodology [START_REF] Clain | Loubère A high-order nite volume method for systems of conservation laws-Multidimensional Optimal Order Detection (MOOD)[END_REF] an iterative scheme was proposed for reducing progressively and locally the order of the numerical scheme, recomputing the solution and evaluating again if the solution is admissible. This evaluation/order reduction procedure is performed until the solution is considered admissible or the numerical scheme reaches rst-order, which always gives admissible solutions. This procedure is called Multidimensional Optimal Order Detection (MOOD) [START_REF] Clain | Loubère A high-order nite volume method for systems of conservation laws-Multidimensional Optimal Order Detection (MOOD)[END_REF][START_REF] Diot | Improved detection criteria for the Multidimensional Optimal Order Detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF]. In the following we expose the adapted procedure proposed in this work.

A posteriori detection

Once the candidate solution is computed, the following chain of detectors is used Physical Admissible Detector (PAD) [START_REF] Clain | Loubère A high-order nite volume method for systems of conservation laws-Multidimensional Optimal Order Detection (MOOD)[END_REF]: This detector checks if the candidate solution has positive density and positive pressure. Thus, if the candidate solution has negative values of pressure and/or density in a cell, or even a NaN value, this cell is marked as not good and is recomputed again using a lower order scheme.

Numerical Admissible Detector (NAD) [START_REF] Dumbser | A posteriori subcell limiting of the discontinuous Galerkin nite element method for hyperbolic conservation laws[END_REF]: It is a relaxed version of the Discrete Maximum Principle (DMP) [START_REF] Clain | Loubère A high-order nite volume method for systems of conservation laws-Multidimensional Optimal Order Detection (MOOD)[END_REF]. It checks if the solution is monotonic and new local extrema is not created.

min y∈V i (U n (y)) -δ U * (x) max y∈V i (U n (y)) + δ (25) 
In equation [START_REF] Rieper | A low-Mach number x for Roe's approximate Riemann solver[END_REF] superscript n indicates the previous Runge-Kutta step, and U * (x) is the candidate solution. The δ parameter allows a certain level of tolerance, and it is dened as in [START_REF] Dumbser | A posteriori subcell limiting of the discontinuous Galerkin nite element method for hyperbolic conservation laws[END_REF] δ = max 10 -4 , 10 -3 • max

y∈V i (U n (y)) -min y∈V i (U n (y)) (26) 
Equation ( 25) expresses the fact that the representation of the candidate solution in a cell must remain between the minimum and the maximum values of the solution at the previous time step in the considered set. The small number delta in ( 25) is a parameter used to relax the discrete maximum principle. It is dened in [START_REF] Ciardi | A dynamic nite volume scheme for large-eddy simulation on unstructured grids[END_REF], in a way to allow the candidate solution to exceed the extrema only by a small fraction of the total jump of the variable considered.

Thus, in order to keep a high accuracy when dealing with smooth extrema, very small undershoots and overshoots are allowed. If the condition expressed in equation ( 25) is veried, the solution is considered as admissible.

Note that in order to work with this formulation, all the variables in equation ( 26) should be normalized with an adequate reference value to get a value between 0 and 1. In the original formulation [START_REF] Clain | Loubère A high-order nite volume method for systems of conservation laws-Multidimensional Optimal Order Detection (MOOD)[END_REF][START_REF] Diot | Improved detection criteria for the Multidimensional Optimal Order Detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF][START_REF] Dumbser | A posteriori subcell limiting of the discontinuous Galerkin nite element method for hyperbolic conservation laws[END_REF] the set V i represents the set of rst neighbors of the point x. However, in this work V i is dened as the stencil used by MLS approximations [START_REF] Cueto-Felgueroso | Finite volume solvers and Moving Least-Squares approximations for the compressible Navier-Stokes equations on unstructured grids[END_REF][START_REF] Nogueira | On the simulation of wave propagation with a higher-order nite volume scheme based on Reproducing Kernel Methods[END_REF][START_REF] Khelladi | Toward a Higher Order Unsteady Finite Volume Solver Based on Reproducing Kernel Methods[END_REF]. This is based on the ideas presented in [START_REF] Tsoutsanis | Extended bounds limiter for high-order nite-volume schemes on unstructured meshes[END_REF] in the context of slope limiters. The fullllment of the NAD condition implies that the candidate value remains between the local minimum and the local maximum of the previous time step. In all of the examples of this work, the NAD is checked only in one variable (density or energy), but it could be applied to the full vector of conservative variables as suggested by [START_REF] Diot | Improved detection criteria for the Multidimensional Optimal Order Detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF].

If one cell does not verify the PAD criteria, it is marked and recomputed with a rst-order scheme and is set to = 1. If the cell does not verify the NAD criteria, the cell is recomputed using a rst-order scheme. For these cells, the use of = 1, even though is a possible choice, will lead to an excessive dissipation. So we have to dene a more accurate value for . One possibility is to keep the value of given by the ADA method. However, if there are strong shocks in the problem, the stability of the numerical scheme is not guaranteed. In order to solve this problem, the value of is chosen according to the strength of the shock detected. In order to determine the strength of the shock, we compute the shock strength parameter (F ) proposed in [START_REF] Hollyer | Parameters Characterizing the Strength of a Shockwave[END_REF], dened in terms of the pressure ratio y = p L p R as

F = 1 4 y + 2 + 1 y ( 27 
)
An alternative is to use the density ratio s = ρ L ρ R instead of the pressure ratio. In this case, F is dened as [START_REF] Hollyer | Parameters Characterizing the Strength of a Shockwave[END_REF] 

F = 1 2 γ 2 /(γ 2 -1) -1 2 N -1 2 ( 28 
)
where N is

N = (1 + µ) 2 2µ s (1 + s) 2 (29) 
with µ = γ+1 γ-1 . Using these denitions, the parameter F varies in [1, ∞). Once the strength of the shock is determined using the F parameter, a value of shock for this cell is computed as follows.

We dene the value of to vary following an hyperbolic tangent as

shock = 1 2 1 + tanh F -F 0 l 0 (30) 
In this work, the values of F 0 = 1.01 and l 0 = 0.0085 are used. A plot of this curve is shown in gure 2. It is observed the fast increase of the value of epsilon which ensures stability for the computations. Note that the choice of these parameters determines the minimum value of and also the strength of the shock for which the scheme recovers the full dissipation. All

the numerical examples of this work have been computed using these values of F 0 and l 0 .

To summarize, for a given cell i where the NAD is activated, we dene

N AD = max( shock , ADA ) (31) 
where ADA refers to the value given by the ADA algorithm as explained in previous sections.

The complete algorithm is schematically shown in gure 3. Note that in the practical application of this methodology, only the detected cells have to be recomputed [START_REF] Clain | Loubère A high-order nite volume method for systems of conservation laws-Multidimensional Optimal Order Detection (MOOD)[END_REF][START_REF] Diot | Improved detection criteria for the Multidimensional Optimal Order Detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF] once the candidate solution has been checked.

Numerical tests

In this section we test the proposed approach for the resolution of underresolved turbulent ows in an Implicit LES approach. First we address two 1D problems in order to show that the modication of the dissipation does not introduce dispersion errors. All the examples are solved using a thirdorder FV-MLS method [START_REF] Nogueira | Implicit Large Eddy Simulation of non-wall-bounded turbulent ows based on the multiscale properties of a high-order nite volume method[END_REF][START_REF] Nogueira | High-Resolution Finite Volume Methods on Unstructured Grids for Turbulence and Aeroacoustics[END_REF]. In all of the numerical examples presented here we have used a third-order TVD Runge-Kutta scheme [START_REF] Shu | Ecient implementation of essentially nonoscillatory shock capturing schemes[END_REF] for time integration.

One-dimensional tests

In this section we test the proposed methodology in two one-dimensional tests, in order to study if the proposed approach is stable. First we test the one-dimensional advection equation, and then, the 1D Euler equations are solved for several test cases. These test cases with Euler equations are intended to test the robustness of the proposed scheme when dealing with discontinuities. Note that due to the conguration of these tests cases for the Euler equation, it is not expected to obtain a remarkable improvement in accuracy with the adaptive viscosity method. This is due to the fact that when a strong shock is detected, the scheme quickly recovers the full dissipation whereas in the rest of the domain, the dissipation introduced by the original scheme is low.

Linear Advection equation

In this rst case we test if the reduced dissipation introduce dispersion errors in the solution. The computational domain is Ω = [0, 4], with periodic boundary conditions. We initialize the computations using the exact solution, which at a given time t reads u(x, t) = 1 + A sin (π(x -at))

where A = 0.2 and the constant freestream velocity a = 1. The simulation is run until t = 4, using the Lax-Friedrichs ux with and without the ADA method presented in section 3.1. The results are shown in gure 4 and Table 1 where L 2 -norm of the error and the convergence order are computed and presented. It is observed that the ADA method recovers the expected order of convergence, with increased accuracy compared with the baseline method.

FV 

Isolated steady normal shock

In this case we compute a stationary shock. The computational domain is [0, 20], and the shock is placed at x 0 = 10. We solve this problem using 100 control volumes until an steady state is reached, using the Rusanov numerical ux. The left initial state is dened as

(ρ L , u L , p L ) = (1, 1, 1 γM 2 L
) and the right initial state is computed using with the following expressions, obtained from the Rankine-Hugoniot conditions [40] ρ

R = (γ + 1)M 2 L (γ -1)M 2 L + 2 (33) u R = 1 ρ R ( 34 
) p R = 1 + 2γ γ + 1 (M 2 L -1) 1 γM 2 L (35)
where the Mach number of the left state is M L = 7 and the polytropic index is γ = 1.4. 

Slowly moving shock

This case computes a strong slowly moving shock. Note that the lower value of the pressure in the right state makes the pressure ratio close to its maximum. Thus, it is an almost innite strong shock. This is a severe test case for the numerical scheme, and we reproduce here the conguration given in [START_REF] Li | Comparison of the generalized Riemann solver and the gas-kinetic scheme for inviscid compressible ow simulations[END_REF]. The computational domain is [0, 100], and the shock is initially placed at x 0 = 20. We solve this problem using 100 control volumes until a nal time of t = 2000 with CFL = 0.5 using the Rusanov numerical ux.

The left and right initial states are dened as in [START_REF] Li | Comparison of the generalized Riemann solver and the gas-kinetic scheme for inviscid compressible ow simulations[END_REF](ρ L , u L , p L ) = (4, 0.3, 4/3)

and (ρ R , u R , p R ) = (1, -1.3, 10 -6
). The polytropic index is γ = 5/3. The results are shown in gure 6. It is shown that both, MOOD and ADA-MOOD schemes are able to obtain a solution free of oscillations. Moreover, the shock position is well-predicted. As in the previous case, it is observed that the value of (and then the dissipation) is one at the surroundings of the shock and it is very reduced in the rest of the domain.

Isolated contact discontinuity

In this test we show the behavior of the proposed methodology when dealing with contact discontinuities. In particular, we test both, an isolated stationary contact discontinuity and also an isolated moving contact discontinuity. The left and right initial states are dened as (ρ L , u L , p L ) = (1, 0, 0.5)

and (ρ R , u R , p R ) = (0.6, 0, 0.5) for the stationary case. The contact discontinuity is placed at x 0 = 0.5. The polytropic index is γ = 1.4. We discretize the domain [0, 1] using 100 control volumes. The moving case uses the same initial states with an advection velocity u = 0.1. We use also 100 control volumes and the computational domain is enlarged to [0, 5], and the contact discontinuity is initially located at x 0 = 2. Rusanov ux is used for the computations. And for this test case we use the expression of F given in equation [START_REF] Li | An implicit turbulence model for low-Mach Roe scheme using truncated Navier-Stokes equations[END_REF].

The results are displayed in gure 7. It is observed the reduced numerical viscosity obtained with the MOOD-ADA method. In the case of the stationary contact discontinuity, the solution is excellent, with only 2 cells in the discontinuity. In the moving case, the numerical viscosity is also reduced compared with the full Rusanov ux. The left and right initial states are dened as (ρ L , u L , p L ) = (6, 20, 450) and

(ρ R , u R , p R ) = (6, -6, 45 
). We solve this problem using 100 control volumes until a nal time of t = 0.02 and the numerical ux of Roe.

The results using the proposed methodology are compared with the case using a constant value of = 1. The exact solutions were computed using the NUMERICA software [START_REF] Toro | A Library of Source Codes for Teaching, Research and Applications[END_REF]. The results are shown in gure 8. We observe that the use of adaptive dissipation does not vary the results. This is an expected results for this test case, since in the zone of the shock we recover the original scheme, whereas in the rest of the domain, the dissipation introduced by the original scheme is low. 

Isentropic vortex convection

This validation case corresponds to the unsteady vortex convection. This test case is widely used as benchmark for unsteady vortical ows [START_REF] Sherer | High-order compact nite-dierence methods on general overset grids[END_REF][START_REF] Ramirez | New high-resolution-preserving sliding mesh techniques for higher-order nite volume schemes[END_REF][START_REF] Ramirez | A Higher-Order Chimera Method for Finite Volume Schemes[END_REF].

The analytical solution reads as The proposed methodology is used to compute the problem and compared with the results obtained without the adaptive dissipation method. Error norms and convergence order are reported in Table 2. In this case, the ADA scheme obtains the same results using Rusanov and Roe uxes. The reason is that, for this case, the ADA method leads to the central scheme, neglecting the dissipation introduced by the numerical uxes. Note that this result is not expected to hold for more complex ows. 

u(x, y, t) a ∞ = u ∞ a ∞ - K 2πa ∞ ŷe α(1-r 2 )/2 v(x, y, t) a ∞ = v ∞ a ∞ + K 2πa ∞ xe α(1-r 2 )/2 T (x, y, t) T ∞ = 1 - K 2 (γ -1) 8απ 2 a 2 ∞ e α(1-r 2 ) ρ(x, y, t) ρ ∞ = T (x, y, t) T ∞ 1 γ-1 p(x, y, t) p ∞ = T (x, y, t) T ∞ γ γ-1 where x = x-x 0 -u ∞ t, ŷ = y-y 0 -v ∞ t, γ = 1.4 and r = x2 + ŷ2 . Here, the chosen parameters are α = 1, ρ ∞ = 1, p ∞ = 1, (u ∞ , v ∞ ) = ( 0.5 √ 2 , 0.

Incompressible isotropic Taylor-Green vortex

The Taylor-Green vortex (TGV) is the simplest model for the analysis of the nonlinear transfer of kinetic energy among the dierent scales of a ow.

Even if it is simple to construct, it contains several key physical processes of turbulence. We solve the inviscid version of this test example in order to analyze an innite Reynolds case. This is intended to show the behavior of the proposed method in under-resolved simulations, and to examine the capability of the ILES scheme to reproduce transition to turbulence. For very large Reynolds number, it is known that statistically isotropic turbulence develops following the -5/3 decay Kolmogorov's law of the kinetic-energy spectra within the inertial subrange around t ≈ 9 [START_REF] Fauconnier | Construction of explicit and implicit dynamic nite dierence schemes and application to the large-eddy simulation of the Taylor-Green vortex[END_REF]. A physically-consistent numerical method developed for implicit LES should recover this behavior.

Setup of the problem and results

In this test case, we solve the three-dimensional Euler equations with γ = 5/3, using both, Roe and Rusanov numerical uxes. The initial condition of the TGV is u(x, y, z, 0) = sin(x) cos(y) cos(z) v(x, y, z, 0) = -cos(x) sin(y) cos(z)

w(x, y, z, 0) = 0 (36) ρ(x, y, z, 0) = 1 p(x, y, z, 0) = 100 + 1 16 [(cos(2x) + cos(2y))(2 + cos(2z)) -2]
We solve this set of equations in a periodic [0, 2π] × [0, 2π] × [0, 2π] cube, using a 64 3 grid, until a nal time of t = 10. This grid is used in order to check the behavior of the method for a under-resolved turbulent simulation.

Since the density must remain constant in this case, we use the kinetic energy as the variable to detect oscillations with the a posteriori method (equation ( 25)). The evolution of the normalized total kinetic energy and enstrophy using the proposed scheme with Roe and Rusanov numerical uxes, is shown in gure 9, where our results are also compared with those obtained using other numerical schemes. In particular, we compare with the eight-order TENO scheme [START_REF] Fu | A targeted eno scheme as implicit model for turbulent and genuine subgrid scales[END_REF], the Fourier collocation method with exponential lter (F-EF-10-38-N) and the WENO5 scheme [START_REF] Shu | Numerical Convergence Study of Nearly Incompressible, Inviscid Taylor-Green Vortex Flow[END_REF]. We also compare with the results obtained with a third-order Residual Based Compact scheme (RBC3) [START_REF] Grimich | Spectral properties of high-order residual-based compact schemes for unsteady compressible ows[END_REF]. The non linear interactions generate successively smaller scales, but the kinetic energy remains constant until t ≈ 4. The results obtained by the proposed approach, are in excellent agreement with the reference solution, both in terms of the kinetic energy and enstrophy. The use of the ADA method allows to obtain comparable or better results than those attained with higher order schemes. The method also reproduces closely the semi-analytical results presented in [START_REF] Brachet | Small-scale structure of the Taylor-Green vortex[END_REF]. It is also seen that the results obtained with the third-order FV-MLS method with a constant value of = 1 (that is, without the ADA method) seem to be less dissipative than those obtained with the proposed methodology. These unexpected results are explained since in the scheme with the ADA method, the reduced dissipation introduced from the reduction of leads to more frequent activation of the a posteriori stabilization method. This, which at a rst sight could seem a drawback of the proposed method, turns in fact a numerical mechanism to capture the right dynamics of the ow. The ADA method adjusts the dissipative part of the numerical ux regarding the high-frequency content of the solution, increasing the dissipation where the solution is under-resolved, and decreasing the dissipation where the high-frequency content of the solution is low. However, there are sudden events (such as a shock wave, or a sudden collapse of a vortex in high-Reynolds ows (with practically no viscosity)) where the ADA method is not able to react instantaneously, since the variation of epsilon is limited each time step according to equation [START_REF] Roe | Approximate Riemann solvers, parameter vectors and dierence schemes[END_REF]. In these scenarios, the MOOD algorithm increases the dissipation. Moreover, there is one possible scenario in which the MOOD plays an unexpected role: when the solution is locally under-resolved, the ADA algorithm may increase the value of until a magnitude of = 1 without triggering the MOOD. In this case, it is even possible that the numerical viscosity introduced by the high-order scheme would not be enough to dissipate the content of energy required to follow Kolmogorov's law. In this case, the high-frequency content of the solution will increase until a level where the MOOD is triggered. This shows that very high-order methods (with very low intrinsic dissipation) could face accuracy problems for ILES of very under-resolved ows without a numerical mechanism to introduce a higher amount of viscosity such as the one proposed in this work.

In this test case, the dissipation introduced by the third-order scheme is low, but enough to dissipate the oscillations (avoiding the activation of the a posteriori stabilization method). However, it still introduce an excessive amount of numerical dissipation that avoids the scheme to accurately reproduce the physics of the ow. This is conrmed in gure 10 (left), where the evolution of the kinetic energy spectrum is plotted for several times. It is observed that for time t = 10 the proposed numerical method with the numerical ux of Roe is able to reproduce the Kolmogorov scaling, whereas the spectrum obtained using a constant value of = 1 does not capture the physical behavior. Moreover, in gure 10 (right), it is shown that the kinetic energy decays as t -1.3 . This value is in the range 1.2-1.4 which is in good agreement with the values obtained in the literature for the isotropic decay of turbulence [START_REF] Fu | A targeted eno scheme as implicit model for turbulent and genuine subgrid scales[END_REF][START_REF] Carton De Wiart | Implicit LES of free and wall-bounded turbulent ows based on the discontinuous Galerkin/symmetric interior penalty method[END_REF].

In gure 11 (left) we plot the energy spectrum obtained using the Rusanov ux. Note that the use of the proposed methodology allows us to improve the results compared to those obtained with the original scheme. Even though the results obtained with Rusanov ux are not as accurate as those using the Roe ux, the improvement in accuracy is quite remarkable. This is an important result for cases where Roe's ux is not applicable. In gure 11

Figure 9: Incompressible isotropic Taylor-Green vortex. Evolution of the normalized total kinetic energy (left) and enstrophy (right), obtained with the proposed scheme (FV-MLS MOOD-ADA) using a 64 3 . The results for the TENO-8 [START_REF] Fu | A targeted eno scheme as implicit model for turbulent and genuine subgrid scales[END_REF], the third-order Residual Based Compact scheme (RBC3) [START_REF] Grimich | Spectral properties of high-order residual-based compact schemes for unsteady compressible ows[END_REF], the Fourier collocation method with exponential lter (F-EF-10-38-N) schemes and the WENO5 scheme [START_REF] Shu | Numerical Convergence Study of Nearly Incompressible, Inviscid Taylor-Green Vortex Flow[END_REF] have been digitized from the indicated references. The results obtained using FV-MLS MOOD third-order schemes without the proposed adaptive viscosity method are also shown. The semi-analytical enstrophy solution of [START_REF] Brachet | Small-scale structure of the Taylor-Green vortex[END_REF] is plotted with diamonds.

(right), it is seen that the kinetic energy decay lies also in the 1.2-1.4 range.

We note that the proposed methodology allows to obtain physical results for under resolved simulations using relatively low order-schemes. The reduced dissipation obtained through the use of the ADA methodology and the a posteriori stabilization to keep the stability, is comparable to that introduced by a very-high order method.

In gure 12 it is shown that in most of the domain the value of is less than one. Around t = 5, the grid is no longer ner enough to solve all the scales and the solution becomes under-resolved. In this moment, the a posteriori method is activated in some cells, as it is shown in gure 13. This is related with the collapse of some vortical structures. The activation of the a posteriori method introduce enough viscosity to keep the stability, by decreasing the order of the scheme at the points where the vortical structures collapse. 

Decay of Compressible Isotropic Turbulence

In this section we test the proposed method using the decay of compressible turbulence test case. This test case is a simple case of turbulent ow, but it allows to check the ability of the method for Large Eddy Simulations. It has been used by many authors to investigate SGS models and to test numerical Results obtained using the third-oder FV-MLS MOOD-ADA scheme and the numerical ux of Roe.

methods [START_REF] Johnsen | Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[END_REF][START_REF] Kotov | Numerical dissipation control in high order shock-capturing schemes for LES of low speed ows[END_REF][START_REF] Honein | Higher entropy conservation and numerical sta-59 bility of compressible turbulence simulations[END_REF][START_REF] Lee | Eddy shocklets in decaying compressible turbulence[END_REF][START_REF] Spyropoulos | Evaluation of the Dynamic Model for Simulations of Compressible Decaying Isotropic Turbulence[END_REF][START_REF] Hickel | Subgrid scale modeling for implicit large eddy simulation of compressible ows and shock turbulence interaction[END_REF]. Roe ux is used in the computations.

Setup of the problem

For this problem we solve the three dimensional Navier-Stokes equations with γ = 1.4. We consider a computational domain that is a 2π × 2π × 2π cube, which is discretized with an homogeneous grid with periodic boundary conditions.

The ow is dened by the turbulent Mach number (M t ) and Taylor's microscale Reynolds number (Re λ ), which are dened as

M t = v i v i c ( 37 
)
Re λ = ρ v rms λ µ (38) 
The symbol refers to mean value and primes denote uctuating variables. Moreover, we dene the root mean square of the velocity (v rms ) as

v rms = v i v i 3 (39) 
The initial three-dimensional kinetic energy spectrum is dened as

E 3D ∼ k 4 exp -2 k k 0 2 ( 40 
)
where k is the magnitude of the wave number vector, and k 0 = 4 is the wavenumber at the peak of the spectrum. Using this initial energy spectrum, λ 0 = 0.5k 0 .

In this section we will solve two dierent congurations of this problem.

The rst case, referred henceforth as DEC1 corresponds with the case 6 of [START_REF] Spyropoulos | Evaluation of the Dynamic Model for Simulations of Compressible Decaying Isotropic Turbulence[END_REF]. For the DEC1 case, initial velocity uctuations are parametrized by the turbulent Mach number, and also by the fraction of energy in the dilatational part of the velocity, χ = 0.2 [START_REF] Sarkar | The analysis and modeling of dilatational terms in compressible turbulence[END_REF]. The initial turbulent Mach number is taken as M t,0 = 0.4.

The initial density and temperature elds are given by

(ρ rms ) 2 / ρ 2 = 0.032 (41) 
(T rms ) 2 / T 2 = 0.005
The initial Taylor's microscale Reynolds number is chosen as Re τ,0 = 2157 which corresponds with a Reynolds number Re = 536.9 [START_REF] Rizzeta | Application of a Highorder Compact Dierence Scheme to Large-Eddy and Direct Numerical Simulation[END_REF].

The second conguration, henceforth referred as DEC2, is taken from [START_REF] Johnsen | Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[END_REF][START_REF] Kotov | Numerical dissipation control in high order shock-capturing schemes for LES of low speed ows[END_REF][START_REF] Fu | Implicit large eddy simulations with a high-order TENO scheme[END_REF]. In this case the density and pressure elds are initially constant (here we set ρ = 1, and the pressure eld is obtained accordingly), with M t,0 = 0.6 and Re λ,0 = 100 as initial parameters.

These setups correspond to the nonlinear subsonic regime [START_REF] Sagaut | Large Eddy Simulation for Compressible Flows[END_REF] and weak shocklets develop spontaneously from the turbulent motion. This fact represents a challenge to the accuracy of any numerical scheme [START_REF] Johnsen | Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[END_REF][START_REF] Kotov | Numerical dissipation control in high order shock-capturing schemes for LES of low speed ows[END_REF][START_REF] Fu | Implicit large eddy simulations with a high-order TENO scheme[END_REF].

In the simulations of the decay problem, we have used an initial value of the the dissipation coecient ini = 0.15. The reason is that a value of ini = 1 introduce excessive dissipation in the beginning of the simulation, that greatly aects the nal results. We note that this is a specic problem of this test case, with a specic set of initial conditions. In regular practice of turbulent ow computations it is usual to let the ow develop before starting the simulation. In that case, the period of development of the ow is enough to adjust the dissipation coecient.

DEC1 case results

We run this simulation using a time step of ∆t = 0.05 for the 32 This solution follows closely the results of a DNS [START_REF] Visbal | Large-Eddy simulation on Curvilinear Grids Using Compact Dierencing and Filtering Schemes[END_REF]. proposed scheme, using a 32 3 grid and compared with a reference solution [START_REF] Visbal | Large-Eddy simulation on Curvilinear Grids Using Compact Dierencing and Filtering Schemes[END_REF]. The results obtained with the proposed scheme using a 64 3 grid are also shown.

It is observed the general improvement obtained used the proposed scheme.

Moreover, in gure 14 it is shown that the results converge to the reference solution as the grid is rened. Noteworthy, the scheme is able to reproduce the thermodynamic variables of the ow. This is important, since in [START_REF] Honein | Higher entropy conservation and numerical sta-59 bility of compressible turbulence simulations[END_REF] it is shown that some methods proposed for Implicit LES are not able to simultaneously predict the correct scaling and decay rates of thermodynamic variables.

The evolution of the numerical viscosity of the scheme with and without the proposed methodology is shown in gure 14. The numerical viscosity has been computed as proposed in [START_REF] Schranner | Assessing the numerical dissipation rate and viscosity in numerical simulations of uid ows[END_REF]. It is shown that for values of t/τ = 0 to t/τ = 0.4, the proposed algorithm with adaptive viscosity is clearly less dissipative than the algorithm with xed viscosity (that is, = 1). However, it is observed that from t/τ = 0.4 to t/τ = 0.6 the numerical viscosity of the adaptive viscosity algorithm is greater than that of the xed viscosity algorithm. The reason of this behavior is similar to that already explained in the TGV test case, as can be seen examining the evolution of the kinetic energy.

In gure 15 it is seen that the slope of the decay is bigger for the adaptive scheme than for the xed viscosity scheme. Moreover, the slope of the adaptive scheme agrees with that of the reference solution. The largest amount of dissipation is introduced by the activation of the NAD. Since the solution is under resolved, the presence of numerical oscillations induces a reduction of the order in those cells, increasing the numerical dissipation. Note that the dynamics of the decay is completely dierent for each of the schemes, since the distribution of energy dissipation through the scales is dierent, as it can be conrmed examining the instantaneous three-dimensional energy spectra (see gure 16).

In order to compare with the results of [START_REF] Rizzeta | Application of a Highorder Compact Dierence Scheme to Large-Eddy and Direct Numerical Simulation[END_REF][START_REF] Visbal | Large-Eddy simulation on Curvilinear Grids Using Compact Dierencing and Filtering Schemes[END_REF], the instantaneous threedimensional energy spectra for (right) grids.

E(k) = ρ(u 2 + v 2 + w 2 )) at t/τ = 0.3 is

DEC2 case results

The second conguration of the decay problem present stronger shocklets in the solution, and is a harder test case than the previous one. We run this simulation using a time step of ∆t = 0.005. In this case, the eddy turn-over time is τ = k 0 /v rms0 = 0.5.

The results obtained with the proposed scheme are shown in gure 18. In order to compare with [START_REF] Johnsen | Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[END_REF][START_REF] Kotov | Numerical dissipation control in high order shock-capturing schemes for LES of low speed ows[END_REF][START_REF] Fu | Implicit large eddy simulations with a high-order TENO scheme[END_REF], the evolution of the mean-square velocity, enstrophy, normalized mean-square temperature uctuations and evolution of dilatation, obtained on a 64 3 grid are shown. The reference solution is the DNS solution digitized from [START_REF] Johnsen | Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[END_REF].

It is observed the excellent agreement between the results of the proposed scheme and the reference solutions for the mean-square velocity and temperature uctuations. We note that although the dilatation and enstrophy results are somewhat over-dissipative, the results obtained are in the range of most of the higher-order methods compared in [START_REF] Johnsen | Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[END_REF]. the legend) and without the proposed scheme, using a 64 3 grid. DNS results are digitized from [START_REF] Johnsen | Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[END_REF] value = 1 is only reached in few zones of the whole computational domain.

In the same gure (right) the cells where the a posteriori detection criteria was activated are shown.

The total number of cells activated during each time step by the a posteriori algorithm is shown in gure 21. At the beginning of the computation, the number of cells marked by the algorithm reachs its maximum, with around 48% of the total cells at the rst iteration. However, the number of detected cells decreases very quickly, and it remains stable at around 0.5% for most of the computation time. It is seen that the number of cells to recompute is small, and thus, the additional dissipation introduced in order to stabilize the scheme is not excessive. Moreover, since the number of detected cells is small, the number of cells to be recomputed is also small, and the computa- tional cost of the proposed scheme is not greatly increased. This behavior of the a posteriori techniques has also been reported in [START_REF] Clain | Loubère A high-order nite volume method for systems of conservation laws-Multidimensional Optimal Order Detection (MOOD)[END_REF].

2D Mach 3 wind tunnel with a step

In order to address a case with stronger shocks, we solve here the 2D supersonic ow across a wind tunnel, as proposed in [START_REF] Woodward | The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks[END_REF]. In this test case, a supersonic ow at Mach 3 across a wind tunnel of 1 length unit wide and 3 length units long is considered. A step is located at 0.6 length units from the inow, and it is 0.2 length units wide. This is an inviscid case, in order to consider an innite Reynolds number. We use slip wall boundary conditions along the walls, and supersonic inow and outow boundary conditions. The initial value of the velocity is set to u = 3, v = 0, whereas the initial values of density and pressure are dened as ρ = 1.4, p = 1, and γ = 1.4. This setup corresponds to a Mach 3 ow. Following [START_REF] Hu | Weighted essentially non-oscillatory schemes on triangular meshes[END_REF], the singularity point at the corner is managed by rening the mesh in this region. The mesh is built by setting the biggest size of the elements away from the corner as ∆x = ∆y = 1/160, and the size of elements near the corner is one-half that.

A paving algorithm has been used to build the mesh. A detail of the grid is plotted in gure 22. We solve the two-dimensional Euler equations using the Rusanov scheme given in equation ( 16).

The results are shown in gures 23 and 24. We show that the method is stable and it obtains very accurate results using the ADA method combined with the a posteriori approach. In particular, it is shown that, using the proposed method, we are able to reproduce the Kelvin-Helmholtz instability that forms after the shock. Using the same numerical discretization scheme but without the ADA and the a posteriori detection, (that is, a classical approach based on slope limiters), the Kelvin-Helmholtz instability is not captured. Moreover, the Mach stem at the step wall, is much shorter using the proposed approach.

Figure 24 shows that in most of the domain, the value of is small, and that the number of cells with the reduced order is also small. The area where the Kelvin-Helmholtz instability develops is solved with the third-order scheme with reduced numerical viscosity.

Conclusions

We have presented an a posteriori high-order nite volume scheme using Roe and Rusanov numerical uxes for the computation of compressible turbulent ows. An Implicit LES scheme has been proposed by combining an automatic dissipation adjustment (ADA) method with the a posteriori paradigm. It has been demonstrated that the proposed methodology is able to implicitly dene a subgrid scale model and it also keeps the stability of the computations. The numerical dissipation is adjusted by adding a multiplicative factor to the dissipative part of the numerical ux. The a posteriori approach allows for detecting the cells where the stability is compromised, and thus where dissipation must be added to ensure the stability of the scheme.

Through the Taylor-Green vortex and the isotropic decay of turbulence test cases, we shown that the proposed methodology is a promising candidate for ILES simulations, since the physics of the decay is reproduced by our simulations. The proposed method is able to obtain comparable results to those obtained using numerical methods with higher order of accuracy. Moreover, the Mach 3 step ow case shows the accuracy and robustness of the the proposed numerical scheme, which is capable to work with shock waves of considerable strength. We note that the proposed methodology presents a way to greatly improve the accuracy of existing second or third-order nite volume codes. This work is a rst step in the development of a complete ILES methodology for compressible ows. However, further research is required for non-isotropic turbulence, particularly for wall-bounded compressible turbulent ows using unstructured grids.
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 1 Figure 1: Transfer function (SF ) of the MLS lter for dierent values of κ.
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 23 Figure 2: Value of shock in terms of the shock strength parameter F[START_REF] Hollyer | Parameters Characterizing the Strength of a Shockwave[END_REF] 

Figure 4 :

 4 Figure 4: One-dimensional linear advection test case. Comparison of L 2 error norms with and without the proposed method at t = 4.

Figure 5 :

 5 Figure 5: Isolated stationary shock test case. Comparison of the results using adaptive dissipation and the Rusanov numerical ux..
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 6 Figure 6: Slowly moving shock test case. Comparison of the results using adaptive dissipation and the Rusanov numerical ux at t = 2000.

Figure 7 :

 7 Figure 7: Isolated contact discontinuity. Comparison of the results for the density eld using the baseline and adaptive dissipation methods. On the left, results of the stationary case at t = 1. On the right, results for the moving case at t = 10.

Figure 8 :

 8 Figure 8: One-dimensional double shock tube test case. Comparison of the results using adaptive dissipation and the numerical ux of Roe at t = 0.02.
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 2 ), (x 0 , y 0 ) = (-5, -5) and K = 5. This corresponds to a free stream Mach number of M = 0.5. With this set of parameters the vortex starts at the position (x, y) = (-5, -5) and at reaches the position (x, y) = (5, 5) at t = 20 √ 2.

Figure 10 :

 10 Figure 10: Incompressible isotropic Taylor-Green vortex. The 3D energy spectrum at dierent times compared with the Kolmogorov scaling is shown on the left. On the right, the evolution of the normalized total kinetic energy with the expected -1.3 scaling is shown. Results obtained using the third-oder FV-MLS MOOD-ADA scheme and the numerical ux of Roe.

Figure 11 :

 11 Figure 11: Incompressible isotropic Taylor-Green vortex. The 3D energy spectrum at t = 10 compared with the Kolmogorov scaling is shown on the left. On the right, the evolution of the normalized total kinetic energy with the expected -1.3 scaling is shown. Results obtained using the third-oder FV-MLS MOOD-ADA scheme and the numerical ux of Rusanov.

Figure 12 :

 12 Figure 12: Incompressible isotropic Taylor-Green vortex. Absolute value of the vorticity contours colored with the value of . On the left, absolute value of the vorticity contours at t = 3 are shown, and on the right the absolute value of the vorticity contours with a value equal to 0.4 att = 5 are plotted. Results obtained using the third-oder FV-MLS MOOD-ADA scheme and the numerical ux of Roe.

Figure 13 :

 13 Figure 13: Incompressible isotropic Taylor-Green vortex. Absolute value of the vorticity contours colored with the value of the order of the scheme. On the left, absolute value of the vorticity contours at t = 3 are shown, and on the right the absolute value of the vorticity contours with a value equal to 0.4 att = 5 are plotted. Red color indicates the third-order scheme whereas the yellow color indicates the use of the rst-order scheme.
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 3 grid which corresponds to 150 time-steps per eddy turnover time τ , that is τ = 12.5 for this conguration. For the 64 3 grid computation we keep the CFL constant. The results obtained for the DEC1 conguration of the decay problem are shown in gures 14 and 16. Two dierent grids were used for the computations. A coarse grid of 323 elements and a ner one of 643 . These grids correspond to under-resolved simulations, since we are interested in the behavior of the scheme for LES simulations. The obtained results are compared with a reference solution computed with a sixth-order compact nite dierence scheme, with explicit ltering using a tenth-order Padé lter.

Figure 14 :

 14 Figure 14: Decay of homogeneous isotropic turbulence. DEC1 Conguration. Evolution of the kinetic energy (top-left), mean-square density uctuations (top-right), normalized mean-square temperature uctuations (bottom-left) and evolution of the numerical viscosity (bottom-right), obtained with (indicated with ER in the legend) and without the

Figure 16 :

 16 Figure 16: Decay of homogeneous isotropic turbulence. DEC1 Conguration. Instantaneous three-dimensional energy spectra at t/τ = 0.3. Results for the 32 3 (left) and 64 3

Figure 17 :Figure 18 :Figure 19 :

 171819 Figure 17: Decay of homogeneous isotropic turbulence. DEC1 Conguration: 0.2 absolute value of the vorticity iso-contours, colored with the instantaneous value of at t/τ = 0.3 on the 32 3 grid (top-left) and 64 3 grid (top-right). On the bottom the detected cells (in yellow) at t/τ = 0.3 on the 32 3 grid (bottom-left) and 64 3 grid (bottom-right) are shown.

Figure 20 :

 20 Figure 20: Decay of homogeneous isotropic turbulence. DEC2 Conguration. Q-criterion contours (8 contours from -2 to 1) colored with the instantaneous value of at t/τ = 4 (left) and detected cells (in yellow) with the NAD and PAD criteria (right).

Figure 21 :

 21 Figure 21: Decay of homogeneous isotropic turbulence. DEC2 Conguration. Troubled cells detected by the a posteriori algorithm.

Figure 22 :

 22 Figure 22: Mach 3 wind tunnel problem. Detail of the grid.

Figure 23 :

 23 Figure 23: Mach 3 wind tunnel problem. Density contours from 0.212 to 6.22 at time t = 4 contours obtained with the proposed approach (top) and using an approach based on slope limiters (bottom).

Figure 24 :

 24 Figure 24: Mach 3 wind tunnel problem. Detected cells (in red) with the a posteriori approach (top) and value of (bottom). We also plot 30 density contours from 0.212 to 6.22 at time t = 4.

Table 1 :

 1 L 2 -norm of the error and convergence order for the linear advection equation test case, using the proposed and the baseline methods.

		-MLS	FV-MLS ADA
	Grid L 2 error order	L 2 error order
	20	6.00E-02	1.69E-02
	40	9.89E-03 2.60	1.20E-03 3.82
	80	1.29E-03 2.93	8.36E-05 3.85
	160 1.63E-04 2.99	7.07E-06 3.56
	320 2.04E-05 3.00	7.37E-07 3.26
	640 2.55E-06 3.00	8.69E-08 3.08
	1280 3.19E-07 3.00	1.07E-08 3.02

Table 2 :

 2 L 2 -norm of the error and convergence order for the isentropic vortex convection test case using Rusanov and Roe uxes.
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plotted in gure 16. We note the two dierent slopes appearing in the energy spectrum, which agrees with the Eddy-Damped Quasi-Normal Markovian Theory (EDQNM) [START_REF] Hussaini | On Large-Eddy Simulation of Compressible Flows[END_REF]. The obtained spectra using the proposed scheme ts almost perfectly the reference solution. The reduction in the dissipation of the smallest scales is clearly observed. This behavior holds as the grid is rened, as observed in the results for the 64 3 grid. In both grids, no pile-up of energy is detected. These results conrm that the proposed methodology is a good candidate for Implicit LES computations.

The values of the dissipation coecient at t/τ = 0.3 are shown in gure 17. Most of the points are in the range 0.1 -0.6, and, it is observed that the value = 1 is only reached in few zones of the whole computational domain.