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Abstract

A representation formula without pressure term is derived for regular solutions to
the 3D time-dependent Oseen system in exterior Lipschitz domains. This formula is
valid even if no boundary conditions are imposed. It is used in order to exhibit how the
velocity decays pointwise in space. It turns out that the rate of this decay depends
on Lp-integrability in time of the velocity. In addition, this work is the basis for
successor papers dealing with spatial decay of Lq-weak solutions and mild solutions
to the time-dependent Oseen system, and with L2-strong solutions to the stability
problem related to the Navier-Stokes system with Oseen term.
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1 Introduction

We consider the time-dependent Oseen system

∂tu−∆xu+ τ ∂x1u+∇xπ = f, divxu = 0 in Ω
c × (0, T0), (1.1)

where Ω
c

:= R3\Ω denotes an exterior domain, with Ω ⊂ R3 being an open bounded
set with Lipschitz boundary. This set is given, as are the quantities T0 ∈ (0,∞] and
τ ∈ (0,∞), as well as the function f : Ω

c × (0, T0) 7→ R. The unknowns are the functions
u : Ω

c × (0, T0) 7→ R3 and π : Ω
c × (0, T0) 7→ R. The Oseen system is a linearization of the

Navier-Stokes system with Oseen term

∂tu−∆xu+ τ ∂x1u+ τ (u · ∇x)u+∇xπ = f, divxu = 0 in Ω
c × (0, T0), (1.2)

which models the flow of a viscous incompressible fluid around a rigid body moving with
constant velocity and without rotation. In this model, the reference frame used to describe
the flow is supposed to adhere to the rigid body. The functions u and π correspond
respectively to the velocity and the pressure field of the fluid, the function f stands for
an exterior force acting on the fluid, and τ may be interpreted as the Reynolds number of
the fluid.

In the work at hand, we want to exhibit pointwise decay in space of the velocity part u
of a solution to (1.1). More precisely, if u is the velocity part of a regular solution to
(1.1) as specified in Corollary 5.2 and Theorem 6.1, and if |f(x, t)| and |u(x, 0)| decrease
sufficiently fast for |x| → ∞, then the estimate

|∂αxu(x, t)| ≤ C
[ (
|x| ν(x)

)−(3+|α|)/2+1/(2 min{σ′1, σ′2,σ′3}) + |x|−(γ+|α|) ] (1.3)
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holds for x ∈ Bc
R0

:= R3\BR0 , t ∈ (0, T0), α ∈ N3
0 with |α| := α1 + α2 + α3 ≤ 1,

where the function ν(x) := 1 + |x| − x1 (x ∈ R3) should be considered as a mathematical
manifestation of the wake extending downstream from the rigid body. The real number R0

must be sufficiently large so that Ω ⊂ BR0 . The condition |α| ≤ 1 means that inequality
(1.3) covers the velocity u itself as well as its spatial gradient ∇xu. The number γ in the
term |x|−(γ+|α|) equals 3 if the zero flux condition∫

∂Ω
u(t) · n(Ω) dox

(
t ∈ (0, T0)

)
(1.4)

holds; otherwise γ = 2. (By n(Ω), we denote the outward unit normal to Ω.) The pa-
rameters σ1, σ2, σ3 ∈ [1,∞], q ∈ (1,∞) in (1.3) are introduced via the assumptions
u|ZR1,T0 ∈ Lσ1

(
0, T0, L

q(ΩR1)3
)
, ∇xu|ZR1,T0 ∈ Lσ2

(
0, T0, L

q(ΩR1)3
)

and f |ZR1,T0 ∈
Lσ3
(

0, T0, L
q(ΩR1)3

)
, where ΩR1 := BR1\Ω and ZR1,T0 := ΩR1 × (0,∞), for some R1 ∈

(0,∞) with Ω ⊂ BR1 . The appearance of these parameters σj in (1.3) means that the
spatial decay of u and ∇xu depends on Lp-integrability in time of u|ZR1,T0 , ∇xu|ZR1,T0

and f |ZR1,T0 . This is the link between Lp-integrability in time and pointwise decay in
space of u alluded to in the title of this work. Another key point of our theory is that we
do not impose any boundary conditions on u or π, except that we consider the case that
the zero flux condition (1.4) is valid. If that condition holds and if |f(x, t)| and |u(x, 0)|
decrease sufficiently fast for |x| → ∞, then inequality (1.3) implies that

|∂αxu(x, t)| ≤ C
(
|x| ν(x)

)−(3+|α|)/2+1/(2 min{σ′1, σ′2}) (1.5)

for x, t, α as before. For more details, we refer to Theorem 6.1.

We chose our assumptions exclusively in view of establishing (1.3), without any intent of
proving existence results for solutions to (1.1). But of course, solutions to (1.1) fulfilling
our requirements should be known to exist. We state some results in this respect in
Theorem 6.2 and 6.3, with suitable references as proof.

In a successor paper [17], we will show that inequality (1.3) remains valid if u is only
(the velocity part of) a Lq-weak solution to (1.1). A further successor paper [19] extends
(1.3) to mild solutions to (1.1), under homogeneous Dirichlet boundary conditions. In still
another successor paper [18], we deal with the nonlinear stability problem

∂tu−∆xu+ τ ∂x1u+ τ (U · ∇x)u+ τ (u · ∇)U + τ (u · ∇x)u+∇xπ = f, (1.6)

divxu = 0 in Ω
c × (0, T0),

where U : Ω
c 7→ R3 is the velocity part of a solution to the stationary Navier-Stokes system

−∆U + τ ∂1U + τ (U · ∇)U +∇Π = F, divU = 0 in Ω
c
. (1.7)

Note that (1.6) reduces to (1.2) if U = 0. We show in [18] that L2-strong solutions to
(1.6) satisfy (1.3) with p = 2. These successor papers [17], [19], [18] build on the results
established here, so the work at hand is of interest not only in its own right, but also
because it is the foundation of the theory derived in these latter articles.

Let us compare the results and the method of proof in the work at hand with related
theories available in literature. What has been established up to now are estimates of the
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form

|∂αxu(x, t)| ≤ C
(
|x| ν(x)

)−1−|α|/2
for x ∈ Bc

R0
, t ∈ (0, T0), (1.8)

starting with Mizumachi [36, Theorem 2], who identified a class of initial data U0 and a
class of solutions (u, π) to the nonlinear problem (1.2) with f = 0 such that u satisfies
(1.8) in the case α = 0. In [10] and [13], we established (1.8) for α ∈ N3

0 with |α| ≤ 1 if
u is an L2-weak solution to the Oseen system (1.1) under Dirichlet boundary conditions
with data verifying (1.4), and in [14], we derived (1.8) for the same range of α in the case
that u is an L2-strong solution to the stability system (1.6), also under Dirichlet boundary
conditions with data satisfying (1.4).

The proofs in all those references, and also in the work at hand, rely on integral represen-
tations of the velocity part u of solutions to the time-dependent Oseen system (1.1). When
equations (1.2) or (1.6) are studied, the additional terms in these systems are considered
as part of the right-hand side of (1.1). However, these articles differ with respect to the
choice of such a representation. Mizumachi [36] used a Green’s formula, a variant of which
appears in the present article as equation (5.4). Such an equation has the disadvantage
that it involves an integral on ∂Ω× (0, T0) of ∇xu and π. This is the reason why in [36],
the restrictive integrability conditions mentioned above are imposed on ∇xu|∂Ω× (0, T0)
and π|∂Ω × (0, T0). In [10], [13] and [14], we circumvented this difficulty by solving an
integral equation in a certain subspace of L2

(
0, T0, L

2(∂Ω)3
)
. This approach provides a

representation formula for solutions to (1.1) which does not contain the critical integrals
mentioned above. In addition it even yields existence of a solution to (1.1) under Dirichlet
boundary conditions satisfying (1.4). However, it is limited to an L2-framework, and even
in that context, the decay rate −1− |α|/2 it provides as indicated in (1.8) is not optimal.
Concerning this latter point, in the case of homogeneous Dirichlet boundary conditions,
the theory in the present paper yields the stronger decay rate −5/4− |α|/2, albeit under
assumptions on U0 and f somewhat different from those in [10] and [13]. We refer to
Theorem 6.2 and the comment preceding it for more details. In [17], the theory presented
in the work at hand is extended to a more general framework covering the situation in [10]
and [13]. It turned out that we again obtain the higher rate −5/4− |α|/2 ([17, Theorem
6.1, 6.2]), compared with −1− |α|/2 in [10] and [13].

A similar comparison is valid between [14] and the successor paper [18] to the present
work: As already indicated further above, it is shown in [14] that for L2-strong solutions
to (1.6) satisfying (1.4), the estimate in (1.8) holds, so the velocity decays with the rate
−1 − |α|/2. On the other hand, in [18] we will prove that (1.3) holds with σ1 = σ2 = 2,
hence the velocity decreases with the rate −5/4− |α|/2 if (1.4) is satisfied.

The improvements derived in the present work, in [17], [19] and [18] compared to existing
theory in [36], [10], [13] and [14] – higher decay rates, no boundary conditions involved
except (1.4) if so chosen, transition from an L2- to an Lq-framework in the linear case,
decay estimates for mild solutions to (1.1) – are essentially due to a representation formula
(equation (5.7)) which is different from the ones used in those earlier references. Since it is
derived from a Green’s formula, this equation does not require solving an integral equation.
Still it does not contain the critical boundary integrals mentioned above because they are
removed by partial integration and a cut-off procedure; see the proof of Corollary 5.1.
Although this approach introduces a restriction, too – the velocity is represented at a
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point (x, t) only if x is located outside a fixed ball around Ω –, this does not matter in our
context because we are interested in the behaviour of the velocity in (x, t) for large values
of |x|.
A similar representation formula was derived in [15] for solutions to the time-dependent
Stokes system; see [15, Theorem 4.3]. However, this formula only leads to pointwise decay
estimates of the velocity itself, but not of its spatial gradient, and is valid only if f vanishes
and homogeneous Dirichlet boundary conditions are satisfied. Moreover the theory in [15]
is essentially restricted to an L2-framework and is based on maximal regularity of solutions
to the time-dependent Stokes system. Maximal regularity cannot be expected to hold for
solutions to the Oseen system (1.1). In fact, according to [20], the velocity part U of a
solution (U,Π) to the Oseen resolvent system −∆U + τ ∂1U + λU +∇Π = F, divU = 0
in the whole space R3 does not satisfy the estimate ‖U‖2 ≤ C0 |λ|−1 ‖F‖2 with a single
constant C0 > 0 for all F ∈ L2(R3)3 and all λ ∈ C with <λ > 0. As a consequence of this
negative result, which arises since small values of |λ| are admitted, an analogous resolvent
estimate cannot be expected to hold for solutions to the Oseen resolvent problem in Ω

c
,

under whatever boundary conditions. Therefore, in view of [40, Theorem 4.2, point 3.)],
it is a safe guess that maximal regularity is not valid for solutions of problem (1.1), not
even in an L2-framework.

Let us mention some references more distantly related to the work at hand. Knightly [31]
considered even the case that the velocity of the rigid body changes with time. However,
his results are valid only under various smallness assumptions. Takahashi [43] deals with
(1.6) in the case Ω = ∅ under a smallness condition. In [2], [3], solutions to (1.1) and
(1.6) are estimated in weighted Lp-norms, with the weights adapted to the wake in the
flow field downstream to the rigid body. Reference [16] by the present author combines
decay estimates in time and in space, as a continuation of [13] (Oseen system (1.1)) and
[14] (problem (1.6)), with the same assumptions and methods as in those latter articles.
Various technical aspects of the theory in [10], [13], [14] and [16] are dealt with in prede-
cessor papers [6] – [9], [11], [12]. Questions of existence, regularity and stability related to
(1.1), (1.2) or (1.6) are addressed in [23], [24], [25], [28], [29], [32], [34], [35], [39], [42].

2 Notation. Some auxiliary results.

The symbol | | denotes the Euclidean norm of Rn for any n ∈ N, the length α1 + α2 + α3

of a multi-index α ∈ N3
0, and the Borel measure of measurable subsets of R3. For R ∈

(0,∞), x ∈ R3, put BR(x) := {y ∈ R3 : |x − y| < R}. In the case x = 0, we write BR
instead of BR(0).

Recall that in Section 1, we introduced the function ν : R3 7→ [1,∞) by setting ν(x) :=
1 + |x| − x1 for x ∈ R3.

We fix numbers S0, R0 ∈ (0,∞) with S0 < R0, as well as a function ϕ0 ∈ C∞0 (B(R0+S0)/2)
with 0 ≤ ϕ0 ≤ 1 and ϕ0|BS0+(R0−S0)/4 = 1. The real number R1 := (R0 + S0)/2 will be
used frequently.

The parameters T0 ∈ (0,∞] and τ ∈ (0,∞) as well as the open bounded set Ω ⊂ R3 with
Lipschitz boundary, all of them introduced in Section 1, will be kept fixed throughout.
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Further recall that the outward unit normal to Ω is denoted by n(Ω). Set ΩR := BR\Ω for
R ∈ [S0,∞). We assume that Ω ⊂ BS0 . In particular the case Ω = BS0 is admitted.

If R, S ∈ (0,∞) with S < R, we write AR,S for the annular domain BR\BS . For n ∈
N, I ⊂ Rn, let χI stand for the characteristic function of I in Rn. If A ⊂ R3, we denote by
Ac the complement R3\A of A in R3. Put el := (δjl)1≤j≤3 for 1 ≤ l ≤ 3 (unit vector in R3).
If A is some nonempty set and γ : A 7→ R a function, we set |γ|∞ := sup{|γ(x)| : x ∈ A}.
Let p ∈ [1,∞) and m ∈ N. For any open set A ⊂ R3, the norm of the Lebesgue space
Lp(A) is denoted by ‖ ‖p, and the expression ‖ ‖m,p stands for the usual norm of the
Sobolev space Wm,p(A) of order m and exponent p. The spaces Lploc(A) and Wm,p

loc (A),
again for A ⊂ R3 open, are defined as the set of all functions V from A into R such that
V |K ∈ Lp(K) and V |K ∈W 1,p(K), respectively, for any open, bounded set K ⊂ R3 with
K ⊂ A. We put ∇V := (∂kVj)1≤j,k≤3 for V ∈W 1,1

loc (A)3.

Let V be a normed space, and let the norm of V be denoted by ‖ ‖. Then we will use

the same notation ‖ ‖ for the norm on Vn defined by ‖(f1, ..., fn)‖ :=
(∑n

j=1 ‖fj‖2
)1/2

for

(f1, ..., fn) ∈ Vn (n ∈ N). The space V3×3, as concerns its norm, is identified with V9.

Again for open sets A ⊂ R3, we define C∞0,σ(A) := {V ∈ C∞0 (A)3 : divV = 0}, and

we write Lpσ(A) for the closure of C∞0,σ(A) with respect to the norm of Lp(A)3, where
p ∈ (1,∞). This function space Lpσ(A) (”space of solenoidal Lp-functions”) is equipped
with the norm ‖ ‖p.
Let p ∈ [1,∞] and B a Banach space. For any interval J ⊂ R, the norm of Lp(J,B)
is denoted by ‖ ‖Lp(J,B). Let a, b ∈ R ∪ {∞} with a < b, and let q ∈ [1,∞). We

write Lp(a, b, B) and W 1,q(a, b, B) instead of Lp
(

(a, b), B
)

and W 1,q
(

(a, b), B
)
, respec-

tively. The space Lploc
(

[a, b), B
)

is to contain all functions v : (a, b) 7→ B such that
v|(a, T ) ∈ Lp(a, T, B) for any T ∈ (a, b). Obviously this space is different from the stan-
dard space Lploc

(
a, b, B

)
, which will also appear. The space W 1,q

loc

(
[a, b), B

)
is to be defined

analogously as Lploc
(

[a, b), B
)

and is to be distinguished from the space W 1,q
loc

(
a, b, B

)
. If

v ∈ W 1,1(a, b, B), then, possibly after a modification on a subset of (a, b) with measure
zero, the function v belongs to C0([a, b), B) ([44, Lemma 3.1.1]). If the latter relation is
already valid, we write v ∈W 1,1(a, b, B) ∩ C0([a, b), B).

Let T ∈ (0,∞], A ⊂ R3 open, p, q ∈ [1,∞], n ∈ N. Then we will write ‖ ‖q,p;T instead
of ‖ ‖Lp(0,T, Lq(A)n). Of course, for an interval J ⊂ R, a function v ∈ Lp

(
J, Lq(A)n

)
may

be considered also as a function on A × J , although there is a minor issue with respect
to measurability on A× J , settled in [11, Lemma 2.1] and Lemma 2.3. For x ∈ A, t ∈ J,
we will write v(t)(x) or v(x, t) depending on whether v is considered as a function on J
with values in Lq(A)n, or as a function on A × J. If v ∈ W 1,1

loc

(
J, Lq(A)n

)
, we write v′

for the weak derivative of v : J 7→ Lq(A)n, and ∂tv for the weak partial derivative of v
as a funtion on A × J ; compare [15, Lemma 2.3]. For a function v : J 7→ W 1,1

loc (A)3, the
notation ∇xv stands for the gradient of v with respect to x ∈ A, in the sense that

∇xv : J 7→ L1
loc(A)3×3, ∇xv(t)(x) :=

(
∂xk

(
vj(t)

)
(x)
)

1≤j,k≤3
for t ∈ J, x ∈ A

(spatial gradient of v). Similar conventions are to be valid with respect to the expressions
∆xv, divxv and ∂xjv.
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Concerning Bochner integrals, if J ⊂ R is open, B a Banach space and w : J 7→ B
an integrable function, it will sometimes be convenient to write B −

∫
J w(t) dt instead

of
∫
J w(t) dt for the corresponding B-valued Bochner integral. For the definition of the

Bochner integral, we refer to [46, p. 132-133], or to [30, p. 78-80.].

We write C for numerical constants and C(γ1, ..., γn) for constants depending exclusively
on paremeters γ1, ..., γn ∈ [0,∞) for some n ∈ N. However, such a precise bookkeeping
will be possible only at some places. Mostly we will use the symbol C for constants whose
dependence on parameters must be traced from context. Sometimes we write C(γ1, ..., γn)
in order to indicate that the constants in question is influenced by the quantities γ1, ..., γn.
But in such cases, this constant depends on other parameters as well.

The following simple version of Young’s inequality for integrals will be used frequently.
Stated her for the convenience of the reader, we will refer to it as “Young’s inequality”.

Lemma 2.1 ([1, Corollary 2.25]) Let n ∈ N and q ∈ [1,∞]. Then(∫
Rn

∣∣∣∫
Rn
U(x− y)V (y) dy

∣∣∣q dx)1/q
≤ C ‖U‖1 ‖V ‖q for U ∈ L1(Rn), V ∈ Lq(Rn).

Another tool which will be used often is Minkowski’s inequality for integrals. Again for
the convenience of the reader, we recall it here.

Theorem 2.1 ([1, Theorem 2.9]) Let m, n ∈ N, p ∈ [1,∞), F : Rn × Rm 7→ R a
measurable function. Then(∫

Rn

(∫
Rm
|F (x, y)| dy

)p
dx
)1/p

≤
∫
Rm

(∫
Rn
|F (x, y)|p dx

)1/p
dy.

For vector-valued functions integrable on exterior domains with integrable divergence, the
divergence theorem holds:

Lemma 2.2 Let A ⊂ R3 be open and bounded, with Lipschitz boundary. Denote the
outward unit normal to A by n(A). Let V ∈ W 1,1

loc (A
c
)3 ∩ L1(A

c
)3 with divV ∈ L1(A

c
).

Further suppose that ∇V |BR\A belongs to L1(BR\A)9 for R ∈ (0,∞) with A ⊂ BR. Then∫
A
c divV dx = −

∫
∂A V · n

(A)
k dox.

Proof: Fix some ψ ∈ C∞0 (B2) with ψ|B1 = 1. Put ψn(x) := ψ(n−1 x) for x ∈ R3, n ∈ N.
Then

∫
A
c divV dx = limn→∞

∫
A
c divV ψn dx by Lebesgue’s theorem, and∫

A
c

divV ψn dx = −
∫
∂A
V · n(A) dox −

∫
A
c
V · ∇ψn dx for n ∈ N with A ⊂ Bn.

But |∂kψn(x)| ≤ |∂kψ|∞ n−1 χB2n\Bn(x) for n ∈ N, x ∈ R3, 1 ≤ k ≤ 3, so
∫
A
c V ·∇ψn dx→

0 (n→∞) again by Lebesgue’s theorem. �

We note that functions V from W 1,1
loc (R3) with ∇V ∈ Lq(R3)3 may be approximated in

the Lq-norm by the gradient of C∞0 -functions in R3.

Theorem 2.2 ([38, Lemma I.1.1]) Let q ∈ (1,∞) and V ∈ W 1,1
loc (R3) with ∇V ∈

Lq(R3)3. Then there is a sequence (Vn) in C∞0 (R3) with ‖∇(Vn − V )‖q → 0.

We will make use of the Helmholtz-Fujita decomposition of Lq-functions in the whole space
R3.

6



Theorem 2.3 Let q ∈ (1,∞). Then there are linear operators Pq : Lq(R3)3 7→ Lqσ(R3)

and Gq : Lq(R3)3 7→ W 1,q
loc (R3) such that ∇Gq(V ) ∈ Lq(R3)3, V = Pq(V ) +∇Gq(V ) and

‖Pq(v)‖q + ‖∇Gq(V )‖q ≤ C(q) ‖V ‖q for V ∈ Lq(R3)3.

Proof: See [27, Section III.1], in particular [27, p. 147-148 and Theorem III.1.2]. �

In the next theorem, the equation divV = F is solved in W 1,q
0 (A)3, where A is an annular

domain.

Theorem 2.4 Let S, R ∈ (0,∞) with S < R, and put A := AR,S . For q ∈ (1,∞), define
the space Lq0(A) by setting Lq0(A) := {F ∈ Lq(A) :

∫
A F dx = 0}. Then there is an operator

D = DR,S from ∪{Lq0(A) : q ∈ (1,∞)} into ∪{W 1,q
0 (A)3 : q ∈ (1,∞)} with the following

properties.

The restriction D|Lq0(A) maps into W 1,q
0 (A)3, for any q ∈ (1,∞),

divD(F ) = F for F ∈ Lq0(A), q ∈ (1,∞), and

D(F ) ∈ C∞0 (A)3 for F ∈ C∞0 (A) with
∫
A F dx = 0.

Proof: Abbreviate C∞0,0 := {F ∈ C∞0 (A) :
∫
A F dx = 0}. According to [4, Theorem

2.4], for any q ∈ (1,∞), there is a linear and bounded operator Dq : Lq0(A) 7→ W 1,q
0 (A)3

such that divDq(F ) = F for F ∈ Lq0(A), and such that for any F ∈ C∞0,0, the function

Dq(F ) belongs to C∞0 (A)3 and only depends on R, S and F . Let p, q ∈ (1,∞). By the
preceding statement, the operators Dp and Dq coincide on C∞0,0. Suppose that q ≥ p, and
let F ∈ Lq0(A) ∩ Lp0(A). There is a sequence (Fn) in C∞0 (A) such that ‖Fn − F‖q → 0.
Since A is bounded, this means in particular that

∫
A Fn dx→

∫
A F dx = 0. Fix a function

ϕ ∈ C∞0 (A) with
∫
A ϕdx = 1, and put F̃n := Fn − (

∫
A Fn dx) (

∫
A ϕdx)−1 ϕ for n ∈ N.

Then F̃n ∈ C∞0,0 for n ∈ N and ‖F̃n − F‖q → 0. But Dp and Dq coincide on C∞0,0, as
mentioned above, and these two operators are bounded. In addition, A is bounded and
p ≤ q. So we obtain Dq(F ) = Dp(F ). This means that the operators Dp and Dq coincide
on Lq0(A)∩Lp0(A) as well. Hence there exists an operator with properties as stated in the
theorem. �

Let us recall some properties of the Bochner integral that will be important in what follows.
First we recall that Bochner integration commutes with bounded operators.

Theorem 2.5 Let B1, B2 be Banach spaces, A : B1 7→ B2 a linear and bounded operator,
n ∈ N, J ⊂ Rn an open set and f : J 7→ B1 a Bochner integrable mapping. Then
A ◦ f : J 7→ B2 is Bochner integrable, too, and A(B1 −

∫
J f dx) = B2 −

∫
J A ◦ f dx.

Proof: See [46, p. 134, Corollary 2], [30, Theorem 3.7.12]. �

We will sometimes interprete Lq(U)-valued Bochner integrals as standard Lebesgue inte-
grals. In view of its importance in the present context, and for completeness, we briefly
discuss this transition. In particular, we indicate why a measurable function f : J 7→ Lq(U)
is measurable as a function on J ×U , where J ⊂ Rn is open, for some n ∈ N. This feature
is often used in the work at hand with respect to functions from L1

loc

(
J, Lq(U)

)
when J

is an interval in R. In [15, Lemma 3.5], we already considered the case q = 2, without
treating measurability. In the proof of the ensuing lemma, we simplify the argument from
[15] by applying Theorem 2.5.
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Lemma 2.3 Let m,n ∈ N, J ⊂ Rn and U ⊂ Rm open sets, q ∈ [1,∞) and f : J 7→
Lq(U)3 integrable as a Bochner integral in Lq(U)3. Then there is a measurable function
g : J × U 7→ R3 such that f(t) = g(t) a. e. in U , for a. e. t ∈ J . We identify f with g.
Then

∫
J |f(t)(x)| dt <∞ and

∫
J f(t)(x) dt =

(
Lq(U)3 −

∫
J f(t) dt

)
(x) for a. e. x ∈ U .

Proof: There is a sequence (fk) of simple functions from J into Lq(U)3 such that the
relation ‖(fk − f)(t)‖q → 0 (k → ∞) holds for a. e. t ∈ J , and

∫
J ‖(fk − f)(t)‖q dt →

0 (k → ∞). (We recall that a function g : J 7→ Lq(U)3 is called simple if there is k0 ∈ N,
measurable subsets E1, ..., Ek0 of J and functions V1, ..., Vk0 ∈ Lq(U)3 such that |Ej | <∞
for 1 ≤ j ≤ k0 and g(t) =

∑k0
j=1 χEj (t)Vj for t ∈ J .)

Let N ∈ N with U ∩ BN 6= ∅, and put UN := U ∩ BN . Then the function fk|J × UN is
measurable and belongs to L1(J ×UN )3, for k ∈ N. Moreover ‖(fk−f)(t)|UN‖1 → 0 (k →
∞) for a. e. t ∈ J , and

∫
J

∫
UN
|(fk − fl)(t)(x)| dx dt → 0 (k, l → ∞). The latter relation

implies there is gN ∈ L1(J × UN )3 with ‖gN − fk‖1 → 0 (k → ∞). In particular there is
a subsequence (f̃k) of (fk) such that ‖(gN − f̃k)(t)|UN‖1 → 0 (k →∞) for a. e. t ∈ J . At
this point we may conclude that gN (t) = f(t)|UN a. e. on UN for a. e. t ∈ J . Since this
is true for any N ∈ N with U ∩ BN 6= ∅, there is a measurable function g : J × U 7→ R3

such that g(t) = f(t) a. e. on U for a. e. t ∈ J .

Since f : J 7→ Lp(U)3 is integrable, the function ‖f(t)‖q (t ∈ J) is integrable as well, so by

Theorem 2.1,
(∫
U

(∫
J |f(t)(x)| dt

)p
dx
)1/p ≤ ∫J ‖f(t)‖q dt < ∞. Hence

∫
J |f(t)(x)| dt <

∞ for a. e. x ∈ U , and the function
∫
J f(t)(x) dt (x ∈ U) belongs to L1

loc(U). Let
ψ ∈ C∞0 (U)3. The mapping

∫
U ψ · F dx

(
F ∈ Lq(U)

)
is linear and bounded, so by

Theorem 2.5 and Fubini’s theorem,∫
U
ψ(x) ·

(∫
J
f(t) dt

)
(x) dx =

∫
J

∫
U
ψ(x) · f(t)(x) dx dt =

∫
U
ψ(x) ·

∫
J
f(t)(x) dt dx.

This implies the equation stated in the lemma. �

We will need mean continuity of the Bochner integral (proof of Theorem 2.7).

Theorem 2.6 ([30, Theorem 3.8.3]) Let B be a Banach space and f : R 7→ B a
Bochner integrable function. Then

∫
R ‖f(s + h) − f(s)‖B ds → 0 for h → 0, where ‖ ‖B

denotes the norm of B .

We will use Friedrich’s mollifier for functions with values in Banach spaces. Here are the
relevant definitions: Fix a function % ∈ C∞0

(
(−1, 1)

)
with % ≥ 0 and

∫
R %(s) ds = 1, and

put %δ(r) := δ−1 %(δ−1 r) for δ ∈ (0,∞), r ∈ R. If B is a Banach space and f ∈ L1
loc(R, B),

define fδ(t) := B −
∫
R %δ(t− s) f(s) ds for t ∈ R, δ ∈ (0,∞).

Key properties of Friedrich’s mollifier of functions with values in R carry over to functions
with values in Banach spaces. Such properties as needed in the work at hand are collected
in the ensuing Theorem 2.7 and Lemma 2.4.

Theorem 2.7 Let B be a Banach space and f ∈ L1
loc(R, B). Then fδ ∈ C∞(R, B) and

f
(n)
δ (t) =

∫
R %

(n)
δ (t − s) f(s) ds

(
n ∈ N, t ∈ R, δ ∈ (0,∞)

)
. If f ∈ L1(R, B), then

‖fδ − f‖L1(R,B) → 0 (δ ↓ 0). Moreover, if f ∈W 1,1
loc (R, B), then (fδ)

′ = (f ′)δ.

Proof: The relation fδ ∈ C∞(R, B) and the equation for f
(n)
δ (t) follow from Lebesgue’s
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theorem and the fact that %δ ∈ C∞0
(

(−δ, δ)
)
. If f ∈ L1(R, B), we may proceed in exactly

the same way as in the case of functions with values in R (see [26, Section 2.5.3], for
example) in order to deduce from Theorem 2.6 that ‖fδ − f‖L1(R,B) → 0 (δ ↓ 0). If

f ∈W 1,1
loc (R, B) and t ∈ R, the equation (fδ)

′(t) = (f ′)δ(t) holds due to the above equation

for f
(n)
δ (t) with n = 1, and since the function s 7→ %δ(t− s) (s ∈ R) belongs to C∞0 (R). �

Lemma 2.4 Let B be a Banach space, J ⊂ R be an open interval, f ∈ C0(J,B), a, b ∈ J
with a < b. Then fδ(t)→ f(t) (δ ↓ 0) uniformly in t ∈ [a, b].

Proof: The argument is the same as in the case B = R; see [1, Section 2.29, p. 37-38] for
example. �

Friedrich’s mollifier was introduced in order to establish the next lemma. Although it
should be well known, we do not know a reference for it. Since on the other hand, this
lemma will be used three times, in the proofs of Theorem 3.3, Lemma 5.1 and Corollary
5.1, we present a proof.

Lemma 2.5 Let B be a Banach space, a, b ∈ R with a < b, f ∈ W 1,1
(
a, b, B) ∩

C0([a, b], B) and G ∈W 1,1
(
a, b, B′) ∩ C0([a, b], B′). Then∫ b

a

[
G′(t)

(
f(t)

)
+G(t)

(
f ′(t)

) ]
dt = G(b)

(
f(b)

)
−G(a)

(
f(a)

)
. (2.1)

Proof: Put f̃(t) := f(a), (f ′)∼(t) := 0 for t ∈ (−∞, a), f̃(t) := f(t), (f ′)∼(t) :=
f ′(t) for t ∈ [a, b], f̃(t) := f(b), (f ′)∼(t) := 0 for t ∈ (b,∞). Let ϕ ∈ C∞0 (R). Since
f ∈ W 1,1(a, b, B), a standard argument yields ϕf ∈ W 1,1(a, b, B) and (ϕf)′ = ϕ′ f +
ϕf ′. Obviously ϕf ∈ C0

(
[a, b], B). Let T ∈ B′. With Theorem 2.5, we conclude that

T ◦ (ϕf) ∈ W 1,1
(

(a, b)
)
∩ C0

(
[a, b]

)
and

(
T ◦ (ϕf)

)′
= T ◦ (ϕ′ f + ϕf ′). Hence we

obtain T
( ∫ b

a (ϕ′ f + ϕf ′)
)

= T
(

(ϕf)(b)− (ϕf)(a)
)

by a standard result of analysis and
Theorem 2.5. Since this is true for any T ∈ B′, the preceding equation remains valid if T is
removed. Due to the definition of f̃ and (f ′)∼, it is now easy to conclude that

∫
R ϕ
′ f ds =

−
∫
R ϕ (f ′)∼ ds. Thus the weak derivative f̃ ′ of f̃ exists and equals (f ′)∼, so that f̃ ∈

W 1,1
loc (R, B) and f̃ ′ ∈ L1(R, B). Theorem 2.7 now yields that ‖f̃ ′−(f̃ ′)δ‖L1(R,B) → 0 (δ ↓ 0)

and (f̃ ′)δ = (f̃δ)
′. Since (f ′)∼|(a, b) = f ′, it follows that ‖f ′− (f̃δ)

′|(a, b)‖L1(a,b, B) → 0 (δ ↓
0). Moreover f̃ ∈ C0(R, B) and f̃ |[a, b] = f , so Lemma 2.4 implies that ‖f(t)− f̃δ(t)‖B →
0 (δ ↓ 0) uniformly in t ∈ [a, b], where ‖ ‖B stands for the norm of B .

Defining G̃ analogously as f̃ , we may show in the same way that G̃ ∈ C0(R, B′) ∩
W 1,1
loc (R, B′), G̃′ ∈ L1(R, B′), G̃δ(t) → G(t) in B′ uniformly with respect to t ∈ [a, b],

and ‖G′ − (G̃δ)
′|(a, b)‖L1(a,bB′) → 0 for δ ↓ 0.

But for δ ∈ (0,∞), the function ψδ(t) := G̃δ(t)
(
f̃δ(t)

)
(t ∈ R) belongs to C1(R), with

ψ′δ(t) = G̃′δ(t)
(
f̃δ(t)

)
+G̃δ(t)

(
f̃ ′δ(t)

)
, so equation (2.1) holds with f, G replaced by f̃δ, G̃δ,

respectively. In view of what has been shown above, this equation without these replace-
ments follows when we let δ tend to 0. �
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3 Fundamental solution to the time-dependent Oseen sys-
tem. Related potential functions.

In this section, we define a fundamental solution to the time-dependent Oseen system
(1.1), and prove some estimates of this solution. Then we will introduce volume and layer
potentials which will be constitutive elements of our representation formulas. We will
prove properties of these potentials whose usefulness will become evident later on. To
begin with, we indicate some properties of the function ν defined in Section 1, following
(1.3).

Lemma 3.1 ([20, Lemma 4.8]) The inequality ν(x) ≤ C (1 + |y|) ν(x − y) holds for
x, y ∈ R3.

Lemma 3.2 ([6, Lemma 2]) Let K ∈ (0,∞). Then, for r ∈ (0,∞), z ∈ R3,

|z − τ r e1|2 + r ≥ C(τ,K) (|z|2 + r) if |z| ≤ K,
|z − τ r e1|2 + r ≥ C(τ,K) (|z| ν(z) + r) if |z| ≥ K.

Corollary 3.1 Let R, R1 ∈ (0,∞) with R < R1, and take x ∈ Bc
R1
, y ∈ BR, r ∈ (0,∞).

Then |x− y − τ r e1|2 + r ≥ C(τ,R,R1) (|x| ν(x) + r).

Proof: We have |x− y| ≥ |x|− |y| ≥ (1−R/R1) |x| ≥ R1−R > 0, so the corollary follows
from Lemma 3.2 with K = R1 −R and from Lemma 3.1. �

Corollary 3.2 Let γ ∈ (2,∞), R ∈ (0,∞) Then
∫
BcR

(
|x| ν(x)

)−γ
dx ≤ C(γ)R−γ+2.

Proof: By [25, Lemma 2.3], the estimate
∫
∂Br

ν(x)−γ dox ≤ C(γ) r holds for r ∈ (0,∞).

Since
∫
BcR

(
|x| ν(x)

)−γ
dx =

∫∞
R r−γ

∫
∂Br

ν(x)−γ dox dr and γ > 2, the corollary follows.

�

As definition of the Newton kernel (fundamental solution of the Poisson equation), denoted
by N in this work, we choose this variant: N(z) := (4π |z|)−1 for z ∈ R3\{0}. We introduce
the usual heat kernel in 3D,

H(z, t) := (4π t)−3/2 e−|z|
2/(4t) for z ∈ R3, t ∈ (0,∞), H(z, 0) := 0 for z ∈ R3\{0}.

Thus, in our context, H is defined on B :=
(
R3 × (0,∞)

)
∪
(

(R3\{0})× {0}
)
.

Theorem 3.1 The relations H ∈ C∞(B),
∫
R3 H(z, t) dz = 1 for t ∈ (0,∞) hold. If

α ∈ N3
0, σ ∈ N0, the inequality |∂αz ∂σt H(z, t)| ≤ C(α, σ) (|z|2 + t)−(3+|α|+2σ)/2 is valid for

z ∈ R3, t ∈ (0,∞).

Proof: See [41] for the preceding estimate. �

We will use the estimate in Theorem 3.1 only in the case |α| ≤ 3, σ ∈ {0, 1, 2}. In view
of Theorem 3.1, we may define the following velocity part Γ of a fundamental solution to
the time-dependent Stokes system:

Γjk(z, t) := H(z, t) δjk +

∫ ∞
t

∂zj∂zkH(z, s) ds for (z, t) ∈ B, j, k ∈ {1, 2, 3}.

10



Theorem 3.2 The relation Γ ∈ C∞(B)3×3 holds. If α ∈ N3
0, σ ∈ N0, the estimate

|∂αz ∂σt Γ(z, t)| ≤ C(α, σ) (|z|2 + t)−(3+|α|+2σ)/2 is fulfilled for z ∈ R3, t ∈ (0,∞). Moreover∑3
k=1 ∂zkΓjk(z, t) = 0, ∂tΓ(z, t)−∆zΓ(z, t) = 0 for z, t as before, and for 1 ≤ j ≤ 3.

Proof: Use Theorem 3.1, or see [37, Proposition 2.1.9]. �

As in the case of the inequality for H in Theorem 3.1, we will need the preceding estimate
of Γ only in the case |α| ≤ 3, σ ∈ {0, 1, 2}. Finally we introduce the velocity part of a
fundamental solution to the time-dependent Oseen system (1.1), putting

Λjk(z, t) := Γjk(z − τ t e1, t) for (z, t) ∈ B, j, k ∈ {1, 2, 3}. (3.1)

Lemma 3.3 The relations Λ ∈ C∞(B)3×3 and
∑3

k=1 ∂zkΛjk(z, t) = 0, as well as the
equation (∂tΛ−∆zΛ + ∂z1Λ)(z, t) = 0 are valid for 1 ≤ j ≤ 3, z ∈ R3, t ∈ (0,∞).

Proof: Theorem 3.2. �

We state some estimates of Λ.

Corollary 3.3 The inequality |∂αz ∂σt Λ(z, t)| ≤ C(τ)
∑2

µ=1

(
|z − τ t e1|2 + t)−(3+|α|+µσ)/2

holds for (z, t) ∈ R3 × (0,∞) and (z, t) ∈ (R3\{0}) × {0}, α ∈ N3
0 with |α| ≤ 3, σ ∈

{0, 1, 2}.
Let K > 0. If |z| ≥ K, then |∂αz ∂σt Λ(z, t)| ≤ C(K, τ)

∑2
µ=1

(
|z| ν(z) + t)−(3+|α|+µσ)/2, else

|∂αz ∂σt Λ(z, t)| ≤ C(K, τ)
∑2

µ=1

(
|z|2 + t)−(3+|α|+µσ)/2, for z, t, α, σ as before.

Proof: We have ∂αz ∂
σ
t Λ(z, t) =

∑σ
j=0

(
σ
j

)
(−τ)j ∂αx ∂x

j
1∂

σ−j
r Γ(x, r)|x=z−τ t e1, r=t for z, t, α

and σ as in the first part of the corollary. Thus the corollary follows from Theorem 3.2
and Lemma 3.2. �

Corollary 3.4 For q ∈ (1,∞), j, k ∈ {1, 2, 3}, t ∈ (0,∞), α ∈ N3
0 with |α| ≤ 3, σ ∈

{0, 1, 2}, we have∫
R3

(
|∂αx ∂σt H(x, t)|q + |∂αx ∂σt Γ(x, t)|q

)
dx ≤ C t−(3+|α|+2σ) q/2+3/2 <∞,

and if σ ≤ 1,∫
R3

(
|∂αx ∂σt H(x− τ t e1, t)|q + |∂αx ∂σt Λ(x, t)|q

)
dx ≤ C(τ)

2∑
µ=1

t−(3+|α|+µσ) q/2+3/2 <∞.

If |α|+ σ > 0, the case q = 1 is admitted as well.

Proof: Theorem 3.1 and the first estimate in Corollary 3.3. Use a change of variables to
obtain

∫
R3(|z − τ t e1|2 + t)−γ dz =

∫
R3(|y|2 + t)−γ dy for γ ∈ (3,∞), t ∈ (0,∞). �

In what follows, up to and including Corollary 3.6, we study functions of the form (x, t) 7→∫
R3 Λ(x− y, t)U(y) dy, with U : R3 7→ R3 given.

Lemma 3.4 Let q ∈ (1,∞), V ∈ W 1,1
loc (R3) with ∇V ∈ Lq(R3)3, r ∈ (0,∞) and

j ∈ {1, 2, 3}. Then
∫
R3

∑3
k=1 Γjk(x − y, r) ∂kV (y) dy = 0 for x ∈ R3, in particular∫

R3

∑3
k=1 Λjk(x− y, r) ∂kV (y) dy = 0 for such x.
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Proof: We adapt the proof of [11, Lemma 5.9], where we supposed q < 3. Let x ∈ R3.
We know from Corollary 3.4 that the function y 7→ Γ(x − y, r) (y ∈ R3) belongs to
Lq
′
(R3)3×3. Moreover, by Theorem 2.2, there is a sequence (ϕn) in C∞0 (R3) such that

‖∇(ϕn − V )‖q → 0. Thus∫
R3

3∑
k=1

Γjk(x− y, r) ∂kV (y) dy = lim
n→∞

∫
R3

3∑
k=1

Γjk(x− y, r) ∂kϕn(y) dy. (3.2)

But the function y 7→ Γ(x − y, r) (y ∈ R3) is in particular of class C1. By Theorem 3.2,
we know that

∑3
k=1 ∂ykΓjk(x − y, r) = 0 for y ∈ R3. Therefore the first equation of the

lemma follows from (3.2). The second follows from the first with x replaced by x− τ r e1.
�

We further define

Λ̃jk := Λjk − H δjk, that is, Λ̃jk(z, t) =

∫ ∞
t

∂zj∂zkH(z − τ t e1, s) ds, (3.3)

Aj(z, t) :=

∫ ∞
t

∂zjH(z, s) ds for 1 ≤ j, k ≤ 3, z ∈ R3, t ∈ (0,∞). (3.4)

Lemma 3.5 Let j, k ∈ {1, 2, 3}. Then Aj( · , t) ∈ C1(R3) for t ∈ (0,∞) and the equation
∂zkAj(z, t) =

∫∞
t ∂zj∂zkH(z, s) ds holds for z ∈ R3, t > 0, hence ∂zkAj(z − τ t e1, t) =

Λ̃jk(z, t) for z, t as before.

Proof: We have |∂zσk∂zjH(z, s)| ≤ C s−(2+σ/2) for z ∈ R3, s ∈ (0,∞), σ ∈ {0, 1}
(Theorem 3.1). Thus the lemma follows with Lebesgue’s theorem. �

Lemma 3.6 Let V ∈ W 1,1
loc (Ω

c
)3 with divV = 0 and ∇V |ΩR ∈ L1(ΩR)9 for R ∈ [S0,∞).

(The number S0 was fixed at the beginning of Section 2.) Suppose there is m0 ∈ N, pl ∈
(1,∞), V (l) ∈ Lpl(Ωc

)3 for 1 ≤ l ≤ m0 such that V =
∑m0

l=1 V
(l). Take x ∈ Ω

c
, t ∈ (0,∞).

Then
∫

Ω
c Λ̃(x− y, t) · V (y) dy =

∫
∂ΩA(x− y − τ t e1, t)n

(Ω)(y) · V (y) doy.

Proof: Let j ∈ {1, 2, 3}. With Corollary 3.4 and Hölder’s inequality, we get∫
Ω
c

∫ ∞
t
|∂xk∂xjH(x− y − τ s e1, s)V

(l)
k (y)| ds dy (3.5)

≤ C ‖V (l)‖pl
∫ ∞
t

(∫
R3

|∂xk∂xjH(x− y − τ s e1, s)|p
′
l dy
)1/p′l

ds

≤ C ‖V (l)‖pl
∫ ∞
t

s−5/2+3/(2p′l) ds ≤ C ‖V (l)‖pl t
−3/2+3/(2q′1)

for k ∈ {1, 2, 3}, l ∈ {1, ..., m0}, where the last inequality holds because −5/2+3/(2p′l) <
−1. Thus we may apply Fubini’s theorem to obtain∫

Ω
c

3∑
k=1

Λ̃jk(x− y, t)Vk(y) dy =

∫ ∞
t

∫
Ω
c

3∑
k=1

∂xk∂xjH(x− y − τ s e1, s)Vk(y) dy ds. (3.6)

By Corollary 3.4 and Theorem 3.1 the function y 7→ ∂xjH(x−y−τ s e1, s) (y ∈ R3) belongs
to W 1,q(R3) ∩ C∞(R3) for any s ∈ (0,∞), q ∈ (1,∞). Thus, due to the assmptions on V,
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the function Ks(y) := ∂xjH(x− y − τ s e1, s)V (y) (y ∈ Ω
c
) is in W 1,1

loc (Ω
c
)3 ∩ L1(Ω

c
)3 for

any s ∈ (0,∞), with divKs ∈ L1(Ω
c
) and ∇Ks|ΩR ∈ L1(ΩR)9 for R ∈ [S0,∞). This fact,

the equation divV = 0 and Lemma 2.2 yield that∫
Ω
c

3∑
k=1

∂xk∂xjH(x− y − τ s e1, s)Vk(y) dy (3.7)

=

∫
∂Ω
∂xjH(x− y − τ s e1, s)n

(Ω)(y) · V (y) doy for s ∈ (0,∞).

But dist(x, ∂Ω) > 0, so by Lemma 3.2 with K = dist(x, ∂Ω) and by Theorem 3.1 we get
|∂xjH(x− y − τ s e1, s)| ≤ C(K) (δ + s)−2 for y ∈ ∂Ω, s ∈ (0,∞). As a consequence∫ ∞

t

∫
∂Ω
|∂xjH(x− y − τ s e1, s)n

(Ω)(y) · V (y)| doy ds

≤ C(K)

∫ ∞
t

(δ + s)−2 ds

∫
∂Ω
|V (y)| doy <∞.

So the integral
∫∞
t

∫
∂Ω ∂xjH(x−y− τ s e1, s)n

(Ω)(y) ·V (y) doy ds may be transformed via
Fubini’s theorem. The lemma then follows from (3.6) and (3.7). �

Lemma 3.7 Let q ∈ (1,∞), V ∈ Lqσ(R3), r ∈ (0,∞). Then
∫
R3 ∇xAj(x−y, r) ·V (y) dy =

0 for x ∈ R3, 1 ≤ j ≤ 3, in particular
∫
R3 Λ̃(x− y, r) · V (y) dy = 0 for x ∈ R3.

Proof: See [11, Lemma 5.10] for the first equation. The second follows from the first with
x replaced by x− τ r e1. �

Now we may introduce the first of our potential functions.

Corollary 3.5 Let A ⊂ R3 be measurable, q ∈ [1,∞), V ∈ Lq(A)3, Ṽ the zero extension
of V to R3. Then∫

R3

|∂αx ∂σt Λ(x− y, t) Ṽ (y)| dy ≤ C(τ, q)
2∑

µ=1

t−(3+|α|+σ µ)/2+3/(2q′) ‖V ‖q (3.8)

for α ∈ N3
0, σ ∈ {0, 1} with |α|+ 2σ ≤ 2, x ∈ R3, t ∈ (0,∞). Define

I(τ)(V )(x, t) :=

∫
R3

Λ(x− y, t) · Ṽ (y) dy for x ∈ R3, t ∈ (0,∞).

For α, σ, x, t as in (3.8), the derivative ∂αx ∂
σ
t I

(τ)(V )(x, t) exists and equals the integral∫
R3 ∂

α
x ∂

σ
t Λ(x − y, t) · Ṽ (y) dy, and is a continuous function of (x, t) ∈ R3 × (0,∞). With

the abbreviation u := I(τ)(V ), the equations divxu = 0, ∂tu−∆xu+ τ ∂x1u = 0 hold. If
q > 1, then for x ∈ R3, t > 0,

I(τ)(V )(x, t) =

∫
R3

H(x− y − τ t e1, t) · Pq(Ṽ )(y) dy (3.9)

(see Theorem 2.3 for the definition of the operator Pq) and ‖I(τ)(V )(t)‖q ≤ C(q, τ) ‖V ‖q.

If m0 ∈ N, pl ∈ [1,∞), V (l) ∈ Lpl(A)3 for 1 ≤ l ≤ m0, put I(τ)(
∑m0

l=1 V
(l)) :=∑m0

l=1 I
(τ)(V (l)).
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Proof: We have |∂αx ∂σt Λ(x−y, t)| ≤ C(τ)
∑2

µ=1 t
−(3+|α|+σ µ)/2 for α, σ, x, t as in (3.8), as

follows from the first inequality in Corollary 3.3. If q = 1, the preceding estimate together
with Lebesgue’s theorem and Lemma 3.3 implies (3.8) as well as the second statement of
the corollary, pertaining to differentiability and continuity.

Now suppose that q > 1. Then inequality (3.8) follows from Corollary 3.4 and Hölder’s
inequality. As for the second claim of the corollary, we take R > 0 and differentiate
I(τ)(V )|BR after splitting the domain of intergration R3 in the definition of I(τ)(V ) into
the parts B2R and R3\B2R. The integral over B2R may be handled in the same way as the
integral over R3 in the case q = 1 because Ṽ |B2R ∈ L1(B2R)3. As concerns the integral

over Bc
2R, we note that |∂αx ∂σt Λ(x − y, t)| ≤ C(τ,R)

∑2
µ=1

(
|y| ν(y)

)−(3+|α|+σ µ)/2
for x ∈

BR, y ∈ Bc
2R and for t, α, σ as in (3.8), as follows from the first estimate in Corollary 3.3

and Corollary 3.1. Since by Corollary 3.2, the function
∑2

µ=1

(
|y| ν(y)

)−(3+|α|+σ µ) q′/2
(y ∈

Bc
2R) is integrable if |α| + σ ≥ 1, the assumption V ∈ Lq(A)3, Hölder’s inequality and

Lebesgue’s theorem yield that the derivative ∂αx ∂
σ
t I

(τ)(χBc2R V )(x, t) exists for x ∈ BR, t ∈
(0,∞), α ∈ N3

0, σ ∈ {0, 1} with 0 < |α|+2σ ≤ 2, and it equals
∫
Bc2R

∂αx ∂
σ
t Λ(x−y, t) Ṽ (y) dy

and is continuous as a function of x ∈ BR, t ∈ (0,∞). Altogether we see that the second
assertion of the corollary, pertaining to derivatives of I(τ)(V ), holds true. This assertion
and Lemma 3.3 yield the differential equations stated in the corollary. The equation
V = Pq(Ṽ ) +∇Gq(Ṽ ) (Theorem 2.3), Lemma 3.4 and 3.7 imply (3.9). The Lq-estimate
at the end of the corollary follows from Young’s inequality, Theorem 2.3 and the equation
in Theorem 3.1. �

Theorem 3.3 Let q ∈ (1,∞), T0 ∈ (0,∞], t ∈ (0, T0) and u a function belonging to
W 1,1
loc

(
[0, T0), Lq(R3)3

)
and to C0

(
[0, T0), Lq(R3)3

)
. Then∫

R3

∣∣∣∫
R3

H(x− y − τ ε e1, ε)u(y, t− ε) dy − u(x, t)
∣∣∣q dx→ 0 (ε ↓ 0). (3.10)

Proof: Let ε ∈ (0, t) and x ∈ R3. Then
∫
R3 H(x− y − τ ε e1, ε)

r dy ≤ C(τ, r) ε−3(r−1)/2 <
∞ for r ∈ (1,∞) by Corollary 3.4. Thus, taking r = q′, we may define a constant
function G : (t− ε, t) 7→

[
Lq(R3)3

]′
by setting G(s)(V ) :=

∫
R3 H(x− y− ε τ e1, ε)V (y) dy

for s ∈ (t − ε, t), V ∈ Lq(R3)3. Since it is constant, this function obviously belongs
to W 1,1

(
t − ε, t,

[
Lq(R3)3

]′ )
and to C0

(
[t − ε, t],

[
Lq(R3)3

]′ )
. This observation, the

equation G′ = 0 and the assumptions on u allow us to conclude with Lemma 2.5 that∫ ε
t−εG(t)

(
u′(t)

)
dt = G(t)

(
u(t)

)
− G(t − ε)

(
u(t − ε)

)
. Due to the definition of G, this

equation translates into∫
R3

H(x−y−τ ε e1, ε)
(
−u(y, t−ε)+u(y, t)

)
dy =

∫ t

t−ε

∫
R3

H(x−y−τ ε e1, ε)u
′(y, s) dy ds

for ε ∈ (0, t). Since
∫
R3 H(x− y − τ ε e1, ε) = 1 for ε ∈ (0,∞) (Theorem 3.1), Minkowski’s

and Young’s inequality (Lemma 2.1, Theorem 2.1) allow to conclude that(∫
R3

∣∣∣∫
R3

H(x− y − τ ε e1, ε)
(
u(y, t− ε)− u(y, t)

)
dy
∣∣∣q dx)1/q

≤ C

∫ t

t−ε
‖u′(r)‖q dr.

Let κ ∈ (0,∞). Since u ∈W 1,1
loc

(
[0, T0), Lq(R3)3

)
, we may thus choose ε1 ∈ (0, t) so small

that the right-hand side of the preceding inequality, and hence the left-hand one, too,
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is bounded by κ/4 for any ε ∈ (0, ε1]. As in the proof of [15, Theorem 4.1], we choose
ψ ∈ C∞0 (R3)3 with ‖u(t)−ψ‖q ≤ κ/4. Again since

∫
R3 H(x−y−τ ε e1, ε) dy = 1 (Theorem

3.1), we then obtain by Young’s inequality that(∫
R3

(∫
R3

H(x− y − τ ε e1, ε)
∣∣u(y, t)− ψ(y)

∣∣ dy)q dx)1/q
≤ C ‖u(t)− ψ‖q ≤ κ/4

for ε ∈ (0,∞). Next we set M(x, ε) :=
∫
R3 H(x − y − τ ε e1, ε)ψ(y) dy for x ∈ R3, ε > 0.

As explained in the proof of [10, Theorem 2.16], the term M(x, ε) tends to ψ(x) for ε ↓ 0,
uniformly in x ∈ R3. Choose S ∈ (0,∞) with supp(ψ) ⊂ BS/2. Then we may conclude
there is ε2 such that ‖M(ε) − ψ|BS‖q ≤ κ/4 for ε ∈ (0, ε2]. Since H ∈ C∞(B) (Theorem
3.1), H(z, 0) = 0 for z ∈ R3\{0}, and |x− y| ≥ |x| − |y| ≥ S/2 > 0 for x ∈ Bc

S , y ∈ BS/2,
we find that H(x − y − τ δ e1, δ) → 0 (δ ↓ 0) for such x and y. As a consequence, for
x ∈ Bc

S , y ∈ BS/2, ε > 0,

H(x− y − τ ε e1, ε) = lim
δ↓0

(
H(x− y − τ ε e1, ε)− H(x− y − τ δ e1, δ)

)
= lim

δ↓0

∫ 1

0
(∂tH− τ ∂x1H)(x− y − τ t e1, t)|t=δ+ϑ (ε−δ) dϑ (ε− δ).

Therefore by Theorem 3.1 and Corollary 3.1,

H(x− y − τ ε e1, ε) ≤ C lim sup
δ↓0

1∑
µ=0

∫ 1

0

(
|x| ν(x) + δ + ϑ (ε− δ)

)−2−µ/2
dϑ (ε− δ),

hence 0 ≤ H(x− y − τ ε e1, ε) ≤ C
(
|x|µ(x)

)−2
ε. Recalling that supp(ψ) ⊂ BS/2, we thus

get

‖M(ε)− ψ|Bc
S‖q = ‖M(ε)|Bc

S‖q ≤ C ε
(∫

BcS

(
|x|µ(x)

)−2 q′
dx
)1/q′

‖ψ‖q ≤ C ε ‖ψ‖q

for ε > 0, where the last inequality is a consequence of Corollary 3.2. Thus we may choose
ε3 > 0 with ‖M(ε)−ψ|Bc

S‖q ≤ κ/4 for ε ∈ (0, ε3]. The preceding inequalities imply (3.10).
�

Corollary 3.6 Let q ∈ (1,∞), V ∈ Lq(R3)3. Put I(τ)(V )(0) := Pq(V ), with Pq from

Theorem 2.3. Then I(τ)(V ) ∈ C0
(

[0,∞), Lq(R3)3
)

and ‖I(τ)(V )(b) − I(τ)(V )(a)‖2 ≤
C(τ) (a−1 + a−1/2) ‖V ‖q (b− a) for a, b ∈ (0,∞) with a < b.

Proof: For a, b as above, we find with Corollary 3.5, 3.4 and Young’s inequality that

‖I(τ)(V )(b)− I(τ)(V )(a)‖q ≤
∫
R3

∣∣∣∫ 1

0
∂tΛ(z, t)|t=a+ϑ (b−a) dϑ

∣∣∣ dz ‖V ‖q (b− a)

≤ C(τ)

∫ 1

0

2∑
µ=1

(
a+ ϑ (b− a)

)−µ/2
dϑ ‖V ‖q (b− a) ≤ C(τ) (a−1 + a−1/2) ‖V ‖q (b− a).

Thus the inequality at the end of the corollary is proved. In particular, this settles con-
tinuity of I(τ)(V ) on (0,∞). As for t = 0, we recall that by Corollary 3.5, we have
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I(τ)(V )(x, t) =
∫
R3 H(x − y − τ t e1, t)Pq(V )(y) dy for x ∈ R3, t > 0. Thus by Theorem

3.3, ‖I(τ)(V )(ε)− Pq(V )‖q → 0 (ε ↓ 0). So I(τ)(V ) is continuous also in t = 0. �

We turn to the definition of a second potential function, beginning with a technical tool.

Theorem 3.4 Let p, q ∈ [1,∞), r ∈ (1,∞), s ∈ [1,∞) with q < p, s ≤ r. Let
α ∈ N3

0 with |α| ≤ 1. Suppose that 1 − |α|/2 + 3 (1/p − 1/q)/2 > 1/s − 1/r. Let h ∈
Ls
(

0,∞, Lq(R3)3
)

and M ∈ (0,∞). Then(∫ ∞
0

(∫
R3

[∫ ∞
0

∫
R3

∣∣∣χ(0,M)(t− σ) ∂αxΛ(x− y, t− σ) · h(y, σ)
∣∣∣ dy dσ]p dx)r/p dt)1/r

≤ C(τ, p, q, r, s)M1−|α|/2+3 (1/p−1/q)/2−1/s+1/r ‖h‖q,s;∞.

Proof: See [14, Theorem 2.8]. �

Lemma 3.8 Let T0 ∈ (0,∞], A ⊂ R3 measurable, q ∈ [1,∞) and f a function from
L1
loc

(
[0, T0), Lq(A)3

)
. Let f̃ denote the zero extension of f to R3 × (0,∞). Then the

integral
∫
R3 |∂αxΛ(x − y, t − σ) · f̃(y, σ)| dy is finite for any x ∈ R3, t ∈ (0,∞), σ ∈

(0, t), α ∈ N3
0 with |α| ≤ 1. Moreover, for a. e. t ∈ (0,∞) and for α as before, the integral∫ t

0

∫
R3 |∂αxΛ(x− y, t−σ) · f̃(y, σ)| dy dσ is finite as well for a. e. x ∈ R3. Due to this latter

fact, we may define

R(τ)(f)(x, t) :=

∫ t

0

∫
R3

Λ(x− y, t− σ) · f̃(y, σ) dy dσ

for such t and x. The relation R(τ)(f)(t) ∈ W 1,1
loc (R3)3 holds for a. e. t ∈ (0,∞), and for

such t, ∂xlR
(τ)(f)(t)(x) =

∫ t
0

∫
R3 ∂xlΛ(x− y, t− σ) · f̃(y, σ) dy dσ for l ∈ {1, 2, 3} and a.

e. x ∈ R3.

Proof: The first claim of the lemma follows from (3.8) Choose p ∈ (q,∞) and r ∈
(1,∞) so close to q and 1, respectively, that 1/2 + 3 (1/p − 1/q)/2 > 1 − 1/r. Then
for T ∈ (0,∞), α ∈ N3

0 with |α| ≤ 1, Theorem 3.4 with M = T, s = 1 yields that∫ T
0 (
∫
R3 [
∫ t

0

∫
R3 |∂αxΛ(x − y, t − σ) · f̃(y, σ)| dy dσ]p dx)r/p dt < ∞. This implies the lemma.

�

Theorem 3.4 remains valid if r = ∞, with obvious modifications of the inequality stated
in it; see [14, Theorem 2.8]. However, it is mute if r = ∞, s = 1 because then there is
no p ∈ (q,∞) such that 1 + 3 (1/p− 1/q)/2 > 1/s− 1/r. But this case will be relevant in
what follows, and it may be handled by referring to our results on I(τ)(V ). Here are the
details. Recall the first claim in Lemma 3.8.

Corollary 3.7 Let T0 ∈ (0,∞], A ⊂ R3 measurable, q ∈ (1,∞), f a function belonging
to L1

loc

(
[0, T0), Lq(A)3

)
and f̃ the zero extension of f to R3 × (0,∞). Then(∫

R3

[∫ t

0

∣∣∣∫
R3

Λ(x− y, t− s) · f̃(y, s) dy
∣∣∣ ds]q dx)1/q

≤ C(q) ‖f̃ |R3 × (0, t)‖q,1;t (3.11)

for t ∈ (0,∞). In particular the integral
∫ t

0 |
∫
R3 Λ(x − y, t − s) · f̃(y, s) dy| ds is finite

for any t ∈ (0,∞) and for a. e. x ∈ R3. Thus the function R(τ)(f) is well defined for
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any t ∈ (0,∞) (instead of only for a. e. t ∈ (0,∞)) and for a. e. x ∈ R3. Moreover
‖R(τ)(f)(t)‖q ≤ C(q) ‖f̃ |R3 × (0, t)‖q,1;t for t > 0.

Let m0 ∈ N, pl ∈ (1,∞) and f (l) ∈ L1
loc

(
[0, T0), Lpl(A)3

)
for 1 ≤ l ≤ m0. Then define

R(τ)(
∑m0

j=1 f
(l)) :=

∑m0
j=1 R(f (l)).

Proof: Let t ∈ (0,∞), and denote the left-hand side of (3.11) by A(t). Then, by Theorem
2.1 and Corollary 3.5, we have A(t) ≤

∫ t
0 ‖I

(τ)
(
f(s)

)
(t−s)‖q ds ≤

∫ t
0 C(q) ‖f(s)‖q ds, and

thus A(t) ≤ C(q) ‖f̃ |R3 × (0, t)‖q,1;t. This proves the corollary. �

We define a third potential function:

Lemma 3.9 Let q ∈ [1,∞], T0 ∈ (0,∞], A ⊂ R3 open and bounded, with Lipschitz
boundary, φ ∈ L1

loc

(
[0, T0), Lq(∂A)3

)
, φ̃ the zero extension of φ to ∂A × (0,∞). For

t ∈ (0,∞), x ∈ R3\∂A, α ∈ N3
0,, the term |∂αxΛ(x − y, t − s) · φ̃(y, s)| is integrable as a

function of (y, s) ∈ ∂A× (0, t). Define V(τ)(φ) := V(τ, A)(φ) : (R3\∂A)× (0,∞) 7→ R3 by

V(τ)(φ)(x, t) :=

∫ t

0

∫
∂A

Λ(x− y, t− s) · φ̃(y, s) doy ds for x ∈ R3\∂A, t ∈ (0,∞).

Then, for any t ∈ (0,∞), the integral
∫ t

0

∫
∂A Λ(x−y, t−s)·φ̃(y, s) doy ds as a function of x ∈

R3\A belongs to C∞(R3\A)3, and ∂αxV
(τ)(φ)(x, t) =

∫ t
0

∫
∂A ∂

α
xΛ(x−y, t−s) · φ̃(y, s) doy ds

for α ∈ N3
0, x ∈ R3\A.

Proof: The function Λ is C∞ on R3 × (0,∞) (Lemma 3.3), so the lemma follows with
Lebesgue’s theorem. �

In view of introducing another kernel function – a truncated version of Λ –, we abbreviate
A := AR1, S0 , and define

Mϕ0(x, y, r) :=
( 3∑
k=1

∂kϕ0(y) Λjk(x− y, r)
)

1≤j≤3
for x ∈ Bc

R0
, y ∈ A, r ∈ [0,∞). (3.12)

(Recall that the numbers S0, R0, R1 and the function ϕ0 were fixed at the beginning of
Section 2, with S0 < R0 and R1 := (S0 +R0)/2.)

Lemma 3.10 Let x ∈ Bc
R0
, r ∈ [0,∞), σ ∈ {0, 1}, α ∈ N3

0 with |α| ≤ 1. Then the
function ∂αx ∂

σ
rMϕ0(x, · , r) belongs to C∞0 (A)3, and

∫
A ∂

α
x ∂

σ
rMϕ0(x, y, r) dy = 0.

Proof: Use Lemma 3.3; compare the proof of [15, Lemma 2.13]. �

Due to Lemma 3.10 and Theorem 2.4, we may define a function G := GR0,S0,ϕ0 : Bc
R0
×

BR1 × [0,∞) 7→ R3×3 by setting

G(x, y, r) :=
(
ϕ0(y) Λjk(x, y, r)−D

[
Mϕ0, j(x, · , r)

]
k
(y)
)

1≤j,k≤3
(3.13)

for x ∈ Bc
R0
, y ∈ BR1 , r ∈ [0,∞), where the operator D := DR1, S0 was introduced in

Theorem 2.4. In the rest of this section, we will always write G instead of GR0,S0,ϕ0 .

Lemma 3.11 Let x ∈ Bc
R0
, r ∈ [0,∞). Then G(x, · , r) ∈ C∞0 (BR1)3×3, the equation∑3

k=1 ∂ykGjk(x, y, r) = 0 holds for 1 ≤ j ≤ 3, y ∈ BR1 , and G(x, y, r) = Λ(x − y, r) for
y ∈ BS0+(R0−S0)/4.
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Proof: Lemma 3.3, Theorem 2.4. �

Lemma 3.12 Let x ∈ Bc
R0
, q ∈ (1,∞). Then the mapping r 7→ G(x, · , r)

(
r ∈ [0,∞)

)
belongs to C1

(
[0,∞), W 1,q(BR1)3×3

)
. Thus a function G′ ∈ C0

(
[0,∞), W 1,q(BR1)3×3

)
may be defined by the condition ‖

(
G(x, · , r+h)−G(x, · , r)

)
/h−G′(r)‖1,q → 0 (h→ 0)

for r ∈ [0,∞). We write ∂rG(x, y, r) instead of G′(r)(y) (r ∈ [0,∞), y ∈ BR1). Then

∂rGjk(x, y, r) = ϕ0(y) ∂rΛjk(x, y, r)−D
[
∂rMϕ0, j(x, · , r)

]
k
(y) (3.14)

for y ∈ BR1 , r ∈ [0,∞), 1 ≤ j, k ≤ 3, with D := DR1, S0 from Theorem 2.4.

Proof: Recall that we have set A := AR1, S0 in the passage preceding (3.12). Let j, k ∈
{1, 2, 3}, r ∈ [0,∞), h ∈ R\{0} with r + h ∈ [0,∞). Set R′ := (R0 − S0)/2, and put
Z(y) :=

(
Mϕ0(x, y, r+h)−Mϕ0(x, y, r)

)
/h−∂rMϕ0(x, y, r) for y ∈ A. Then Lemma 3.10,

Theorem 2.4 and the choice of ϕ0 and x yield that ‖D(Zj)k‖1,q is bounded by C ‖Zj‖q,
and therefore (Theorem 2.1) by

C |h|
3∑
l=1

∫ 1

0

∫ 1

0

(∫
BR1

χ(R′,∞)(|x− y|) |∂2
t Λjl(x− y, t)|t=r+ϑ γ h|q dy

)1/q
dγ dϑ.

Put Z̃(y) := ϕ0(y)
(

Λjk(x, y, r+h)−Λjk(x, y, r)
)
/h− ∂rΛ(x, y, r)jk

)
1≤j,k≤3

for y ∈ BR1 .

By Theorem 2.1, Lemma 3.3 and the choice of ϕ0 and x, the term ‖Z̃jk‖1,q is bounded by

C |h|
∑

α∈N3
0, |α|≤1

∫ 1

0

∫ 1

0

(∫
BR1

χ(R′,∞)(|x− y|) |∂2
t ∂

α
y Λjk(x− y, t)|t=r+ϑ γ h|q dy

)1/q
dγ dϑ.

Therefore ‖Z̃‖1,q+‖D(Z)‖1,q ≤ C |h| by the second estimate in Corollary 3.3 with K = R′.
This proves differentiability of G(x, · , r) with respect to the norm of W 1,q(BR1)3×3, as
well as equation (3.14). Continuity of ∂rG(x, · , r) with respect to the same norm follows
by a similar argument. �

In the preceding lemma, we considered the derivative of G(x, · , r) with respect to r. Next
we deal with derivatives with respect to xl, for 1 ≤ l ≤ 3.

Lemma 3.13 Let q ∈ (1,∞), σ ∈ {0, 1}. For x ∈ Bc
R0
, r ∈ [0,∞), define L(x, r) :

BR1 7→ R3×3 by L(x, r)(y) := ∂σrG(x, y, r) (y ∈ BR1); see Lemma 3.12 for the definition of
∂σrG(x, y, r) if σ = 1. Then L(x, r) ∈ C∞0 (BR1)3×3 ∩W 1,q(BR1)3×3 for x, r as before, and
the mapping L( · , r) considered as an operator from Bc

R0
into W 1,q(BR1)3×3 is partially dif-

ferentiable on BR0

c
. Thus we may define a mapping DmL : BR0

c× [0,∞) 7→W 1,q(BR1)3×3

by the condition ‖
(
L(x + h em, r) − L(x, r)

)
/h − DmL(x, r)‖1,q → 0 (h → 0), for m ∈

{1, 2, 3}, x ∈ BR0

c
, r ∈ [0,∞). The preceding transition to the limit is uniform with

respect to r ∈ [0,∞). Instead of DmL(x, r)(y), we write ∂xm∂
σ
rG(x, y, r). Then

∂xm∂
σ
rGjk(x, y, r) = ϕ0(y) ∂xm∂

σ
r Λjk(x− y, r)

)
−D

[
∂xm∂

σ
rMϕ0,j(x, · , r)

]
k
(y) (3.15)

for x ∈ BR0

c
, y ∈ BR1 , r ∈ [0,∞), j, k,m ∈ {1, 2, 3}, where the operator D := DR1, S0

was introduced in Theorem 2.4.

Let l ∈ {1, 2, 3} and define L̃(x, r) : BR1 7→ R3×3 by L̃(x, r)(y) := ∂ylG(x, y, r) for x ∈
Bc
R0
, r ∈ [0,∞), y ∈ BR1 . Then L̃(x, r) ∈ C∞0 (BR1)3×3 ∩ Lq(BR1)3×3 for x, r as before,
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and L̃( · , r) considered as an operator from Bc
R0

into Lq(BR1)3×3 is partially differentiable

on BR0

c
. Thus we may define an operator DmL̃ : BR0

c × [0,∞) 7→ Lq(BR1)3×3 by the
condition ‖

(
L̃(x+ h em, r)− L̃(x, r)

)
/h−DmL̃(x, r)‖q → 0 (h→ 0)

(
m ∈ {1, 2, 3}, x ∈

BR0

c
, r ∈ [0,∞)

)
. The preceding transition to the limit is uniform with respect to r ∈

[0,∞). Instead of DmL̃(x, r)(y), we write ∂xm∂ylG(x, y, r) so that

∂xm∂ylGjk(x, y, r) (3.16)

= ∂yl
(
ϕ0(y) ∂xmΛjk(x− y, r)

)
− ∂yl

(
D
[
∂xmMϕ0,j(x, · , r)

]
k

)
(y)

for x ∈ BR0

c
, r ∈ [0,∞), y ∈ BR1 , j, k,m ∈ {1, 2, 3}.

Proof: The relations L(x, r), L̃(x, r) ∈ C∞0 (BR1)3×3 for x ∈ Bc
R0
, r ∈ [0,∞) hold due to

Lemma 3.11 (L with σ = 0, L̃), (3.14), Lemma 3.3, 3.10, Theorem 2.4 and the choice of
ϕ0 (L with σ = 1).

As concerns differentiability of L(x, r) with respect to x, let j, k,m ∈ {1, 2, 3}, β ∈ N3
0

with |β| ≤ 1, and put L
(1)
jk (x, r)(y) := −∂βyD

(
∂σrMϕ0,j(x, · , r)

)
k
(y), L

(2)
jk (x, r)(y) :=

∂βyϕ0(y) ∂σr Λ(x − y, r) and L
(3)
jk (x, r)(y) := ϕ0(y) ∂βy ∂σr Λ(x − y, r) for x ∈ BR0

c
, r ∈

[0,∞), y ∈ BR1 . If x ∈ BR0

c
, h ∈ R with |h| < dist(x,BR0) and y ∈ BR1 , we have

|x+ h em− y| ≥ (R0−S0)/2. Thus, by a similar reasoning as in the proof of Lemma 3.12,

we get
[ ∫

BR1
|
(
L

(µ)
jk (x + h em, r)(y) − L(µ)

jk (x, r)(y)
)
/h −DmL

(µ)
jk (x, r)(y)|q dy

]1/q ≤ C |h|
for x ∈ BR0

c
, r ∈ [0,∞), µ ∈ {1, 2, 3}, h ∈ R\{0} with |h| ≤ dist(x,BR0), with an obvi-

ous definition of DmL
(µ)
jk (x, r)(y). This implies the differentiability properties of L( · r) as

stated in the lemma, as well as equation (3.15). Differentiability of L̃( · , r) and equation
(3.16) follow from corresponding results on L( · , r). �

We fix some function ζ ∈ C∞(R) with ζ|(−∞, 1] = 0, ζ|[2,∞) = 1, 0 ≤ ζ ≤ 1 and
ζ ′ ≥ 0. For ε ∈ (0,∞), r ∈ R, define ζε(r) := ζ(r/ε). Then ζε ∈ C∞(R), ζ|(−∞, ε] =
0, ζ|[2 ε,∞) = 1, 0 ≤ ζε ≤ 1 and ζ ′ε ≥ 0.

Lemma 3.14 Let q ∈ (1,∞), T0 ∈ (0,∞], v ∈ C0
(

[0, T0), Lq(BR1)3
)
, t ∈ (0, T0), x ∈

Bc
R0
. Then∫ t

0

∫
BR1

G(x, y, t− s) · ζ ′ε(s) v(y, s) dy ds−
∫
BR1

G(x, y, t) · v(y, 0) dy → 0 (ε ↓ 0). (3.17)

Proof: For ε ∈ (0,∞), let Aε denote the difference of two integrals considered in (3.17).

Then Aε = A
(1)
ε +A

(2)
ε , with

A(1)
ε :=

∫ t

0

∫
BR1

(
G(x, y, t− s)−G(x, y, t)

)
· ζ ′ε(s) v(y, s) dy ds,

A(2)
ε :=

∫ t

0

∫
BR1

G(x, y, t) · ζ ′ε(s) v(y, s) dy ds−
∫
BR1

G(x, y, t) · v(y, 0) dy

for ε ∈ (0,∞). By Lemma 3.12, the mapping r 7→ G(x, · , r)
(
r ∈ [0,∞)

)
belongs in par-

ticular to C0
(

[0,∞), Lq
′
(BR1)3×3

)
, so σ(ε) := sups∈[ε, 2ε] ‖G(x, · , t−s)−G(x, · , t)‖q′ → 0
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for ε ↓ 0. On the other hand, supp(ζ ′) ⊂ [ε, 2ε] for ε > 0, so for ε ∈ (0, t/4], we find

that |A(1)
ε | ≤

∫ 2ε
ε ζ ′ε(s) ds σ(ε) ‖v|BR1 × [0, 2ε]‖q,∞;2ε, where we used that ζε ≥ 0. Since∫ 2ε

ε ζ ′ε(s) ds = 1, we may conclude that A
(1)
ε → 0 (ε ↓ 0). By Lemma 3.12, we know that

in particular G(x, · , t) ∈ Lq′(BR1)3×3. This fact and the relations ζ ′ε ≥ 0,
∫ 2ε
ε ζ ′ε(s) ds = 1

imply

|A(2)
ε | ≤

∣∣∣∫ 2ε

ε
ζ ′ε(s)

∫
BR1

G(x, y, t)
(
v(y, s)− v(y, 0)

)
dy ds

∣∣∣ ≤ C sup
s∈[ε, 2ε]

‖v(s)− v(0)‖q

for ε > 0 with 2ε < T0. Since v ∈ C0
(

[0, T0), Lq(BR1)3
)
, the term sups∈[ε, 2ε] ‖v(s)−v(0)‖q

tends to zero for ε ↓ 0. Thus we get A
(2)
ε → 0 (ε ↓ 0). Altogether we see that Aε → 0 (ε ↓ 0).

This proves the lemma. �

Lemma 3.15 Let q ∈ (1,∞), T0 ∈ (0,∞], u ∈ C0
(

[0, T0), Lq(R3)3
)
, t ∈ (0, T0), x ∈

R3. Put %ε(s) := ζ ′ε(s)u(s) for s ∈ (0, T0), ε ∈ (0,∞). Then R(τ)(%ε)(x, t) converges to
I(τ)

(
u(0)

)
(x, t) for ε ↓ 0.

Proof: For ε ∈ (0,∞), we have R(τ)(%ε)(x, t)− I(τ)
(
u(0)

)
(x, t) = A

(1)
ε +A

(2)
ε , with

A(1)
ε :=

∫ t

0

∫
R3

(
Λ(x− y, t− s)− Λ(x− y, t)

)
· ζ ′ε(s)u(y, s) dy ds,

A(2)
ε :=

∫ t

0

∫
R3

Λ(x− y, t) · ζ ′ε(s)u(y, s) dy ds− I(τ)
(
u(0)

)
(x, t).

Recalling that supp(ζ ′ε) ⊂ [ε, 2ε], ζ ′ε ≥ 0, we get for ε ∈ (0, t/4] that

|A(1)
ε | ≤

∫ 2ε

ε
ζ ′ε(s)B(s)1/q′ ‖u(s)‖q ds, (3.18)

with B(s) :=
∫
R3 |Λ(x − y, t − s) − Λ(x − y, t)|q′ dy for s ∈ (0, t). On the other hand,

t− ϑ s ≥ t/2 for ε ∈ (0, t/4], s ∈ [ε, 2ε], ϑ ∈ [0, 1]. Since Λ is C∞ on R3 × (0,∞) (Lemma
3.3), we obtain B(s) = s

∫
R3 |
∫ 1

0 ∂tΛ(x − y, t − ϑ s)|q′ dy if ε ∈ (0, t/4] and s ∈ [ε, 2ε].
Changing the order of integration by using Theorem 2.1, and applying Corollary 3.4, we
thus see that B(s)1/q′ is bounded by C s

∑2
µ=1

∫ 1
0 (t−ϑ s)−(3+µ)/2+3/(2 q′) dϑ, and hence by

C s
∑2

µ=1 t
−(3+µ)/2+3/(2 q′), for ε and s as before. Now we may conclude from (3.18) that

|A(1)
ε | ≤ C

∫ 2ε

ε
s ζ ′ε(s) ds

2∑
µ=1

t−(3+µ)/2+3/(2 q′) max{‖u‖q : s ∈ [ε, 2ε]}

for ε ∈ (0, t/4]. But ζ ′ε ≥ 0,
∫ 2ε
ε ζ ′ε(s) ds = 1, so

∫ 2ε
ε s ζ ′ε(s) ds ≤ 2ε, hence A

(1)
ε → 0 (ε ↓ 0).

Again using the equation
∫ 2ε
ε ζ ′ε(s) ds = 1 and the relations ζ ′ε ≥ 0, supp(ζ ′ε) ⊂ [ε, 2ε],

we get |A(2)
ε | ≤ C

∫ 2ε
ε ζ ′ε(s) ds

∫
R3 |Λ(x − y, t) ·

(
u(y, s) − u(y, 0)

)
| dy ds for ε ∈ (0, t/4].

Corollary 3.4 yields in particular that the function y 7→ Λ(x − y, t) (y ∈ R3) belongs to
Lq
′
(R3)3×3. Thus it follows as in a similar situation in the proof of Lemma 3.14 that

A
(2)
ε → 0 (ε ↓ 0). This completes the proof of Lemma 3.15. �
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4 Some decay estimates

In this section, we derive decay estimates of the potential functions introduced in the
preceding one. We begin with a technical tool which is in fact the key result which will
allow us to improve the decay rates exhibited in [10] and [13].

Theorem 4.1 Abbreviate K(z, r) := |z − τ r e1|2 + r for z ∈ R3, r ∈ (0,∞). Let n ∈
(2,∞), R ∈ (0,∞). Then∫ ∞

0
K(z, r)−n/2 dr ≤ C(n,R, τ)

(
|z| ν(z)

)(−n+1)/2
for z ∈ Bc

R. (4.1)

In addition, let R̃ ∈ (0,∞) with R < R̃, p, q ∈ [1,∞). Then(∫ t

0

(∫
BR

K(x− y, t− s)−nq/2 dy
)p/q

ds
)1/q

≤ C
(
|x| ν(x)

)−n/2+1/(2p)
, (4.2)(∫

BR

K(x− y, t)−nq/2 dy
)1/q

≤ C
(
|x| ν(x)

)−n/2
(4.3)

for t ∈ (0,∞), x ∈ Bc
R̃

. In addition, let a ∈ (1,∞]. Then∫ t

0

∫
BR

K(x− y, t− s)−n/2 |u(y, s)| dy ds ≤ C
(
|x| ν(x)

)−n/2+1/(2a′) ‖u‖1,a;t (4.4)

for t, x as before and for u ∈ La
(

0, t, L1(BR)
)
.

We remark that inequality (4.1) is a special case of [21, Theorem 2.19]

Proof of Theorem 4.1: Let S, r ∈ (0,∞), y ∈ BS , x ∈ R3. Then K(x − y, r) =
(|x− y| − τ r)2 +

[
1 + 2 τ

(
|x− y| − (x− y)1

) ]
r. But |x− y| − (x− y)1 ≥ 0, so we obtain

that K(x − y, r)1/2 ≥ 2−1/2
( ∣∣ |x − y| − τ r

∣∣ +
[

1 + 2 τ
(
|x − y| − (x − y)1

) ]1/2
r1/2

)
.

Put C1 := min{(2S + 1)−1, 2τ}. Since |y| ≤ S, we get 1 + 2 τ
(
|x − y| − (x − y)1

)
≥

C1

(
2S+1+ |x−y|−(x−y)1

)
≥ C1 (2S+1+ |x|−x1−2|y|) ≥ C1 (1+ |x|−x1) = C1 ν(x),

so

K(x− y, r)1/2 ≥ C(S, τ)
( ∣∣ |x− y| − τ r ∣∣+

[
ν(x) r

]1/2 )
. (4.5)

Now suppose that x ∈ Bc
2S so that |x| − S ≥ |x|/2. If r ∈

(
0, |x|/(4τ)

]
, we then

obtain the estimate |x − y| − τ r ≥ |x| − S − τ r ≥ |x|/2 − τ r ≥ |x|/4 > 0, and thus
K(x−y, r)1/2 ≥ C(S, τ) (|x|/2−τ r) > 0. Next consider the case r ∈ [|x|/(4τ), (|x|−S)/τ ].
Using that |y| ≤ S, we find |x − y| − τ r ≥ |x| − S − τ r ≥ 0 and r1/2 ≥ |x|1/2(2 τ1/2)−1,

so from (4.5), K(x − y, r)1/2 ≥ C(S, τ)
[
|x| − S − τ r +

(
ν(x) |x|

)1/2 ]
> 0. Now turn to

the case that r ∈ [(|x| − S)/τ, (|x| + S)/τ ]. Since |x| − S ≥ |x|/2, as remarked above,
we then have r ≥ (|x| − S)/τ ≥ |x|/(2τ). Thus inequality (4.5) yields K(x − y, r)1/2 ≥
C(S, τ)

(
ν(x) |x|

)
)1/2 > 0. Finally, if r ≥ (|x|+ S)/τ , we have on the one hand r ≥ |x|/τ ,

and on the other one, τ r − |x − y| ≥ τ r − (|x| + S) ≥ 0, so by (4.5), K(x − y, r)1/2 ≥
C(S, τ)

[
τ r − (|x|+ S) +

(
ν(x) |x|

)1/2 ]
> 0.

Define FS(x, r) by FS(x, r) := |x|/2 − τ r if r < |x|/(4τ), FS(x, r) := |x| − S − τ r +(
ν(x) |x|

)1/2
if |x|/(4τ) ≤ r ≤ (|x| − S)/τ, FS(x, r) :=

(
ν(x) |x|

)1/2
if (|x| − S)/τ ≤ r ≤
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(|x| + S)/τ, and FS(x, r) := τ r − (|x| + S) +
(
ν(x) |x|

)1/2
in the case (|x| + S)/τ < r.

Then we have shown that

K(x− y, r)1/2 ≥ C(S, τ)FS(x, r) > 0 for S ∈ (0,∞), y ∈ BS , x ∈ Bc
2S , r > 0. (4.6)

For such S, x and y, and for γ > 1, we get∫ |x|/(4τ)

0
FS(x, r)−γ dr = τ−1

∫ |x|/4
0

(|x|/2− t)−γ dt ≤ C(γ, τ) |x|−γ+1,∫ (|x|−S)/τ

|x|/(4τ)
FS(x, r)−γ dr +

∫ ∞
(|x|+S)/τ

FS(x, r)−γ dr ≤ C(γ, τ)
(
|x| ν(x)

)(−γ+1)/2
,

and
∫ (|x|+S)/τ

(|x|−S)/τ FS(x, r)−γ dr =
(
|x| ν(x)

)−γ/2
2S/τ. Since |x| ≥ C(S) ν(x) for x ∈ Bc

2S , we
may conclude that∫ ∞

0
FS(x, r)−γ dr ≤ C(γ, τ, S)

(
|x| ν(x)

)(−γ+1)/2
for S, γ ∈ (0,∞), (4.7)

and for x ∈ Bc
2S , y ∈ BS . Taking S = R/2, y = 0, γ = n in (4.7) and using

(4.6), we obtain (4.1). Due to (4.6), the left-hand side in (4.2) is bounded by the term
C(R, τ) (

∫ t
0 FR(x, t−s)−p n ds [

∫
BR

dy]p/q )1/p for t ∈ (0,∞), x ∈ Bc
2R, so (4.2) follows with

(4.7) for such t and x. We still have to show (4.2) in the case 2R > R̃, x ∈ B2R\BR̃.

Taking account only of the assumption R̃ > R, we get by Corollary 3.1 that

K(x− y, r) ≥ C(R̃, R, τ)
(
|x| ν(x) + r

)
for x ∈ Bc

R̃
, y ∈ BR, r ∈ (0,∞), (4.8)

so the left-hand side of (4.2) is bounded by C
[ ∫ t

0

(
|x| ν(x) + t− s

)−p n/2
ds (
∫
BR

dy)p/q
]1/q

for t ∈ (0,∞), x ∈ Bc
R̃

, and hence by C
(
|x| ν(x)

)−n/2+1/p
. But if 2R > R̃ and x ∈

B2R\BR̃, we further get 1 ≤ 2R/|x| and |x| ≥ C(R̃) ν(x), so(
|x| ν(x)

)−n/2+1/p ≤ (2R)1/p
(
|x| ν(x)

)−n/2+1/p |x|−1/p ≤ C
(
|x| ν(x)

)−n/2+1/(2p)
. (4.9)

Therefore the estimate in (4.2) holds again. Inequality (4.3) is an immediate consequence
or (4.8). In order to prove (4.4), let A denote the left-hand side of (4.4) Then by (4.6),

A ≤ C

∫ t

0

∫
BR

FR(x, t− s)−n|u(y, s)| dy ds ≤ C
(∫ t

0
FR(x, t− s)−na′ ds

)1/a′

‖u‖1,a;t (4.10)

for t ∈ (0,∞), x ∈ Bc
2R. Now (4.4) follows from (4.7). If 2R > R̃ and x ∈ B2R\BR̃, we

proceed as in (4.10), replacing (4.6) by (4.8). After integration, we use (4.9) with a′ in
the place of p. �

In the ensuing corollary, we apply the preceding theorem in order to estimate convolutions
of the Oseen fundamental solution Λ in the case that the integration with respect to the
space variables only extends over a bounded domain.
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Corollary 4.1 Let R, R̃ ∈ (0,∞) with R < R̃, p, q ∈ [1,∞]. Then∫ t

0

∫
BR

|∂αx ∂βy ∂σt Λ(x− y, t− s)u(y, s)| dy ds ≤ C
(
|x| ν(x)

)−(3+|α|+|β|+σ)/2+1/(2p′) ‖u‖q,p;t

for u ∈ Lp
(

0, t, Lq(BR)3
)
, α, β ∈ N3

0 with |α| ≤ 2, |β| ≤ 1, σ ∈ {0, 1}, t ∈ (0,∞), x ∈
Bc
R̃

.

Proof: Let the left-hand side of the preceding inequality be denoted by A. As in Theorem
4.1, abbreviate K(z, r) := |z − τ r e1|2 + r for z ∈ R3, r ∈ (0,∞). By the first inequality
in Corollary 3.3, we have for u, α, β, σ, t, x as in the corollary,

A ≤ C(τ)
2∑

µ=1

∫ t

0

∫
BR

K(x− y, t− s)−(3+|α|+|β|+µσ)/2 |u(y, s)| dy ds. (4.11)

Suppose that p, q ∈ (1,∞]. Then from the preceding estimate and (4.2),

A ≤ C

2∑
µ=1

(∫ t

0

(∫
BR

K(x− y, t− s)−(3+|α|+|β|+µσ) q′/2 dy
)p′/q′

ds
)1/p′

‖u‖q,p;t

≤ C

2∑
µ=1

(
|x| ν(x)

)−(3+|α|+|β|+µσ)/2+1/(2 p′) ‖u‖q,p;t

for u, α, β, σ, t, x as before. But
(
|x| ν(x)

)−σ/2 ≤ C(R̃) for x ∈ Bc
R̃

, so the corollary is

proved in the case p, q ∈ (1,∞]. Now consider the case q ∈ (1,∞], p = 1. Then we again
start with (4.11), to obtain

A ≤ C

2∑
µ=1

∫ t

0

(∫
BR

K(x− y, t− s)−(3+|α|+|β|+µσ) q′/2 dy
)1/q′

‖u(s)‖q ds

for u, α, β, σ, t, x as in the corollary, which now follows with (4.3). The case q = 1, p ∈
(1,∞] is handled by referring to (4.11) and (4.4). Finally, if p = q = 1, we use the estimate
K(x − y, t − s) ≥ C(R, R̃, τ)

(
|x| ν(x) + t − r

)
≥ C(R, R̃, τ) |x| ν(x) for t ∈ (0,∞), x ∈

Bc
R̃
, y ∈ BR, r ∈ (0, t) (Corollary 3.1), which together with (4.11) immediately implies

the corollary. �

Recall the numbers S0, R0, R1 and the function ϕ0 fixed at the beginning of Section 2.
In the rest of this section, we abbreviate G := GR0,S0,ϕ0 , where GR0,S0,ϕ0 was defined
in (3.13). The ensuing theorem is the main result of this section and the key element
which will allow us in the next section to exploit our representation formula of solutions
to (1.1), improving decay rates compared to [10] and [13] while at the same time dropping
boundary conditions.

Theorem 4.2 Let q ∈ (1,∞), p ∈ [1,∞]. Then∫
BR1

|∂αx ∂σt ∂βyG(x, y, t) · V (y)| dy ≤ C
(
|x| ν(x)

)−(3+|α|+σ)/2 ‖V ‖q (4.12)
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for V ∈ Lq(BR1)3, t ∈ (0,∞), x ∈ Bc
R0
, α, β ∈ N3

0, σ ∈ {0, 1} with |α| ≤ 1, |β|+ σ ≤ 1,∫ t

0

∫
BR1

|∂αx ∂σt ∂βyG(x, y, t− s) · v(y, s)| dy ds ≤ C
(
|x| ν(x)

)−(3+|α|+σ)/2+1/(2 p′) ‖v‖q,p;t (4.13)

for t, x, α, β, σ as in (4.12), and v ∈ Lp
(

0, t, Lq(BR1)3
)
.

Proof: Take V, v, t, x, α, β, σ as in the theorem. Moreover let j, k ∈ {1, 2, 3}, s ∈ (0, t)
Suppose that r, W are either given by r := t, W := V or by r := t − s and W := v(s).
Then by (3.14), (3.15) and (3.16),

A(r) :=

∫
BR1

|∂αx ∂σr ∂βyGjk(x, y, r)Wk(y)| dy ≤
3∑

m=1

A(m)(r), (4.14)

with A(1)(r) :=
∫
BR1
|δ1,|β| ∂

βϕ0(y) ∂αx ∂
σ
r Λjk(x−y, r)Wk(y)| dy, and the term A(3)(r) being

an abbreviation for the integral
∫
BR1
|∂βyD

(
∂αx ∂

σ
rMϕ0, j(x, , r)

)
k
(y)Wk(y)| dy. The term

A(2)(r) is defined as A(1)(r), but with the function δ1,|β| ∂
βϕ0(y) ∂αx ∂

σ
r Λjk(x−y, r) replaced

by ϕ0(y) ∂αx ∂
σ
r ∂

β
yΛjk(x − y, r). The function Mϕ0 was defined in (3.12), and the operator

D := DR1, S0 in Theorem 2.4. Set K(z, r) := |z − τ r e1|2 + r for z ∈ R3. Then by the first
inequality in Corollary 3.3 and Hölder’s inequality, we have

A(1)(r) ≤ C
2∑

µ=1

(∫
BR1

K(x− y, r)−(3+|α|+µσ) q′/2 dy
)1/q′

‖W‖q. (4.15)

The same estimate is valid for A(2)(r), except that the exponent −(3 + |α|+ µσ) q′/2 has
to be replaced by −(3 + |α| + |β| + µσ) q′/2. Put A := AR1, S0 . Since ∂αx ∂

σ
rMϕ0(x, ·, r) ∈

C∞0 (A)3 with mean value zero on A (Lemma 3.10), Hölder’s inequality and Theorem 2.4
yield A(3)(r) ≤ C(R0, S0, q) (

∫
A |∂

α
x ∂

σ
rMϕ0(x, y, r)|q′ dy)1/q′ ‖W‖q. But |∂αx ∂σrMϕ0(x, y, r)|

is bounded by C |∇ϕ0|∞ |∂αx ∂σr Λ(x− y, r)| for y ∈ A, and so in view of the first inequality
in Corollary 3.1 by C(τ) |∇ϕ0|∞

∑2
µ=1K(x− y, r)−(3+|α|+µσ)/2. Therefore

A(3)(r) ≤ C(R0, S0, q, τ) |∇ϕ0|∞
(∫

A

2∑
µ=1

K(x− y, r)−(3+|α|+µσ) q′/2 dy
)1/q′

‖W‖q. (4.16)

From (4.14) – (4.16), the estimate of A(2)(r) mentioned above and (4.3), and because(
|x| ν(x)

)
≥ R0, we obtain∫

BR1

|∂αx ∂σr ∂βyGjk(x, y, t)Wk(y)| dy ≤ C(R0, S0, q, τ) |∇ϕ0|∞
(
|x| ν(x)

)−(3+|α|+σ)/2 ‖W‖q.

This is inequality (4.12) if we take r = t and W = V . Moreover, the choice r = t−s, W =
v(s) and an integration with respect to s yields (4.13) in the case p = 1. Now suppose
that p ∈ (1,∞]. Then from (4.14) – (4.16) and the estimate of A(2)(r) mentioned above
with r = t − s, W = v(s), we may conclude that the left-hand side of (4.13) is bounded
by C(R0, S0, q, τ) |∇ϕ0|∞ times∑

γ∈{0, β}

2∑
µ=1

(∫ t

0

(∫
BR1

K(x− y, t− s)−(3+|α|+|γ|+µσ) q′/2 dy
)p′/q′

ds
)1/p′

‖u‖q,p;t.
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Thus inequality (4.13) follows with (4.2). �

Corollary 4.2 Let β ∈ N3
0, σ ∈ {0, 1} with |β| + σ ≤ 1. Let q ∈ (1,∞), and let the

function v belong to L1
loc

(
[0,∞), Lq(BR1)3

)
and the function V to Lq(BR1)3. For x ∈

BR0

c
, t ∈ [0,∞), define

F (x, t) :=

∫ t

0

∫
BR1

∂σs ∂
β
yG(x, y, t− s) · v(y, s) dy ds, H(x, t) :=

∫
BR1

G(x, y, t) · V (y) dy.

Let l ∈ {1, 2, 3}. Then the derivatives ∂xlF (x, t) and ∂xlH(x, t) exist pointwise and

equal
∫ t

0

∫
BR1

∂xl∂
σ
s ∂

β
yG(x, y, t−s)·v(y, s) dy ds and

∫
BR1

∂xlG(x, y, t)·V (y) dy, respectively

(x ∈ BR0

c
, t ∈ [0,∞)).

Proof: Let t ∈ [0,∞) and define L,M : BR0

c × (0, t) 7→ Lq
′
(BR1)3 by L(x, s)(y) :=

∂σs ∂
β
yG(x, y, t− s), M(x, s)(y) := ∂xl∂

σ
s ∂

β
yG(x, y, t− s) for x ∈ BR0

c
, y ∈ BR1 , s ∈ [0, t];

see Lemma 3.12 and 3.13. Then ‖
(
L(x+ h el, s)− L(x, s)

)
/h−M(x, s)‖q′ → 0 (h→ 0)

for x ∈ BR0

c
, uniformly in s ∈ [0, t], as follows from Lemma 3.13. The corollary follows

from this and Hölder’s inequality. �

It will be convenient to subsume a number of terms in a single operator, which we de-
fine here. We recall that the parameters T0, S0, R0, R1 and the set Ω were fixed at the
beginning of Section 2. Also the notation ΩR for R ∈ [S0,∞) and n(Ω) were introduced
there.

Put ZR,T := ΩR × (0, T ) for R ∈ [S0,∞), T ∈ (0,∞]. Let A ⊂ R3 × R with ZR1,T0 ⊂ A.
Take q ∈ (1,∞) and suppose that v : A 7→ R3 is a function such that v|ZR1,T0 be-

longs to C0
(

[0, T0), Lq(ΩR1)3
)
, v(s)|ΩR1 ∈W

1,1
loc (ΩR1)3 for s ∈ (0, T0), and ∇xv|ZR1,T0 ∈

L1
loc

(
[0, T0), Lq(ΩR1)9

)
. Then, for t ∈ (0, T0) and x ∈ Bc

R0
, we define

KR0,S0,ϕ0,Ω,T0(v)(x, t) :=

∫ t

0

∫
ΩR1

( 3∑
l=1

∂ylG(x, y, t− s) · ∂ylv(y, s) (4.17)

−τ ∂y1G(x, y, t− s) · v(y, s)− ∂sG(x, y, t− s) · v(y, s)
)
dy ds+

∫
ΩR1

G(x, y, 0) · v(y, t) dy.

The ensuing corollary provides a decay estimate of KR0,S0,ϕ0,Ω,T0(v). We use the same
notation as in (4.17).

Corollary 4.3 Let q ∈ (1,∞), p1, p2 ∈ [1,∞]. Then, for functions v : A 7→ R3 satisfying
the relations v|ZR1,T0 ∈ C0

(
[0, T0), Lq(ΩR1)3

)
, v(s)|ΩR1 ∈ W 1,1

loc (ΩR1)3 for s ∈ (0, T0),

and ∇xv|ZR1,T0 ∈ Lp2
(

0, T0, L
q(ΩR1)9

)
, and for x ∈ BR0

c
, t ∈ (0, T0), α ∈ N3

0 with
|α| ≤ 1, the term |∂αxKR0,S0,ϕ0,Ω,T0(v)(x, t)| is bounded by

C (‖v|ZR1,t‖q,p1;t + ‖∇xv|ZR1,t‖q,p2;t + ‖v(t)|ΩR1‖q) max
j∈{1, 2}

(
|x| ν(x)

)−(3+|α|)/2+1/(2 p′j).

Proof: Corollary 4.2, Theorem 4.2. �

In the rest of this section, we discuss spatial decay of some other potential functions which
will play a role in the representation formula introduced in Section 5; see (5.7). We begin
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by considering I(τ)(U), in the case that U has compact support. Then I(τ)(U) turns out
to decrease as rapidly for |x| → ∞ as does the fundamental solution Λ of (1.1).

Lemma 4.1 Let V ∈ L1(R3)3, and suppose there is some R̃ > 0 with supp(V ) ⊂ B
R̃

.

Let R ∈ (R̃,∞), x ∈ Bc
R, t ∈ (0,∞), α ∈ N3

0 with |α| ≤ 1. Then |∂αxI(τ)(V )(x, t)| ≤
C(R̃, R, τ) ‖V ‖1

(
|x| ν(x)

)−(3+|α|)/2
.

Proof: Corollary 3.5 yields that |∂αxI(τ)(V )(x, t)| ≤
∫
B
R̃
|∂αxΛ(x − y, t) · V (y)| dy. By the

first inequality in Corollary 3.3 and by Corollary 3.1 with K = R− R̃, the right-hand side

of this estimate is bounded by C(R̃, R, τ) ‖V ‖1
(
|x| ν(x)

)−(3+|α|)/2
. �

Lemma 4.2 Let f ∈ L1
(
R3 × (0,∞)

)3
such that there is R̃ ∈ (0,∞) with supp

(
f(s)

)
⊂

B
R̃

for any s ∈ (0,∞). Let R ∈ (R̃,∞). Then∫ t

0

∫
R3

|∂αxΛ(x− y, t− s) · f(y, s)| dy ds ≤ C(τ, R̃, R) ‖f‖1
(
|x| ν(x)

)−(3+|α|)/2
(4.18)

for t ∈ (0,∞), x ∈ Bc
R, α ∈ N3

0 with |α| ≤ 1. For any such t and x, the function

R(τ)(f) is defined in (x, t) as stated in Lemma 3.8, and R(τ)(f)(t) belongs to W 1,1
loc (R3)3,

with ∂xlR
(τ)(f)(x, t) =

∫ t
0

∫
R3 ∂

α
xΛ(x − y, t − s) · f(y, s) dy ds for 1 ≤ l ≤ 3. (Lemma

3.8 yields these relations only for a. e. t and a. e. x.) Thus |∂αxR(τ)(f)(x, t)| ≤
C(τ, R̃, R) ‖f‖1

(
|x| ν(x)

)−(3+|α|)/2
for t, x, α as in (4.18).

Proof: Applying the first inequality in Corollary 3.3 and Corollary 3.1 with K = R− R̃,

we get that |∂αxΛ(x−y, t−s)·f(y, s)| ≤ C(R̃, R, τ)
(
|x| ν(x)

)−(3+|α|)/2 |f(y, s)| for t, x, α as

in (4.18), y ∈ B
R̃

and s ∈ (0, t). This estimate implies (4.18). Since f ∈ L1
(
R3×(0,∞)

)3
,

the latter inequality and Lebesgue’s theorem yield the remaining statements of Lemma
4.2. �

Lemma 4.3 Let ZR1,T for T ∈ (0, T0] and A be given as in (4.17). Take q ∈ (1,∞) and
p1, p2 ∈ [1,∞]. Then, for v : A 7→ R3 with v|ZR1,T0 ∈ Lp1

(
0, T0, L

q(ΩR1)3
)
, v(s)|ΩR1 ∈

W 1,1
loc (ΩR1)3 for s ∈ (0, T0) and ∇xv|ZR1,T0 ∈ Lp2

(
0, T0, L

q(ΩR1)9
)
, as well as for x ∈

Bc
R0
, t ∈ (0, T0), α ∈ N3

0 with |α| ≤ 2, l ∈ {1, 2, 3}, the term |∂αxV(τ)(n
(Ω)
l v)(x, t)| is

bounded by

C (‖v|ZR1,t‖q,p1;t + ‖∇xv|ZR1,t‖q,p2;t) max
j∈{1, 2}

(
|x| ν(x)

)−(3+|α|)/2+1/(2 p′j),

where (n
(Ω)
l v)(y, s) := n

(Ω)
l (y) v(y, s) for y ∈ ∂Ω, s ∈ (0, T0).

Proof: We use the function ϕ0 introduced at the beginning of Section 2. Take v, x, t, α, l
as in the lemma. Since ϕ0 ∈ C∞0 (BR1) and x ∈ Bc

R0
, Lemma 3.3 yields that for r ∈

(0,∞), β ∈ N3
0, the function y 7→ ϕ0(y) ∂βxΛ(x − y, r) (y ∈ BR1) belongs to C∞0 (BR1).

Combining the relations Ω ⊂ BS0 and ϕ0|BS0+(R0−S0)/4 = 1 with Lemma 3.9 and the

Divergence theorem, we may conclude that V(τ)(φl,T0)(x, t) = A1 + A2 + A3, where

A1 :=
∫ t

0

∫
ΩR1

∂αx ∂ylΛ(x − y, t − s) ·
(
ϕ0(y) v(y, s)

)
dy ds, A2 stands for the double in-

tegral
∫ t

0

∫
ΩR1

∂αxΛ(x − y, t − s) ·
(
∂lϕ0(y) v(y, s)

)
dy ds, and A3 is defined in the same
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way as A2, but with the term ∂lϕ0(y) v(y, s) replaced by ϕ0(y) ∂ylv(y, s). Corollary

4.1 implies that A1 is bounded by C ‖v|ZR1,t‖q,p1;t

(
|x| ν(x)

)−(4+|α|)/2+1/(2 p′1)
, and A2 by

C ‖v|ZR1,t‖q,p1;t

(
|x| ν(x)

)−(3+|α|)/2+1/(2 p′1)
. As for A3, we may again use Corollary 4.1,

obtaining the upper bound C ‖∇xv|ZR1,t‖q,p2;t

(
|x| ν(x)

)−(3+|α|)/2+1/(2 p′2)
. The lemma fol-

lows from these estimates. �

Lemma 4.4 Let q ∈ (1,∞). Then the estimate |
∫
∂Ω(∂α∇N)(x − y) (n(Ω) · V )(y) doy| ≤

C ‖V ‖q |x|−2−|α| holds for V ∈ Lq(ΩR1)3 ∩W 1,1(ΩR1)3 with divV = 0, t ∈ (0,∞), x ∈
Bc
R0
, α ∈ N3

0 with |α| ≤ 1. If
∫
∂Ω n

(Ω) · V doy = 0, the factor |x|−2−|α| may be replaced by

|x|−3−|α|. (The Newton kernel N was defined at the beginning of Section 3.)

Proof: We again use the function ϕ0 introduced at the beginning of Section 2. Let
V, x, t, α be given as in the lemma, and take j ∈ {1, 2, 3}. Since x ∈ Bc

R0
and ϕ0 ∈

C∞0 (BR1), the function y 7→ ∂jN(x − y)ϕ0(y) (y ∈ BR1) belongs to C∞0 (BR1). This
fact, the relations divV = 0, Ω ⊂ BS0 , ϕ0|BS0+(R0−S0)/4 = 1, S0 < R1 and the Di-

vergence theorem yield that A :=
∫
∂Ω(∂α∂jN)(x − y) (n(Ω) · V )(y) doy coincides with

−
∫

ΩR1

[
∇y(∂α∂jN)(x−y)·(ϕ0 V )(y)+(∂α∂jN)(x−y) (∇ϕ0·V )(y)

]
dy. Since |(∇∂βN)(z)| ≤

C |z|−2−|β| for z ∈ R3\{0}, β ∈ N3
0 with |β| ≤ 2, and because supp(ϕ0) ⊂ BR1 and

|x − y| ≥ (1 − R1/R0) |x| for y ∈ BR1 , we may conclude that the term |A| is bounded
by C(S0, R0) ‖V ‖1 (|x|−3−|α|+ |x|−2−|α| |∇ϕ0|∞). The first part of the lemma follows from
this estimate.

Now suppose that
∫
∂Ω n

(Ω) · V doy = 0. Put A := AR1, S0 . Since Ω ⊂ BS0 , S0 < R1, ϕ0 ∈
C∞0 (BR1) and ϕ|BS0+(R0−S0)/4 = 1, we conclude that

∫
A∇ϕ0 · V doy = 0. Therefore we

may apply the operator D := DR1, S0 from Theorem 2.4 to ∇ϕ0 · V |A, obtaining that

the function F := D(∇ϕ0 · V |A) belongs to W 1,q
0 (A)3 and div (ϕ0 V − F ) = 0. Now

the Divergence theorem yields A = −
∫

ΩR1
∇y(∂α∂jN)(x − y) · (ϕ0 V − F )(y) dy. But

supp(ϕ0 V − F ) ⊂ BR1 and |x − y| ≥ (1 − R1/R0) |x| for y ∈ BR1 , so it follows that
|A| ≤ C(S0, R0) |x|−3−|α| ‖ϕ0 V − F‖1. On the other hand, we get with Theorem 2.4 that
‖ϕ0 V − F‖1 ≤ C(S0, R0, q) (1 + |∇ϕ0|∞) ‖V ‖q. Combining these estimates yields the
second claim of the lemma. �

5 A representation formula for solutions to (1.1).

In present section, we derive the integral representation (equation (5.7)) announced in
Section 1. Our general approach follows the one used in [15, Section 4]. However, we
are going to treat a more general framework and the Oseen system instead of the Stokes
system, so there is some extra work to do. Recall that the parameters T0, S0, R0, R1, the
function ϕ0 and the set Ω were introduced at the beginning of Section 2.

Lemma 5.1 Let q ∈ (1,∞), u ∈ W 1,1
loc

(
[0, T0), Lq(Ω

c
)3
)
∩ C0

(
[0, T0), Lq(Ω

c
)3
)
. Take
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t ∈ (0, T0), ε ∈ (0, t) and x ∈ R3. Then, with A introduced in (3.4),∫ t−ε

0

∫
Ω
c

(
Λ(x− y, t− s) · u′(s)(y) + ∂sΛ(x− y, t− s) · u(y, s)

)
dy ds

=

∫
Ω
c

Λ(x− y, ε) · u(y, t− ε) dy − I(τ)
(
u(0)

)
(x, t).

Proof: According to (3.8), the estimate
∫

Ω
c |∂σs Λ(x − y, t − s) · V (y)| dy ≤ C(ε) ‖V ‖q

holds for σ ∈ {0, 1}, V ∈ Lq(Ω
c
)3 and s ∈ (0, t − ε). Therefore, for such σ, we may

define an mapping G(σ) : (0, t − ε) 7→
[
Lq(Ω

c
)3
]′

= Lq
′
(Ω

c
)3 by setting G(σ)(s)(V ) :=∫

Ω
c ∂σs Λ(x − y, t − s) · V (y) dy for V, s as before. Then G(σ) ∈ L1

(
0, t − ε,

[
Lq(Ω

c
)3
]′ )
.

In addition, the estimate above allows us to apply Fubini’s theorem, which yields that∫ t−ε
0 ψ(s)G(1)(s)(V ) ds = −

∫ t−ε
0 ψ′(s)G(0)(s)(V ) ds for ψ ∈ C∞0

(
(0, t−ε)

)
, V ∈ Lq(Ωc

)3.

As a consequence (Theorem 2.5),
∫ t−ε

0 ψ(s)G(1)(s) ds = −
∫ t−ε

0 ψ′(s)G(0)(s) ds for ψ as be-

fore, where the integrals are
[
Lq(Ω

c
)3
]′

-valued Bochner integrals. Thus we obtain that

G(0) ∈W 1,1
(

0, t− ε,
[
Lq(Ω

c
)3
]′ )

with (G(0))′ = G(1). The estimate at the end of Corol-

lary 3.6 yields that G(0) is continuous as a mapping from (0, t− ε) into
[
Lq(Ω

c
)3
]′

. Now

Lemma 2.5 and the assumptions on u yield
∫ t−ε

0

[
G(0)(s)

(
u′(s)

)
+ G(1)(s)

(
u(s)

) ]
ds =

G(0)(t− ε)
(
u(t− ε)

)
−G(0)(0)

(
u(0)

)
. Hence the lemma follows from the definition of G(0)

and G(1). �

Theorem 5.1 Let q ∈ (1,∞) and u : [0, T0) 7→ Lqloc(Ω
c
)3 a function such that u(s)|ΩR ∈

W 1,1(ΩR)3
(
R ∈ [S0,∞)

)
and divxu(s) = 0 for s ∈ (0, T0)\TT0 , where TT0 ⊂ (0, T0) is a

set of measure zero. Further suppose that u|ΩR × [0, T0) ∈ C0
(

[0, T0), Lq(ΩR)3
)

for any

R ∈ [S0,∞). Let t ∈ (0, T0)\TT0 , x ∈ Ω
c
. Then∫

∂Ω
A(x− y− τ ε e1, ε)

(
n(Ω)(y) ·u(y, t− ε)

)
doy →

∫
∂Ω

(∇N)(x− y)
(
n(Ω)(y) ·u(y, t)

)
doy

for ε → 0, t − ε ∈ (0, t)\TT0. (The function N (Newton kernel) was introduced in at the
beginning of Section 3, and the function A in (3.4).)

Proof: Since x ∈ Ω
c
, we have δ := dist(x,Ω) > 0. Let R ∈ [S0,∞) with Bδ(x) ⊂ BR. We

may choose a function ψ = ψx ∈ C∞0 (B2R) with ψ|BR\Bδ/2(x) = 1 and ψ|Bδ/4(x) = 0.
This means in particular that ψ|∂Ω = 1, supp(ψ) ⊂ B2R\Bδ/4(x), and |x − y| ≥ δ/4

for any y ∈ supp(ψ). Put Ux := Ω2R\Bδ/4(x). Let j ∈ {1, 2, 3}, and define Aε :=∫
∂ΩAj(x − y − τ ε e1, ε)

(
n(Ω)(y) · u(y, t − ε)

)
doy for ε ∈ (0, t). Then by the Divergence

theorem, Lemma 3.5, the choice of ψ, and because divyu(t − ε) = 0 for ε ∈ (0, t) with
t− ε ∈ (0, t)\TT0 , we get Aε =

∫
Ux

∫∞
ε P(y, s, ε) ds dy for ε as before, where

P(y, s, ε) := −∇y∂xjH(x− y − τ ε e1, s) · ψ(y)u(y, t− ε)
−∂xjH(x− y − τ ε e1, s)∇ψ(y) · u(y, t− ε) for ε ∈ [0, t], y ∈ Ux, s ∈ (0,∞).

The minus sign arises because n(Ω) is the outward unit normal to Ω. We split Aε into

a sum A
(1)
ε + A

(2)
ε , with A

(j)
ε :=

∫
Ux

∫∞
ε P(j)(y, s, ε) ds dy

(
ε ∈ (0, t), t − ε /∈ TT0

)
where

P(j)(y, s, ε) for j ∈ {1, 2} is defined in the same way as P(y, s, ε), (y, s, ε as in that
definition), except that the term u(y, t− ε) is replaced by u(y, t− ε)− u(y, t) in the case
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j = 1, and by u(y, t) if j = 2. For y ∈ Ux, s ∈ (0,∞), ε ∈ [0, t], put Q(y, s, ε) :=(∑3
k=1 |∂xk∂xjH(x− y − τ ε e1, s)|

)
+ |∂xjH(x− y − τ ε e1, s)|. Note that

|P(1)(y, s, ε)| ≤ CQ(y, s, ε) |u(y, t− ε)− u(y, t)|, |P(2)(y, s, ε)| ≤ CQ(y, s, ε) |u(y, t)| (5.1)

for y, s, ε as in the definition of Q(y, s, ε). Since |x − y| ≥ δ/4 for y ∈ Ux, as mentioned
above, and because of Theorem 3.1, we find for y ∈ Ux, s ∈ (0,∞), ε ∈ [0, min{t, δ/(8τ)}]
that

Q(y, s, ε) ≤ C max
µ∈{0, 1}

(|x− y − τ ε e1|2 + s)−2−µ/2 ≤ C max
µ∈{0, 1}

(δ2 + s)−2−µ/2. (5.2)

Thus from (5.1) and the definition of A
(1)
ε , for ε ∈ (0, min{t, δ/(8τ)}) with t− ε /∈ TT0 ,

|A(1)
ε | ≤ C max

µ∈{0, 1}

∫
Ux

∫ ∞
ε

(δ2 + s)−2−µ/2 |u(y, t− ε)− u(y, t)| ds dy,

hence |A(1)
ε | is bounded by C(δ,R) ‖u(t− ε)− u(t)|Ω2R‖q. Since u|Ω2R × [0, T0) belongs to

C0
(

[0, T0), Lq(Ω2R)3
)
, we may conclude that A

(1)
ε → 0

(
ε→ 0, t− ε ∈ (0, t)\TT0

)
. More-

over, again using (5.1) and (5.2), we get |P(2)(y, s, ε)| ≤ C maxµ∈{0, 1}(δ
2+s)−2−µ/2 |u(y, t)|

for y ∈ Ux, s ∈ (0,∞), ε ∈ [0, min{t, δ/(8τ)}]. The right-hand side of this estimate is
independent of ε and constitutes an integrable function of (y, s) ∈ Ux × (0,∞). Note that
u(t)|Ω2R ∈ Lq(Ω2R)3. We further remark that χ(ε,∞)(s)P

(2)(y, s, ε)→ P(2)(y, s, 0) (ε ↓ 0)

for s ∈ (0,∞), y ∈ Ux. Thus Lebesgue’s theorem and the definition of A
(2)
ε yield that∫

Ux

∫∞
0 |P

(2)(y, s, 0)| ds dy < ∞ and A
(2)
ε →

∫
Ux

∫∞
0 P(2)(y, s, 0) ds dy

(
ε → 0, t − ε ∈

(0, t)\TT0
)
. This relation may be rewritten as

A(2)
ε →

∫
Ux

[
−∇B(y) · ψ(y)u(y, t)−B(y)∇ψ(y) · u(y, t)

]
dy (5.3)

for ε → 0, t − ε ∈ (0, t)\TT0 , where B(y) :=
∫∞

0 ∂xjH(x − y, s) ds for y ∈ Ux. But this
latter integral may be computed. It turns out to be equal to (∂jN)(x− y). At this point,

we recall that Aε =
∫
Ux

∫∞
ε P(y, s, ε) ds dy and Aε = A

(1)
ε + A

(2)
ε for ε ∈ (0, t), t− ε /∈ TT0 .

We further recall that A
(1)
ε → 0

(
ε → 0, t − ε ∈ (0, t)\TT0

)
as shown further above,

and that divyu(t) = 0 by our assumptions on t. Thus the theorem follows from (5.3) by
another application of the Divergence theorem. �

The boundary integrals appearing in the following lemma are not defined by some trace
theorem, but correspond to lower order integrals in Fubini’s theorem.

Lemma 5.2 Let m ∈ N, pj ∈ (1,∞), V (j) ∈ L1
loc(BR0

c
) for 1 ≤ j ≤ m, and suppose that∫

BR0

c

[
|V (j)(x)|/

(
(1 + |x|) ln(2 + |x|)

) ]pj dox < ∞ for such j. Let β ∈ N3
0 with |β| ≤ 1,

and take s ∈ (0,∞). Then there is a sequence (Rn) in [R0,∞) such that Rn → ∞ and∑3
k, l=1

∑m
j=1

∫
∂BRn

|∂βyΛkl(x− y, s)V (j)(y)| doy → 0 for n→∞.

Proof: Put Ṽ (j)(y) := |V (j)(y)|/
(

(1 + |y|) ln(2 + |y|)
)

for y ∈ BR0

c
, j ∈ {1, ..., m}.

Suppose there is R̃ ∈ [R0,∞) with
∑m

j=1

∫
∂Br

Ṽ (j)(y)pj doy ≥ 1/r for r ∈ [R̃,∞). Then
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∑m
j=1

∫
B
R̃

c Ṽ (j)(y)pj dy =
∑m

j=1

∫∞
R̃

∫
∂Br

Ṽ (j)(y)pj doy dr = ∞. Since R̃ ≥ R0, this is a

contradiction to the assumption
∫
BR0

c Ṽ (j)(x)pj dx < ∞ for 1 ≤ j ≤ m. Thus we may

choose a sequence (Rn) in [R0,∞) with Rn → ∞ and
∑m

j=1

∫
∂BRn

Ṽ (j)(y)pj doy ≤ 1/Rn

for n ∈ N. On the other hand, for n ∈ N with Rn ≥ max{1, 2(|x|+ s)} and for y ∈ ∂BRn ,
with s ∈ (0,∞) fixed in the lemma, we get due to the first estimate in Corollary 3.3 that

|∂βyΛ(x− y, s)| ≤ C |x− y − τ s e1|−3−|β| ≤ C
(
|y| − (|x|+ s)

)−3−|β| ≤ C |y|−3−|β| ≤ CR−3
n .

Thus for such n,

3∑
k, l=1

m∑
j=1

∫
∂BRn

|∂βyΛkl(x− y, s)V (j)(y)| doy

≤
3∑

k, l=1

m∑
j=1

(∫
∂BRn

(
|∂βyΛkl(x− y, s)| (1 + |y|) ln(2 + |y|)

)p′j dy)1/p′j ‖Ṽ (j)|∂BRn‖pj

≤ C

m∑
j=1

R
−2−1/pj
n ln(2 +Rn)

(∫
∂BRn

doy

)1/p′j ≤ C

m∑
j=1

R
−3/pj
n ln(2 +Rn).

The lemma follows from this estimate. �

Now we are in a position to prove a first version of our representation formula. We note
that in the ensuing theorem, the Oseen system (1.1) is rewritten as equation (5.4), better
adapted than (1.1) to the type of solution we consider here.

Theorem 5.2 Let k0 ∈ N and %k ∈ (1,∞) for 1 ≤ k ≤ k0. For such k, let u(k) belong
to W 1,1

loc

(
[0, T0), L%k(Ω

c
)3
)

and to C0
(

[0, T0), L%k(Ω
c
)3
)
. Put u :=

∑k0
k=1 u

(k), and let

π : (0, T0) 7→ W 1,1
loc (Ω

c
)3, n0 ∈ N, pj ∈ (1,∞) and f (j) ∈ L1

loc

(
[0, T0), Lpj (Ω

c
)3
)

for 1 ≤
j ≤ n0. Suppose that the following additional properties are satisfied: u(s) ∈W 2,1

loc (Ω
c
)3,

u′(s)−∆xu(s) + τ ∂x1u(s) +∇xπ(s) = f(s), divxu(s) = 0 (5.4)

for a. e. s ∈ (0, T0), with f :=
∑n0

j=1 f
(j), u′ :=

∑k0
k=1(u(k))′;

there is q1 ∈ (1,∞) such that ∇yu(s)|BR0

c ∈ Lq1(BR0

c
)9 for a. e. s ∈ (0, T0),

u|ΩR0 × (0, T0) ∈ L1
loc

(
[0, T0), W 2,1(ΩR0)3

)
, π|ΩR0 × (0, T0) ∈ L1

loc

(
[0, T0), W 1,1(ΩR0)

)
;

there are numbers m0 ∈ N, γj ∈ (1,∞) as well as functions π(j) : (0, T0) 7→ L1
loc(BR0

c
) for

1 ≤ j ≤ m0 such that

π(s)|BR0

c
=

m0∑
j=1

π(j)(s),

m0∑
j=1

∫
BR0

c

(
|π(j)(y, s)|

[
(1 + |y|) ln(2 + |y|)

]−1
)γj

dy <∞ (5.5)

for for a. e. s ∈ (0, T0). Let TT0 ⊂ (0, T0) be a zero-measure set such that u(t)|ΩR ∈
W 1,1(ΩR)3

(
R ∈ [S0,∞)

)
and divxu(t) = 0 for t ∈ (0, T0)\TT0 . (Such a set exists due

to (5.4).) Let t ∈ (0, T0)\TT0 . Then there is a zero-measure set Nt ⊂ Ω
c

such that for
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x ∈ Ω
c\Nt,

u(x, t) = R(τ)(f)(x, t) + I(τ)
(
u(0)

)
(x, t)−

3∑
l=1

∂xlV
(τ)
(
n

(Ω)
l u)(x, t) (5.6)

+V(τ)
(
τ n

(Ω)
1 u+

3∑
l=1

n
(Ω)
l (−∂ylu+ π el)

)
(x, t)−

∫
∂Ω

(∇N)(x− y)
(
n(Ω)(y) · u(y, t)

)
doy,

with N denoting the Newton kernel as introduced at the beginning of Section 3.

Proof: We modify the proof of [15, Theorem 4.2]. Let x ∈ Ω
c
. For a. e. s ∈ (0, t)

the relations in (5.4) and (5.5) hold, and u(j)(s), (u(j))′(s) ∈ L%j (Ω
c
)3 for 1 ≤ j ≤

k0, ∇yu(s)|BR0

c ∈ Lq1(BR0

c
)9, as well as f (j)(s) ∈ Lpj (Ωc

)3 for 1 ≤ j ≤ n0. Take such a
number s ∈ (0, t). Then we may choose a sequence (Rn) in [R0,∞) as in Lemma 5.2 with
s replaced by t − s and V (k)(y) := |u(k)(y, s)| for 1 ≤ k ≤ k0, V

(k0+l)(y) := |∂ylu(y, s)|
for 1 ≤ l ≤ 3, V (k0+3+j)(y) := |π(j)(y, s)| for 1 ≤ j ≤ n0, y ∈ BR0

c
. By (5.4), we have

0 =
∫

ΩRn
Λ(x − y, t − s) ·

(
u′ − ∆yu + τ ∂y1u + ∇yπ − f

)
(y, s) dy for n ∈ N. Recalling

that n(Ω) denotes the outward unit normal to Ω, we get by an integration by parts that
0 = A1(x, s) + A2(x, s) +

∑7
µ=3 Aµ(n, x, s), with

A1(x, s)

:=

∫
∂Ω

Λ(x− y, t− s) ·
( 3∑
l=1

n
(Ω)
l (y)

(
∂ylu(y, s)− π(y, s) el

)
− τ n(Ω)

1 (y) · u(y, s)
)
doy,

A2(x, s) := −
∫
∂Ω

3∑
l=1

∂ylΛ(x− y, t− s) · n(Ω)
l (y)u(y, s) doy,

A5(n, x, s) := −
∫

ΩRn

(−∆y − τ ∂y1)Λ(x− y, t− s) · u(y, s) dy,

A6(n, x, s) := −
∫

ΩRn

Λ(x− y, t− s) · f(y, s) dy.

The terms A3(n, x, s) and A4(n, x, s) are defined as A1(x, s) and A2(x, s), respectively,

but with the domain of integration ∂Ω replaced by ∂BRn , and the factor n
(Ω)
l (y) by

−yl/Rn. The term A7(n, x, s) is defined as A6(n, x, s), but with −u′(y, s) in the place of
f(y, s). By Lemma 3.3, we have A5(n, x, s) =

∫
ΩRn

∂sΛ(x− y, t− s) · u(y, s) dy for n ∈ N.

Moreover, recall that by Corollary 3.4 and because t − s > 0, the terms Λ(x − y, t − s)
and ∂sΛ(x− y, t− s) as functions of y ∈ R3 belong to Lp(R3)3×3 for any p ∈ (1,∞). From
these observations we get that A5(n, x, s) → A8(x, s) :=

∫
Ω
c ∂sΛ(x − y, t − s) · u(y, s) dy

and A6(n, x, s) → A9(x, s) := −
∫

Ω
c Λ(x − y, t − s) · f(y, s) dy, as well as A7(n, x, s) →

A10(x, s) :=
∫

Ω
c Λ(x− y, t− s) · u′(s)(y) dy, for n→∞. Lemma 5.2 and the choice of the

sequence (Rn) lead to the conclusion that A3(n, x, s) + A4(n, x, s)→ 0 for n→∞.

At this point we have shown that 0 = A1(x, s) + A2(x, s) +
∑10

µ=8 Aµ(x, s). We inte-
grate the preceding equation with respect to s ∈ (0, t − ε) for any ε ∈ (0, t), and
then let ε tend to zero. First consider A1(x, s) and A2(x, s). Since u|ΩR0 × (0, T0) ∈
L1
loc

(
[0, T0), W 2,1(ΩR0)3

)
and π|ΩR0 × (0, T0) ∈ L1

loc

(
[0, T0), W 1,1(ΩR0)

)
, a standard
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trace theorem yields that the functions ∂βxuj |∂Ω × (0, T0) and π|∂Ω × (0, T0) belong to
L1
loc

(
[0, T0), L1(∂Ω)

)
for 1 ≤ j ≤ 3, β ∈ N3

0 with |β| ≤ 1. Thus we may conclude

with Lemma 3.9 that the integral
∫ t−ε

0

∑2
µ=1 Aµ(x, s) ds converges against the sum of the

terms in (5.6) involving V(τ), but with inverse sign, when ε tends to zero. By apply-
ing Lemma 5.1 to u(k) for 1 ≤ k ≤ k0 and by taking the sum with respect to k, we
get

∫ t−ε
0

(
A8(x, s) + A10(x, s)

)
ds = B1(ε, x) + B2(ε, x) − I(τ)

(
u(0)

)
(x, t) for ε ∈ (0, t),

with B1(ε, x) :=
∫

Ω
c H(x − y − τ ε e1, ε)u(y, t − ε) dy and B2(ε, x) defined as the inte-

gral
∫

Ω
c Λ̃(x − y, ε) · u(y, t − ε) dy, with Λ̃ from (3.3). Lemma 3.6 yields that B2(ε, x) =∫

∂ΩA(x−y− τ ε e1, ε)
(
n(Ω)(y) ·u(y, t− ε)

)
doy for ε ∈ (0, t) with t− ε ∈ (0, t)\TT0 , where

A was introduced in (3.4). For q ∈ (1, min{%k : 1 ≤ k ≤ k0}] and for R ∈ [S0,∞), the
function u|ΩR × [0, T0) belongs to C0

(
[0, T0), Lq(ΩR)3

)
. Thus by Theorem 5.1 and the

choice of t we get that B2(ε, x) →
∫
∂Ω(∇N)(x− y)

(
n(Ω)(y) · u(y, t)

)
doy for ε → 0, with

the constraint t− ε ∈ (0, t)\TT0 . Recall that x was taken arbitrarily in Ω
c
.

Choose a sequence (εm) in (0, t) with t− εm ∈ (0, t)\TT0 for m ∈ N and εm → 0. Then by
Theorem 3.3 there is a sequence (ε′m) of (εm) and a set Nt,1 ⊂ Ω

c
of measure zero such

that B1(ε′m, x)→ u(x, t) (m→∞) for x ∈ Ω
c\Nt,1. Moreover Corollary 3.7 implies there

is a set Nt,2 ⊂ R3 of measure zero with
∫ t

0 |
∫

Ω
c Λ(x − y, t − s) · f (j)(y, s) dy| ds < ∞ for

x ∈ R3\Nt,2, 1 ≤ j ≤ n0. Therefore
∫ t−ε′m

0 A9(x, s) ds → −R(τ)(f)(x, t) (m → ∞) for

x ∈ R3\Nt,2. At this point we may conclude that for x ∈ Ω
c\(Nt,1 ∪ Nt,2), the integral∫ t−ε′m

0

(
A1(x, s) + A2(x, s) +

∑10
µ=8 Aµ(x, s)

)
ds converges to u(x, t) minus the right-hand

side of (5.4) for m→∞. This proves Theorem 5.2. �

We may now derive a representation formula which does not contain a pressure term.
This formula generalizes [15, Theorem 4.3], where the Stokes system with homogeneous
Dirichlet boundary conditions was considered, under stronger assumptions on the data.
Recall that at the beginning of this section, we defined R1 := (R0 + S0)/2.

Corollary 5.1 Consider the same situation as in Theorem 5.2. (This means in particular
that u|ΩR1 × [0, T0) ∈ C0

(
[0, T0), Lq(ΩR1)3

)
.) Let t ∈ (0, T0)\TT0. Then

u(x, t) = R(τ)(f)(x, t) + I(τ)
(
u(0)

)
(x, t)−

3∑
l=1

∂xlV
(τ)
(
n

(Ω)
l u)(x, t) (5.7)

−
∫
∂Ω

(∇N)(x− y)
(
n(Ω)(y) · u(y, t)

)
doy + KR0,S0,ϕ0,Ω,T0(u)(x, t)

−
∫

ΩR1

GR0,S0,ϕ0(x, y, t) · u(y, 0) dy −
∫ t

0

∫
ΩR1

GR0,S0,ϕ0(x, y, t− s) · f(y, s) dy ds

for x ∈ BR0

c\Nt, with Nt introduced in Theorem 5.2, KR0,S0,ϕ0,Ω,T0(u) defined in (4.17)
and GR0,S0,ϕ0 in (3.13).

Proof: Put G := GR0,S0,ϕ0 . Let x ∈ Bc
R0
\Nt and j ∈ {1, 2, 3}. We transform the

term V (x, t) := V
(τ)
j

(
τ n

(Ω)
1 u +

∑3
l=1 n

(Ω)
l (−∂ylu + π el)

)
(x, t). Put q := min{%k : 1 ≤

k ≤ k0}. Obviously the function u|ΩR1 × (0, T0) belongs to W 1,1
loc

(
[0, T0), Lq(ΩR1)3

)
and

to C0
(

[0, T0), Lq(ΩR1)3
)
. By the properties of G listed in Lemma 3.11, by (5.4), the
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relations Ω ⊂ BS0 , S0 < R1 < R0 and x ∈ Bc
R0
, and by the Divergence theorem, we get

V (x, t) =

3∑
µ=1

Aµ, with Aµ :=

∫ t

0

∫
ΩR1

3∑
k=1

K
(µ)
k (y, s)w

(µ)
k (y, s) dy ds (1 ≤ µ ≤ 4), (5.8)

where K
(1)
k (y, s) := ∇yGjk(x, y, t−s), w

(1)
k (y, s) := ∇yuk(y, s), and moreover K

(2)
k (y, s) :=

∂y1Gjk(x, y, t − s), w
(2)
k (y, s) := −τ uk(y, s), and in addition K

(3)
k (y, s) := K

(4)
k (y, s) :=

Gjk(x, y, t − s), w
(3)
k (y, s) := u′k(s)(y), w

(4)
k (y, s) := −fk(y, s) for 1 ≤ k ≤ 3, y ∈

ΩR1 , s ∈ (0, t). In A3, we perform an integration by parts with respect to the time
variable. To this end, recall that the function g(r) := G(x, · , r)|ΩR1

(
r ∈ [0,∞)

)
belongs

to C1
(

[0,∞), Lq
′
(ΩR1)3×3

)
(Lemma 3.12). Thus, by setting F (r)(V ) :=

∫
ΩR1

G(x, y, r) ·
V (y) dy for V ∈ Lq(ΩR1)3, r ∈ [0,∞), we obtain a mapping F ∈ C1

(
[0,∞), [Lq(ΩR1)3]′

)
,

with F ′(r)(V ) :=
∫

ΩR1
∂rG(x, y, r) · V (y) dy for V, r as before, where ∂rG(x, y, r) is de-

fined in Lemma 3.12 (y ∈ ΩR1 , r ∈ [0,∞)). Therefore, due to the regularity properties of
u|ΩR1 × (0, T0) stated above, Lemma 2.5 yields

A3 =
3∑

k=1

(∫
ΩR1

Gjk(x, y, 0)uk(y, t) dy −
∫

ΩR1

Gjk(x, y, t)uk(y, 0) dy

−
∫ t

0

∫
ΩR1

∂sGjk(x, y, t− s)uk(y, s) dy ds
)
.

The corollary follows with (5.8) and (4.17). �

As a last step in this section, we are going to show that equation (5.7) holds under
weaker regularity assumption on u near t = 0. To this end, we establish the following
technical point.

Lemma 5.3 Let k0 ∈ N, %k ∈ (1,∞), u(k) ∈ C0
(

[0, T0), L%k(Ω
c
)3
)

for 1 ≤ k ≤ k0,

and put u =
∑k0

k=1 u
(k). In particular u|ΩR1 × [0, T0) ∈ C0

(
[0, T0), Lq(ΩR1)3

)
for q ∈

(1,∞) with q ≤ %k for 1 ≤ k ≤ k0. Suppose in addition that u(s) ∈ W 1,1
loc (Ω

c
)3 for a.

e. s ∈ (0, T0) and ∇xu|ΩR1 × (0, T0) ∈ L1
loc

(
[0, T0), Lq1(ΩR1)9

)
for some q1 ∈ (1,∞).

Furthermore let n0 ∈ N, pj ∈ (1,∞), f (j) ∈ L1
loc

(
[0, T0), Lpj (Ω

c
)3
)

for 1 ≤ j ≤ n0, and

put f :=
∑n0

j=1 f
(j).

Choose functions ζε for ε ∈ (0,∞) as in the passage preceding Lemma 3.14, and put

u
(k)
ε (s) := ζε(s)u

(k)(s), uε(s) := ζε(s)u(s), fε(s) := ζε(s) f(s) and gε(s) := fε(s) +
ζ ′ε(s)u(s) for s ∈ (0, T0), ε ∈ (0,∞), 1 ≤ k ≤ k0.

Let t ∈ (0, T0) with u(t)|ΩR1 ∈W 1,1(ΩR1)3 and divx(u(t)|ΩR1) = 0. Suppose there is some
ε0 ∈ (0,∞) such that for ε ∈ (0, ε0], equation (5.7) holds with u, f replaced by uε and gε,
respectively, if x ∈ BR0

c\Nt,ε for some zero-measure subset Nt,ε of BR0

c
(This means in

particular that the second from last term on the right-hand side of (5.7) vanishes.) Then
there is some zero-measure set Nt ⊂ BR0

c
such that equation (5.7) remains valid for u

and f if x ∈ BR0

c\Nt.

Proof: Put f
(j)
ε (s) := ζε(s) f

(j)(s) for s ∈ (0, T0), 1 ≤ j ≤ n0. We note that uε =∑k0
k=1 u

(k)
ε , fε =

∑n0
j=1 f

(j)
ε , (gε − fε)(s) = ζ ′ε(s)u(s) for s ∈ (0, T0), the functions u

(k)
ε , uε
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and f
(j)
ε have the same regularity properties as u(k), u and f (j), respectively, for 1 ≤ k ≤

k0, 1 ≤ j ≤ n0, ε ∈ (0,∞).

Put q := min({%k : 1 ≤ k ≤ k0} ∪ {q1}). Obviously the functions u|ΩR1 × (0, T0) and
∂xku|ΩR1 × (0, T0) belong to L1

loc

(
[0, T0), Lq(ΩR1)3

)
(1 ≤ k ≤ 3). For β ∈ N3

0 with |β| ≤
1, ε ∈ (0,∞) and a. e. s ∈ (0, T0), ‖∂βy (uε − u)(s)|ΩR1‖q =

(
1− ζε(s)

)
‖∂βy u(s)|ΩR1‖q ≤

‖∂βy u(s)|ΩR1‖q, and similarly ‖(f (j)
ε − f (j))(s)‖pj ≤ ‖f (j)(s)‖pj (1 ≤ j ≤ n0). Hence by

Lebesgue’s theorem,

‖∂βy (uε − u)|ΩR1 × (0, t)‖q,1;t → 0 and ‖(f (j)
ε − f (j))|Ωc × (0, t)‖pj ,1;t → 0 (ε ↓ 0) (5.9)

for 1 ≤ j ≤ n0 and for β as before. By the choice of ζε,

‖(uε − u)(t)|ΩR1‖q = 0 for ε ∈ (0, t/2]. (5.10)

Let x ∈ Bc
R0

, Put G := GR1,S0,ϕ0 (see (3.13)). Theorem 4.2 and (5.9) imply that∫ t
0

∫
ΩR1

∂1−σ
s ∂yσl G(x, y, t − s) · (∂µl uε − ∂

µ
l u)(y, s) dy ds → 0 (ε ↓ 0) for µ, σ ∈ {0, 1}, l ∈

{1, 2, 3}, and
∫ t

0

∫
ΩR1

G(x, y, t − s) · (f (j)
ε − f (j))(y, s) dy ds → 0 (ε ↓ 0) for 1 ≤ j ≤ n0.

Obviously by (5.10)
∫

ΩR1
G(x, y, 0) · (uε − u)(y, t) dy = 0 for ε ∈ (0, t/2].

The preceding observations and (5.10) mean that |KR0,S0,ϕ0,Ω,T0(uε − u)(x, t)| → 0 for

ε ↓ 0. Moreover, by Lemma 4.3, the term Aε := |
∑3

l=1 ∂xlV
(τ)
(
n

(Ω)
l (uε − u)

)
(x, t)| is

bounded by C
(
‖uε − u|ΩR1 × (0, t)‖q,1;t + ‖∇y(uε − u)|ΩR1 × (0, t)‖q,1;t

)
for ε ∈ (0,∞).

Thus Aε → 0 for ε ↓ 0 by (5.9). Since x ∈ Bc
R0
, Ω ⊂ BS0 and by the choice of t, Lemma

4.4 yields that Eε := |
∫
∂Ω(∇N)(x−y)

(
n(Ω)(y) · (uε−u)(y, t)

)
doy| ≤ C ‖(uε−u)(t)|ΩR1‖q,

so Eε → 0 (ε ↓ 0) by (5.10). Next we apply Lemma 3.14 with u|ΩR1 × [0, T0) in the role
of v. We obtain that

∫ t
0

∫
ΩR1

G(x, y, t− s) · ζ ′ε(s)uε(y, s) dy ds→
∫

ΩR1
G(x, y, t) · u(y, 0) dy

for ε ↓ 0. Moreover, using Lemma 3.15 with q, u replaced by %k and u(k), respectively,

we get R(τ)(h
(k)
ε )(x, t) → I(τ)

(
u(k)(0)

)
(x, t) (ε ↓ 0) for 1 ≤ k ≤ k0, where h

(k)
ε (s) :=

ζ ′ε(s)u
(k)(s) for s ∈ [0, T0), ε > 0. Therefore R(τ)(hε)(x, t) → I(τ)

(
u(0)

)
(ε ↓ 0), with

hε(s) := ζ ′ε(s)u(s) for s, ε as before.

Up to this point, the vector x was arbitrary but fixed in Bc
R0

. We still have to consider

R(τ)(fε). The second relation in (5.9) and Corollary 3.7 yield that ‖R(τ)(f
(j)
ε −f (j))(t)‖pj →

0 (ε ↓ 0) for 1 ≤ j ≤ n0. This implies there is a sequence (εn) in (0,∞) with εn → 0 and
R(τ)(fε− f)(x, t)→ 0 (n→∞) for a. e. x ∈ R3. The preceding convergence results taken
together yield Lemma 5.3. �

Now we are able to establish (5.7) for solutions of the Oseen system that are less regular
near t = 0 than those considered in Corollary 5.1, except that we additionally suppose
that ∇yu|ΩR0 × (0, T0) ∈ L1

loc

(
[0, T0), Lq1(ΩR0)9

)
.

Corollary 5.2 Let k0 ∈ N, %k ∈ (1,∞), and let u(k) belong to C0
(

[0, T0), L%k(Ω
c
)3
)

and to W 1,1
loc

(
0, T0, L

%k(Ω
c
)3
)
, for 1 ≤ k ≤ k0. Put u =

∑k0
k=1 u

(k). Note that u|ΩR1 ×
[0, T0) ∈ C0

(
[0, T0), Lq(ΩR1)3

)
for q ∈ (1, min{%k : 1 ≤ k ≤ k0}]. Let π : (0, T0) 7→

W 1,1
loc (Ω

c
), n0 ∈ N, pj ∈ (1,∞), f (j) ∈ L1

loc

(
0, T0, L

pj (Ω
c
)3
)

for 1 ≤ j ≤ n0. Suppose

that u(s) ∈ W 2,1
loc (Ω

c
)3 and (5.4) holds for a. e. s ∈ (0, T0), with f =

∑n0
j=1 f

(j), u′ =∑k0
k=1(u(k))′.
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In addition suppose there is q1 ∈ (1,∞) such that ∇yu(s)|BR0

c ∈ Lq1(BR0

c
)9 for a. e.

s ∈ (0, T0) and ∇yu|ΩR0×(0, T0) ∈ L1
loc

(
[0, T0), Lq1(ΩR0)9

)
. Further assume that u|ΩR0×

(0, T0) ∈ L1
loc

(
0, T0, W

2,1(ΩR0)3
)
, π|ΩR0×(0, T0) ∈ L1

loc

(
0, T0, W

1,1(ΩR0)
)
, and there are

numbers m0 ∈ N, γj ∈ (1,∞) as well as functions π(j) : (0, T0) 7→ L1
loc(BR0

c
) for 1 ≤ j ≤

m0 such that (5.5) is valid for a. e. s ∈ (0, T0). Choose a set TT0 as in Theorem 5.2, that
is, TT0 is a zero-measure subset of (0, T0) such that u(t)|ΩR ∈ W 1,1(ΩR)3

(
R ∈ [S0,∞)

)
and divxu(t) = 0 for t ∈ (0, T0)\TT0 .
Let t ∈ (0, T0)\TT0 . Then there is a zero-measure set Nt ⊂ BR0

c
such that (5.7) holds for

x ∈ BR0

c\Nt.

Proof: For ε ∈ (0,∞), choose ζε as in the passage preceding Lemma 3.14, and de-

fine u
(k)
ε , uε and f

(j)
ε (1 ≤ k ≤ k0, 1 ≤ j ≤ n0) as in Lemma 5.3. Further put

πε(s) := ζε(s)π(s), π
(j)
ε (s) := ζε(s)π

(j)(s) for s ∈ (0, T0), 1 ≤ j ≤ m0. Since all func-
tions with index ε vanish on (0, ε), all assumptions in Theorem 5.2 except the system in
(5.4) (momentum equation) are fulfilled if the functions in that theorem are replaced by
the corresponding functions with the index ε, for arbitrary but fixed ε ∈ (0,∞). In
order to state the variant of (5.4) which is valid for the functions with index ε, put
pn0+k := %k, f

n0+k
ε (s) := ζ ′ε(s)u

(k)(s) for s ∈ (0, T0), ε ∈ (0,∞), 1 ≤ k ≤ k0. Then

f
(j)
ε ∈ L1

loc

(
[0, T0), Lpj (Ω

c
)3
)

for ε > 0, 1 ≤ j ≤ k0 + n0, and the system in (5.4) is

valid with u, π, f replaced by uε, πε and
∑n0+k0

j=1 f
(j)
ε , respectively. At this point we may

apply Corollary 5.1, obtaining that for ε > 0, there is a zero-measure set Nε,t ⊂ BR0

c
such

that equation (5.7) holds for x ∈ BR0

c\Nε,t with the same replacements for u and f . As

in Lemma 5.3, define gε(s) :=
∑n0

j=1 f
(j)
ε (s) + ζ ′ε(s)u(s)

(
s ∈ (0, T0), ε > 0

)
. Obviously

gε =
∑n0+k0

j=1 f
(j)
ε

(
ε ∈ (0,∞)

)
, so we now get that equation (5.7) is verified with uε and

gε in the role of u and f , respectively, for x ∈ BR0

c\Nε,t. In view of the assumption
∇yu|ΩR0 × (0, T0) ∈ L1

loc

(
[0, T0), Lq1(ΩR0)9

)
, we see that all the conditions in Lemma 5.3

are fulfilled. Therefore this lemma yields the claim of Corollary 5.2. �

6 Decay estimates of solutions to (1.1).

By combining the representation formula (5.7) with the estimates in Section 4, we may
now derive our result on the decay behaviour of solutions to (1.1). The term 1/(2σj) (1 ≤
j ≤ 3) in the exponent of the decay factor |x| ν(x) in (6.11) below constitutes a link
between Lp-integrability in time of u and pointwise spatial decay of u. This is the link
mentioned in the title of this work and in Section 1.

Theorem 6.1 Consider the situation in Corollary 5.2. Choose some number q ∈ (1,∞)
with q ≤ min{%k : 1 ≤ k ≤ k0}, and put ZR1,T0 := ΩR1 × (0, T0). Suppose in addition
that u|ZR1,T0 ∈ L∞

(
0, T0, L

q(ΩR1)3
)
, and that there are numbers σ1, σ2, σ3 ∈ [1,∞] with

u|ZR1,T0 ∈ Lσ1
(

0, T0, L
q(ΩR1)3

)
, ∇xu|ZR1,T0 ∈ Lσ2

(
0, T0, L

q(ΩR1)9
)

and f |ZR1,T0 ∈
Lσ3
(

0, T0, L
q(ΩR1)3

)
. Put

F(u, f) := ‖u|ZR1,T0‖q,σ1;T0 + ‖u|ZR1,T0‖q,∞;T0 + ‖∇u|ZR1,T0‖q,σ2;T0 + ‖f |ZR1,T0‖q,σ3;T0 .
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Then there is a zero-measure subset ST0 of (0, T0) such that

|
[
∂αxu− ∂αxR(τ)(f)− ∂αxI(τ)

(
u(0)

) ]
(x, t)| (6.11)

≤ CF(u, f)
[(
|x| ν(x)

)−(3+|α|)/2+1/(2 min{σ′1,σ′2,σ′3}) + |x|−γ−|α|
]

for t ∈ (0, T0)\ST0 , x ∈ BR0

c\Nt with some zero-measure set Nt ⊂ BR0

c
, and for α ∈ N3

0

with |α| ≤ 1, where γ = 3 if
∫
∂Ω u(t) · n(Ω) dox = 0 for t ∈ (0, T0), and γ = 2 else.

In particular, if γ = 3, the following inequality holds for t, x, α as before:

|
[
∂αxu− ∂αxR(τ)(f)− ∂αxI(τ)

(
u(0)

) ]
(x, t)| (6.12)

≤ CF(u, f)
(
|x| ν(x)

)−(3+|α|)/2+1/(2 min{σ′1,σ′2,σ′3}).

Proof: We have u|ZR1,T0 ∈ C0
(

[0, T0), Lq(ΩR1)9
)
, so ‖u(t)|ΩR1‖q ≤ ‖u|ZR1,T0‖q,∞;T0 for

any t ∈ [0, T0), without any exceptional values of t. Therefore inequality (6.11) follows
from (5.7) on the one hand (see Corollary 5.2), and Theorem 4.2, Corollary 4.2, 4.3,
Lemma 4.3 and 4.4 on the other. If γ = 3, the term |x|−γ−|α| in (6.11) is bounded

by C
(
|x| ν(x)

)−(3+|α|)/2
because |x| ≥ C(R) ν(x) for x ∈ Bc

R, R ∈ (0,∞). Therefore,
in the case γ = 3, inequality (6.12) is an immediate consequence of (6.11). Note that
R(τ)(f)(t) ∈ W 1,1(R3)3 only for a. e. t ∈ (0,∞) (Lemma 3.8), so the set ST0 may be
larger than the set TT0 in Corollary 5.2. �

A remark is perhaps in order with respect to the terms ∂αxR
(τ)(f) and I(τ)

(
u(0)

)
on the

left-hand side of (6.11). In [13, Theorem 3.1], the assumptions on f are chosen in such a

way that the term |∂αxR(τ)(f)(x, t)| is bounded by C
(
|x| ν(x)

)−(2+|α|)/2
for x ∈ Bc

R, t ∈
(0, T0), α ∈ N3

0 with |α| ≤ 1, where R is some suitably large positive real. If f is given as

in Lemma 4.2, we even obtain the upper bound C
(
|x| ν(x)

)−(3+|α|)/2
, which corresponds

to the strongest possible decay in the sense that the quantity |∂αxΛ(x, t)| decreases in just
this way (Corollary 3.3). In other words: The decay of |∂αxR(τ)(f)(x, t)| in Lemma 4.2 is
the same as that of the fundamental solution Λ of (1.1). In any case the asymptotics of
R(τ)(f) are a direct and exclusive consequence of the assumptions on f . The situation
is similar with respect to the function I(τ)

(
u(0)

)
, whose behaviour is determined by the

initial data u(0). We refer to [12, Theorem 1.1], where the conditions on u(0) lead to the

upper bound C
(
|x| ν(x)

)−(2+|α|)/2
for x, t, α as before, and to Lemma 4.1, where u(0)

is supposed to be integrable and have compact support. In that latter case we get the

optimal decay bound C
(
|x| ν(x)

)−(3+|α|)/2
. These features of the asymptotic behaviour

of R(τ)(f) and I(τ)
(
u(0)

)
explain why inequality (6.11) implies (1.3) under suitable decay

properties of f and u(0).

We further indicate that the sum ∂αxR
(τ)(f) + I(τ)

(
u(0)

)
constitutes a solution to (1.1)

in the whole space R3 (Ω = ∅), with initial data u(0) if u(0) is solenoidal ([10, Theorem
2.16], Lemma 3.7, Theorem 3.3, (3.3), Corollary 3.5). So left-hand side of inequality (6.11)
can be interpreted as the perturbation generated in the fluid by the presence of the rigid
body. But it is precisely this perturbation which is of interest. So inequality (6.11) may
be seen as a decay estimate of that part of the flow which is relevant here.

We finally present two existence results for solutions to (1.1) which satisfy the assumptions
of the preceding theorem. The first – Theorem 6.2 below – deals with L2-strong solutions,
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of a type familiar in the context of the Stokes system. Theorem 6.1 may be applied
to these solutions with σ1 = σ2 = 2 and γ = 3. The choice γ = 3 is possible because
homogeneous Dirichlet boundary conditions are imposed in Theorem 6.2. Inequality (6.12)

then yields that its left-hand side is bounded by C
(
|x| ν(x)

)−5/4−|α|/2
. We indicate that

the velocity part of solutions to (1.1) constructed in [10] and [13] belongs to the uniqueness
class L2

loc

(
[0,∞), W 1,2(Ω

c
)3
)

([13, Corollary 2.28]). Thus, if both Theorem 6.2 and the
theory in [10] and [13] yield existence of a solution to the initial-boundary value problem
considered in Theorem 6.2, these two solutions coincide, so we may compare the decay
rate provided by (6.12) with the one exhibited in [10] and [13]. In these latter references,
we only obtained the rate −1−|α|/2 ([13, Theorem 2.26, Lemma 3.2]]), vs. −5/4−|α|/2 in
(6.12), as mentioned above. But this comparison is not fully satisfying because it requires
additional assumptions on the data, in the context of both Theorem 6.2 and [10] and [13].
In fact, the conditions on U0 in [10] and [13] are weaker than those in Theorem 6.2, and
those on f are different. Also, nonhomogeneous Dirichlet boundary data are admitted in
[10] and [13]. However, reference [17] generalizes the theory presented here, fully covering
the framework in [10] and [13]. In particular, for the situation considered in these latter
articles, we again obtain the decay rate −5/4− |α|/2 ([17, Theorem 6.1, 6.2]).

Theorem 6.2 Suppose that Ω is C2-bounded. Let f ∈ L2
(

0,∞, L2(Ω
c
)3
)

and U0 ∈
W 1,2

0 (Ω
c
)3 with divU0 = 0. Then there is a uniquely determined pair of functions (u, π)

with the properties to follow:

The function u is in C0
(

[0,∞), L2(Ω
c
)3
)
, L2

(
0,∞, L6(Ω

c
)3
)

and L∞
(

0,∞, L2(Ω
c
)3
)
,

as well as in W 1,2
loc

(
[0,∞), L2(Ω

c
)3
)

and L2
loc

(
[0,∞), W 2,2(Ω

c
)3
)
. Moreover ∂xku and

∂tu belong to L2
(

0,∞, L2(Ω
c
)3
)

for 1 ≤ k ≤ 3, and π to L2
(

0,∞, L6(Ω
c
)
)
, with π(t) ∈

W 1,2
loc (Ω

c
) for t ∈ (0,∞) and ∇xπ ∈ L2

(
0,∞, L2(Ω)3

)
.

In addition the pair (u, π) solves (5.4) as well as the equations u(0) = U0 and u(t)|∂Ω = 0
for t ∈ (0,∞). This pair of functions satisfies the assumptions of Corollary 5.2 and
Theorem 6.1 with n0 = k0 = m0 = 1, γ1 = 6, π(1) = π|BR0

c
and with %1, p1, q1, q, and σj

for j ∈ {1, 2, 3} all being equal to 2.

Proof: By the same arguments as in the case of the Stokes system, it may be shown there
is an L2-weak solution of (1.1) characterized by the relations u ∈ L∞

(
0,∞, L2(Ω

c
)3
)

and ∇xu ∈ L2
(

0,∞, L2(Ω
c
)9
)
; compare [13, Theorem 2.12] for existence (with a precise

statement on a weak form of (1.1)), and [11, Theorem 3.7] for uniqueness. The arguments
used in the Stokes case may be found in [44, p. 171-176 and p.180]. The equation∫

Ω
c ∂1V ·V dx = 0 for V ∈W 1,2

0 (Ω
c
)3 is the reason why the Oseen term does not generate

a major problem. In a second step, we consider this function u as the velocity part of a
weak solution to the time-dependent Stokes system with right-hand side f − τ ∂x1u. By
existence and uniqueness results for this latter system, as presented in [40, Section IV.2],
we obtain what is claimed in the theorem. More details and more precise references may
be found in [15, Theorem 3.2 and 3.3] and their proof. �

The solutions of (1.1) considered in the next theorem are not in general covered by the the-

ory in [10] or [13], whereas Theorem 6.1 yields the upper bound
(
|x| ν(x)

)−(3+|α|)/2+1/(2 q′)

for the left-hand side of (6.11).
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Theorem 6.3 Suppose that Ω is C2-bounded and T0 < ∞, and let q ∈ (1,∞). Put
ZT0 := Ω

c × (0, T0), and let Wq,T0 denote the space of all function u ∈ Lq(ZT0)3 such that
the weak derivativs ∂tu, ∂xku and ∂xkxlu exist for 1 ≤ k, l ≤ 3 and belong to Lq(ZT0)3.

Let ‖ ‖q,ZT0 denote the corresponding norm of Wq,T0. Let J
2−2/q
q (Ω

c
) stand for the closure

of C∞0,σ(Ω
c
) with respect to the norm ‖ ‖ defined by

‖U‖ := inf{‖u‖q,T0 : u ∈Wq,T0 , u(t)|∂Ω = 0 for t ∈ (0, T0), u(0) = U}

for U ∈ C∞0,σ(Ω
c
) ([42, p. 487]).

Take f ∈ Lq(ZT0)3 and U0 ∈ J
2−2/q
q (Ω

c
). Then there is a uniquely determined pair

of functions (u, π) with u ∈ Wq,T0 and π : (0, T0) 7→ W 1,q
loc (Ω

c
) such that ∇xπ belongs to

Lq(ZT0)3, equation (1.1) holds, and the initial condition u(0) = U0 as well as the boundary
conditions u(t)|∂Ω = 0 for t ∈ (0, T0) are fulfilled. These functions u and π satisfy the
assumptions of Corollary 5.2 and Theorem 6.1 with n0 = k0 = m0 = 1, π(1) = π|BR0

c

and with %1, p1, q1, γ1, q, and σj for j ∈ {1, 2} all being equal to q.

Proof: The results in [42, Theorem 4.2 and p. 513-515] yield all the claims of the
theorem except those stated in the last sentence, pertaining to the assumptions of Corol-
lary 5.2 and Theorem 6.1. But these latter claims are an easy conclusion of the part of
the theorem taken from [42]. To see this, we make the usual identification of Lq(ZT0)3

and Lq
(

0, T0, Lq(Ω
c
)3
)
; see Lemma 2.3 and [11, Lemma 2.1] in this respect. Since

u and ∂tu belong to Lq(ZT0)3, we get by Theorem 2.5 that for ϕ ∈ C∞0
(

(0, T0)
)

and

ψ ∈ C∞0 (Ω
c
)3, the integrals

∫
Ω
c ψ(x)

[
B −

∫ T0
0 ϕ′(t)u(t) dt

]
(x) dx and −

∫
Ω
c ψ(x)

[
B −∫ T0

0 ϕ(t) ∂tu(t) dt
]
(x) dx coincide, where we used the abbreviation B := Lq(Ω

c
)3. Thus u ∈

W 1,q
(

0, T0, L
q(Ω

c
)3
)
, and the derivative of u as a function from (0, T0) into Lq(Ω

c
)3 coin-

cides with the derivative ∂tu of u as a function from Wq,T0 . It follows with [44, Lemma 3.1.1]
that u belongs to C0

(
[0, T0], Lq(Ω

c
)3
)
. Due to the relation ∇xπ ∈ Lq

(
0, T0, L

q(Ω
c
)3
)
,

and by a transition from π(t) to π(t)− |ΩR0 |−1
∫

ΩR0
π(x, t) dx, it may be supposed with-

out loss of generality that π|ΩR0 × (0, T0) belongs to Lq
(

0, T0, L
q(ΩR0)

)
. Also since

∇xπ ∈ Lq
(

0, T0, L
q(Ω

c
)3
)
, we obtain by [27, Theorem II.6.1] that (5.5) holds with

m0 = 1, γ1 = q, π(1) = π|BR0

c
. Concerning the preceding reference to [27], we note

that in the case q ≥ 3, if x0 ∈ Ω, a ∈ (0,∞) with Ba(x0) ⊂ Ω, and if R0 is suffi-
ciently large with respect to |x0| and 1/a, it may be achieved that (1 + |x|) ln(2 + |x|) ≥(
|x− x0| ln(|x− x0|/a)

)
/2 ≥ |x− x0|/2 for x ∈ Bc

R0
. �
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[21] Deuring, P., Kračmar, S., Nečasová, Š.: On pointwise decay of linearized stationary
incompressible viscous flow around rotating and tranlating bodies. SIAM J. Math.
Anal. 43 (2011), 705-738.

[22] Deuring, P., Varnhorn, W.: On Oseen resolvent estimates. Diff. Int. Equat. 23, 1139-
1149 (2010).

[23] Enomoto, Y., Shibata, Y.: Local energy decay of solutions to the Oseen equation in
the exterior domain. Indiana Univ. Math. J. 53 (2004), 1291-1330.

[24] Enomoto, Y., Shibata, Y.: On the rate of decay of the Oseen semigroup in exterior
domains and its application to Navier-Stokes equation. J. Math. Fluid Mech. 7 (2005),
339-367.

[25] Farwig, R.: The stationary exterior 3D-problem of Oseen and Navier-Stokes equations
in anisotropically weighted Sobolev spaces. Math. Z. 211 (1992), 409-447.
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