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Abstract

A representation formula without pressure term is derived for regular solutions to
the 3D time-dependent Oseen system in exterior Lipschitz domains. This formula is
valid even if no boundary conditions are imposed. It is used in order to exhibit how the
velocity decays pointwise in space. It turns out that the rate of this decay depends
on LP-integrability in time of the velocity. In addition, this work is the basis for
successor papers dealing with spatial decay of L%-weak solutions and mild solutions
to the time-dependent Oseen system, and with L2-strong solutions to the stability
problem related to the Navier-Stokes system with Oseen term.
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1 Introduction

We consider the time-dependent Oseen system
O — Agu+ 7Oy u+ Ve = f, diveu =0 in Q° x (0,Tp), (1.1)

where Q° = R3\Q denotes an exterior domain, with  C R® being an open bounded
set with Lipschitz boundary. This set is given, as are the quantities Ty € (0, 00] and
7 € (0,00), as well as the function f : Q° x (0,Ty) — R. The unknowns are the functions
u: Q% (0,Tp) — R? and 7 : Q° x (0, Ty) — R. The Oseen system is a linearization of the
Navier-Stokes system with Oseen term

O — Agu 470 u+ 7 (u-Ve)u+ Ver = f, divau=0 in Q" x (0,Tp), (1.2)

which models the flow of a viscous incompressible fluid around a rigid body moving with
constant velocity and without rotation. In this model, the reference frame used to describe
the flow is supposed to adhere to the rigid body. The functions u and m correspond
respectively to the velocity and the pressure field of the fluid, the function f stands for
an exterior force acting on the fluid, and 7 may be interpreted as the Reynolds number of
the fluid.

In the work at hand, we want to exhibit pointwise decay in space of the velocity part u
of a solution to (1.1). More precisely, if u is the velocity part of a regular solution to
(1.1) as specified in Corollary 5.2 and Theorem 6.1, and if |f(z,t)| and |u(x,0)| decrease
sufficiently fast for |z| — oo, then the estimate

‘agéu(l',t)‘ <¢ [ ( |.CE‘ I/(x) )*(3+\a|)/2+1/(2 min{oy,05,05}) + ‘$|—(7+|a\)] (1_3)



holds for # € Bf := R*\Bg,, t € (0,Tp), a € N§ with |a| := a1 + ag + a3 < 1,
where the function v(z) := 1 + || — 71 (z € R3) should be considered as a mathematical
manifestation of the wake extending downstream from the rigid body. The real number Ry
must be sufficiently large so that Q C Bg,. The condition |a| < 1 means that inequality
(1.3) covers the velocity u itself as well as its spatial gradient V,u. The number «y in the
term |z| ="+l equals 3 if the zero flux condition

/ u(t) -nYdo, (te(0,Tp)) (1.4)
o0

holds; otherwise v = 2. (By n{®®, we denote the outward unit normal to €.) The pa-
rameters o1, 02,03 € [1,00], ¢ € (1,00) in (1.3) are introduced via the assumptions
u|Zp, 1y € L7(0,To, LY(QR,)?), Vau|lZr,m € L°2(0,To, LY(Qg,)%) and f|Zr, 1, €
L73(0,Tp, L9(Qp,)*), where Qg, := Bg,\Q and Zg, 1, := Qg, x (0,00), for some Ry €
(0,00) with Q C Bpg,. The appearance of these parameters o; in (1.3) means that the
spatial decay of v and V,u depends on LP-integrability in time of u|Zg, 1, Vau|Zr, 1,
and f|Zg, 1,- This is the link between LP-integrability in time and pointwise decay in
space of u alluded to in the title of this work. Another key point of our theory is that we
do not impose any boundary conditions on u or m, except that we consider the case that
the zero flux condition (1.4) is valid. If that condition holds and if |f(z,¢)| and |u(z,0)]
decrease sufficiently fast for |x| — oo, then inequality (1.3) implies that

‘(%O;U(l', t)‘ <¢ ( ‘1" I/(:B) )7(3+|a\)/2+1/(2 min{o],c5}) (15)

for z, t, o as before. For more details, we refer to Theorem 6.1.

We chose our assumptions exclusively in view of establishing (1.3), without any intent of
proving existence results for solutions to (1.1). But of course, solutions to (1.1) fulfilling
our requirements should be known to exist. We state some results in this respect in
Theorem 6.2 and 6.3, with suitable references as proof.

In a successor paper [17], we will show that inequality (1.3) remains valid if u is only
(the velocity part of) a L2-weak solution to (1.1). A further successor paper [19] extends
(1.3) to mild solutions to (1.1), under homogeneous Dirichlet boundary conditions. In still
another successor paper [18], we deal with the nonlinear stability problem

ou — Agu + 70 u+7(U - Vy)u+7(u- VYU +7(u-Vy)u+ Ver = f, (1.6)
divou =0 in Q° x (0,Tp),

where U : Q° — R3 is the velocity part of a solution to the stationary Navier-Stokes system
~AU+7U+7({U-V)U+VI=F, divU =0 in Q" (1.7)

Note that (1.6) reduces to (1.2) if U = 0. We show in [18] that L?-strong solutions to
(1.6) satisfy (1.3) with p = 2. These successor papers [17], [19], [18] build on the results
established here, so the work at hand is of interest not only in its own right, but also
because it is the foundation of the theory derived in these latter articles.

Let us compare the results and the method of proof in the work at hand with related
theories available in literature. What has been established up to now are estimates of the



form

—1—lal/2

|0gu(z,t)| < € (|z|v(z)) for x € B, t € (0,Tp), (1.8)

starting with Mizumachi [36, Theorem 2], who identified a class of initial data Uy and a
class of solutions (u,7) to the nonlinear problem (1.2) with f = 0 such that u satisfies
(1.8) in the case @ = 0. In [10] and [13], we established (1.8) for o € N} with |a| < 1 if
u is an L2-weak solution to the Oseen system (1.1) under Dirichlet boundary conditions
with data verifying (1.4), and in [14], we derived (1.8) for the same range of « in the case
that u is an L?-strong solution to the stability system (1.6), also under Dirichlet boundary
conditions with data satisfying (1.4).

The proofs in all those references, and also in the work at hand, rely on integral represen-
tations of the velocity part u of solutions to the time-dependent Oseen system (1.1). When
equations (1.2) or (1.6) are studied, the additional terms in these systems are considered
as part of the right-hand side of (1.1). However, these articles differ with respect to the
choice of such a representation. Mizumachi [36] used a Green’s formula, a variant of which
appears in the present article as equation (5.4). Such an equation has the disadvantage
that it involves an integral on 99 x (0,Tp) of V,u and 7. This is the reason why in [36],
the restrictive integrability conditions mentioned above are imposed on V u|0€ x (0, 7))
and w|0Q x (0,Tp). In [10], [13] and [14], we circumvented this difficulty by solving an
integral equation in a certain subspace of LQ(O, Ty, L? (89)3). This approach provides a
representation formula for solutions to (1.1) which does not contain the critical integrals
mentioned above. In addition it even yields existence of a solution to (1.1) under Dirichlet
boundary conditions satisfying (1.4). However, it is limited to an L?-framework, and even
in that context, the decay rate —1 — |«|/2 it provides as indicated in (1.8) is not optimal.
Concerning this latter point, in the case of homogeneous Dirichlet boundary conditions,
the theory in the present paper yields the stronger decay rate —5/4 — |«|/2, albeit under
assumptions on Uy and f somewhat different from those in [10] and [13]. We refer to
Theorem 6.2 and the comment preceding it for more details. In [17], the theory presented
in the work at hand is extended to a more general framework covering the situation in [10]
and [13]. It turned out that we again obtain the higher rate —5/4 — |«|/2 ([17, Theorem
6.1, 6.2]), compared with —1 — |a|/2 in [10] and [13].

A similar comparison is valid between [14] and the successor paper [18] to the present
work: As already indicated further above, it is shown in [14] that for L2-strong solutions
to (1.6) satisfying (1.4), the estimate in (1.8) holds, so the velocity decays with the rate
—1 — |a|/2. On the other hand, in [18] we will prove that (1.3) holds with o1 = 09 = 2,
hence the velocity decreases with the rate —5/4 — |a|/2 if (1.4) is satisfied.

The improvements derived in the present work, in [17], [19] and [18] compared to existing
theory in [36], [10], [13] and [14] — higher decay rates, no boundary conditions involved
except (1.4) if so chosen, transition from an L2 to an Li-framework in the linear case,
decay estimates for mild solutions to (1.1) — are essentially due to a representation formula
(equation (5.7)) which is different from the ones used in those earlier references. Since it is
derived from a Green’s formula, this equation does not require solving an integral equation.
Still it does not contain the critical boundary integrals mentioned above because they are
removed by partial integration and a cut-off procedure; see the proof of Corollary 5.1.
Although this approach introduces a restriction, too — the velocity is represented at a



point (z,t) only if z is located outside a fixed ball around €2 —, this does not matter in our
context because we are interested in the behaviour of the velocity in (x,t) for large values
of |x|.

A similar representation formula was derived in [15] for solutions to the time-dependent
Stokes system; see [15, Theorem 4.3]. However, this formula only leads to pointwise decay
estimates of the velocity itself, but not of its spatial gradient, and is valid only if f vanishes
and homogeneous Dirichlet boundary conditions are satisfied. Moreover the theory in [15]
is essentially restricted to an L?-framework and is based on maximal regularity of solutions
to the time-dependent Stokes system. Maximal regularity cannot be expected to hold for
solutions to the Oseen system (1.1). In fact, according to [20], the velocity part U of a
solution (U,II) to the Oseen resolvent system —AU + 70U + AU + VII = F, divU =0
in the whole space R3 does not satisfy the estimate ||U|lz < Co ||~ || F|]2 with a single
constant Cy > 0 for all F € L?(R?)3 and all A € C with R\ > 0. As a consequence of this
negative result, which arises since small values of |A| are admitted, an analogous resolvent
estimate cannot be expected to hold for solutions to the Oseen resolvent problem in Q°,
under whatever boundary conditions. Therefore, in view of [40, Theorem 4.2, point 3.)],
it is a safe guess that maximal regularity is not valid for solutions of problem (1.1), not
even in an L?-framework.

Let us mention some references more distantly related to the work at hand. Knightly [31]
considered even the case that the velocity of the rigid body changes with time. However,
his results are valid only under various smallness assumptions. Takahashi [43] deals with
(1.6) in the case © = () under a smallness condition. In [2], [3], solutions to (1.1) and
(1.6) are estimated in weighted LP-norms, with the weights adapted to the wake in the
flow field downstream to the rigid body. Reference [16] by the present author combines
decay estimates in time and in space, as a continuation of [13] (Oseen system (1.1)) and
[14] (problem (1.6)), with the same assumptions and methods as in those latter articles.
Various technical aspects of the theory in [10], [13], [14] and [16] are dealt with in prede-
cessor papers [6] — [9], [11], [12]. Questions of existence, regularity and stability related to
(1.1), (1.2) or (1.6) are addressed in [23], [24], [25], [28], [29], [32], [34], [35], [39], [42].

2 Notation. Some auxiliary results.

The symbol | | denotes the Euclidean norm of R” for any n € N, the length a; + as + a3
of a multi-index «a € Ng, and the Borel measure of measurable subsets of R3. For R €
(0,00), z € R3, put Br(z) := {y € R? : |z —y| < R}. In the case x = 0, we write Bg
instead of Br(0).

Recall that in Section 1, we introduced the function v : R® — [1,00) by setting v(x) :=
1+ |z| — 21 for x € R3.

We fix numbers Sp, Ro € (0,00) with Sp < Ry, as well as a function ¢g € C§°(B(r,+5,)/2)
with 0 < o < 1 and ¢o|Bg,4(ry—s,)/4 = 1. The real number Ry := (R + So)/2 will be
used frequently.

The parameters Ty € (0,00] and 7 € (0,00) as well as the open bounded set Q2 C R? with
Lipschitz boundary, all of them introduced in Section 1, will be kept fixed throughout.



Further recall that the outward unit normal to  is denoted by n(¥). Set Qp := B r\Q for
R € [Sp,00). We assume that Q C Bg,. In particular the case Q = Bg, is admitted.

If R, S € (0,00) with S < R, we write Agg for the annular domain Br\Bs. For n €
N, I C R", let x7 stand for the characteristic function of I in R™. If A C R3, we denote by
A° the complement R\ 4 of A in R3. Put e, := (J;1)1<j<3 for 1 <1 < 3 (unit vector in R3).
If A is some nonempty set and vy : A — R a function, we set |7y| := sup{|y(z)| : € A}.

Let p € [1,00) and m € N. For any open set A C R3, the norm of the Lebesgue space
LP(A) is denoted by || ||,, and the expression || ||, stands for the usual norm of the
Sobolev space W™P(A) of order m and exponent p. The spaces L] (A) and W,.P(A),
again for A C R? open, are defined as the set of all functions V from A into R such that
V|K € LP(K) and V|K € WP(K), respectively, for any open, bounded set K C R? with

K C A. We put VV := (8, V))1<jx<3 for Ve Wh(A)3.

Let V be a normed space, and let the norm of V be denoted by || ||. Then we will use
the same notation || || for the norm on V" defined by ||(f1, ..., fn)l := (Z?Zl | £51I? )1/2
(f1s s fn) € V"™ (n € N). The space V3*3, as concerns its norm, is identified with °.
Again for open sets A C R3, we define C§%,(4) := {V € C§°(A)*® : divV = 0}, and
we write Lg(A) for the closure of Cg% (A) with respect to the norm of LP(A)3, where

p € (1,00). This function space L5 (A) ("space of solenoidal LP-functions”) is equipped
with the norm || [|,.

for

Let p € [1,00] and B a Banach space. For any interval J C R, the norm of LP(J,B)

is denoted by || HLP(JB)' Let a,b € RU {oo} with a < b, and let ¢ € [1,00). We
write LP(a,b, B) and W9(a,b, B) instead of Lp( (a,b), B) and Wl’q( (a,b), B), respec-
tively.  The space L} ([a,b), B) is to contain all functions v : (a,b) — B such that

v|(a,T) € LP(a,T, B) for any T' € (a,b). Obviously this space is different from the stan-
dard space LY (a, b, B ), which will also appear. The space VVZ})CQ( [a,b), B) is to be defined

loc

analogously as Lf o C( [a,b), B ) and is to be distinguished from the space W/llo’cq(a, b, B ) If
v € Whl(a,b, B), then, possibly after a modification on a subset of (a,b) with measure
zero, the function v belongs to C°([a,b), B) ([44, Lemma 3.1.1]). If the latter relation is

already valid, we write v € Wh(a, b, B) N C%([a,b), B).

Let T € (0,00], A C R3 open, p, ¢ € [1,00], n € N. Then we will write || ||,z instead
of || || e (0,7, Lacayn)- Of course, for an interval J C R, a function v € LP( J, LY(A)" ) may
be considered also as a function on A x J, although there is a minor issue with respect
to measurability on A x J, settled in [11, Lemma 2.1] and Lemma 2.3. For z € A, t € J,
we will write v(t)(z) or v(z,t) depending on whether v is considered as a function on J
with values in LY(A)", or as a function on A x J. If v € Wllo’(}(J, Li(A)™), we write v’
for the weak derivative of v : J — LI(A)", and 0yv for the weak partial derivative of v
as a funtion on A x J; compare [15, Lemma 2.3]. For a function v : J — VVli’cl(A)?), the
notation Vv stands for the gradient of v with respect to x € A, in the sense that

Vou: J = LL ()33, Vou(t)(z) = <8J:k(vj(t))(x)>l<jk<3f0r ted zeA

(spatial gradient of v). Similar conventions are to be valid with respect to the expressions
Agv, divyv and Oz ;v.



Concerning Bochner integrals, if J C R is open, B a Banach space and w : J — B
an integrable function, it will sometimes be convenient to write B — [, w(t)dt instead
of [,w(t)dt for the corresponding B-valued Bochner integral. For the definition of the
Bochner integral, we refer to [46, p. 132-133], or to [30, p. 78-80.].

We write C' for numerical constants and C(v1, ..., 7,) for constants depending exclusively
on paremeters 71, ..., v, € [0,00) for some n € N. However, such a precise bookkeeping
will be possible only at some places. Mostly we will use the symbol € for constants whose
dependence on parameters must be traced from context. Sometimes we write €(vy, ..., V)
in order to indicate that the constants in question is influenced by the quantities 1, ..., V-
But in such cases, this constant depends on other parameters as well.

The following simple version of Young’s inequality for integrals will be used frequently.
Stated her for the convenience of the reader, we will refer to it as “Young’s inequality”.

Lemma 2.1 ([1, Corollary 2.25]) Let n € N and q € [1,00]. Then

q 1/q
([ |[ ve-nvwa|'a)" <cluhvi, forveri@),verie).
Another tool which will be used often is Minkowski’s inequality for integrals. Again for
the convenience of the reader, we recall it here.

Theorem 2.1 ([1, Theorem 2.9]) Let m,n € N, p € [1,00), F : R" xR™ — R a
measurable function. Then

P 1/p » 1/p
n m ,y - m n ’ )
(/ (/ |F(z )|dy) d:v) </ (/ \F(z,y)] d:v) dy

For vector-valued functions integrable on exterior domains with integrable divergence, the
divergence theorem holds:

Lemma 2.2 Let A C R? be open and bounded, with Lipschitz boundary. Denote the
outward unit normal to A by n\Y. Let V € VVllo’Cl(Zc)?’ N LY(A%3 with divV € L'(A").
Further suppose that VV|Br\ A belongs to L' (Br\A)° for R € (0,00) with A C Bg. Then

Jxe divVdz = — [, V-0l do,.

Proof: Fix some 1 € C§°(Bsy) with ©|By = 1. Put ¢, (z) := ¢ (n"1z) for z € R3, n € N.
Then [4e divV dz = limy, o [7c div V ¢, dz by Lebesgue’s theorem, and

/Cdide;ndx:—/ V‘n(A)dox—/CV-andx for n e Nwith 4 C B,.

A 0A A
But [Optn ()| < [0kt]oo n ! Xpy\B, (@) forn €N, z € R?, 1 <k < 3,50 [5c V-V, dw —
0 (n — o) again by Lebesgue’s theorem. O

We note that functions V' from VV;)C1 (R3) with VV € L4(R3)3 may be approximated in
the Li-norm by the gradient of C§°-functions in R3.

Theorem 2.2 ([38, Lemma 1.1.1]) Let ¢ € (1,00) and V. € WU'(R3) with VV e

loc

LY(R3)3. Then there is a sequence (Vy,) in C§(R3) with |V (Vy, — V)|lq — 0.

We will make use of the Helmholtz-Fujita decomposition of L?-functions in the whole space
R3.



Theorem 2.3 Let ¢ € (1,00). Then there are linear operators P, : L(R3)? — L&L(R?)
and G, : LY(R3)3 — Wli’cq(IR{z)’) such that VG4(V) € LI(R3)3, V = Py(V) + VG,(V) and

12, (0)llg + IVGo(V)llg < Ca) [V llg for V € LI(R?).
Proof: See [27, Section III.1], in particular [27, p. 147-148 and Theorem III.1.2]. O

In the next theorem, the equation divV = F'is solved in I/VO1 (A)3, where A is an annular
domain.

Theorem 2.4 Let S, R € (0,00) with S < R, and put A := Arg. For q € (1,00), define
the space L{(A) by setting L{(A) :== {F € LY(A) : [, Fdx = 0}. Then there is an operator
D =Dpg from U{L{(A) : g € (1,00)} into U{Wol’q(A)?’ 1 q € (1,00)} with the following
properties.

The restriction ®|LE(A) maps into Wol’q(A)?’, for any q € (1,00),

div®(F) = F for F € L{(A), q € (1,00), and

D(F) € C§°(A)? for F € C§°(A) with [, Fdx = 0.

Proof: Abbreviate CgG = {F € C¢°(A) : [, Fdr = 0}. According to [4, Theorem
2.4], for any ¢ € (1,00), there is a linear and bounded operator ®, : LI(A) — Wy I(A)3
such that div®,(F) = F for F € L{(A), and such that for any F € CGo» the function
Dy(F) belongs to C5°(A)? and only depends on R, S and F. Let p, ¢ € (1,00). By the
preceding statement, the operators ©, and D, coincide on C&%. Suppose that ¢ > p, and
let F e L(A) N L{(A). There is a sequence (F,) in C§°(A) such that |F, — F||; — 0.
Since A is bounded, this means in particular that [ 4 Fnde — i) 4 Fdx =0. Fix a function
¢ € C°(A) with [, odz = 1, and put F, :=F, — (fy Fndz) ([, ¢dz)~t o for n € N.
Then F, € (g% for n € N and | F — Fllg — 0. But ©, and D, coincide on Cfy, as
mentioned above, and these two operators are bounded. In addition, A is bounded and
p < ¢. So we obtain Dy (F) = D,(F'). This means that the operators ®, and D, coincide

on LI(A) N LE(A) as well. Hence there exists an operator with properties as stated in the
theorem. ]

Let us recall some properties of the Bochner integral that will be important in what follows.
First we recall that Bochner integration commutes with bounded operators.

Theorem 2.5 Let By, By be Banach spaces, A : By — By a linear and bounded operator,
n € N, J C R"™ an open set and f : J — By a Bochner integrable mapping. Then
Ao f:Jw By is Bochner integrable, too, and A(By — [; fdx) =By — [; Ao fdu.

Proof: See [46, p. 134, Corollary 2], [30, Theorem 3.7.12]. O

We will sometimes interprete L?(U)-valued Bochner integrals as standard Lebesgue inte-
grals. In view of its importance in the present context, and for completeness, we briefly
discuss this transition. In particular, we indicate why a measurable function f : J — L4(U)
is measurable as a function on J x U, where J C R"” is open, for some n € N. This feature
is often used in the work at hand with respect to functions from Llloc( J, LA(U) ) when J
is an interval in R. In [15, Lemma 3.5], we already considered the case ¢ = 2, without
treating measurability. In the proof of the ensuing lemma, we simplify the argument from
[15] by applying Theorem 2.5.



Lemma 2.3 Let m,n € N, J C R"® and U C R™ open sets, q € [1,00) and f : J —
LY(U)3 integrable as a Bochner integral in L4(U)3. Then there is a measurable function
g:J x U R3 such that f(t) = g(t) a. e. inU, for a. et 6 J We identify f with g.
Then [, |f(t)(z)|dt < oo and [, f(t)(z)dt = (L1 — [, f(t)dt)(z) for a. e. z €U.

Proof: There is a sequence (f;) of simple functions from J into LI(U)3 such that the
relation ||(fr — f)(t)ll = 0 (k — o00) holds for a. e. t € J, and [, ||(fx — f)(t)llqdt —
0 (k — o). (We recall that a function g : J + LI(U)? is called simple if there is ko € N,
measurable subsets E, ..., Ey, of J and functions Vi, ..., Vi, € LI(U)? such that | E;| < oo
for 1 <j <kpand g(t) = Z?O:1 Xg,(t)Vj fort € J.)

Let N € N with U N By # (), and put Uy := U N By. Then the function fi|J x Uy is
measurable and belongs to L'(.J x Uyx)3, for k € N. Moreover ||(fi — f)(#)|Un]|l1 — 0 (k —
oo) for a. e. t € J, and [; [, |(fi — fi)(t)(z)|dzdt — 0 (k,l — oo). The latter relation
implies there is gy € L'(J x Un)3 with [|gn — fxll1 — 0 (k — oo). In particular there is
a subsequence (f;) of (fx) such that ||(gx — f&)(®)|Unl1 = 0 (k — o) for a. e. t € J. At
this point we may conclude that gy (t) = f(¢)|Un a. e. on Uy for a. e. t € J. Since this
is true for any N € N with U N By # 0, there is a measurable function ¢ : J x U — R3
such that g(t) = f(t) a. e. on U for a. e. t € J.

Since f : J — LP(U)3 is integrable the function || f(¢)||, (t € J) is integrable as well, so by

Theorem 2.1, ([, (f, £ (t)(x) dt)"dz )" < j}\Lf Modt < oo. Hence [, |7()(x)|dt <
oo for a. e. x € U, and the function [, f(t)(z)dt (z € U) belongs to L}, .(U). Let
¢ € C°(U)3. The mapping [, - Fdx (F € LY(U)) is linear and bounded, so by
Theorem 2.5 and Fubini’s theorem,

Aw /f t)dt) (m_//¢ ) da dt = /¢ /f 2 dt de.

This implies the equation stated in the lemma. O

We will need mean continuity of the Bochner integral (proof of Theorem 2.7).

Theorem 2.6 ([30, Theorem 3.8.3]) Let B be a Banach space and f : R — B a
Bochner integrable function. Then [g||f(s+h) — f(s)|pds — 0 for h — 0, where || ||p
denotes the norm of B .

We will use Friedrich’s mollifier for functions with values in Banach spaces. Here are the
relevant definitions: Fix a function ¢ € C§°((—1,1)) with o > 0 and [ o(s)ds = 1, and
put gs(r) := 61 (671 r) for § € (0,00), r € R. If B is a Banach space and f € L} (R, B),
define f5(t) := B — [z 05(t — s) f(s)ds for t € R, § € (0, 00).

Key properties of Friedrich’s mollifier of functions with values in R carry over to functions
with values in Banach spaces. Such properties as needed in the work at hand are collected
in the ensuing Theorem 2.7 and Lemma 2.4.

Theorem 2.7 Let B be a Banach space and f € L} (R,B). Then fs € C®(R,B) and
fén) ngan) t—s)f(s)ds (n € N, t € R, § € (0,00)). If f € L'(R,B), then
| fs — fHL1 ®,B) — 0 (6 1 0). Moreover, if f € Wb 1(R B), then (fs) = (f')s-

loc

Proof: The relation f5 € C*°(R, B) and the equation for fén) (t) follow from Lebesgue’s



theorem and the fact that o5 € Cgo( (—0,0) ) If f € LY(R, B), we may proceed in exactly
the same way as in the case of functions with values in R (see [26, Section 2.5.3|, for
example) in order to deduce from Theorem 2.6 that ||fs — fllL1wp — 0 (0 4 0). If

f e WENR, B) and t € R, the equation (f5)'(t) = (f')s(t) holds due to the above equation

loc

for f(S ( ) with n =1, and since the function s — g5(t — s) (s € R) belongs to C§°(R). O

Lemma 2.4 Let B be a Banach space, J C R be an open interval, f € C°(J,B), a, b€ J
with a < b. Then fs(t) — f(t) (6 1 0) uniformly in t € [a,].

Proof: The argument is the same as in the case B = R; see [1, Section 2.29, p. 37-38] for
example. O

Friedrich’s mollifier was introduced in order to establish the next lemma. Although it
should be well known, we do not know a reference for it. Since on the other hand, this
lemma will be used three times, in the proofs of Theorem 3.3, Lemma 5.1 and Corollary
5.1, we present a proof.

Lemma 2.5 Let B be a Banach space, a, b € R with a < b, [ € Wl’l(a, b, B) N
C%([a,b], B) and G € Wht(a,b, B))NC%[a,b], B'). Then

b
/ (GO (f(1)) + GO (1) ] dt =GB)(f(b)) - Gla)(f(a)). (2.1)

Proof: Put f(t) = fla), (f)"(t) = 0 for t € (—oo,a), F() i= F(B), (S)°(8) =
f'(t) for t € [a,b], f(t) := f(b), (f)~(t) :== 0 for t € (b,00). Let ¢ € C§°(R). Since
f € Whl(a,b, B), a standard argument yields ¢ f € Whi(a,b, B) and (p f) = ¢’ f +
¢ f'. Obviously ¢ f € C°([a,b], B). Let T € B’. With Theorem 2.5, we conclude that
To(pf) € WH((a,b)) NC°([a,b]) and (T o ((pf))/ =To (¢ f+¢f). Hence we
obtain T(fab(go’f +¢f)) =T((pf)b) — (¢ f)(a)) by a standard result of analysis and
Theorem 2.5. Since this is true for any T' € B’, the preceding equation remains valid if T" is
removed. Due to the definition of f and (f )N it is now easy to conclude that [, ¢ fds =
—ngo ~ds. Thus the weak derivative f’ of f exists and equals ()™, so that fe

whLR, B) and f' € L'(R, B). Theorem 2.7 now yields that || f'—(f Vsl By — 0 (6 4 0)

loc B

and (f')s = (f5)'- Since (f)~|(a,b) = f', it follows that | /' — (fs)'|(@, b)l|1(as.5) = 0 (6 4
0). Moreover f € C°(R, B) and f][a,b] = f, so Lemma 2.4 implies that || f(t) — f5(t)|z —
0 (6 4 0) uniformly in t € [a, b], where || ||p stands for the norm of B .

Defining G analogously as f, we may show in the same way that G € C'(R,B") N
I/Vllo’cl(R, B, G' € L(R,B'), Gs(t) — G(t) in B’ uniformly with respect to t € [a,b],
and |G’ — (Gs)|(a, W)l zr(ap 5y — 0 for § 1 0.

But for § € (0,00), the function t5(t) := Gs(t )(fg( )) (t € R) belongs to C*(R ), with

Pi(t) = ég(t)(f(s(t) ) +Gs(t )(f5( ) ) so equation (2.1) holds with f, G replaced by s, Gs.
respectively. In view of what has been shown above, this equation without these replace-
ments follows when we let § tend to 0. O



3 Fundamental solution to the time-dependent Oseen sys-
tem. Related potential functions.

In this section, we define a fundamental solution to the time-dependent Oseen system
(1.1), and prove some estimates of this solution. Then we will introduce volume and layer
potentials which will be constitutive elements of our representation formulas. We will
prove properties of these potentials whose usefulness will become evident later on. To
begin with, we indicate some properties of the function v defined in Section 1, following
(1.3).

Lemma 3.1 ([20, Lemma 4.8]) The inequality v(z) < C (1 + |y|)v(x — y) holds for
z,y € R3.
Lemma 3.2 ([6, Lemma 2]) Let K € (0,00). Then, for r € (0,00), z € R3,
|z —Trrel4+r>C(r,K) (|2 +7) if|z] <K,
lz—r1rel>+r>C(r,K) (|z|v(z) +7) if|z]| > K.
Corollary 3.1 Let R, Ry € (0,00) with R < Ry, and take x € Bk, y€Bgr, r€ (0, 00).
Then |x —y —1rel|> + 7> C(r, R, Ry) (|z| v(z) + 7).
Proof: We have |z —y| > || —|y| > (1—R/R1) |x| > R1 — R > 0, so the corollary follows
from Lemma 3.2 with K = Ry — R and from Lemma 3.1. [l
Corollary 3.2 Let vy € (2,00), R € (0,00) Then fB%( lz|v(z))” " de < C(y) RTH2
Proof: By [25, Lemma 2.3], the estimate [, v(x)"7do, < C(7)r holds for r € (0, 0).

|Sjince fBiz( zlv(x)) " de = [7r77 [op v(2) 77 dogdr and y > 2, the corollary follows.

As definition of the Newton kernel (fundamental solution of the Poisson equation), denoted
by 91 in this work, we choose this variant: 91(z) := (47 |z|)~! for z € R3\{0}. We introduce
the usual heat kernel in 3D,

9(z,t) == (Amwt)™3/? e /M) for 2 e R, te (0,00), $(2,0):=0 for zc R3\{0}.

Thus, in our context, £ is defined on B := (R? x (0,00) ) U ((R*\{0}) x {0} ).

Theorem 3.1 The relations $ € C®(B), [psH(z,t)dz = 1 for t € (0,00) hold. If
a € N3, o € Ny, the inequality 0207 $(z,t)| < C(a,0) (|2|2 + t)~BHel+20)/2 s yalid for
z € R3, t € (0,00).

Proof: See [41] for the preceding estimate. O

We will use the estimate in Theorem 3.1 only in the case |a| < 3, o € {0, 1, 2}. In view
of Theorem 3.1, we may define the following velocity part I' of a fundamental solution to
the time-dependent Stokes system:

Lik(z,t) == 9(z,t) Ik +/ 02;0zp.9(2,s)ds for (z,t) € B, j,k € {1, 2, 3}.
t
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Theorem 3.2 The relation T € C®°(B)3*3 holds. If « € N3, o € Ny, the estimate
10209 (2,1)| < C(a,0) (|2|? + t)~CHal+20)/2 s fuifilled for = € R3, t € (0, 00). Moreover
S, 0zl jk(2,t) =0, 0 (2,t) — A.T(2,t) =0 for z, t as before, and for 1 < j < 3.

Proof: Use Theorem 3.1, or see [37, Proposition 2.1.9]. O
As in the case of the inequality for §) in Theorem 3.1, we will need the preceding estimate

of I' only in the case |a| < 3, o € {0, 1, 2}. Finally we introduce the velocity part of a
fundamental solution to the time-dependent Oseen system (1.1), putting

Ajip(z,t) :=Tjp(z —1tey, t) for (z,t) € B, j,ke{l,2, 3} (3.1)
Lemma 3.3 The relations A € C®(B)>*3 and 22:1 O0zpM\ji(z,t) = 0, as well as the
equation (A — A, A+ 0z1A)(z,t) = 0 are valid for 1 < j <3, 2 € R3, t € (0,00).
Proof: Theorem 3.2. g

We state some estimates of A.

Corollary 3.3 The inequality |0307 A(z,t)] < C(1) Zi:l( |z — Ttey|? +t)~Btlaltro)/2
holds for (z,t) € R? x (0,00) and (z,t) € (R3\{0}) x {0}, o € N3 with |a| < 3, o €
{0, 1, 2}.

Let K > 0. If |z] > K, then |0307 A(z,t)| < C(K,T) Zi:l( 2| v(2) 4 1)~ BFleltra)/2 else

|0207 A(z,t)| < C(K,T) Zizl( 2|2 4 t)=GHaltro)/2 for 2 t, a, o as before.

Proof: We have 0207 A(z2,t) = >°7_, (?)(—T)j 8§8x{(9?_j1“(x,7‘)|x:Z,Ttel7T:t for z, t,
and o as in the first part of the corollary. Thus the corollary follows from Theorem 3.2
and Lemma 3.2. g

Corollary 3.4 For g € (1,00), j,k € {1,2,3}, t € (0,00), o € N with |a| < 3, o €
{0, 1, 2}, we have

/ (10207 (2, 1)|7 + |02 D (w, £)|7 ) dar < C t~BHalF2)a/243/2
R3

and if o <1,
2
/ (000 5z — Tter, 1)]7 + [0007 A, £)|7) dw < C(r) Y | ¢~ EFleltno)a/248/2 < o0
R3
pn=1
If la| 4+ 0 > 0, the case ¢ =1 is admitted as well.
Proof: Theorem 3.1 and the first estimate in Corollary 3.3. Use a change of variables to
obtain [ps(|z —Tte1|? +1)77dz = [pa(|y[* +1) "7 dy for v € (3,00), t € (0,00). O
In what follows, up to and including Corollary 3.6, we study functions of the form (z,t) —
Jgs Az — y,t) U(y) dy, with U : R? — R3 given.
Lemma 3.4 Let ¢ € (1,00), V € I/Vlf)cl (R3) with VV € LI(R3)3, r € (0,00) and
j € {1,2,3}. Then [gs Zi:l Ljk(x —y,r) OV (y)dy = 0 for x € R3, in particular
Jgs e Aji(z —y,7) 0KV (y) dy = 0 for such x.
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Proof: We adapt the proof of [11, Lemma 5.9], where we supposed ¢ < 3. Let z € R3.
We know from Corollary 3.4 that the function y — I'(x —y,7) (y € R3) belongs to
L9 (R3)3%3, Moreover, by Theorem 2.2, there is a sequence (g,) in C§°(R?) such that
|V(en —V)|lg = 0. Thus

/R?)Zr]k ) oLV (y dy_nlggo/ erk 1) Opon (y) dy. (3.2)

But the function y +— I'(z —y,7) (y € R3) is in particular of class C'. By Theorem 3.2,
we know that 22:1 OyrTjk(x —y,r) = 0 for y € R3. Therefore the first equation of the
lemma follows from (3.2). The second follows from the first with = replaced by x — 7 re;.
U

We further define
1~\jk = Aji — 9, that is, Kjk(z,t) = / 02;02.9(z — Ttey, s)ds, (3.3)
t
Aj(z,t) ::/ 02i9(z,s)ds for 1 <j k<3, z€ R3, ¢t € (0,00). (3.4)
¢

Lemma 3.5 Let j, k € {1, 2, 3}. Then A;(-,t) € CL(R3) fort € (0,00) and the equation
Oz Aj(z,t) = [ 02;02:9(2, s) ds holds for z € R®, t > 0, hence 9z, Aj(z — Tter, t) =
Kjk(z,t) for z, t as before.

Proof: We have [02702;9(z,s)] < Cs~(2¥9/2) for » € R?, s € (0,00), o € {0, 1}
(Theorem 3.1). Thus the lemma follows with Lebesgue’s theorem. U

Lemma 3.6 Let V € W2 Q) with divV = 0 and VV|Qg € LY(Qg)? for R € [Sy, o).

loc

(The number Sy was fixed at the beginning of Section 2.) Suppose there is mo eN, p €
(1,00), V() e LP Q)3 for1 <1< ’I?’L(] such that V =37 V. Take 2 € Q°, t € (0, 00).

Then fﬁc r—yt)-V(y)dy = [, Alx —y—Ttey, t)n D (y) - V(y) do,.
Proof: Let j € {1, 2, 3}. With Corollary 3.4 and Holder’s inequality, we get

/C / |0z, 0xiH(x —y —Tser, s) Vk(l) (y)|dsdy (3.5)
[e.e] , 1/ /

<c|vdy,, / (/ |0z, 0z H(x —y — Tser, s)P dy) " ds
t R3

VO, [T s < VO, 1)
t

for k € {1, 2, 3}, 1 € {1, ..., mo}, where the last inequality holds because —5/243/(2p}) <
—1. Thus we may apply Fubini’s theorem to obtain

3 00 3
/C Z Aji(x —y,t) Vi(y) dy = / /C Z 0r,0x;$H(x —y —Tser, s) Vi(y) dyds. (3.6)
& k=1 b

By Corollary 3.4 and Theorem 3.1 the function y +— 0z, 9(x—y—7 se1, s) (y € R?) belongs
to WH4(R3) N C°(R3) for any s € (0,00), g € (1,00). Thus, due to the assmptions on V,

12



the function Rs(y) := dz;9(z —y — Tse1, s) V(y) (y € Q) is in W,2H(Q)? N L(Q°)3 for
any s € (0,00), with div & € LY(Q°) and V&,|Qr € L'(Qr)° for R € [Sp, 00). This fact,
the equation divV = 0 and Lemma 2.2 yield that

AZ@%@W@— y—Tsei, s) Vi(y)dy (3.7)

k=1

= / ;9 (x —y—Tser, s)nD(y) - V(y)do, for se (0,00).
oN

But dist(x,00) > 0, so by Lemma 3.2 with K = dist(z,012) and by Theorem 3.1 we get
|0z (x —y —Tser, s)| < E(K)(6+s)2 for y € 9Q, s € (0,00). As a consequence

| e —y—rsen ) a®) V()| doy ds
t o0
<€(K)/ (5+s)_2ds/ V()| do, < .

t o0

So the integral [ [,, 0z;9(z —y—7sei1, s)nV(y)-V(y) do, ds may be transformed via
Fubini’s theorem. The lemma then follows from (3.6) and (3.7).

Lemma 3.7 Letq € (1,0), V € Lq(Rd), € (0,00). Then [p3 VoAj(x—y,r)-V(y)dy =
0 forzeR3, 1<75<3, mpartzcularfRd (z—y,7)-V(y )dy—Oforx€R3.

Proof: See [11, Lemma 5.10] for the first equation. The second follows from the first with
x replaced by x — 77 €. O

Now we may introduce the first of our potential functions.

Corollary 3.5 Let A C R3 be measurable, q € [1,00), V € Li(A)3, V the zero extension
of V to R3. Then

2
l/rw@mmﬁ- DV()|dy < C(r,q) 3 1 GHalom2e/@0 1y (3.8
RS

pn=1

fora € N3, 0 € {0, 1} with |a| +20 <2, x € R3, t € (0,00). Define
IOV (2, t) :—/ Az —y,t)-V(y)dy for z R te (0,00).
R3

For o, 0, x, t as in (3.8), the derivative 92073 (V)(x,t) exists and equals the integral
Jgs 0807 A — y,t) - TN/(y) dy, and is a continuous function of (x,t) € R? x (0,00). With
the abbreviation u := 3(7)(V), the equations divyu = 0, Owu — Azu + 7 0x1u = 0 hold. If
qg>1, then for x € R3, t > 0,

3OW) e, t) = | Hla—y—Tten t) By(V)(y)dy (3.9

(see Theorem 2.3 for the definition of the operator Py) and ]]3(7)(V)(t)\|q < C(q,7)[|[Vllg-

Ifmg € N, pp € [1,00), VO € LP(A)? for 1 < I < my, put 37 o VO =
Y 3 (v o).
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Proof: We have [0907A(z—y,t)] < C(7) ZH_I ~GBtlaltom/2 for o, o, x, t as in (3.8), a
follows from the first inequality in Corollary 3.3. If ¢ = 1, the preceding estimate together
with Lebesgue’s theorem and Lemma 3.3 implies (3.8) as well as the second statement of
the corollary, pertaining to differentiability and continuity.

Now suppose that ¢ > 1. Then inequality (3.8) follows from Corollary 3.4 and Hélder’s
inequality. As for the second claim of the corollary, we take R > 0 and differentiate

™) (V)|Bg after splitting the domain of intergration R? in the definition of 37 (V) into
the parts Bor and R3\ Bag. The integral over Bogr may be handled in the same way as the
integral over R3 in the case ¢ = 1 because ‘7|BQR € L'(Byg)3. As concerns the integral
over BSp, we note that [0307 A(x — y,t)| < C(7, R) Zi:l( ly|v(y) )_(3+‘a|+0”)/2 for z €
Br, y € BSp and for t, a, o as in (3.8), as follows from the first estimate in Corollary 3.3
and Corollary 3.1. Since by Corollary 3.2, the function Zi:l( lylv(y) )_(3+|a‘+a wd'/2 (y €
BSp) is integrable if |a| + o > 1, the assumption V € L7(A)3, Hélder’s inequality and
Lebesgue’s theorem yield that the derivative 9297 3(7) (xBg, V)(w,t) exists for € Bp, t €
(0,00), a € N3, 0 € {0, 1} with 0 < |a|+20 < 2, and it equals fBSR 9207 Nz—y, t) V(y) dy
and is continuous as a function of x € Bg, t € (0,00). Altogether we see that the second
assertion of the corollary, pertaining to derivatives of J(T)(V), holds true. This assertion
and Lemma 3.3 yield the differential equations stated in the corollary. The equation
V= Pq(‘N/) + VGq(XN/) (Theorem 2.3), Lemma 3.4 and 3.7 imply (3.9). The L9-estimate
at the end of the corollary follows from Young’s inequality, Theorem 2.3 and the equation
in Theorem 3.1. 0

Theorem 3.3 Let ¢ € (1,00), Ty € (0, oo} t € (0,7p) and u a function belonging to
wl ([0 To), LYR3)) and to C°([0,Ty), LY(R*)*). Then

loc
/.

Proof: Let € € (0,t) and € R3. Then [p3 9H(z —y — T€€1, €)' dy < C(r,r) e 30=1/2 <
oo for r € (1,00) by Corollary 3.4. Thus, taklng r = ¢, we may define a constant
function G : (t —¢, t) — [ LI(R?)3 ] by setting G(s = [pH@—y—eTer, e V(y)dy
for s € (t — e t), V € LI(R3)3. Since it is constant th1s funct1on obviously belongs
to Wl’l(t — €, t, [Lq(RS)?’]/) and to CO( [t — €, t], [Lq(R3)3]/). This observation, the
equation G’ = 0 and the assumptions on u allow us to conclude with Lemma 2.5 that
[E.G) (W) dt = Gt)(ut)) — G(t —€)(u(t —€)). Due to the definition of G, this
equation translates into

Nx—y—rTeer, €uly, t —e)dy — u(a:,t)’qd:c — 0 (e 0). (3.10)
R3

t
(x—y—Teer, 6)(—U(y,t—6)+U(y,t))dy=/ H(x—y—Teer, ) u'(y,s)dyds

R3 t—e JR3

for € € (0,t). Since [p3 H(x —y —Teer, €) =1 for € € (0,00) (Theorem 3.1), Minkowski’s
and Young’s inequality (Lemma 2.1, Theorem 2.1) allow to conclude that

(L.

Let k € (0,00). Since u € VVlicl( [0,Tp), L9(R3)? ), we may thus choose € € (0,t) so small
that the right-hand side of the preceding inequality, and hence the left-hand one, too,

¢ \1/a L
S == reer, o (uly. t =0 —ulp.0) dyf o) " <€ [ )ar

—€

RS
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is bounded by x/4 for any € € (0,€¢1]. As in the proof of [15, Theorem 4.1], we choose
¥ € C°(R?)? with |Ju(t) — 1|y < k/4. Again since [ps H(z—y—Teer, €)dy =1 (Theorem
3.1), we then obtain by Young’s inequality that

Sz —y—reer, O |ulyt) — () | dy) " dz) " < € Jult) — bl < r/4
(/R:s( R3 ) )

for € € (0,00). Next we set M(z,€) := [pa H(x —y —Teer, €)Y(y)dy for z € R?, € > 0.
As explained in the proof of [10, Theorem 2.16], the term M (x,¢) tends to ¢ (z) for € | 0,
uniformly in x € R3. Choose S € (0,00) with supp(y)) C Bg/y. Then we may conclude
there is €3 such that |[M(e) — ¥|Bs|l; < k/4 for € € (0,€2]. Since $ € C*°(*B) (Theorem
3.1), 9(z,0) = 0 for z € R?\{0}, and |z —y| > |z] — |y| > S/2 > 0 for = € BE, y € Bg)s,
we find that H(z —y —7dej, 6) = 0 (d | 0) for such z and y. As a consequence, for
x € B, y € Bgyg, € >0,

H(x—y—rTeey,€) :ldig]l(ﬁ(x—y—Teel, €)—H(x—y—T10deq, 5))

1
= lélﬁ)l (05 — 7 0219) (v —y — Tter, t)ji—s+9 (e—s) AV (€ — ).
0

Therefore by Theorem 3.1 and Corollary 3.1,
H(x—y—Teeq,€) <€hmsup2/ |z| v(z) + 9+ 9 (e 5))727“/2&9(6—5),
n=

hence 0 < H(z —y —Teey, €) < € (|o] u(z) )_2 e. Recalling that supp(v)) C Bg/s, we thus
get

Lo\
131 = w1Bl, = M (@155l < €e( [ (lalnte)) 7 de) ™ ol < el

for € > 0, where the last inequality is a consequence of Corollary 3.2. Thus we may choose
ez > 0 with || M (e) — | Bg|lq < /4 for € € (0, €3]. The preceding inequalities imply (3.10).
O

Corollary 3.6 Let ¢ € (1,00), V € LI(R3)3. Put 37 (V)(0) := P,(V), with P, from
Theorem 2.3. Then 3 (V) € C°([0,00), L4(R*)?) and |3 (V)(b) — 3 (V)(a)|2 <
C(1) (@™t +a=V2) |V]l4 (b—a) fora, b€ (0,00) with a < b.

Proof: For a, b as above, we find with Corollary 3.5, 3.4 and Young’s inequality that

1
390 =30Vl < [ ][ 0 Oaroan o] dz V1, (0= )
1 2
") /0 S (a+d(b—a) V] (b—a) < Cr) (@ +a V)V, (b - a).
pn=1

Thus the inequality at the end of the corollary is proved. In particular, this settles con-
tinuity of 3 (V) on (0,00). As for t = 0, we recall that by Corollary 3.5, we have
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IOV (x,t) = fR3 z—y—rTtey,t) Py(V)(y)dy for z € R3, ¢t > 0. Thus by Theorem
3.3, HJ V)(e) — Py(V )||q — 0 (e 0). So 3™ (V) is continuous also in t = 0. O
We turn to the definition of a second potential function, beginning with a technical tool.

Theorem 3.4 Let p,q € [1,00), 7 € (1,00), s € [l,00) with ¢ < p, s < r. Let
a € N} with |a| < 1. Suppose that 1 — |a|/2 +3(1/p —1/q)/2 > 1/s — 1/r. Let h €
L#( 0,00, LY(R?)?) and M € (0,00). Then

I -

< Cr.p, q,r, s) MIIl/243(1/p=1/0)/2-1/s41/r

Proof: See [14, Theorem 2.8]. O

Lemma 3.8 Let Ty € (0,00], A C R3 measurable, ¢ € [1,00) and f a function from

LL.(10,Ty), LI(A)*). Let f denote the zero estension of f to R® x (0,00). Then the
integral [ps [09A(x — y,t — o) - fly,0)|dy is finite for any xz € R3 t € (0,00), o €
(0,t), a € N3 with |a| < 1. Moreover, for a. e. t € (0,00) and for « as before, the integral
f(f Jrs 109A(z —y, t—0)- fly,0)| dydo is finite as well for a. e. x € R3. Due to this latter
fact, we may define

RO(f) (1) = / [ M@=yt =a) fly.o) dydo

for such t and x. The relation R (f)(t) € Wlicl (R3)3 holds for a. e. t € (0,00), and for
such t, oz R (f)(t)(x) = fot Jgs Oxi Az —y,t — o) - fly,0)dydo forl € {1,2, 3} and a.
e. z € R3.

Proof: The first claim of the lemma follows from (3.8) Choose p € (¢,00) and r €
(1,00) so close to ¢ and 1, respectively, that 1/2 +3(1/p —1/q)/2 > 1 —1/r. Then
for T € (0,00), a € N with |a] < 1, Theorem 3.4 with M = T, s = 1 yields that
fOT(f]Ra Ly Jas 109A(z — y,t — o) - f(y,0)|dy dolP dz)™/P dt < co. This implies the lemma.
U

Theorem 3.4 remains valid if » = oo, with obvious modifications of the inequality stated
in it; see [14, Theorem 2.8]. However, it is mute if 7 = 0o, s = 1 because then there is
no p € (g,00) such that 1+3(1/p—1/q)/2 > 1/s —1/r. But this case will be relevant in
what follows, and it may be handled by referring to our results on J(T)(V). Here are the
details. Recall the first claim in Lemma 3.8.

Corollary 3.7 Let Ty € (0,00], A C R? measurable, ¢ € (1,00), f a function belonging
to L},.(10,Ty), LI(A)®) and f the zero extension of f to R? x (0,00). Then

loc

( /R [ /;1 [ A=yt —9) (5, 5) dy| as] )" < Cq) IFIBY x (0.0 (3.1)

for t € (0,00). In particular the integral fg | Jgs Az —y,t —s) - f(y, s)dy|ds is finite
for any t € (0,00) and for a. e. x € R3. Thus the function R (f) is well defined for
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any t € (0,00) (instead of only for a. e. t € (0,00)) and for a. e. x € R®. Moreover
IRT () By < C(a) /IR % (0,8)]lg,1¢ for ¢ > 0.

Let mo € N, pl € (1,00) and f(l € Lloc([O,To), Lpl(A)S) for 1 <1 < mg. Then define
RO (70, fO) == S50 R(FO).

Proof: Let t € (0,00), and denote the left-hand side of (3.11) by (¢ ) Then by Theorem
2.1 and Corollary 3.5, we have 2(t) < fo 13 (f(s))(t—s9)|qds < fo q) I f(s)]lqds, and

thus 2(t) < C(q) ||f|R? x (O,t)HqJ;t. This proves the corollary. O

We define a third potential function:

Lemma 3.9 Let q € [1,00], Ty € (0,00}, A C R3 open and bounded, with Lipschitz
boundary, ¢ € Li,.([0,To), LY(OA)*), ¢ the zero extension of ¢ to DA x (0,00). For

€ (0,00), z € RN\IA, o € N3, the term |0%A(x — y,t — s) - ¢(y, s)| is integrable as a
function of (y,s) € DA x (0,t). Define B (¢) := BT (¢) : (R}\DA) x (0,00) — R3 by

B (¢)(x, 1) := /t » Az —y,t—s)- oy, s) doyds for x € R®\0A, t € (0,00).

Then, for anyt € (0,00), the integral fot faA r— y, t—s)- (75( s) doy ds as a function of x €
R3\ A belongs to C°(R3\A)3, and 9207 ( fo Jou O9A(x—y,t—s)-d(y,s) doy ds
for a € N3, z € R3\A.

Proof: The function A is C* on R? x (0,00) (Lemma 3.3), so the lemma follows with
Lebesgue’s theorem. O

In view of introducing another kernel function — a truncated version of A —, we abbreviate
A := Ag, s,, and define

Mgy (z,y,7) (Z Oko(y r)>1<j<3 forz € By, y€ A, r €[0,00). (3.12)

(Recall that the numbers Sy, Ro, R1 and the function ¢y were fixed at the beginning of
Section 2, with Sy < Ry and R; := (Sp + Ro)/2.)

Lemma 3.10 Let 2 € Bf,, r € [0,00), 0 € {0,1}, o € Nj with |a| < 1. Then the
function 0307 My, (x, - ,7) belongs to C§°(A)?, and [, 8307 My, (x,y,r)dy = 0.

Proof: Use Lemma 3.3; compare the proof of [15, Lemma 2.13]. O

Due to Lemma 3.10 and Theorem 2.4, we may define a function & := &g, 5,4, : B, X
Bpg, % [0,00) — R3%3 by setting

Qj(xvyvr) = (SOO(y) Ajk(xaya T) - Q[Msoo,j(xv : ,"")]k(y) )1§j7k§3 (3'13)

for z € By, y € Br,, 7 € [0,00), where the operator ©® := Dp, s, was introduced in
Theorem 2.4. In the rest of this section, we will always write & instead of G g, 5, -

Lemma 3.11 Let x € By, r € [0,00). Then &(z, - ,r) € C§°(BRr,)>*3, the equation
Zk;:l oyk®i(x,y,7) =0 holds for1 <j <3, yé€ Bg, and &(z,y,r) = AN(x — y,r) for
Y € Byt (Ro—S0)/4+
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O

Proof: Lemma 3.3, Theorem 2.4.

Lemma 3.12 Let x € Bf, q € (1,00). Then the mapping v — &(z, - ,r (
belongs to C* ([0, 00), WH4(Bg,)**®). Thus a function G' € C°([0,00), Whi( BR
may be defined by the condition ||(&(z, - ,r+h)—&(z, - ,r))/h—G'(r)|l1,q =0 (h—0
for r € [0,00). We write 8,8 (x,y,r) instead of G'(r)(y) (r € [0,00), y € Bg,). Then

0, & (2, y,7) = @o(y) O Aji(x,y,7) — D[ 8, My j(z, -, 7)], () (3.14)
fory € Bg,, r€[0,00), 1 < j,k <3, with® :=9g,, s, from Theorem 2.4.

OJ\_/
T — —

Proof: Recall that we have set A := Ap, g, in the passage preceding (3.12). Let j,k €
{1, 2,3}, r € [0,00), h € R\{0} with » + h € [0,00). Set R’ := (Ro — Sp)/2, and put
Z(y) = (Mg, (z,y, r+h)— My, (z,y,7) ) /h—0-My,(z,y,7) for y € A. Then Lemma 3.10,
Theorem 2.4 and the choice of ¢ and x yield that ||D(Z;)k| 1,4 is bounded by €| Z;||4,
and therefore (Theorem 2.1) by

1/q
<lh| 2/ / / —y) 107 Aju(a y>t)\t:r+q97h’qdy) dry dv.

Put E(y) = (PO(y) (Ajk<x7 Yy, T+ h) - A]k(x7 Y, T') )/h - ({')TA(I', Y, T)jk )1§j,k§3 for ye BRI'
By Theorem 2.1, Lemma 3.3 and the choice of ¢y and z, the term [|Zj;]|1,4 is bounded by

1/q
ew ¥ [ [ / ooy = YD) 15205 A (& — . gyl dy) iy

a€eN3, |al<1

Therefore || Z]|1,4+ |D(Z)|1.4 < € |h| by the second estimate in Corollary 3.3 with K = R'.
This proves differentiability of &(z, - ,r) with respect to the norm of W14(Bg,)3*3, as
well as equation (3.14). Continuity of 9,&(x, -, r) with respect to the same norm follows
by a similar argument. O

In the preceding lemma, we considered the derivative of &(z, - ,r) with respect to r. Next
we deal with derivatives with respect to x;, for 1 <[ < 3.

Lemma 3.13 Let g € (1,00), o € {0, 1}. Forxz € By, r € [0,00), define L(z,7) :
Bpg, + R¥3 by L(x,r)(y) :== 076(z,y,7) (y € Br,); see Lemma 3.12 for the definition of
076 (z,y,r) if o = 1. Then L(z,7) € C§°(Bg,)>*3 NWh4(Bg,)3*3 for x, r as before, and
the mapping L(-,7) considered as an operator from B, into Whd(Bgr,)3*3 is partially dif-
ferentiable on BiROC. Thus we may define a mapping Dy, L : BiROC x [0, 00) = WL4(Bp,)3*3
by the condition ||( L(z + hem, ) — L(z,7) ) /h — Dy L(z,7)|1,4 = 0 (h — 0), for m €
{1,2,3}, = € BiROC, r € [0,00). The preceding transition to the limit is uniform with
respect to r € [0,00). Instead of Dy, L(x,r)(y), we write 0,0 & (z,y, 7). Then

Orm07 & ji(z,y,7) = 00(y) 020 Ajr(z — y,7) ) — D[ 02007 My j(w, - ,'r)]k(y) (3.15)

forx € Br, , y € Br,, 7 € [0,00), j,k,m € {1, 2, 3}, where the operator D := DR, S
was introduced in Theorem 2.4.

Let | € {1, 2, 3} and define E(x,fv) : B, — R33 by L(z,r)(y) := 0y ®(x,y,r) for z €
Bg,, r €10,00), y € Br,. Then L(z,r) € C§°(BRr,)**3 N LY(Bg,)**3 for z, r as before,
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and E( -, 1) considered as an operator from B, into Li(Bg,)**3 is partially differentiable
on Bg,". Thus we may define an operator D@E : Br, % [0,00) — Li(Bpg,)**® by the
condition ||( L(z + hem, 1) — L(z,7) ) /h — Dy L(z,7)||g = 0 (h = 0) (m € {1, 2,3}, z €
BiROC, r € [0,00) ) The preceding transition to the limit is uniform with respect to r €
[0,00). Instead of Dy L(z,7)(y), we write dxmdy®(x,y,r) so that

8xmayl®jk(x7yvr) (316)
= Iy (oY) OxmAji(x —y,1r) ) — Oy (D[ 0z My (2, - ,7) ], ) (y)

forx € BROC, r € [0,00), y € Br,, j,k,m € {1, 2, 3}.

Proof: The relations L(x,r), L(x,r) € C°(Bg, )**3 for x € B, 7 € [0,00) hold due to
Lemma 3.11 (L with ¢ = 0, E), (3.14), Lemma 3.3, 3.10, Theorem 2.4 and the choice of
o (L with 0 =1).

As concerns differentiability of L(z,r) with respect to x, let j, k,m € {1, 2,3}, 3 € N3

. 1 . 2
with || < 1, and put Lﬁk)(x,r)(y) = —85@(8TM@O,j(m, 7)) (), Lg.k)(a:,r)(y) =
0y po(y) O A(x — y.r) and L) (@,r)(y) = 0o(y) 907Aw —y,r) for w € Br," 7 €
[0,0), y € Bg,. If z € BROC, h € R with |h| < dist(z,Bg,) and y € Bpg,, we have
|+ hem —y| > (Ro—Sp)/2. Thus, by a similar reasoning as in the proof of Lemma 3.12,
1

we get [ [ [(L @+ hem,r)(y) = L (@,0) (@) ) /b = DL (@, m) ()| dy |/ < €|
for z € Bp,", 7 € [0,00), pu € {1, 2, 3}, h € R\{0} with |h| < dist(zx, Bg,), with an obvi-
ous definition of Dnglé) (z,7)(y). This implies the differentiability plz)perties of L(-r) as
stated in the lemma, as well as equation (3.15). Differentiability of L(-,r) and equation
(3.16) follow from corresponding results on L( -, ). O

We fix some function ( € C*°(R) with {|(—o0,1] = 0, (|[2,00) =1, 0 < ¢ < 1 and
¢’ > 0. For € € (0,00), r € R, define ((r) := ((r/€). Then ¢, € C*(R), {|(—o0,€] =
0, ¢|[2€,00) =1, 0< ¢ <1and (l >0.

Lemma 3.14 Let g € (1,00), Ty € (0,00], v € C°([0,Tp), LYBg,)*), t € (0,Tp), = €
BEO. Then

Br,

/ / &(z,y,t —s)-C(s)v(y,s) dyds—/ &(z,y,t) - v(y,0)dy — 0 (e ] 0). (3.17)
0 JBg,

Proof: For € € (0,00), let A, denote the difference of two integrals considered in (3.17).
Then A, = Aﬁ” + A£2), with

= (Bt =)= O 0) - L)l
t
A= [ ) o) vlos) dyds — / ) v(0) dy

for e € (0,00). By Lemma 3.12, the mapping r — &(x, - ,r) (r € o, oo)) belongs in par-
ticular to C’O( [0, 00), Lq/(BRl)?’X?’), 80 0(€) 1= SUP,ee 20 |G (T, -, t=8)=G(z, -, )|y = 0
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for € | O On the other hand, supp(¢’) C [e, 2¢] for € > 0, so for € € (0, t/4], we find
that [A"] < [2¢/(s)dso(e) [[v|Br, x [0, 2€]||q.002¢, Where we used that ¢ > 0. Since
ffs ¢l(s)ds = 1, we may conclude that AY S0 (e } 0). By Lemma 3.12, we know that
in particular &(z, - ,t) € L7 (Bg,)**3. This fact and the relations ¢/ > 0, f25 Cl(s)ds=1
imply

1A®)| <

2e
[ 6@ [ et (o) - vw.0)) dyds| <€ sup [ols) —0)l,
€ Bpg, s€[e, 2€]

for € > 0 with 2e < Ty. Since v € CY([0,Tp), L(Bg,)?), the term SUPgee, 24 [[v(s) —v(0) [l
tends to zero for € | 0. Thus we get AEQ) — 0 (e 1 0). Altogether we see that Ac — 0 (e | 0).
This proves the lemma. O
Lemma 3.15 Let g € (1,00), Ty € (0,00], u € C°([0,Tp), LU(R?)?), ¢t € (0,Tp), = €
R3. Put oc(s) := C'(s)u(s) for s € (0,Tp), € € (0,00). Then R (g)(z,t) converges to
3(7)(u(0) )(,t) for el 0.

Proof: For e € (0,00), we have R (o) (z, t) — ’J(T)(u(O) )(z,t) = AW 4+ AP with

) _// (Alx —y,t—s) = Mz —y,1)) - CU(s) uly, s) dy ds,
0 JR3
N /0 /Rg Az —y.t) - C(s) uly, s) dy ds — 37 (u(0) ) (x,1).

Recalling that supp(¢l) C [e, 2¢], ¢/ > 0, we get for € € (0, t/4] that

2e
AD[< [ ) B)M |Jus)lly ds, (3.18)
with B(s) = [ps|A(x —y,t —s) — Az — y,t)|"dy for s € (0,¢). On the other hand,
t—1s > t/2 for € € (07 t/4], s € [e 26] 9 € [0,1]. Since A is C* on R? x (0, 00) (Lemma
3.3), we obtain B(s) = s [ps | fo oMz —y, t —0s)|7 dy if € € (0,t/4] and 5 € [e, 2¢].
Changing the order of integration by usmg Theorem 2.1, and applying Corollary 3.4, we
thus see that B(s)"/? is bounded by € s Zi:l fol (t—19 s)~BFm/2+3/(24) g and hence by

Cs ZZ:I t=B+m/2+3/24) for ¢ and s as before. Now we may conclude from (3.18) that

2¢ 2
|A£1)| < Q:/ sC/(s)ds Zt—(3+u)/2+3/(2q’) max{||ull, : s € [e, 2¢]}

p=1

for e € (0, t/4]. But ¢! >0, f26§" ds =1, SOIQGSC, ds < 2¢, hence A — 0 (¢ | 0).
Again usmg the equation f ¢l(s)ds = 1 and the relations ¢! > 0, supp(¢l) C [e, 2¢],
we got [AD] < € [ ¢U(s)ds [y |A z— 1) - (u(y,s) — u(y,0))|dyds for e € (0, t/4].
Corollary 3.4 yields in particular that the function y — A(z — y,t) (y € R?) belongs to
LY (R3)3%3, Thus it follows as in a similar situation in the proof of Lemma 3.14 that

AEQ) — 0 (€4 0). This completes the proof of Lemma 3.15. O
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4 Some decay estimates

In this section, we derive decay estimates of the potential functions introduced in the
preceding one. We begin with a technical tool which is in fact the key result which will
allow us to improve the decay rates exhibited in [10] and [13].

Theorem 4.1 Abbreviate K(z,7) := |z —7rei|> +r for 2 € R3, r € (0,00). Let n €
(2,00), R € (0,00). Then

/ K(z,r)™™2dr < C(n,R,7) (12| v(2) )(77”1)/2 for z € B%. (4.1)
0
In addition, let R € (0,00) with R < R, p,q € [1,00). Then

(/t< . K(x —y,t—s) /2 dy)p/q ds) H < € (|z|v(z) )_n/2+1/(2p), (4.2)
0 R
( ; K(z —y,t)"/? dy) 1 < € (|z|v(z) )_n/2 (4.3)

forte (0,00), x € B}%' In addition, let a € (1,00]. Then

2a’

t
/ K(z—y,t—s) " uly,s)| dyds < € (Jz]v(@)) ">V uf e (44)
0 Br

for t, x as before and for u € L“(O,t, LY(Bg) )
We remark that inequality (4.1) is a special case of [21, Theorem 2.19]

Proof of Theorem 4.1: Let S,r € (0,00), y € Bs, © € R3. Then K(z — y,r) =
(Jz—yl—7r)*+ [14+27(|z —y|— (@ —y)1) ] r. But |z —y| — (x — y)1 > 0, so we obtain
that K(z — y,r)%/? > 2_1/2(||m -yl —7'7“{ +[1+27(|lz -yl — (z —y)l)]1/2r1/2).
Put Cy := min{(25 4+ 1)~!, 27}. Since |y| < S, we get 1 + 27(|z —y| — (z —y)) >
C1(25+1+|x—y|—(:v—y)1) >C1(2S+1+z|—21—-2y|) = C1 (1+|z| —21) = Cy v(x),
SO

K(z—y,r)2>CS,7) (||x =yl —7r|+ [v(@)r]"?). (4.5)

Now suppose that @ € BSg so that |z| — S > |z|/2. If r € (0, |z|/(47)], we then
obtain the estimate |x —y| —7r > |x| =S —7r > |z|/2 —7r > |z|/4 > 0, and thus
K(z—y,r)"/? > C(S,7) (|z|/2—77) > 0. Next consider the case r € [|z|/(47), (|z| —S)/7].
Using that |y| < S, we find |z —y| — 77 > |z| = S — 77 > 0 and +/2 > |z|'/2(271/2)~1,
so from (4.5), K(z —y,7)%/? > C(S,7) [|z| = S — 77 + (v() |7| )1/2] > 0. Now turn to
the case that r € [(|x| — S)/7, (|x| + S)/7]. Since |z| — S > |z|/2, as remarked above,
we then have r > (|z| — S)/7 > |z|/(27). Thus inequality (4.5) yields K (z — y,r)/? >
C(S,7) (v(z)|z]))? > 0. Finally, if r > (|z| + S)/7, we have on the one hand r > |z|/T,
and on the other one, 77 — |z —y| > 77 — (|Jz| +5) > 0, so by (4.5), K(z —y,r)"/? >
O(S,7) [r = (lal +8) + (v(@) 2]) *] > 0

Define Fg(x,r) by Fs(z,r) := |z|/2 — 7r if r < |z|/(47), Fs(xz,r) := |z| =S —71r +
(v(@)[e])"" if lol/(47) < 7 < (2] = )/7, Fs(a,r) := (v(@)[a] ) if (o] = 8)/7 < r <
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(|z| + S)/7, and Fs(z,r) := 77 — (|z| + S) + (v(z) || )1/2 in the case (|z| + 5)/7 < r.
Then we have shown that

K(x — y,r)1/2 > C(S,7)Fs(x,r) >0 for S € (0,00), y€ Bs, v € Bsg, r>0. (4.6)

For such S, x and y, and for v > 1, we get
||/ (47) ) ||/4 .
[ mstanar =1t [T (a2 -0 e < Clnr) ol
0 0

(|z|-9)/ 0
/ Fs(wﬂ’)fﬁf dT—i—/ Fs(xjr)*ﬁ’dr < C(% 7_) (‘m|y(x))(—7—i-1)/27
jal /(47) (Izl+8)/

and f||f||+ss)/: (z,7) 7V dr = (|z] 1/(30))7W/2 28/7. Since |z| > C(S) v(x) for x € BSg, we
may conclude that

/ Fs(x,r) " dr < C(v,7,8) (|z|v(2)) T for 8,7 € (0,00), (4.7)
0

and for x € Bfg, y € Bg. Taking S = R/2, y = 0, v = n in (4.7) and using
(4.6), we obtain (4.1). Due to (4.6), the left-hand side in (4.2) is bounded by the term
C(R,7)( fOFth—s) Prds|fp dylP/9)YP for t € (0,00), © € B§p, so (4.2) follows with

(4.7) for such ¢t and z. We still have to show (4.2) in the case 2R > R, z € Bag\Bjg.
Taking account only of the assumption R> R, we get by Corollary 3.1 that

K(z—y,r) > C(R,R,7) (|z|v(x)+r) for z€BE, y€ Br, re(0,00),  (48)

s0 the left-hand side of (4.2) is bounded by € [ fi (|z|v(z)+t—s) """ ds ([, dy)?/?]"
for t € (0,00), = € B, and hence by €(|x\y(ac))_n/2+l/p. But if 2R > R and z €
Bar\ B, we further get 1 <2 R/|z| and [z] > C(R) v(z), so

“n/241 —n/2+1 _ —n/2+41/(2
(|2 v(x)) P < @R)VP (|a|v(a) ) 2P )7 VP < € (o] w(z)) TP (a.9)

Therefore the estimate in (4.2) holds again. Inequality (4.3) is an immediate consequence
or (4.8). In order to prove (4.4), let 2 denote the left-hand side of (4.4) Then by (4.6),

t t , 1/a’
AL / / Fr(z,t —s) "u(y,s)|dyds < QZ(/ Fr(z,t—s) "¢ ds) |w]1,q:¢ (4.10)
0 JBg 0

for t € (0,00), € BSg. Now (4.4) follows from (4.7). If 2R > Rand z € Bsp\Bg;,
proceed as in (4.10), replacmg (4.6) by (4.8). After integration, we use (4.9) with «’ in
the place of p. O

In the ensuing corollary, we apply the preceding theorem in order to estimate convolutions
of the Oseen fundamental solution A in the case that the integration with respect to the
space variables only extends over a bounded domain.
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Corollary 4.1 Let R, Re (0,00) with R < R, p, g€ [1,00]. Then

7p7

/ / 020807 A (e — .t — 5) uly, s)| dyds < € (Ja| () )~ EHIIHBIF2EVCR)
Br

forwe LP(0,t, LYBg)?*), a, B € N3 with |o| <2, |8] <1, 0 € {0,1}, t € (0,00), x €
C

BE.

Proof: Let the left-hand side of the preceding inequality be denoted by 2. As in Theorem

4.1, abbreviate K(z,7) := |z — Tre1|? + 1 for z € R3, 7 € (0,00). By the first inequality

in Corollary 3.3, we have for u, o, 8, o, t, x as in the corollary,

Z/ K(z —y,t —s)"GFlaltBlrrna)/2 1,0y 5)| dy ds. (4.11)

Suppose that p,q € (1,00]. Then from the preceding estimate and (4.2),

/

2 71
A< ¢ Z_:(/t( K(x—yt—s)" (3+|a|+\5|+ua>q’/2dy>p/q ds)l/p g pt

<e¢

3+|a o)/241/(2
(|x|1/(l‘)) B+lal+|Bl+po)/2+1/(2p") H ||q,p,

Mw

1

n
for u, a, B, o, t, x as before. But (|z|v(z) )70/2 < C(R) for z € B, so the corollary is

proved in the case p, g € (1, 00]. Now consider the case ¢ € (1,00], p = 1. Then we again
start with (4.11), to obtain

/ 1 !
a<e Z / Ko =yt — 5)-OHel 072 ) o)) s

for u, a, B, o, t, x as in the corollary, which now follows with (4.3). The case ¢ =1, p €
(1,00] is handled by referring to (4.11) and (4.4). Finally, if p = ¢ = 1, we use the estimate
K(z —y,t —s) > C(R,R,7) (|z|v(z) +t—7r) > C(R,R,7)|z|v(z) for t € (0,00), x €
B%, y € Br, 1 € (0,t) (Corollary 3.1), which together with (4.11) immediately implies
the corollary. O

Recall the numbers Sy, Ry, R1 and the function ¢ fixed at the beginning of Section 2.
In the rest of this section, we abbreviate & := &g, g,,,,, Where Gr; g, ,, was defined
n (3.13). The ensuing theorem is the main result of this section and the key element
which will allow us in the next section to exploit our representation formula of solutions
o (1.1), improving decay rates compared to [10] and [13] while at the same time dropping
boundary conditions.

Theorem 4.2 Let g € (1,00), p € [1,00]. Then

/B 0007008 (2, y,1) - V(y)|dy < € (|| v(x) )~ ETH2 17, (4.12)
Ry
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for V€ LYBpg,)3, t € (0,00), x € Bg,, a, B € N3, o0 €{0, 1} with |a| <1, |B]| +0 <1,
t
/ /B 0207006 (2. .t — 5) - vy, )| dyds < € (|| wl(a)) " ETFHE oy (413)
Ry

fort, x, o, B, 0 as in (4.12), and v € LP(O,t, Lq(BRl)?’).

Proof: Take V, v, t, x, a, 3, 0 as in the theorem. Moreover let j, k € {1, 2, 3}, s € (0,t)
Suppose that r, W are either given by r :=¢, W :=V or by r := ¢t — s and W := v(s).
Then by (3.14), (3.15) and (3.16),

3
A(r) = / 10207056 sy, 1) W) dy < 3 A (), (4.14)
Br, m=

with A1 ( fBR 61,8 P po(y) 0207 A ji(x —y,r) Wi(y)| dy, and the term AG)(r) being
an abbreviation for the integral IBRl |85@(8§87€’M%,j(x, , ) )k(y) Wi(y)| dy. The term
A (7 is defined as AN (1), but with the function 01,8 P po(y) 0907 Aji(x—y,r) replaced
by ¢o(y) 8%8585Ajk(:1: —y,7). The function M., was defined in (3.12), and the operator

D :=Dp,. s, in Theorem 2.4. Set K(z,7) := |z —77re1|? +r for 2 € R3. Then by the first
inequality in Corollary 3.3 and Hélder’s inequality, we have

2
w0y <O ([ K-y b2 g)) " i, (4.15)
n=1 BRl

The same estimate is valid for 2®)(r), except that the exponent —(3 + || + o) ¢’ /2 has
to be replaced by —(3 + |a| + || + o) ¢’ /2. Put A := Ag,,s,. Since 0307 My (z,-,r) €
C§°(A)? with mean value zero on A (Lemma 3.10), Hélder’s inequality and Theorem 2.4
yield A®)(r) < C(Ro, So, ) (f4 10207 My (x,y,7)|7 dy)/7 | W g But [0307 My (z, y, 7)]
is bounded by C'|V¢g|eo [0207A(x — y,7)| for y € A, and so in view of the first inequality
in Corollary 3.1 by C(7) [V¢o|so Zi:l K(x —y,r)"G+lal+1o)/2 Therefore

2
AD(r) < C(Ro, 50,0, 7) [Vipoloo /A Y K(x—y,r) Crleteod/2g ) W, (4.36)
pn=1

From (4.14) — (4.16), the estimate of 2 (r) mentioned above and (4.3), and because
(|z|v(z)) > Ry, we obtain

/B 10207056 ji (2, y, £) Wi ()| dy < C(Ro, S0, 4, 7) [Vipolso (] () )~ FHF2 1y
Ry

This is inequality (4.12) if we take r =t and W = V. Moreover, the choice r =t—s, W =
v(s) and an integration with respect to s yields (4.13) in the case p = 1. Now suppose
that p € (1,00]. Then from (4.14) — (4.16) and the estimate of A (r) mentioned above
with r =t — s, W = v(s), we may conclude that the left-hand side of (4.13) is bounded
by C(Ro, So,q,7) |Vgo|eo times

> ([

v€{0, 8} p=1

/ r'/d /'
[ Kz —y,t — )~ GHalthltro)d/2 dy) ds) ]l g pit-
Ry
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Thus inequality (4.13) follows with (4.2). O
Corollary 4.2 Let 3 € N}, o € {0, 1} with |B| + o < 1. Let ¢ € (1,00), and let the
functzon v belong to L}, ([0,00), LY(Bg,)*) and the function V to Li(Bg,)%. For xz €
Bg, , t €[0,00), define

F(z,t) / / 8085(‘5 (x,y,t —s)-v(y,s)dyds, H(x,t):= / &(z,y,t) - V(y) dy.
BRl BR1

Let | € {1, 2,3}. Then the derivatives Ox;F(z,t) and Ox;H(x,t) exist pointwise and
equal fg fBR1 8x18g85®(x,y,t—s).v(y, s)dyds and fBRl 0x18(x,y,t)-V(y) dy, respectively
(x € Bg,*, t €[0,00)).

Proof: Let t € [0,00) and define £, M : Bg,* x (0,t) — L9 (Bg,)* by L(z,s)(y) :=
8?65(’5(:6,1/,15 —5), M(z,s)(y) := 0w18g6505(x,y,t —s) for x € BROC, y € Bg,, s € [0,t];
see Lemma 3.12 and 3.13. Then |[(L(z + hey, s) — L(z,) ) /h — M(z,s)|ly = 0 (h — 0)
for x € Bigoc, uniformly in s € [0,¢], as follows from Lemma 3.13. The corollary follows
from this and Holder’s inequality. g

It will be convenient to subsume a number of terms in a single operator, which we de-
fine here. We recall that the parameters Ty, Sy, Rg, R1 and the set  were fixed at the
beginning of Section 2. Also the notation Qg for R € [Sp,c0) and n(®) were introduced
there.

Put Zpr := Qg x (0,T) for R € [Sp,00), T € (0,00]. Let A C R3 x R with Zg, 1, C 2.
Take ¢ € (1,00) and suppose that v : 2 — R3 is a function such that v|Zg, 1, be-
longs to C°([0,Tp), LY(Qr,)?), v(s)|Qr, € Wy, (Qr,)? for s € (0,Tp), and Vov|Zg, 1, €

loc
L, ([0, To), LY(QR,)? ). Then, for t € (0,Tp) and = € Bf, , we define

RRo,80,00.2,T0 (V) / /Q Zayl@ Tyt —5) - Oyv(y, s) (4.17)
Ry

0Nyt =) vly,s) ~ 0B (..t =) vly,s) ) dyds + | O(r.y,0) - v(y. 1) dy
Ry

The ensuing corollary provides a decay estimate of 8RR, s;.00,0,7,(v). We use the same
notation as in (4.17).

Corollary 4.3 Let q € (1,00), p1, p2 € [1,00]. Then, for functions v : A — R3 satisfying
the relations v|Zg, 1, € C°([0,To), LY(Qpr,)*), v(s)|Qr, EcVVllo’cl(QRl)3 for s € (0,Tp),
and Vyv|Zgr, 1, € LPQ(O,TO, Lq(QRl)g), and for x € Bg, , t € (0,Ty), a € N3 with
la| < 1, the term |03 RRy,S0,00,0,T0 (V) (2, )| is bounded by

¢ ([[v]ZR, ¢ (z) )~ @HeD/2+1/ @)

|q7p1;t + ||vct?v|ZRlﬂt

apait + 0|2, [lg) jg{%}( |z v

Proof: Corollary 4.2, Theorem 4.2. O

In the rest of this section, we discuss spatial decay of some other potential functions which
will play a role in the representation formula introduced in Section 5; see (5.7). We begin
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by considering ’J(T)(U ), in the case that U has compact support. Then 3(7)(U ) turns out
to decrease as rapidly for |z| — oo as does the fundamental solution A of (1.1).

Lemma 4.1 Let V € LY (R®)3, and suppose there is some R > 0 with supp(V) C Bg.
Let R € (R,0), # € B, t € (0,00), a € N3 with |a] < 1. Then 9237 (V) (x,t)| <
C(R,R7) |V |y (Jaf v(a)) =072,

Proof: Corollary 3.5 yields that [9237)(V)(z,t)| < [ |09A(x — y,t) - V(y)|dy. By the
R

first inequality in Corollary 3.3 and by Corollary 3.1 with K = R — é, the right-hand side
of this estimate is bounded by C(R, R, 7) ||V |1 (|z| v(z) )_(3+‘a|)/2. O

Lemma 4.2 Let f € L'(R3? x (0, 00) )3 such, that there is R € (0, 00) with supp( f(s)) C
By for any s € (0,00). Let R € (R,00). Then

t ~
/O | 102A =yt = 8) - [y )l dyds < Cr R B) S (Jel wlw)) "7 (418)

for t € (0,00), © € B, o € N3 with |a|] < 1. For any such t and x, the function
R (f) is defined in (x,t) as stated in Lemma 3.8, and R (f)(t) belongs to W/IIOCI(R‘5)5,
with Oz R (f)(z,t) = fg Jgs OGN (x — y,t — s) - f(y,s)dyds for 1 <1 < 3. (Lemma
3.8 yields these relations only for a. e. t and a. e. x.) Thus [0°RT(f)(x,t)] <
C(, ﬁ, R)||fllh (|:13\ V(w)) (3+lal)/2 fort, x, a as in (4.18).

Proof: Applying the first inequality in Corollary 3.3 and Corollary 3.1 with K = R — ﬁ,
we get that [0%A(z—y, t—s)-f(y, s)| < C(R, R, 7) (|z|v(z) )7(3Ha|)/2 |f(y,s)| fort, z, a as
n (4.18), y € By and s € (0,). This estimate implies (4.18). Since f € L' (R*x (0, c0) )3,
the latter inequality and Lebesgue’s theorem yield the remaining statements of Lemma
4.2. Il

Lemma 4.3 Let Zg, v for T € (0,Tp] and A be given as in (4.17). Take q € (1,00) and
p1, pg € [1,00]. Then, for v: A — R® with v|Zp, 1, € LP*(0,To, L1(QR,)?), v(s)|Qr, €
WL QR,)? for s € (0,Ty) and Vol Zp, 1, € LP2(0,Tp, LYQR,)?), as well as for x €

loc
Bf,, t € (0,Tp), o € N§ with |a] < 2, 1 € {1, 2,3}, the term |8§“I](T)(nl(m v)(x,t)| is
bounded by

apast) max (|z|v(z) )*(3+‘Oé|)/2+1/(2pj)

¢ (0 Zry max

aprit T IVev|ZR, 4

Y

where (nl(ﬂ) v)(y,s) == nl(Q)(y) v(y, s) fory € 9Q, s € (0,Tp).

Proof: We use the function (g introduced at the beginning of Section 2. Take v, z, t, «, [

as in the lemma. Since g9 € C§°(Bg,) and z € Bf , Lemma 3.3 yields that for r €

(0,00), B € N§, the function y — ¢o(y) BNz —y,r) (y € Bp,) belongs to C3°(Bg,).

Combining the relations 2 C Bg, and ¢o|Bg,4(ry—sy)/4 = 1 with Lemma 3.9 and the

Divergence theorem, we may conclude that B (¢,7,)(z,t) = A1 + Ay + Az, where
= fo fQ 020yN(z — y,t — s) - (po(y)v(y,s))dyds, Ay stands for the double in-

tegral fo fQR1 9N (z — y,t — s) - (Dipo(y) v(y, s) ) dyds, and As is defined in the same
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way as As, but with the term 9;p0(y)v(y, s) replaced by ¢o(y)dyv(y,s). Corollary
4.1 implies that A; is bounded by €|[v|Zg, tlqp:t (7] v() )_(4+|a‘)/2+1/(2p1), and As by

C vl ZRy tllgpist (2] V(%))_(3+|a‘)/2+1/(2p/1). As for As, we may again use Corollary 4.1,
obtaining the upper bound € ||V,v|Zg, ¢|lgpest (2] v() )7(3Ha|)/2+1/(2p2). The lemma fol-
lows from these estimates. g

Lemma 4.4 Let q € (1,00). Then the estimate | [5,(0*VN)(z — y) (nY - V)(y) do,| <
C ||V ]lq |z| =271 holds for V € Lq(QR B AW (Qr,)? with divV =0, t € (0,00), x €
B, . a € N§ with o < 1. If [5on Y -V do, =0, the factor |z|~>1*l may be replaced by
|z|~3~1el. (The Newton kernel M was defined at the beginning of Section 3.)

Proof: We again use the function ¢g introduced at the beginning of Section 2. Let
V, z,t, o be given as in the lemma, and take j € {1, 2, 3}. Since x € By and o €
C3°(Br, ), the function y — 9;9M(z — y) ¢o(y) (y € Br,) belongs to C§°(Bg,). This
fact, the relations divV = 0, Q C Bg,, %o|Bsy+(Rry—S5)/4 = 1, So < R and the Di-
vergence theorem yield that 2 := [, (0%9;M)(x — y) (Y - V)(y)do, coincides with

~ Jon, (V40 0) (a—y)-(0 V) () + (0,90 (2 —y) (Vioo-V)(v)] dy. Since | (Vo) (=) <

Clz|” —2- IB\ for = € R3\{0}, B € N} with |8] < 2, and because supp(py) C Bg, and
| —y| > (1 — Ri/Ryo) |z| for y € Bg,, we may conclude that the term |2 is bounded
by C(So, Ro) ||V |1 (|| =271 + || 27121 |V o] o). The first part of the lemma follows from
this estimate.

Now suppose that faﬁ Vdoy =0. Put A:= Ap, s,. Since Q C Bg,, So < R1, ¢o €
C§°(Br,) and ¢|Bg, 4 (r,—,)/a = 1, we conclude that [, Vg - V do, = 0. Therefore we
may apply the operator ® = Dp, g, from Theorem 2.4 to Vi, - V|A, obtaining that
the function F := D (Vg - V]|A) belongs to Wl’q(A)3 and div(pgV — F) = 0. Now
the Divergence theorem yields 2 = fQ (020N (x — y) - (poV — F)(y) dy. But
supp(poV — F) C Bg, and |z —y| > (1 — Rl/Ro) |z| for y € Bpg,, so it follows that
1] < C(So, Ro) |z|~3~121||po V — F||1. On the other hand, we get with Theorem 2.4 that
lpoV — Flli < C(So,Ro,q) (1 + |[Veolso) [[V]lg- Combining these estimates yields the
second claim of the lemma. O

5 A representation formula for solutions to (1.1).

In present section, we derive the integral representation (equation (5.7)) announced in
Section 1. Our general approach follows the one used in [15, Section 4]. However, we
are going to treat a more general framework and the Oseen system instead of the Stokes
system, so there is some extra work to do. Recall that the parameters Ty, Sy, Ro, R1, the
function ¢g and the set (2 were introduced at the beginning of Section 2.

Lemma 5.1 Let ¢ € (1,00), u € W ([0,Tp), L9(Q°)%) N C°([0,Tp), LI(Q°)?). Take

loc
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€ (0,Ty), € € (0,t) and x € R3. Then, with A introduced in (3.4),

[ [ A== )6 + 00—t ) ) s
—/C A =y, €) - uly, t — ) dy — 37 (w(0)) (z,1).

Q

Proof: According to (3.8), the estimate [qc|07A(x —y,t —s) - V(y)|dy < €(e) [V,
holds for ¢ € {0,1}, V € LI(Q°) and s € (0,t — €). Therefore, for such o, we may
define an mapping G : (0,t — €) — [Lq(ﬁc)B’]/ = L7(Q°)3 by setting G (s)(V) :=
fge OIA(z — y,t — s) - V(y) dy for V, s as before. Then G(©) € L*(0, t — e, [Lq(ﬁc)?’]/).
In addition, the estimate above allows us to apply Fubini’s theorem, which yields that

o “U(s) GO(s)(V)ds = — [0 (s) GO (s)(V)ds for p € C§°((0,t—¢)), V € LI(Q°)>.
As a consequence (Theorem 2.5), [1~“4(s) GM(s)ds = — 576 V' (5) GO () ds for 1) as be-
fore, where the integrals are [Lq (Q )3]/—Valued Bochner integrals. Thus we obtain that
GO e Whi(0,t—e, [Lq(ﬁc)3]/) with (G(©) = G, The estimate at the end of Corol-
lary 3.6 yields that G is continuous as a mapping from (0, t — €) into [ L4 (ﬁc):”]/. Now
Lemma 2.5 and the assumptions on u yield fgiE[G(O)(s)(u’(s)) +GW(s)(u(s))]ds =
GOt —e¢) (u(t—e))— GO)(0) (u(0) ). Hence the lemma follows from the definition of GO
and G(1), O

Theorem 5.1 Let g € (1,00) and u : [0,Ty) — Li. (Q°)3 a function such that u(s)|Qr €
WH(QR)? (R € [Sp,00)) and divyu(s) = 0 for s € (0,Tp)\Tr,, where Tq, C (0,Tp) is a
set of measure zero. Further suppose that u|Qg x [0,Tp) € CO( [0,Tp), Lq(QR)3) for any

R € [Sp,00). Let t € (0,To)\ZTr,, = € Q. Then

Az —y—Teeq, €) (n(m (y)-u(y, t—e) ) doy — (VN)(z—y) (n(Q) (y)-u(y, t) ) doy
onN onN

fore =0, t—e€ (0,t)\Tr,. (The function M (Newton kernel) was introduced in at the
beginning of Section 3, and the function A in (3.4).)
Proof: Since z € Q°, we have § := dist(z,Q) > 0. Let R € [Sp, 00) with Bs(z) C Bg. We
may choose a function ¢ = 1, € C§°(Bagr) with ¥|Br\B;/2(z) = 1 and 9|B;/4(x) = 0.
This means in particular that [0Q = 1, supp()) C Bar\Bs/s(z), and [z — y| > §/4
for any y € supp(y). Put Uy := Qap\Bsp(x). Let j € {1, 2, 3}, and define 2,
JoqAj(x —y —Teey, € (n®(y) - u(y, t — €) ) doy, for € € (0,t). Then by the Divergence
theorem, Lemma 3.5, the choice of v, and because divyu(t —€) = 0 for € € (0,¢) with
t—ee (0,t)\Tr,, we get A = fo [Z°B(y, s, €) ds dy for € as before, where

m(yasaﬁ) = —Vyaxjﬁ(:r —Yy—Tee, 3) : ¢(y) u(y7 t— 6)
—0z;H(x—y—Teer, s) V(y) -u(y, t —e) for e € [0,t], y € Uy, s € (0,00).

The minus sign arises because n(? is the outward unit normal to 2. We split 2 into
a sum AV + AP with A = Jo, I P (y,s,€)dsdy (e € (0,t), t — e ¢ T, ) where
P (y,s,€) for j € {1,2} is deﬁned in the same way as PB(y, s,€), (y, s, € as in that
definition), except that the term wu(y, t — €) is replaced by u(y, t — €) — u(y, t) in the case
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j =1, and by u(y,t) if j = 2. Fory € U,, s € (0,00), € € [0,t], put Q(y, s,€) :=
(Zi:l 02,029 (x —y —Teer, s)|) + [0x;9(x —y — Teeq, s)|. Note that

B (y, 5,0 < €Qy,5,€) [uly, t —e) —uly, )], B (y,5,6)| < CQy, s5,€) |u(y, 1) (5.1)

for y, s, € as in the definition of Q(y, s,¢€). Since |z — y| > 6/4 for y € U,, as mentioned
above, and because of Theorem 3.1, we find for y € Uy, s € (0,00), € € [0, min{¢, §/(87)}]
that

Q5. <€ max (p—y—reaf +5) 22 <C max (01490 (52)

Thus from (5.1) and the definition of ALY for € € (0, min{t, 6/(87)}) with t — e ¢ Ty,

\ V< ¢ max / /00(52 +8) T2 |y, t —€) — u(y, t)|ds dy,
1€{0,1} Ju, Je

hence |Ql§1)| is bounded by €(6, R) ||u(t — €) — u(t)|Q2r||4. Since u|Qa2r x [0, TH) belongs to
C°([0,Tp), LY(Q2r)? ), we may conclude that AWM 0 (e—0, t—ee(0,t)\Ty, ). More-
over, again using (5.1) and (5.2), we get | B (y,s,€)| < € max,e (o, 1}(52+3)_2_”/2 lu(y, t)]
for y € Uz, s € (0,00), € € [0, min{t, 6/(87)}]. The right-hand side of this estimate is
independent of € and constitutes an integrable function of (y, s) € U, X ( o0). Note that
u(t)|Q2r € L1(Q2r)%. We further remark that x(c o) (s $)P(y,s,€) = P (y,s,0) (e 0)
for s € (0,00), y € U,. Thus Lebesgue’s theorem and the definition of ng ) yield that
fUz I B3 (y,5,0)|dsdy < oo and AP fUz I B3 (y,s,0)ds dy (e >0, t—ce€
(0,£)\T7, ). This relation may be rewritten as

A — g [=VB(y) - ¥(y) uly, t) — By) Vi (y) - uly, t) | dy (5.3)

for € = 0, t —e € (0,¢)\T,, where B(y) := [;° 0x;9(x — y,s)ds for y € U,. But this
latter integral may be computed. It turns out to be equal to (0;M)(x —y). At this point,

we recall that 2 = fUz By, s, €) dsdy and A = A 1 AP for e € (0,t), t —e ¢ T,
We further recall that A — 0 (e > 0, t —e € (0,t)\Tp, ) as shown further above,

and that divyu(t) = 0 by our assumptions on ¢. Thus the theorem follows from (5.3) by
another application of the Divergence theorem. O

The boundary integrals appearing in the following lemma are not defined by some trace
theorem, but correspond to lower order integrals in Fubini’s theorem.

Lemma 5 2 Let m € N, p; € (1,00), v e LZOC(BROC) for 1 < j <m, and suppose that
fBR VO @)/ (1 + |z]) In(2 + |z])) | doy < o0 for such j. Let B € N3 with || < 1,
and take s € (0,00). Then there is a sequence (Ry,) in [Ro,00) such that R, — oo and
Zi,l:l Py faBRn \BgAkl(x —y,8) VU (y)|do, — 0 for n — oco.

Proof: Put VU)(y) == [VO(y)|/( (1 + ly]) 1n(2 + |y\)) for y € Br,", j € {1, ..., m}.
Suppose there is R € [Ro,00) with 3270, [;5 VY (y)P1 do, > 1/r for r € [R,00). Then
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ZT:l B° v(j)(y)pj dy = 370 LR faB y)Pi doy dr = oo. Since R > Ry, this is a

contradiction to the assumption [ B V(J)( )pJ dr < oo for 1 < j < m. Thus we may

choose a sequence (Ry,) in [Ry, c0) Wlth Ry, — oo and 3300 [op. VU (y)Pi do, < 1/R,
for n € N. On the other hand, for n € N with R,, > max{1, 2(|z| + s)} and for y € 0Bg,,,
with s € (0,00) fixed in the lemma, we get due to the first estimate in Corollary 3.3 that
0)A@ = yos)| < €la—y = Tser] P <€ (lyl = (lal +5) T < @y < @R
Thus for such n,

S5 [ 0t s VO )l do,
k,i=1j=1"9Bry,

3 m ’ l/p/ ~ .
<Y (oAt = p (5 ) Wt ) ) dy) " T DI0B,

k,1=1j=1 Bry,
< —2—1/p; 1/} 3/p;

<¢> Ry 1n(2+Rn)< doy) <€ZR In(2 + Ry).

= OBr, =

The lemma follows from this estimate. O

Now we are in a position to prove a first version of our representation formula. We note
that in the ensuing theorem, the Oseen system (1.1) is rewritten as equation (5.4), better
adapted than (1.1) to the type of solution we consider here.

Theorem 5.2 Let kg € N and o € (1,00) for 1 < k < ko. For such k, let u®) belong
to Wll([O,TO), LQ’V(QC)?’) and to C°([0,Tp), Lok (Q°)3 ). Put u = ko 1u(k), and let

loc
71 (0,Tp) — WEH Q) ng € N, pj € (1,00) and f9) e L ([0, To), LPJ( ) for1 <
Jj < ng. Suppose that the following additional properties are satisfied: u(s) € Wlicl(Q )3,

u'(s) — Agu(s) + 7 Oxqu(s) + Vum(s) = f(s), divyu(s) =0 (5.4)

for a. e. s €(0,Tp), with f:= 372 L fO) = k 0 (uy;
there is q1 € (1,00) such that Vyu(s)\BRO € L9 (Bg,")? for a. e. s € (0,Tp),
U‘QRO X (O,T@) S Llloc( [O,To) WQ’I(QRO)3), W‘QRO (0 T[)) c Lloc( [0 T()) Wl’l(QRO));

there are numbers mg € N, v; € (1,00) as well as functions 7\9) : (0,Tp) = L}, (Bg,*) for
1 < j <mg such that

n(s)| B, = Z / (79w [+ o) W@+ )] )" dy < o0 (5.5)

for for a. e. s € (0,Tp). Let Ty, C (0,Tp) be a zero-measure set such that u(t)|Qr €
WH(QR)? (R € [So,00)) and divyu(t) = 0 for t € (0,To)\Tq,. (Such a set exists due
to (5.4).) Lett € (0,To)\Zr,. Then there is a zero-measure set Ny C Q° such that for
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3
u(z,t) = RO (f)(x,t) + 3(7)(u(0) )(,t) — Z 81:1%(7)(%(0) u)(x,t) (5.6)
=1

3
+ 00 (o w+ 3 0 (~oyu+me) ) (@, t) - /m(vm)(x —y) ("D (y) - u(y, 1)) doy,

with M denoting the Newton kernel as introduced at the beginning of Section 3.

Proof: We modify the proof of [15, Theorem 4.2]. Let z € Q°. For a. e. s € (0,t)
the relations in (5.4) and (5.5) hold, and u(s), (u))(s) € L% (Q°)3 for 1 < j <
ko, V,u(s)|Br,” € L% (Bg,")?, as well as f9)(s) € LPi(Q°)3 for 1 < j < ng. Take such a
number s € (0,¢). Then we may choose a sequence (R,,) in [Rp, c0) as in Lemma 5.2 with
s replaced by t — s and V¥ (y) := [uF)(y,s)| for 1 < k < ko, VD (y) .= |0yu(y, s)|
for 1 <1 <3, Vkot3+3)(y) .= |7 (y,s)| for 1 < j < ng, y € Br, - By (5.4), we have
0= fQR Az —y,t —s)- (v — Ayu+ 70y1u + Vyr — f)(y,s)dy for n € N. Recalling
that n(® denotes the outward unit normal to 2, we get by an integration by parts that
0=2A(x,s) + Ao(z, ) + Z;:3 Ay, (n,z,s), with

Ay (z, s)

= - Az —y,t—s) <Z n (Oyruly,s) —m(y,s)er) — Tngﬂ) (y) - uly, 5)> doy,

/8 S 0w = 1.t — ) -1 ) uly ) doy

Q=

W, 2,5)i= = [ (=8, = 7O .t = 5) - uly.s)do
Ag(n, x, s) ::—/Q Az —y,t —s)- f(y,s)dy.

The terms 2As(n,x,s) and A4(n,z,s) are defined as A;(z,s) and Aa(z, s), respectively,
but with the domain of integration 02 replaced by 0Bp,, and the factor nl(m (y) by
—y;1/Ry,. The term A7(n,x, s) is defined as 2Ag(n, z s) but with —u/(y, s) in the place of
f(y,s). By Lemma 3.3, we have As(n, z,s) = fQ —y,t—s)-u(y,s)dy for n € N.
Moreover, recall that by Corollary 3.4 and because t — s > 0, the terms A(z — y,t — s)
and OsA(x —y,t — s) as functions of y € R? belong to LP(R3)3X3 for any p € (1,00). From
these observations we get that As(n,z,s) — As(x,s) = [qe OsA(x —y,t — 5) - u(y,s) dy
and Qlﬁ(n x,s) —> Ag(x,5) = — [qe Mz — y,t — 5) - f(y,s)dy, as well as A (n,z,s) —
Ao(z,s) = [qe Az —y,t —s) - u'(s)(y) dy, for n — co. Lemma 5.2 and the choice of the
sequence (R ) lead to the conclusion that A3 (n,z,s) + A4(n,z,s) — 0 for n — oo.

At this point we have shown that 0 = 2y (z,s) + Aa(z,s) + 210 A, (x,s). We inte-
grate the preceding equation with respect to s € (0,t — ¢€) for any € € (0,t), and
then let € tend to zero. First consider 2;(x,s) and As(x,s). Since u|Qg, x (0,Tp) €
L},.([0,T0), W*L(QR,)?) and 7|Qg, x (0,To) € L},.([0,Tp), WH'(Qpg,)), a standard

loc
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trace theorem yields that the functions Bfuj](?Q x (0,Tp) and 7|02 x (0,Tp) belong to
LL.(10,Ty), LY(99Q)) for 1 < j < 3, B € N3 with |[3] < 1. Thus we may conclude
with Lemma 3.9 that the integral fg_€ Zi:l 2, (x, s) ds converges against the sum of the
terms in (5.6) involving Q](T), but with inverse sign, when ¢ tends to zero. By apply-
ing Lemma 5.1 to u®) for 1 < k < kg and by taking the sum with respect to k, we
get f (ng x,s) + 9[10($ s))ds = Bi(e,x) + Ba(e, z) — 3(7)(u(0))(aj,t) for € € (0,1),
with %1 (,2) == [JgeH(x —y—Teer, €)u(y, t — e)dy and By(e,z) defined as the inte-
gral [qe M@ —y,€) - u(y, t — €) dy, with A from (3.3). Lemma 3.6 yields that Ba(e,x) =
Jo0 A(m—y—Teel, €) () (y)-uly, t—e)) doy for € € (0,t) with t — € € (0,¢)\Tr,, where
A was introduced in (3.4). For ¢ € (1, min{gx : 1 < k < ko}] and for R € [Sp, o), the
function u|Qp x [0,7p) belongs to CY([0,Tp), L4(Qx)* ). Thus by Theorem 5.1 and the
choice of t we get that Ba(e,z) = [,(VN)(z — y) (n(m (y) - u(y,t) ) doy for € — 0, with
the constraint t — e € (0,t)\T7,. Recall that = was taken arbitrarily in Q°.

Choose a sequence (€,,) in (0,t) with t — €, € (0,t)\Tq, for m € N and €, — 0. Then by

Theorem 3.3 there is a sequence (€),) of (e,,) and a set Ny; C Q° of measure zero such

that B (€, ) — u(z,t) (m — oo) for & € Q°\N;,;. Moreover Corollary 3.7 implies there
is a set Nyo C R? of measure zero with f(f | fge Az — y, t — 5) - f9)(y,s)dy|ds < oo for
z € R\ N;2, 1 < j < ng. Therefore fg_e/'” Ag(x,s)ds — —RT(f)(x,t) (m — o) for
T 6 R3\Nt2 At this point we may conclude that for z € ﬁc\(Nm U N¢2), the integral

T (Ag(z,s) + As(z,s) + Zlo A, (z,s)) ds converges to u(x,t) minus the right-hand
51de of (5.4) for m — oo. This proves Theorem 5.2. O

We may now derive a representation formula which does not contain a pressure term.
This formula generalizes [15, Theorem 4.3], where the Stokes system with homogeneous
Dirichlet boundary conditions was considered, under stronger assumptions on the data.
Recall that at the beginning of this section, we defined Ry := (Ry + Sp)/2.

Corollary 5.1 Consider the same situation as in Theorem 5.2. (This means in particular

that u|Qg, x [0,Tp) € C°([0,Tv), LY (Qr,)*).) Let t € (0,To)\Tr,. Then
3
uz,t) = RO(F) (@, 1) + 37 (uw(0) ) (@, 8) — Y 02,8 (Y w)(x, 1) (5.7)
=1

- /6 (M) =) (1V0) - 1)) doy + R 00970

t
- QSRO,S(),LPO (Q?, Y, t) ' ’U/(y, 0) dy - / QﬁRo,So,goo (l’, Y, t— 8) . f(y7 S) dy ds
QRl 0 QR1

for x € Br,"\Ny, with Ny introduced in Theorem 5.2, 8RRy 50.00.0.T (1) defined in (4.17)
and SRy So.00 N (3.13).

Proof: Put & := &g, 5,4, Let z € By \Nt and j € {1, 2, 3}. We transform the
term V(z,t) := %;T)(Tngg)u + Z;’:lnl(ﬂ) (=Oyu + mep) )(z,t). Put ¢ := min{gy, : 1 <
k < ko}. Obviously the function u|Qg, x (0,7p) belongs to VV1 1( [0,Tp), LY(Qp,)?) and

loc

to C°([0,Tp), LY(Qg,)*). By the properties of & listed in Lemma 3.11, by (5.4), the
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relations Q2 C Bg,, So < R1 < Rp and x € By , and by the Divergence theorem, we get

QRry =1

3 t
Viat) = 3%, with %= [ f S K s) ) dyds (1< <), (53)
p=1

where K]gl)(y, s5) = VyBj(z,y,t—s), w](cl)(y, s) := Vyug(y, s), and moreover KIEZ) (y,8) :=
0y1Gj(z,y,t — s), w,(f)(y,s) = —Tug(y, s), and in addition K,gg)(y, s) 1= K,g4)(y,s) =
Sp(z,y,t — s), wl(f)(y, s) = ui(s)(y), w,(f)(y,s) = —fr(y,s) for 1 < k < 3, y €
Qr,, s € (0,t). In A3, we perform an integration by parts with respect to the time
variable. To this end, recall that the function g(r) := &(z, )|QR1 (r € [o, oo)) belongs
to C*( [0, 00), Lq/(QRl)gw) (Lemma 3.12). Thus, by settlng F(r fQ (x,y,r
V(y)dy for V € LY(Qg, )3, r € [0,00), we obtain a mapping F € Cl([ 00), [Lq(QR )3 ),
with F'(r)(V) = fQRl 0r®(z,y,r) - V(y)dy for V, r as before, where 0,8 (z,y,r) is de-
fined in Lemma 3.12 (y € Qg,, r € [0,00)). Therefore, due to the regularity properties of
u|Qg, x (0,7Tp) stated above, Lemma 2.5 yields

3
k=1 /SR o

t
_/ / 88®]k(xay7t_ S) uk(yvs) dyd5>
0 JQgr,

The corollary follows with (5.8) and (4.17). O

As a last step in this section, we are going to show that equation (5.7) holds under
weaker regularity assumption on u near ¢ = 0. To this end, we establish the following
technical point.

Lemma 5.3 Let kg 6 N or € (1,00), u® € C°([0,Ty), Lo (Q°)3) for 1 < k < ko,
and put u = Zk Lu® In particular u|Qg, x [0,Ty) € C°([0,Ty), LI(Qp,)* ) for q €
(1,00) with ¢ < o for 1 < k < kg. Suppose in addition that u(s) € Wll( V3 for a.

loc
e. s € (0,Tp) and VyulQp, x (0,Tp) € Li,.([0,To), qu(QR) ) for some q1 € (1,00).
Furthermore let ng € N, p; € (1,00), ) e Lloc([O,Tg) LPi(Q ) for 1 <45 <mnyg, and

put fi=377% fO).
Choose functions (. for € € (0,00) as in the passage preceding Lemma 3.14, and put

ul(s) = C()u®(s), ue(s) == C(s)uls), fe(s) = Ce(s) f(s) and ge(s) = fe(s) +
CE( Ju(s) for s € (0,Tp), € € (0,00), 1 <k < ko.
Let t € (0, Tp) with u(t)|Qr, € WHH(Qg,)? and divy(u(t)|Qg,) = 0. Suppose there is some
€0 € (0,00) such that for e € (0, €], equation (5.7) holds with u, f replaced by u. and ge,
respectively, if x € BROC\Nt,E for some zero-measure subset Ny of BiROC (This means in
particular that the second from last term on the right-hand side of (5.7) vanishes.) Then

there is some zero-measure set Ny C BROC such that equation (5.7) remains valid for u
and f if x € Br, \IN;.

Proof: Put fe(j)(s) = ((s) fU(s) for s € (0,Tp), 1 < j < ng. We note that u. =
],20 lugk), = Z?il fe(j), (ge — fo)(s) = Cl(s)u(s) for s € (0,Tp), the functions ugk), Ue
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and fE(j ) have the same regularity properties as u®) 4 and f @), respectively, for 1 < k <
ko, 1 < j < ng, € € (0,00).

Put ¢ := min({or : 1 < k < ko} U {q1}). Obviously the functions u|Qg, x (0,7p) and
dzyu|Qp, x (0,Tp) belong to L}, .([0,Tp), L9(Qg,)*) (1 < k < 3). For 8 € N} with 3] <
L, €€ (0,00) and a. e. 5 € (0,T0), 05 (ue = u)(8)|Qmillg = (1= Ce(s)) 05u(s)| 2, llg <
1, u(s)|2, llg, and similarty [|(f7 = FD)(s)]lp, < 1FD()lly, (1 < j < mo). Hence by
Lebesgue’s theorem,

10, (e = )RR, X (0,8)[lg1:6 = 0 and [ (f9 = fO)[Q° % (0,8) ;16 = 0 (€ L 0) (5.9)
for 1 < j < ng and for 8 as before. By the choice of (,
|(we — u)(t)|QR, || = 0 for e € (0, t/2]. (5.10)

Let * € Bf,, Put & = &R, 5,4, (see (3.13)). Theorem 4.2 and (5.9) imply that
Jo Jap, 0570y ®(@,y,t — 5) - (0f'ue — 8f'u)(y. 5) dyds — 0 (e L 0) for p, o € {0, 1}, 1 €

{1, 2, 3}, and fg fQR &(z,y,t —s) - (fe(j) — fO)(y,s)dyds — 0 (e L 0) for 1 < j < ny.
1
Obviously by (5.10) o &(z,9,0) - (ue —u)(y,t)dy = 0 for € € (0, ¢/2].
1

The preceding observations and (5.10) mean that |Rgr, s 0,070 (e — u)(z,t)] — 0 for
€ } 0. Moreover, by Lemma 4.3, the term 2 := |Z?:1 &’UZQJ(T)(nl(Q) (ue — u))(z,t)] is
bounded by € ([lue — u|Qgr, % (0,t)lg1:¢ + [|Vy(ue — u)|[Qr, x (0,t)]q,15) for € € (0, 00).
Thus A — 0 for € | 0 by (5.9). Since = € B, € C Bs, and by the choice of ¢, Lemma
4.4 yields that € := | [,6(V)(z —y) (0D () (ue—u)(y,t) ) doy| < €||(ue—u)(t)| 2R, |4,
so & — 0 (e ] 0) by (5.10). Next we apply Lemma 3.14 with u|Qg, x [0,7p) in the role
of v. We obtain that fg fQRl &(x,y,t —s)-C(s)uc(y,s)dyds — fQRl &(x,y,t)-u(y,0)dy
for € | 0. Moreover, using Lemma 3.15 with ¢, u replaced by o and u(®), respectively,
we get RO (B (@,8) = 30 (u®)(0))(2,t) (e L 0) for 1 < k < ko, where ™ (s) =
¢!(s)u®(s) for s € [0,Ty), € > 0. Therefore R (he)(x,t) — J(T)(U(O)) (e 1 0), with
he(s) := C/(s) u(s) for s, € as before.

Up to this point, the vector x was arbitrary but fixed in B, - We still have to consider

R (f.). The second relation in (5.9) and Corollary 3.7 yield that [|91(7) (fe(j) —fO)(t) lp; —
0 (e ) 0) for 1 < j < ng. This implies there is a sequence (¢,) in (0,00) with €, — 0 and
RO (f. — f)(z,t) = 0 (n — o0) for a. e. z € R3. The preceding convergence results taken
together yield Lemma 5.3. U

Now we are able to establish (5.7) for solutions of the Oseen system that are less regular
near t = 0 than those considered in Corollary 5.1, except that we additionally suppose
that Vyu\QRO X (O,T[)) el ([0, T()), La (QRO)Q )

loc
Corollary 5.2 Let kg € N, op € (1,00), and let u®) belong to C°([0,Tp), Lo (2°)?)
and to Wfllo’cl(O,To, Le(Q3), for 1 < k < ko. Put u = 21120:1 u®). Note that u|Qr, x
[0,Tp) € C°([0,Tp), LI(QR,)?) for ¢ € (1, min{g; : 1 < k < ko}]. Let 7 : (0,Tp) —
Wflicl(ﬁc), no € N, p; € (1,00), f(j) € L}OC(O,TO, Lpf(ﬁc)?’) for 1 < j < ng. Suppose
that u(s) € W2HQY)? and (5.4) holds for a. e. s € (0,Tp), with f = >0 fO, W =

loc
20:1 (u(k) ).
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In addition suppose there is q1 € (1,00) such that V,u(s)|Br, € L% (Bg,")? for a. e.
s € (0,Tp) and Vyu|Qp, x (0,Ty) € L}, ([0, Tp), L (Qp,)? ). Further assume that u|Qp, x
(0,Tp) € LZOC(O,TO, W21(Qg,)? ), 7|Qr, % (0,Tp) € LZOC(O,TO, wh 1(930)), and there are
numbers mo € N, v; € (1,00) as well as functions 7U) : (0, Tp) — L}, (Br, ) for 1 <j <
mo such that (5.5) is valid for a. e. s € (0,Ty). Choose a set T, as in Theorem 5.2, that
is, Ty, is a zero-measure subset of (0,Tp) such that u(t)|Qr € WH(QR)? (R € [Sp, 00))
and divyu(t) =0 fort € (0,79)\%Tr,.

Let t € (0,Ty)\Tr,. Then there is a zero-measure set Ny C Br,  such that (5.7) holds for
x € Br,"\V;.

Proof: For ¢ € (0,00), choose (. as in the passage preceding Lemma 3.14, and de-
fine ugk), ue and f ' (1 <k < k:o, 1 < j < ng) as in Lemma 5.3. Further put
me(8) = Ce(s) 7(s), 7 (s) = Ce( )wU)(s) for s € (0,Tp), 1 < j < mg. Since all func-
tions with index € vanish on (0, €), all assumptions in Theorem 5.2 except the system in
(5.4) (momentum equation) are fulfilled if the functions in that theorem are replaced by
the corresponding functions with the index e, for arbitrary but fixed ¢ € (0,00). In
order to state the variant of (5.4) which is valid for the functions with index €, put
Protk = 0k, [OTF(s) == ¢(s)uP(s) for s € (0,Tp), € € (0,00), 1 < k < ko. Then
9 e LL_([0,Tp), L7 (Q9)3) for € > 0, 1 < j < ko + no, and the system in (5.4) is
valid with u, 7, f replaced by u., 7 and Z”°+k° fe(j ), respectively. At this point we may

apply Corollary 5.1, obtaining that for e > 0, there is a zero-measure set N.; C B ROC such
that equation (5.7) holds for 2 € Bg,"\N.; with the same replacements for u and f. As

in Lemma 5.3, deﬁne ge(s) =372 fe(j)(s) + ¢l(s)u(s) (s € (0,Tp), € > 0). Obviously
ge = Z"ﬁko f6 (e € (0,00) ), so we now get that equation (5.7) is verified with u, and
ge in the role of u and f, respectively, for = € BROC\Ne,t. In view of the assumption

Vyu|Qp, x (0,Ty) € Li,.([0,Tp), L (QR,)? ), we see that all the conditions in Lemma 5.3
are fulfilled. Therefore this lemma yields the claim of Corollary 5.2. U

6 Decay estimates of solutions to (1.1).

By combining the representation formula (5.7) with the estimates in Section 4, we may
now derive our result on the decay behaviour of solutions to (1.1). The term 1/(20;) (1 <
j < 3) in the exponent of the decay factor |z|v(z) in (6.11) below constitutes a link
between LP-integrability in time of v and pointwise spatial decay of u. This is the link
mentioned in the title of this work and in Section 1.

Theorem 6.1 Consider the situation in Corollary 5.2. Choose some number q € (1,00)
with ¢ < min{gg : 1 < k < ko}, and put Zg, 7, := Qr, % (0,Tp). Suppose in addition
that u|Zg, 1, € L*°(0, Ty, LY(Qg,)?), and that there are numbers o1, o2, 03 € [1, 00] with
ulZp, 1, € L7(0,Ty, LY(QR,)?), VaoulZp,m € L72(0,Ty, LYQR,)?) and f|Zg, 1, €
LUS(O,T(), Lq(QR1)3)_ Put

S(u, f) = HU‘ZRLTOH‘LO'UTU + Hu’ZRl,ToH%OO%To + Hvu‘ZRhToHQJQ;To + Hf’ZRhTo q,03;10+
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Then there is a zero-measure subset S, of (0,Ty) such that
[0 — o2k (1) = 0297 (u(0)) ] (. 1) (6.11)
< Q:S(u, f) [( |1," I/(x) )—(3+\a|)/2+1/(2 min{o},05,05}) + |m|—'y—\a|]

fort € (0,To)\&1,, = € Br, \N; with some zero-measure set Ny C Bg,*, and for a € N}
with | < 1, where v = 3 if [y, u(t) - n do, =0 fort e (0,Tp), and v = 2 else.

In particular, if v = 3, the following inequality holds for t, x, a as before:
|[05u—ogmD(f) — 3397 (u(0) ) ] (2. 1)] (6.12)
< ¢ (u, f) ( | v(z) )—(3+\0¢|)/2+1/(2 min{oiﬂévaé}).

Proof: We have u|Zg, 1, € C°([0,Tp), LY(Qr,)?), so [[u(t)|Qr, |lg < 1wl Zr, 1, |lg,005m, for
any t € [0,7p), without any exceptional values of ¢t. Therefore inequality (6.11) follows
from (5.7) on the one hand (see Corollary 5.2), and Theorem 4.2, Corollary 4.2, 4.3,
Lemma 4.3 and 4.4 on the other. If v = 3, the term |z|=7~l%l in (6.11) is bounded
by €(|x|y($))_(3+|a‘)/2 because |x| > C(R)v(x) for x € Bj, R € (0,00). Therefore,
in the case v = 3, inequality (6.12) is an immediate consequence of (6.11). Note that
RO (f)(t) € WI(R3)? only for a. e. t € (0,00) (Lemma 3.8), so the set &7, may be
larger than the set T, in Corollary 5.2. O

A remark is perhaps in order with respect to the terms 929%™ (f) and 37 (u(0)) on the
left-hand side of (6.11). In [13, Theorem 3.1], the assumptions on f are chosen in such a
way that the term [0%9R()(f)(x,t)| is bounded by € (|z|v(z) )_(2+|a‘)/2 for x € B}, t €
(0,7p), o € N3 with |a| < 1, where R is some suitably large positive real. If f is given as
in Lemma 4.2, we even obtain the upper bound € ( |z|v(x) )7(3+|a‘)/2, which corresponds
to the strongest possible decay in the sense that the quantity |0SA(z,t)| decreases in just
this way (Corollary 3.3). In other words: The decay of [9%R(7)(f)(z,t)| in Lemma 4.2 is
the same as that of the fundamental solution A of (1.1). In any case the asymptotics of
%(7)( f) are a direct and exclusive consequence of the assumptions on f. The situation
is similar with respect to the function J(7) ( u(0) ), whose behaviour is determined by the
initial data u(0). We refer to [12, Theorem 1.1}, where the conditions on u(0) lead to the
upper bound € (|z|v(z) )_(2+|a|)/2 for x, t, a as before, and to Lemma 4.1, where u(0)
is supposed to be integrable and have compact support. In that latter case we get the
optimal decay bound € ( |z|v(z) )_(3+|a‘)/ ?. These features of the asymptotic behaviour
of R (f) and 37 (u(0)) explain why inequality (6.11) implies (1.3) under suitable decay
properties of f and u(0).

We further indicate that the sum 829R()(f) + 3(7)(u(0)) constitutes a solution to (1.1)
in the whole space R? (Q = (), with initial data u(0) if u(0) is solenoidal ([10, Theorem
2.16], Lemma 3.7, Theorem 3.3, (3.3), Corollary 3.5). So left-hand side of inequality (6.11)
can be interpreted as the perturbation generated in the fluid by the presence of the rigid
body. But it is precisely this perturbation which is of interest. So inequality (6.11) may
be seen as a decay estimate of that part of the flow which is relevant here.

We finally present two existence results for solutions to (1.1) which satisfy the assumptions
of the preceding theorem. The first — Theorem 6.2 below — deals with L?-strong solutions,
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of a type familiar in the context of the Stokes system. Theorem 6.1 may be applied
to these solutions with 0; = 092 = 2 and v = 3. The choice v = 3 is possible because
homogeneous Dirichlet boundary conditions are imposed in Theorem 6.2. Inequality (6.12)

then yields that its left-hand side is bounded by € ( || v(z) )75/47‘04/2. We indicate that
the velocity part of solutions to (1.1) constructed in [10] and [13] belongs to the uniqueness
class L?([0,00), WH2(Q%)%) ([13, Corollary 2.28]). Thus, if both Theorem 6.2 and the
theory in [10] and [13] yield existence of a solution to the initial-boundary value problem
considered in Theorem 6.2, these two solutions coincide, so we may compare the decay
rate provided by (6.12) with the one exhibited in [10] and [13]. In these latter references,
we only obtained the rate —1 —|a|/2 ([13, Theorem 2.26, Lemma 3.2]]), vs. —5/4—|«|/2 in
(6.12), as mentioned above. But this comparison is not fully satisfying because it requires
additional assumptions on the data, in the context of both Theorem 6.2 and [10] and [13].
In fact, the conditions on Uy in [10] and [13] are weaker than those in Theorem 6.2, and
those on f are different. Also, nonhomogeneous Dirichlet boundary data are admitted in
[10] and [13]. However, reference [17] generalizes the theory presented here, fully covering
the framework in [10] and [13]. In particular, for the situation considered in these latter
articles, we again obtain the decay rate —5/4 — |a|/2 ([17, Theorem 6.1, 6.2]).

Theorem 6.2 Suppose that Q is C?-bounded. Let f € LQ(O,OO, LZ(QC)S) and Uy €
Wol’Q(ﬁC)?’ with divUy = 0. Then there is a uniquely determined pair of functions (u, )
with the properties to follow:

The function u is in C°( [0, 00), LQ(ﬁc)?’), L?*(0, 00, LG(QC)S) and L (0, 00, LQ(QC)3),
as well as in VVllo’CQ( [0, 00), LQ(QC)?’) and L} ([0,00), W22(Q%)? ). Moreover dzyu and
Opu belong to L2(0,OO, L2(ﬁc)3) for1 <k <3, and 7 to L2(0, 00, L5(Q) ), with 7(t) €
I/Vllo’f(ﬁc) fort € (0,00) and V,m € L*( 0,00, L*(2)?).

In addition the pair (u, ) solves (5.4) as well as the equations u(0) = Uy and u(t)|02 =0
for t € (0,00). This pair of functions satisfies the assumptions of Corollary 5.2 and
Theorem 6.1 with ng = kg =mg =1, 71 =6, ) = W‘Bipboc and with o1, p1, q1, q, and o;
for j € {1, 2, 3} all being equal to 2.

Proof: By the same arguments as in the case of the Stokes system, it may be shown there
is an L%-weak solution of (1.1) characterized by the relations u € L> (0,00, L2(56)3)
and Vyu € L*(0, 00, L2(Q5)? ); compare [13, Theorem 2.12] for existence (with a precise
statement on a weak form of (1.1)), and [11, Theorem 3.7] for uniqueness. The arguments
used in the Stokes case may be found in [44, p. 171-176 and p.180]. The equation
fﬁc NV -Vdr=0forV e I/VO1 ’2(56)3 is the reason why the Oseen term does not generate
a major problem. In a second step, we consider this function u as the velocity part of a
weak solution to the time-dependent Stokes system with right-hand side f — 7 dxju. By
existence and uniqueness results for this latter system, as presented in [40, Section IV.2],
we obtain what is claimed in the theorem. More details and more precise references may
be found in [15, Theorem 3.2 and 3.3] and their proof. O

The solutions of (1.1) considered in the next theorem are not in general covered by the the-

ory in [10] or [13], whereas Theorem 6.1 yields the upper bound (|z|v(z) )_(3+‘a|)/2+1/(2 7)

for the left-hand side of (6.11).
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Theorem 6.3 Suppose that 0 is C?-bounded and Ty < oo, and let ¢ € (1,00). Put
Zr, = Q° x (0,Tp), and let Wy, denote the space of all function u € LI(Zr,)® such that
the weak derivativs Oyu, Oxpu and Oxpxiu exist for 1 < k.1 < 3 and belong to Lq(ZTO)3.
Let || lq,zr, denote the corresponding norm of Wy, . Let J§_2/q(ﬁc) stand for the closure
of C(‘ioa(ﬁc) with respect to the norm || || defined by

U := inf{||ullgn, : v € Wy, u(t)|02=0 fort e (0,Tp), u(0) =U}

for U € C5%.(2°) ([42, p. 487]).

Take f € L9(Zr1,)% and Uy € J3_2/q(§c). Then there is a uniquely determined pair
of functions (u,m) with w € Wy, and 7 : (0,Tp) — Wli’cq(ﬁc) such that V,m belongs to
LY(Z1,)3, equation (1.1) holds, and the initial condition u(0) = Uy as well as the boundary
conditions u(t)|0Q = 0 for t € (0,Ty) are fulfilled. These functions u and m satisfy the
assumptions of Corollary 5.2 and Theorem 6.1 with ng = ko = mg = 1, 71 = W]BiROC

and with o1, p1, q1, 71, ¢, and o; for j € {1, 2} all being equal to q.

Proof: The results in [42, Theorem 4.2 and p. 513-515] yield all the claims of the
theorem except those stated in the last sentence, pertaining to the assumptions of Corol-
lary 5.2 and Theorem 6.1. But these latter claims are an easy conclusion of the part of
the theorem taken from [42]. To see this, we make the usual identification of LI(Zr,)3
and Lq(O,TO, Lq(ﬁc)‘g); see Lemma 2.3 and [11, Lemma 2.1] in this respect. Since
u and Oyu belong to LY(Zry,)?, we get by Theorem 2.5 that for ¢ € C§°((0,7p)) and
Y € C°(Q°)3, the integrals [qe¢(z)[B — f(;fo ¢ (t)u(t)dt | (z) dz and — [qe(z)[B —
OTO ©(t) dyu(t) dt | (z) dx coincide, where we used the abbreviation B := LI(Q°)3. Thus u €
wha(0,Tp, L Q%3 ), and the derivative of u as a function from (0, Tp) into LI(Q°)3 coin-
cides with the derivative 0yu of u as a function from W, 7, . It follows with [44, Lemma 3.1.1]
that u belongs to C°([0,Tp], LI(2°)?). Due to the relation V,m € L(0,Tp, LI(Q°)?),
and by a transition from 7(t) to 7(t) — |Qg,| ™ fQRo 7(x,t) dz, it may be supposed with-
out loss of generality that 7|Qg, x (0,Tp) belongs to L9(0,Ty, LI(Qg,)). Also since
Ve € L(0,Ty, Lq(ﬁc)?’), we obtain by [27, Theorem II.6.1] that (5.5) holds with
mog =1, 11 = q, ) = 7T|BiROC. Concerning the preceding reference to [27], we note
that in the case ¢ > 3, if zg € Q, a € (0,00) with B,(z9) C , and if Ry is suffi-
ciently large with respect to |zo| and 1/a, it may be achieved that (1 + |z|) In(2 + |z|) >
(|lz = mo| In(Jz — z0l/a) ) /2 > |& — z0|/2 for z € By, . O
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