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A NOTE ON LIMIT LAWS FOR MINIMAL CANTOR SYSTEMS WITH
INFINITE PERIODIC SPECTRUM

FABIEN DURAND AND ALEJANDRO MAASS

ABSTRACT. Recently in [L] the author proves that any distribution function can be obtained
as a limit law of return time for any ergodic aperiodic system. In this note we provide
an alternative construction, based on Bratteli-Vershik representations of systems, which
works for any minimal Cantor system having an infinite periodic spectrum. In particular, it
provides a very simple construction for odometers.

1. PRELIMINARIES

The study of limit laws of entrance and return times for different dynamical systems has been
undertaken in several works in the last decade, see for example [C], [HSV] and the references
therein. In most of these works exponential limit laws or piecewise linear functions are obtained.
Recently Y. Lacroix in [L] proved that for any ergodic aperiodic system, every distribution
function is a limit law of return times. The purpose of this paper is to show the same kind of
results but based on the representation of Cantor minimal systems by Bratteli-Vershik systems
following the same lines as [DM]. We would like to understand how “natural” limit laws depend
on the particular representation of the system. For minimal Cantor systems with an infinite
periodic spectrum we obtain arbitrary limit laws of return time. Our proof is based on a simple
and explicit representation of the system from which we can see limit laws. In some cases it is
very simple and explicit like odometers.

We recall (X,T) is a Cantor dynamical system if X is a Cantor set, that is, it has a countable
basis of open and closed sets (clopen sets) and no isolated points, and T : X — X is an
homeomorphism.

The representation of Cantor minimal systems by means of ordered Bratteli diagrams has
been introduced in [HPS]. It is a very nice way to describe sequences of nested Kakutani-
Rokhlin partitions which provides a very efficient study of return time in terms of matrices
and combinatorics of graphs. A Bratteli diagram is an infinite graph (V, E) which consists of
a vertex set V' and an edge set E, both of which are divided into levels V = Vo U V; U -,
E =FE; UEyU--- and all levels are pairwise disjoint. The set Vj is a singleton {vp}, and for
k > 1, Ey is the set of edges joining vertices in Vj_1 to vertices in Vj. It is also required that
every vertex in Vj is the “end-point” of some edge in Ej for £ > 1, and an “initial-point” of
some edge in Ejqq for £k > 0. By level £ we will mean the subgraph consisting of the vertices
in Vi, U Vi1 and the edges Ep11 between these vertices. For every e € Fy, s(e) € Vip—1 and

t(e) € Vi are the starting and terminal vertices of e respectively.
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An ordered Bratteli diagram B = (V, E, <) is a Bratteli diagram (V, E) together with a partial
ordering < on E. Edges e and ¢’ are comparable if and only if they have the same end-point.
We call succ(e) the successor of e with respect to this partial order when e is not a maximal
edge.

Let ¥ < I in N\ {0} and let E(k,l) be the set of all paths in the graph joining vertices
of Vi—1 with vertices of V;. The partial ordering of E induces another in E(k,[l) given by
(eks---,e1) = (fr,---, fi) if and only if there is k < i <1 such that e; = f; for i < j <[ and
e; < f; (this is the lexicographical order).

Given a strictly increasing sequence of integers (mn)n20 with mg = 0 we define the contraction

of B = (V, E, %) (with respect to (mn),,) as

(Ve )z (B 4+ 1,m041))305 <)

where < is the order induced in each set of edges E(m,, + 1, m,1). The inverse operation of
contracting is microscoping (see [HPS]).

Given an ordered Bratteli diagram B = (V, E, <) we define Xp as the set of infinite paths
(e1,€2,--+) starting in vy such that for all i > 1 the end-point of e; € E; is the initial-
point of e;y1 € E;1. We topologize Xp by postulating a basis of open sets, namely the
family of cylinder sets [e1,ea,...,ex] = {(f1,f2,...) € X : fi=e;, for 1 <i<k}. Each
[e1,ea,...,ex] is also closed, as is easily seen, and so we observe that Xp is a compact, totally
disconnected metrizable space.

When there is a unique © = (x1,x2,...) € Xp such that z; is maximal for any i > 1 and
a unique y = (y1,y2,...) € Xp such that y; is minimal for any ¢ > 1, we say that B =
(V,E, <) is a properly ordered Bratteli diagram. Call these particular points zmax and i,
respectively. In this case we can define a dynamic Vg over Xp called Vershik map. The
map Vg is defined as follows: let (ej,ea,...) € Xp \ {Tmax} and let k& > 1 be the smallest
integer so that ey is not a maximal edge. Let f be the successor of e and (fi,..., fk—1)
be the unique minimal path in F; ;_; connecting vy with the initial point of f;. We set
Ve () = (fi,.-, fi—1, fx, €x+1,...) and VB (max) = Zpjy- The dynamical system (Xg,Vp)
is called Bratteli-Vershik system generated by B = (V, E, <). The dynamical system induced
by any contraction of B is topologically conjugate to (X, Vg). In [HPS] it is proved that any
minimal Cantor system (X, T) is topologically conjugate to a Bratteli-Vershik system (X g, Vg).
We say that (Xp,Vpg) is a Bratteli-Vershik representation of (X, T).

Let (pr : k € N) be a sequence of positive integers. The inverse limit of the sequence of groups
(Z/p1---prZ : k € N) endowed with the addition of 1 is called odometer with base (py : k € N).
These systems are minimal and uniquely ergodic. We say it is of constant base if the sequence
(pr : k € N) is ultimately constant. The classical representation by Bratteli-Vershik systems
is given in left part of figure 2.

In this paper we will consider the following conditions over the order of a Bratteli—Vershik

system which will be appropriate for our purpose,
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FIGURE 1. a> 1, t1, ..., t > 2, ag, ..., > 1.

(H1) for every vertex i € V; there is a unique edge from vy to ;
(H2) Vn e N\ {0}, Vi € V,, = {1, ...,|Vy|}, e=min{f € E, : t(f) =i} = s(e) = 1.

Given a Bratteli—-Vershik system, there is a always a sequence of contactions such that the
resulting (conjugate system) verifies these conditions. So we will always assume that these
conditions are verified.

For a topological Cantor dynamical system (X,T) the periodic spectrum of T is the set of
integers p for which there is a clopen set A C X such that X = Uf;olTiA and the sets

TiA,i € {0,..,p— 1} are pairwise disjoints.

2. REsSULTS

Given a Cantor minimal system (X,T'), u a T-invariant probability measure and U a clopen
(closed and open) subset of X, we define for t > 0, Gy (t) = u({z € U : u(U)my(z) < t})/u(U),
where 7 (z) = inf{t > 0 : T'(z) € U}. Since the system is minimal and U is clopen there
exists a finite number of return times to U, f1, ..., t, and

k ~
pUn{ry =t})
Gu(t) =) W0 Lispwisy-
i=1

In the figure, the numbers inside squares mean the number of paths joining the corresponding

vertices. The following lemma shows our fundamental construction.

Lemma 2.1. Let (Xp, Vi) be a Bratteli- Vershik system where the diagram is given by figure
1 and the order satisfies conditions (H1-H2), and let p be a Vp-invariant probability measure
on Xp. Consider G : [0,4+00) — [0,1] the function defined by G(t) = Zle Bilgr>a,y, where
(1) Bi,.s B € QN[0,1] and 5, B = 1,
(2) dy < ... <dyin QF and X difi =1,
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(3) forie{l,...k—1}
i d; a B
tiv1  dit1 iy Bina
If U is any cylinder set from vg to vy, or from vg to va, then Gy = G.

(1)

Proof. In this proof we use the notation in figure 1. Let U be a cylinder set from vy to vy,
the other case is analogous. Notice the return times to U are #; = a t; for i € {1,...,k}. Since
Gu(t) = (1/u(U)) Zle w(U N {rg = t;}) Lit>u(uyisy then it is enough to show d; = p(U) - t;
and B; = (U N {ry = ;})/u(U) for i € {1,...,k}.

We recall that, being p Vp-invariant, the measure of any cylinder set generated by a path
starting in vy only depends on the last vertex of such a path. The number of paths from v; to

uy1 and from vy to us coincides, then

1
Vi + v = 7andu

aZ —1 jt;

where v; is the measure of any path from vy to u;, 7 =1,2.

k
Z] 195
aZ —1 4t

l/1+1/2 =

HM@-

The points z € U such that 7¢7(z) = #; are those passing by vertex w; and u; or us, therefore,
w(U N A{ry =1;}) _ (v1 + )y _
n(U) n(U) Sk

J

On the other hand

d d B B d; a; t;
SR 3L WL V) SUPD o C TEL T NE
=t =1 i i i

2

i € {1,....,k}. Hence u(U N {ry = #;})/u(U) = B; and ,u(U)t,» = d;. This proves the lemma. O

Let F be the set of non-decreasing, right continuous functions G : [0,4+00) — [0, 1] such that
f0+°°(1 — G(x))dx = 1. Let D C F be any dense set (for pointwise convergence) of simple
functions with rational coefficients G : [0,+0c0) — [0,1] such that G(t) = Zle Bilie>a;ys
where dy < ... < dy, Zle B; =1 and Zle d;8; = 1. For instance, we can consider D = D(p)
to be the set of functions such that 8y, ..., 8 are in Q*(p) = {pim :keNm eN}, p>2. For
each G € D, G(t) = Zf 1 le{t>d.}, we choose ay,...,ar € N\ {0}, t1,...,tx € N\ {0,1} such

;B di
that a1 Bit1’ diy1 t+

., k}. It is straightforward that this election can be
done. Now we associate to G the block Bg of figure 1.

Since D is countable, we can write D = {G, : n € N}. We denote by B(D) = (V, E, =) the
ordered Bratteli diagram constructed as the concatenation of the blocks B, = Bg, (defined as
Bg but with the parameters of G,,), where the order verifies conditions (H1-H2). Let us notice
that the system (Xp(p), Vp(p)) is uniquely ergodic.

Corollary 2.2. If D = D(Q*%(p)), then B(D) can be chosen to be an odometer in base p.

Proof. We only need to prove that for each block B; associated to GG; € D we can choose

parameters (a;)%_, and (t;)%_, satisfying conditions (1) for G; and such that ¢; = Zk 1 ajt;

J Jj=

is a power of p.
Since G; = Zle 1%1“23],/1)"}, where f;,d; € N, then if we take a; = p'f3; and t; = pld; for

some | € N we conclude from equalities (2) that ¢; is a power of p. Moreover, B is an odometer
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CONTRACTION

CONTRACTION

FIGURE 2.

in base p. This fact can be obtained by the contraction of Bratteli diagrams shown in figure 2,

where Ez = Zle Q. O

Let (U, : n € N) be any decreasing family of cylinder sets in Xp(p) such that Gy, = G, given
inductively by Lemma 2.1. Let x be the intersection point. We notice tha it can be chosen to

be Tmin.

Remark 2.3. Since D is dense, given G € F there exist (Gp, : i € N) in D converging to
G pointwise, and then uniformly on each closed interval where G is continuous. We conclude
lim; o0 Gp, =limi00 Gu,,, = G uniformly.

The order used in the construction of block Bg in figure 1 has not played any role up to now.
In fact, it only satisfies the general conditions (H1-H2). When the order is chosen to be from
left to right we obtain an odometer, where the base (g;)ien is given by ¢; = Zf(:)l ay) t;i) such
that the agi),t;i),k(i) are taken from Bg,. Other orders could provide a Toeplitz subshift if
Vp(p) is expansive since B(D) is of Toeplitz type as can be seen from the characterization in
[G]].

Theorem 2.4. Let (X, T, u) be a minimal Cantor system with infinite periodic spectrum and
x € X. Then there exist a decreasing sequence of clopen sets (U; : i € N) in X containing z,
such that u(N;enU;) = 0, and for every G € F there is a subsequence (V; :i € N) C (U; :i € N)
for which Gy, — G pointwise (and uniformly on each closed interval of continuity of G) as

i—o00. If (X,T,p) is an odometer then x = N;enU;.

Proof. From the condition on the periodic spectrum, we deduce that (X,T) has an odometer
(Y,S) as a factor, which base can be assumed to be (p )pg )pl(.S) : i € N), pgl)pgz)pES) <
pgflpgﬁlpgﬁl fori € N, and pl. goes to infinity with ¢ for each, j = 1,2, 3. First we construct
a Bratteli-Vershik representation of this odometer. Let R be the set of simple functions with

rational coefficients in F. Define

k A
Bi P
Z ( {tzéj/pgz)} € F:ik,Bj,dj €N
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Standard approximation arguments show that DR is dense in R with respect to pointwise

convergence. For each G € R choose a sequence (Gi(G) : k € N) C DR converging to

(0 @ )

G. To each Gi(G) we associate in the natural way a triple (p;”’,p;” . p; Then we have

produced a set D = {Gi(G) : k € NG € R} which is dense in F with respect to pointwise

convergence. Furthermore, we can assume that each element of D is associated to a different

triple (pl(.l),pl@),pl@)) for some i € N, and that all triples are used. Let GG; be the element of

D associated to this triple. If G; = Zle % then we construct the block B¢, by
p;

setting o; = f; and t; = pr)dj for each j € {1,...,k}. Therefore, Zle ajt; = pgl)pgmpgg).

Loisd; iy

This fact proves, that the Bratteli-Vershik system obtained from D using the blocks Bg;,
(XB(p), VB(D)), is topologically conjugated to the odometer (Y, S).

Let (U; : i € N) be the decreasing sequence of cylinder sets containing . We conclude, using
Remark 2.3 and Lemma 2.1, that for every G € F there is a decreasing sequence of cylinder
sets (V; :4 € N) C (U; : 7 € N) in Y such that Gy, converges to G pointwise as i — oc. To
finish we take the preimage of the sequence (V; : i € N) with respect to the factor map. It is

clear that return laws coincide. O

3. CONCLUSIONS

The result presented in this paper and the article [L] shows that a work must done to enlight
the notion of characteristic sequence of decreasing sequences of sets to be considered in order
to obtain the good limit laws for the system. Most of the time sets are chosen to be balls in the
respective metric. A natural question is how the limit laws depend or not of the representation
of the system.
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