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ABSTRACT: Pyrite (FeS2) from coal, sedimentary rocks, and hydrothermal ore deposits generally 

contains hazardous selenium (Se) and arsenic (As) that are released in natural waters through oxidative 

dissolution of the host. Knowing how As and Se are structurally incorporated into pyrite has important 

implication in controlling or preventing their release because trace metal(loid) substitution accelerates 

the dissolution of pyrite. Previous extended X-ray absorption fine structure (EXAFS) studies have 

reported that nominally monovalent arsenic clusters at the sulfur site forming As-As pairs at 3.2 Å, 

whereas monovalent Se does not form Se-Se pairs at this distance for unknown reason. Here, we revisit 

this question using As and Se K-edge X-ray absorption near-edge structure (XANES) and EXAFS 

spectroscopy complemented with atomistic calculations. We find that neither As nor Se atoms can be 

differentiated from S atom at 3.2-3.3 Å, the cluster and dilute model-fits to As- and Se-EXAFS data 

yielding equivalent least-squares solutions. Thermodynamic calculations of Fe48As3S93 (3.8 wt.% As) 

and Fe48Se3S93 (4.0 wt.% Se) structures show that the formation of As-As pairs is energetically 

favorable and the formation of Se-Se pairs unfavorable. Thus, the equilibrium distribution of As and 

Se predicted by calculation agrees with published EXAFS data. However, this agreement is incidental 

because EXAFS fits are ambiguous, the same EXAFS spectra being fit indifferently with a cluster and 
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a dilute model. Regarding Se, the dilute model-fit is probably correct since Se-Se pairs are precluded 

thermodynamically. The situation is less clear for As. The lowest energy atomic arrangement of As in 

Fe48S93As3 is similar to the local structure of As in arsenopyrite (FeAsS), thus supporting the cluster 

model. However, the energy gain to total energy provided by the formation of As clusters decreases 

with decreasing As concentration, making them thermodynamically less favorable below 1.0 wt.%.  

 

INTRODUCTION 

Arsenic and selenium often substitute for sulfur in pyrite (FeS2). Arsenic commonly amounts to 

several thousand mg/kg FeS2 (ppm) in sedimentary pyrite,1-7 and can reach up to 10-20 weight-percent 

(wt.%) in gold deposits.8-10 The As-Au association has been described in hydrothermal, epithermal, 

porphyry Cu and Au, Carlin-type and massive volcanogenic gold deposits.9, 11, 12 In contrast, Se rarely 

exceeds a few hundred mg/kg. Selenious pyrite (Se-pyrite) occurs most frequently in coal13-16 and 

shale17, 18 rocks. 

The crystal chemistry of As and Se in pyrite has attracted much interest in the last two decades for 

economic and environmental reasons. Pyrite often contains valuable metals, such as Ni, Cu, Sb, and 

Ag, in addition to Au, and their concentrations are broadly correlated with As.12, 19-21 However, the 

mining and smelting of sulfide ores and the processing and combustion of coal release hazardous 

metal(loid)s, including Hg and Tl besides As and Se.22-33 It is important to know the modes of 

incorporation of As and Se in pyrite and their association with trace elements at the atomic scale to 

recover efficiently and safely valuable metals and to develop better methods of sulfide ore roasting, 

coal cleaning, and mine waste management. 

As and Se have a nominal oxidation state of 1- in FeS2 and substitute for sulfur in the S2
2- dianion 

units which coordinate Fe in the pyrite crystal structure (Figure 1a).34-38 On the basis of their chemical 

similarity, one would expect As and Se to have similar local structure and atomic distribution. 

However, As-EXAFS and Se-EXAFS studies on natural pyrite have concluded otherwise. 

Savage et al.36 analyzed an arsenian pyrite (As-pyrite) of average composition FeAs0.02S1.98 (1.2 

wt.% As) from gold mineralization using As-EXAFS spectroscopy. EXAFS data were fit with one S 

atom at 2.25 Å in the first coordination shell ([AsS]1), and 4 S atoms at 3.10 Å ([AsS]2) and 3 As atoms 

at 3.17 Å ([AsAs]2) in the second anionic shell (Figure 1a). The authors concluded that As occurs in 

clusters in pyrite and explained the lack of detection of [AsAs]1 pairs to the close proximity of 3 

[AsFe]1 pairs at 2.32 Å. The lack of [AsAs]1 pairs is consistent with density functional theory (DFT), 

which predicts that the AsAs2- unit is energetically less favorable than the AsS2- unit.39 Nanoinclusion 
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of arsenopyrite (FeAsS), which has [AsS]1 and [AsAs]2 pairs in its structure (Figure 1b), was excluded 

from EXAFS and HRTEM imaging. As clustering in the second S shell around a central As atom was 

confirmed by Paktunc35 in arsenian pyrite from Carlin-type gold deposit containing 1.5 mol per cent 

As (FeAs0.03S1.97; 1.6 wt.% As). EXAFS data were fit with 3 [AsAs]2 pairs at 3.24 Å and 2 [AsS]2 pairs 

at 3.34 Å. The two studies agree with ab initio thermodynamic calculations, which show that pyrite 

can host up to ~6 wt.% of As (FeAs0.10S1.90) in solid solution before unmixing into pyrite-arsenopyrite 

domains.40 A compositional segregation of As atoms at a mean concentration of only 1.0 mol per cent 

As (FeAs0.02S1.98) was, however, unexpected because no FeAs2 mineral isostructural to cubic FeS2 is 

known. 

Ryser et al.17 analyzed a Se-pyrite grain containing as much as 0.7 wt.% Se (FeSe0.01S1.99) from a 

mine-waste rock shale using micro XANES and EXAFS spectroscopy. They concluded that Se forms 

[SeSe]1 pairs at 2.25 Å from the central Se atom and 12 [SeS]2 pairs at 3.24 Å. Matamoros-Veloza et 

al. 18, who also studied a shale pyrite by X-ray microspectroscopy but containing ten times less Se 

(about 600 ppm), fit the EXAFS spectrum from euhedral grain with a [SeS]1 pair at 2.34 Å and 6 [SeS]2 

pairs at 3.20 Å. The two model-fits for Se-pyrite agree in next-nearest neighbor identities, but not in 

nearest. The Se atoms are dispersed locally in the second study and clustered in the nearest S sites in 

the first study. Se2
2- dianion units in Se-pyrite are structurally possible because cubic FeSe2, named 

dzharkenite, occurs naturally in solid solution with pyrite.41  

EXAFS results obtained on As- and Se-pyrite raise several questions. Why would Se form [SeSe]1 

pairs in the nearest S sites and not the next-nearest, and how [SeSe]1 pairs can form at a Se/S atomic 

ratio of 0.01/1.99 = 5 x 10-3? Does it mean that SeSe2- units are more stable than SeS2- units, in contrast 

to the AsAs2- and AsS2- units? Why is As locally clustered in the next-nearest S sites at an As/S atomic 

ratio of 0.02/1.98 = 0.01, but not Se at similar Se/S ratio? Here, we address these questions by 

combining electron microprobe (EPMA) and synchrotron-based X-ray microfluorescence (SXRF) 

analysis and As and Se K-edge high energy-resolution XANES (HR-XANES) and EXAFS 

spectroscopy with quantum-mechanical calculations. Five pyrite specimen were studied, two at 

the As-edge from hydrothermal veins, two at the As- and Se-edge from epithermal and sedimentary 

deposits, and one at the Se-edge only from another sedimentary deposit.  

 

MATERIALS AND METHODS 

The origin and geological setting of the five pyrite are listed in Table 1. Four specimen (Bol, Ger, 

Sp, Sw) are massive aggregates of pyrite crystals and one (Ut) is a centimeter-sized single crystal 
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(Figure S1). Mineralogical purity was verified by X-ray diffraction (Figure S2). The distributions of 

As and Se were imaged and their point concentrations measured on polished sections by EPMA using 

a JEOL JXA-8230 microprobe equipped with five wavelength-dispersive spectrometers (WDS) and 

an energy-dispersive spectrometer (EDS).42 As in pyrite Ut and Ger was analyzed also by ICP-AES 

and Se by ICP-MS to verify the consistency between point and bulk analyses. 

Parts of the samples were ground into powder in a glove bag filled with He to prevent oxidation 

and the powder was pressed into pellets for bulk HR-XANES and EXAFS measurements. HR-XANES 

data were acquired on beamline ID26 at the European Synchrotron Radiation Facility (ESRF, 

Grenoble) using a multi-crystal analyzer spectrometer.43 EXAFS data were acquired on beamline 

BM23 in fluorescence-yield mode using a silicon drift diode detector (SDD). Bulk As-EXAFS was 

measured on pyrite Bol and Se-EXAFS on pyrite Ut. Growth zones with a wide range of As-Au 

concentrations were imaged by EPMA in pyrite Bol. A zoned area was relocated by micro SXRF and 

four As K-edge micro EXAFS spectra were acquired on spots differing in As concentration. The 

laterally resolved measurements were performed on the microprobe endstation of beamline BM23.44 

The incident beam was focused to 5x5 μm2 with a set of Pt-coated Kirkpatrick-Baez (K-B) mirrors. 

The absolute energy of the HR-XANES spectra is referenced at the As and Se K-edges to the first 

maximum of the derivative (inflection point) taken to 11870.0 eV for As2O3 and to 12658.0 eV for 

elemental Se (Se0).17 The precision of the energy is ± 0.1 eV. The reference compounds arsenopyrite 

(FeAsS) and realgar (As4S4) at the As edge, and ferroselite (orthorhombic FeSe2), achavelite (FeSe), 

elemental Se, Na2SeO3, and Na2SeO4 at the Se edge, were diluted to 500 ppm in boron nitride (BN) to 

prevent overabsorption.45 Additional methodological information (XRD, ICP-ES/MS, EPMA, 

XANES, EXAFS) is provided in the Supporting Information (SI). 

Atomistic models of As and Se incorporation in pyrite were constructed with DFT using the 

CRYSTAL1446 code for periodic systems, and a computational methodology adapted from Smith et 

al.47, 48 The hybrid PWGGA functional PW1PW with 20% HF contribution49 was used for all 

calculations. The PBEsol0 functional, a hybrid version of the PBEsol XC functional comprising 25% 

Hartree-Fock (HF) exchange,50 was used as a check on the reliability of the PW1PW functional. The 

all-electron split-valence 6-311G Pople's basis set51 was employed for S. An effective core 

pseudopotential with s411p411d411 external shell was used for Fe52 in pyrite models doped with As. 

The TZVP basis set of triple-zeta valence quality with polarization functions was employed for Fe53 

in Se-pyrite models. The As and Se atoms were described with an effective core pseudopotential and 

the m-pVDZ double-zeta valence with polarization functions basis set.54  
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The PW1PW and PBEsol0 functionals and basis sets were benchmarked by calculating the 

ionization energies of Fe, S, As and Se (Tables S1-S4), and by assessing the precision of the lattice 

parameters calculated on single unit cells of known structures (Tables S5-S7). The lattice parameters 

and interatomic distances derived from our modeling procedure (PW1PW functional) deviate from 

crystallographic values at most by 1.9% and 2.3% for pyrite,2 1.7% and 2.7% for marcasite 

(orthorhombic FeS2),
2 0.8% and 1.9% for arsenopyrite (FeAsS),55 1.4% and 2.5% for löllingite 

(orthorhombic FeAs2),
56 0.16% and 5.03% for dzharkenite (cubic FeSe2)

57 (Tables S8-S14). The errors 

are typical of DFT GGA studies.39, 58-60 The distributions of As and Se were modeled in two supercells 

of dimensions 2 x 2 x 2 and 3 x 2 x 2. The reciprocal space integration was performed by sampling 

the Brillouin zone with the 6 x 6 x 6 Pack-Monkhorst mesh,61 resulting in 112 independent k points. 

Parameter space testing and tolerances for Coulomb and exchange sums are reported in Tables S15-

17. Additional computational information is provided in SI. 

 

RESULTS AND DISCUSSION 

Distribution and concentration of As and Se. Backscattering electron imaging and EPMA 

mapping show that As and Se are uniformly distributed within the grains of pyrite Ger, Sp, Sw, and 

Ut (Figure 2). They are free of As- and Se-containing inclusions, such as goldfieldite and colusite 

sulfide inclusions reported in hydrothermal pyrite.62 Pyrite Sp contains minute inclusions of 

chalcopyrite (CuFeS2) observed as brighter scattering spots on backscattered electron images. The four 

pyrite cover a large range of As and Se concentrations (Table 1). As content varies from below the 

EPMA detection limit of 23 ppm (Sp) to 1590 ppm (Ger), and Se content from below the detection 

limit of 34 ppm (Sp and Sw) to a maximum of 428 ppm (Ut). Although uniform at the grain scale, As 

and Se contents vary from grain to grain. As content varies from the detection limit of 23 ppm to 60 

ppm in Sw based on the analysis of five grains, and from 50 ppm to 160 ppm in Ut based on the 

analysis of three grains. Similarly, Se content varies from 318 ppm to 428 ppm in Ut based on three 

grain analyses. 

Growth-zoning compositional variations are observed on the BSE image and EPMA maps of 

pyrite Bol (Figure S3). On the basis of eight point analyses, As content among the zones varies between 

0.15 and 1.14 wt.%, and Se content varies from below the detection limit of 34 ppm to 70 ppm (Table 

1). Scatter plots of the fluorescence counts between two elements were derived from each pixel of the 

EPMA maps, and the co-occurrence between two elements was evaluated from the linear Pearson 

correlation coefficient ρ. Elemental scatter analysis shows that As and Se are negatively correlated 
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with S (ρ(As-S) = -0.84, ρ(Se-S) = -0.64), and positively correlated together (ρ(As-Se) = 0.67) (Figure 

S4). Gold (Au) was detected at a concentration of 60 ppm in one spot out of the eight analyzed 

(detection limit = 47 ppm). The distribution of Au is heterogeneous within pyrite, being localized in 

growth bands enriched in As (Figure S3). Scatter analysis shows that Au is, however, weakly correlated 

to As and Se (ρ(As-Au) = 0.29, ρ(Se-Au) = 0.22) and not to Fe (ρ = -0.01). Elemental correlations have 

limited chemical significance here, because Au is about three orders of magnitude less concentrated 

than As and more than four orders less than Fe. Analytical precision is not sufficient to calculate ρ 

confidently. In addition, the Au and Se fluorescence counts on the EPMA maps represent noise when 

point concentrations are below the detection limit. These points on the As-Au and Fe-Au correlation 

plots bias the ρ value. We conclude that the strong negative correlation between abundant As (0.15 – 

1.14 wt.%) and major S (ρ(As-S) = -0.84) is evidence for As substitution at the S site. Se probably 

replaces also S, the lower Pearson correlation (ρ(Se-S) = -0.64) being attributed to the lower Se content, 

and larger ρ uncertainty thereof. 

 

Formal oxidation state and local structure of As and Se from HR-XANES. Pyrite Bol, Sw, 

Ut, and Sp were measured at the As K-edge and pyrite Ut, Sp, and Ger at the Se K-edge. The As 

absorption white line is at 11866.2 eV and the Se white line at 12658.4 eV for all pyrites (Figures 3a 

and 3b). These edge energies are in the range of those for reduced As and Se compounds and several 

electronvolts lower than the K edges of oxidized As and Se species (Figures 3c and 3d, Tables S18 

and S19). Of the reference spectra, those of arsenopyrite (FeAsS) at the As edge and of arsenopyrite 

(2 ppm Se) and marcasite (orthorhombic FeS2, 12 ppm Se) at the Se K-edge provided the best match 

to the pyrite spectra, confirming the nominal -1 oxidation state of both As and Se in pyrite (Figures 

4a-c). Comparison of the pyrite and reference spectra identifies three “indicator” features denoted A, 

B, and C in Figure 4a.  

Region A refers to the energy of the white line. The As edge is at 11865.9 eV for arsenopyrite and 

11866.2 eV for pyrite, and the Se edge is at 12657.8 eV for arsenopyrite, 12658.2 eV for marcasite, 

and 12658.4 eV for pyrite. Region B is situated 32-42 eV above the edge. The pyrite spectra show an 

absorption hump at this place, which is absent in arsenopyrite and marcasite. The edge energy and 

structure differences make it possible to distinguish a pyrite host with a corner-linked framework and 

cubic structure, from arsenopyrite and marcasite with a chain framework and a lower symmetry 

crystallographic structure (Figure 1). This finding was verified by calculating ab initio the arsenopyrite, 

marcasite, and pyrite spectra with the finite difference method (FDM) as implemented in FDMNES.63 
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The code calculates the final state potential in real space from a cluster of atoms. The form of the 

potential is not approximated, in contrast to the alternative muffin-tin approach, 64, 65 thus providing a 

better description of scattering phenomena. The As and Se clusters had a radius of 7 Å and were built 

from crystallographic structures2, 55 by replacing S and As with As and Se at the center (As pyrite, Se 

pyrite, Se marcasite, and Se arsenopyrite). Relaxation of the As and Se sites with CRYSTAL14 did 

not change the results. Figures 4d-f show that the two XANES fingerprints, edge energy and absorption 

hump, of As and Se substitution at the S site in pyrite are reproduced theoretically. 

Region C is situated 8 eV above the edge energy and corresponds to the first absorption structure 

after the white line. As-XANES of pyrite has a higher absorption amplitude at 11874.0 eV relative to 

arsenopyrite. The increase in amplitude is particularly noticeable for Ut (Figure 3a). The energy value 

of this feature is close to the edge energy of As2O5 (11873.6 eV), which suggests that Ut at least, and 

perhaps all pyrites, contain some As(V). This species is attributed to the oxidation of arsenic exposed 

on the surface of pyrite grains.35  

 

Local structure of As and Se from EXAFS. Bulk EXAFS spectra measured at the As (pyrite 

Bol) and Se (pyrite Ut) K-edges are essentially the same, differing only in the amplitude of the 

oscillations at k < 4 Å-1 and k = 10 Å-1 (Figure 5a). They have the same frequency and structure, 

meaning that As and Se have similar short range order in pyrite. Comparison with the EXAFS spectrum 

of arsenopyrite (FeAsS) shows that the local coordination of As in this mineral does not replicate that 

of As and Se in pyrite, in agreement with HR-XANES (Figure 5b). Because Bol is zoned, four micro 

As-EXAFS spectra were measured at points of interests (POI) selected from the micro As-SXRF map 

(Figure S5a). There is a factor of three in count rate between the richest (spot 6) and the least (spot 8) 

As-rich point (Figure S5b). The four spectra have the same frequency and structure and they average 

out to the bulk spectrum (Figure S6). Thus, zoning reflects varying geochemical conditions during 

crystallization and does not appear to correlate with the chemical form of As. 

Careful study of the As-pyrite spectra from Savage et al. (Clio-2 sample)36 and Paktunc et al. 

(grain 218)35, and the two Se-pyrite spectra from Matamoros-Veloza et al. (POIa,b)18 indicates a 

considerable degree of similarity with our spectra. Since the EXAFS spectra in the previous studies 

were fit with S atoms in the first shell (i.e., [AsS]1 and [SeS]1 pairs), this infers that As and Se are also 

bonded to S in our samples. Although this consistency check shows good agreement among different 

studies in the first anionic shell analysis of As and Se, discrepancies exist in the analysis of the second 

anionic shell. Savage et al.36 and Paktunc35 concluded that As is clustered forming [AsAs]2 pairs, 
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whereas Matamoros-Veloza et al. (POIa,b)18 observed [SeS]2 pairs only. How can two EXAFS spectra 

that look similar (i.e., As-pyrite and Se-pyrite) lead to distinct results? We show below that the As- 

and Se-EXAFS spectra have two least-squares minima in the parameter space. 

To obtain robust structural solutions, care was taken to not overparametrize the model-fits. The 

limit of the number of free parameters in EXAFS fits can be calculated by the Nyquist formula N = 

(2ΔRΔk)/π. Nine parameters were adjusted (Table 2), for a number of degrees of freedom in the 

refinements of N = [(2 x (16.0 – 2.7 Å-1) x (3.6 – 1.4 Å)]/π = 18.6 for As-pyrite and N = [(2 x (13.8 – 

3.4 Å-1) x (3.6 – 1.4 Å)]/π = 14.6 for Se-pyrite. Figures 6 and 7 show that the As- and Se-EXAFS 

spectra can be fit indifferently with a dilute (model 1) and a cluster (model 2) model. In model 1, As 

and Se are surrounded by 5.9-6.5 S2 at 3.08-3.09 Å and 5.5-6.1 S2 at 3.33 Å, and in model 2 by 6.3-

6.6 S2 at 3.15-3.16 Å and 4.4-5.7 As2/Se2 at 3.16 Å. The metric parameters of the S1, Fe1, and Fe2 

shells around As and Se are practically identical in the two models (Table 2). Also included in Figures 

6 and 7 are the residual of each fit, which indicates the portion of the spectra unfit by the structural 

model; the lower the residual, the better the fit. The overlay plots of the fit residuals for each model 

are identical, therefore the two models are equivalent. Consideration of As or Se in the first shell (i.e., 

As2
2- or Se2

2- dianions) resulted in the fit residual being more than doubled (model 3 in Figures 6 and 

7). The As-S1 distance is 2.27 Å and the Se-S1 distance is 2.24 Å, compared to the S-S1 distance of 

2.16 Å in pyrite (Table 2). The differences in bond length match the difference of atomic size between 

S (1.03 Å), As (1.20 Å), and Se (1.16 Å). 

In pyrite, the S2 shell is split into two sub-shells at 3.08 Å and 3.33 Å. In model 1, the two S2 

distances remain unchanged relative to pyrite while the S1, Fe1 and Fe2 distances are relaxed as a result 

of the As and Se for S substitution. In model 2, the S1, Fe1, S2, and Fe2 distances are relaxed and an 

As2/Se2 shell at 3.16 Å is detected at the same distance as the S2 shell. This local structure is not 

unrealistic because the As distances to smaller S2 atoms are not shorter on average than the As 

distances to bigger As2 atoms in arsenopyrite (FeAsS).55 Note that EXAFS does not preclude longer 

As-As and Se-Se distances at about 3.4 Å from existing, but it does not have the sensitivity to detect 

them. We conclude that the dilute and cluster models are equiprobable from the standpoint of EXAFS 

analysis. Since EXAFS cannot answer if As and Se are segregated at the local scale, this possibility is 

examined next by quantum chemical computations. 

 

Equilibrium segregation of As and Se in pyrite. Twelve unique cases of As incorporation 

schemes and eight unique cases of Se incorporation schemes were tested in total (Figures 8 and S7). 
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Their total and relative energies with respect to the least favorable configuration are given in Table 3, 

with the lattice parameters being reported in Table S20 and Cartesian coordinates in the SI. Formation 

of As2
2- and Se2

2- dianions (i.e., [AsAs]1 and [SeSe]1 pairs) is energetically unfavorable by more than 

35 meV/cell (6 kcal/mol, models 2Se-2, 3Se-2, 2As-2, 3As-2). The As-As avoidance in the first S shell 

had been predicted by Blanchard et al.39 using DFT. Our results show that this theoretical prediction 

holds for the [SeSe]1 pair. The equilibrium segregation of As and Se in the second S shell was examined 

by substituting two As/Se atoms for sulfur in a 2 x 2 x 2 supercell (Fe32(As/Se)2S62), and three As/Se 

atoms for sulfur in a 3 x 2 x 2 supercell (Fe48(As/Se)3S93). The two models have an (As/Se)/S atomic 

ratio of 0.03, an As concentration of 3.8 wt.%, and a Se concentration of 4.0 wt.%. The FeS6 octahedra 

have six short S-S edges of 3.08 Å in length and six long S-S edges of 3.32Å in length (Figure 1a).2 

Distribution of the As/Se atoms on the long and short edges was varied to examine the energetic 

preference for clustering on either edge dimension (Figure 8). The main results of this broad evaluation 

of energy structures are the following: 

• As tends to cluster in the second S shell, but not Se, regardless of the number and position of 

the [SeSe]2 pairs on octahedral edges. 

• A cluster of 3 As atoms is energetically more favorable than a cluster of 2 As atoms (e.g., 

models 3As-3 and 3As-5).  

• A cluster of 3 As atoms grouped on the same octahedral face, forming an [As]3 triad as in 

arsenopyrite (Figure 1b), is energetically more favorable than a cluster of 3 As atoms distributed over 

two octahedral faces (e.g., models 3As-5 and 3As-7). 

• Energies of the 3As models show a monotonic trend in function of the dimension of the S-S 

edge. Larger energy changes (i.e., higher stability) occur for models in which As atoms are distributed 

on both short and long S-S edges (e.g., models 3As-4, 3As-5, and 3As-6, and models 3As-7 and 3As-

8). 

• The As-As distances in the second lowest energy structure (model 3As-7) are 3.07 Å, 3.15 Å, 

and 3.33 Å, close in value to the arsenopyrite [As]3 triad distances of 3.04 Å, 3.19 Å, and 3.34 Å.55 

Model 3As-7 differs by 6 meV/cell from the lowest energy model 3As-8. 

Generation of the local order of As in arsenopyrite engenders confidence in the calculations. Also, 

the fact that the [As]3 arrangement was not found for Se is consistent with the lack of selenious 

compound structurally analog to arsenopyrite (i.e., FeSeS). Our results also disallow the coexistence 

of [SeSe]1 and [SeSe]2 pairs, and of [SeSe]1 and [SeS]2 pairs, in pyrite. [SeSe]1 and [SeSe]2 pairs occur 

in the pyrite isomorph dzharkenite (cubic FeSe2), and therefore can be expected to be energetically 
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favorable in selenious pyrite. Our results simply suggest that cubic FeS2 and FeSe2 are not miscible at 

the atomic scale. This finding may explain why the two compounds do not form a complete solid-

solution at the macroscopic scale,41 the two structures being in this case intergrown at the microscopic 

scale.  

The absence of [SeSe]1 + [SeS]2 pairs in our models conflicts with the results of Ryser and co-

workers,17 who observed their co-existence in a pyrite grain using EXAFS (POI g spectrum). On the 

basis of our results, if Se occurs in the first S shell, then it should also occur in the second S shell to 

form an FeSe2 local structure. The FeSe2 hypothesis can be dismissed because the POI g spectrum 

differs from that of dzharkenite. Therefore, the alternative consists of hypothesizing that S atoms, not 

Se, are present in the first shell. This ambivalence was tested by reanalyzing the Se1 + Fe1 contribution 

to EXAFS for POI g. Results reproduced in Figure S8 show that the model-fit of Ryser and co-

workers17 is overparametrized, thus the mathematical solution non-unique. When physically 

meaningful structural constraints are enforced to suppress correlations between parameters, S atoms 

give a better fit to data than Se atoms. This is in line with Matamoros-Veloza et al.,18 who fit their 

pyrite data with a [SeS]1 pair. We conclude that there is a generally good agreement between 

theoretical predictions and experiments for Se. Se atoms do not cluster in pyrite at the investigated 

Se/S ratio ≤ 0.03 (4.0 wt.%), and are predicted to demix as cubic FeSe2 if they do at a higher molar 

ratio. 

In contrast to Se, the lowest energy structures are those in which As occurs in pairs and triads. 

Formation of an [As]3 triad in a 3 x 2 x 2 supercell allows an energy gain of 41-47 meV/cell or 5-6 

meV per sulfur atom (models 3As-7 and 3As-8). The energy change will be lower, the larger the 

supercell. Therefore, an [As]3 triad is energetically less likely to form at As/S ≤ 0.03 ([As] ≤ 3.8 wt.%), 

as in the pyrite samples studied by Paktunc35 (As/S = 0.015, [As] = 1.6 wt.%), Savage36 (As/Fe = 

0.010; [As] = 1.2 wt.%), and here (0.001 ≤ As/S ≤ 0.01; 0.15 wt.% ≤  [As] ≤ 1.14 wt.%). Arsenic 

clusters may also form a metastable solid-solution at the nanometer scale precipitated far from 

thermodynamic equilibrium. Compositional growth zones in pyrite crystals are in fact metastable, and 

arsenic may very well be inhomogeneously distributed from the micrometer down to the nanometer 

scale.  

The tendency of As to form arsenopyrite-type clusters provides general insights into the 

dissolution of arsenian pyrite in acid mine drainage. Bioleaching of pyrite and arsenopyrite flotation 

concentrate shows that arsenopyrite is the first mineral phase to be oxidized, pyrite dissolution starting 

at a later stage.66 Further, energetics calculation predicts that As for S substitution promotes the 



11 
 

dissolution of pyrite.39 Therefore, the presence of arsenopyrite-type clusters should enhance pyrite 

dissolution even further with the environmental implications that ensue.  

In conclusion, this study highlights a previously unknown limitation of EXAFS spectroscopy for 

the study of As and Se in sulfide minerals, which warrants the utmost caution in drawing fine structural 

distinctions. We showed that SeSe2- dianionic pairs are unlikely to exist unless Se is clustered as FeSe2 

nanoinclusions in the FeS2 framework. In this case, [SeSe]1 pairs coexist with [SeSe]2 pairs and Fe is 

bonded to six Se atoms. Arsenic clusters are thermodynamically easier to form than Se clusters, 

because of the existence of the FeAsS phase. In this case, the lowest energy bonding environment 

resembles the local structure of FeAsS, in which Fe is bonded to three As atoms on one octahedral 

face and to three S atoms on the other octahedral face. 
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FIGURE CAPTIONS 

 

Figure 1. Polyhedral structure and bonding environment of sulfur in pyrite (a) and arsenopyrite (b). 

Pyrite has a cubic structure consisting of corner-sharing FeS6 octahedra.2 Arsenopyrite has a 

monoclinic structure consisting of single chains of edge-sharing Fe(As3S3) octahedra cross-linked by 

sharing corners.55 In pyrite, sulfur is bonded to one S atom at 2.16 Å (S2
2- dianion) and to three Fe 

atoms at 2.26 Å ([SFe]1 pair). The second sulfur shell ([SS]2 pair) is split in two subshells at 3.08 Å 
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(short edges in orange) and 3.32 Å (long edges in green). In arsenopyrite, the As atoms form [As]3 

triads on octahedral faces. 

 

Figure 2. Backscattered electron images of pyrite from Bolivia (a), Utah (b), Spain (c), Germany (d), 

and Switzerland (e), and distributions of As and Se in pyrite Ut, Sp, Ger, and Sw measured by EPMA. 

The red rectangles indicate the location in the grains of the SXRF maps. Map size: 300 x 80 pixels; 

pixel size: 2 x 2 µm2; probe diameter: 2 µm; dwell time 500 ms; electron voltage = 20 kV, current = 

500 nA. The pyrite from Bolivia is zoned. The brighter zones in pyrite Sp are chalcopyrite (CuFeS2) 

inclusions. 

 

Figure 3. As (a) and Se (b) HR-XANES spectra of pyrite. As (c) and Se (d) HR-XANES of reference 

compounds. 

 

Figure 4. Experimental (a-c) and calculated (d-f) HR-XANES spectra of pyrite measured at the As 

(a,d) and Se (b,c,e,f) K-edge. 

 

Figure 5. EXAFS spectra of pyrite measured at the As and Se K-edge (a), and pyrite and arsenopyrite 

measured at the As K-edge (b). 

 

Figure 6. As K-edge EXAFS spectra (a-c) and Fourier transform magnitudes (f-h) of pyrite with 

model-fits. (d,e) Overlay plots of the fit residuals for models 1 and 2 (d) and models 1 and 3. The peak 

positions of the Fourier transforms are not corrected for phase shift, and consequently are shifted by 

ΔR ~ -0.3 to -0.4 Å relative to structural R distances. Res is the fit residual as the goodness-of-fit 

parameter: Res = [Σ{|χexp - χfit|}/Σ{|χexp|}] x 100. 

 

Figure 7. Se K-edge EXAFS spectra (a-c) and Fourier transform magnitudes (f-h) of pyrite with 

model-fits. (d,e) Overlay plots of the fit residuals for models 1 and 2 (d) and models 1 and 3. 

 

Figure 8. Bonding environment of As in the Fe32As2S62 (a) and Fe48As3S93 (b) equilibrium structures. 

The S-S edges in yellow are 3.08 Å long and the S-S edges in green are 3.32 Å long in unsubstituted 

pyrite (Figure 1a). The red line connects the dianionic pair. Distances are in angstrom. 
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Table 1. List of samples, and As and Se point and bulk concentrations measured by EPMA and ICP-ES/MS 
Code 
name 

Origin Geological setting [As] EPMA [As] ICP-ES [Se] EPMA [Se] ICP-MS 

Bol Bolivia, MNHNa collection, Paris Hydrothermal vein 0.15-1.14 wt.% nab b.d.l. – 70 ppm na 

Sw St Gotthard tunnel, Switzerland Hydrothermal vein b.d.l.c - 60 ppm (n=5) na b.d.l.d 
 

na 

Ut Park City, Utah, USA Hydrothermal: epithermal 50-160 ppm (n=3) 250 ppm 318-428 ppm (n=3) 500 ppm 
Sp Alzo, Gipuzkoa, Spain Sedimentary b.d.l.c - 30 ppm (n=2) na b.d.l. na 
Ger Neumark, Saxony, Germany Sedimentary - skarn na 1590 ppm na 80 ppm 

aMuseum National d'Histoire Naturelle; bNot analyzed; cBelow detection limit (23 ppm); dBelow detection limit (34 ppm). 

 

 

 
Table 2. EXAFS parameters and interatomic distances in pyrite relative to a central S atom 

Pyritea  As Pyrite Bol – Model 1  As Pyrite Bol – Model 2  Se Pyrite Ut – Model 1  Se Pyrite Ut – Model 2 

Atom CNb R, Åc  Atom CN R, Å σd, Å2  Atom CN R, Å σ, Å2  Atom CN R, Å σ, Å2  Atom CN R, Å σ, Å2 

S 1 2.16  S 1e 2.27 0.0031f  S 1e 2.27 0.0031f  S 1e 2.24 0.0024f  S 1e 2.24 0.0024f 
Fe 3 2.26  Fe 3e 2.33 0.0031f  Fe 3e 2.33 0.0031f  Fe 3e 2.32 0.0024f  Fe 3e 2.32 0.0024f 
S 6 3.08  S 5.9g 3.08 0.0056f  S 6.3g 3.16 0.0058f  S 6.5g 3.09 0.0040f  S 6.6g 3.15 0.0038f 
S 6 3.32  S 6.1g 3.33 0.0056f  As 5.7g 3.16 0.0058f  S 5.5g 3.33 0.0040f  Se 4.4g 3.16 0.0038f 
Fe 3 3.45  Fe 3e 3.52 0.0056f  Fe 3e 3.52 0.0058f  Fe 3e 3.52 0.0040f  Fe 3e 3.52 0.0038f 

    ΔEh = 7.0 eV, Resi = 3.1  ΔE = 7.2 eV, Res = 3.4  ΔE = 5.7 eV, Res = 3.8  ΔE = 5.3 eV, Res = 4.4 
aAfter Rieder et al. 2; bCoordination number; cInteratomic distance; dDebye-Waller factor; eFixed value; fParameters constrained identical; gSum fixed to twelve; hShift of 

energy threshold; iFit residual. Res = [Σ{|exp – fit|}/Σ{|exp|}] x 100. 
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Table 3. Difference of energy between the dilute and the cluster models for the FeSexS2-x and FeAsxS2-x supercellsa 

Model 
Supercell 

dimension 

Number 
of Se/As 
atoms 

[Se/As] 
weight % 

Description kcal/mol eV/cell 

2Se-1 222 2 4.0 Two Se atoms at long distance 0.00 0.000 

2Se-2 222 2 4.0 One [SeSe]1 pair -6.52 -0.035 

2Se-3 222 2 4.0 One [SeSe]2 pair on long edge 0.01 0.000 

2Se-4 222 2 4.0 One [SeSe]2 pair on short edge -0.19 -0.001 

3Se-1 322 3 4.0 Three Se atoms at long distance 0.00 0.000 

3Se-2 322 3 4.0 One [SeSe]1 pair + one [SeSe]2 pair on short edge -6.75 -0.024 

3Se-3 322 3 4.0 Three [SeSe]2 pairs on a face with three long edges -0.04 0.000 

3Se-4 322 3 4.0 
Three [SeSe]2 pairs on a face with two short and one 
long edge 

-0.43 -0.002 

2As-1 222 2 3.8 Two As atoms at long distance 0.00 0.000 

2As-2 222 2 3.8 One [AsAs]1 pair -21.25 -0.115 

2As-3 222 2 3.8 One [AsAs]2 pair on long edge 4.73 0.026 

2As-4 222 2 3.8 One [AsAs]2 pair on short edge 4.54 0.025 

3As-1 322 3 3.8 Three As atoms at long distance 0.00 0.000 

3As-2 322 3 3.8 One [AsAs]1 pair + one [AsAs]2 pair on short edge -8.84 -0.032 

3As-3 322 3 3.8 One isolated As + one [AsAs]2 pair on long edge 5.65 0.020 

3As-4 322 3 3.8 Two [AsAs]2 pairs on short edges 6.64 0.024 

3As-5 322 3 3.8 Two [AsAs]2 pairs on long edges 7.90 0.029 

3As-6 322 3 3.8 
Two [AsAs]2 pairs, one on short and another on long 
edge 

8.84 0.032 

3As-7 322 3 3.8 Three [AsAs]2 pairs on a face with three long edges 11.48 0.041 

3As-8 322 3 3.8 
Three [AsAs]2 pairs on a face with two short and one 
long edge 

12.92 0.047 

aA negative difference of E(dilute) – E(cluster) is unfavorable. 
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1. Materials and methods 

1.1. Sample preparation 

Fragments of pyrite crystals were embedded in epoxy resin and polished for EPMA, SXRF 

mapping, and micro EXAFS measurement. Other fragments were crushed in an agate mortar inside a 

glove bag filled with He to prevent oxidation. Powder was stored in a desiccator and pressed into 5-

mm diameter pellets for bulk HR-XANES and EXAFS measurements. 

1.2. XRD 

The X-ray powder diffraction patterns for the five pyrite samples were measured at ISTerre 

(Grenoble, France) in reflection geometry using a BrukerD8 diffractometer equipped with a selective 

energy SolXEM (Baltics Instruments) detector. Electron voltage and current were 40 kV and 40 mA. 

Intensity from the diffracted Cu Kα1 line was measured from 5 to 90° 2θ with a step size of 0.03° and 

a dwell time of 6 s per step. The XRD traces are shown in Figure S2a. No mineral impurity was 

detected.  
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Arsenic and selenium references were mounted in a glass capillary of 1 mm diameter and 

characterized in transmission geometry with a Göbel optics. The dwell time was 6 s per step of 0.024°. 

The XRD traces are shown in Figures S2b and S2c. No mineral impurity was detected.  

1.3. ICP-ES/MS 

The concentrations of As and Se in bulk pyrite from Utah (Ut) and Germany (Ger) were measured 

by ICP-ES and ICP-MS, respectively, at Bureau Veritas (Canada). Analytical code AQ270 (ICP-

ES/MS with digestion in aqua-regia) was used. Certified standard references and blanks were 

measured in the same conditions as pyrite. Results are given in Table 1. The percent error is 5% for 

As and 9% for Se. 

1.4. EPMA 

Backscattered electron (BSE) images, EPMA and elemental maps of pyrite were recorded with a 

JEOL JXA-8230 electron microprobe at ISTerre. As, Se, and Au were analyzed with a wavelength-

dispersive spectrometer (WDS), and S and Fe with an energy-dispersive spectrometer (EDS). 

Operating conditions were 20 kV accelerating voltage and 900 nA beam current with a focused beam 

of 1-3 μm in diameter. The following certified natural and synthetic materials were used for 

standardization: As: InAs and FeAsS; Se: Se and Bi2Se3; Au: Au; Fe: CuFeS2 and FeS2; and S: CuFeS2. 

The lowest and the highest As and Se contents are reported in Table 1. Elemental maps were acquired 

for As, Se , Au, Fe, and S (Figures S3 and S4a). Details on analytical precisions and determination of 

detection limits can be found in Batanova et al.1 

1.5. Bulk HR-XANES 

The As and Se K-edge HR-XANES spectra were collected on beamline ID26 of the ESRF. The storage 

ring was operated in the 7/8 + 1 filling mode, with 200 mA current. Rejection of higher harmonics and 

reduction of heat load were achieved with a white beam Pd-coated, flat mirror working under total 

reflection at 2.5 mrad deflecting angle. The energy of the incoming beam was selected with the 111 

reflection of a Si double crystal monochromator, and the beam was focused horizontally by a second 

Pd-coated mirror and vertically by a third Pd-coated mirror. The flux on the sample was approximately 

1013
 photon/s in a beam footprint of ~700 (H) x 80 (V) µm² FWHM. The As K1 fluorescence line was 

selected using the 555 reflection of five spherically bent (1 m radius) Si analyzer crystals (diameter = 

100 mm) aligned at 69.85° Bragg angle in a vertical Rowland geometry. The Se Kα1 fluorescence line 

was selected using the Si(844) reflection at a Bragg angle of 85.17°. The diffracted intensity was 

measured with an avalanche photodiode (APD). The effective energy resolution was 2.3 eV. 

Spectra were measured at 10-15 K using a helium flow cryostat. Fifty scans of 20 s were acquired 

for the As and Se references and from 60 to 90 scans of 30 s for pyrite. The samples were moved 

horizontally and vertically after every scan to access unexposed material. No changes in spectral 

features were noted during the course of data collection that would indicate oxidation of pyrite or other 

radiation damage. Spectra were averaged with the PyMCA software2 and reduced with the Labview 

suite of programs from beamline 10.3.2 at the Advanced Light Source (Berkley, USA).3, 4 They were 

normalized to a unit step in the absorption coefficient at 11939 eV for As and at 12707 eV for Se. 

1.6. Bulk and micro EXAFS 

Bulk As and Se K-edge and micro As K-edge EXAFS spectra were collected at room temperature 

on beamline BM23 of the ESRF. The incoming beam was monochromated with a Si(111) double 
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crystal monochromator. The footprint on the sample of the unfocused beam was ~2.8 (H) x 0.5 (V) 

mm² FWHM. For micro EXAFS measurements, the monochromatic X-ray beam was focused to 5 x 5 

m2 with a set of Pt-coated Kirkpatrick–Baez (KB) mirrors.5 The flux incident on the sample was 

approximately 5 x 109 photons/sec. Micro EXAFS data were taken on points of interests chosen on a 

SXRF map measured at 14 keV, 5 µm step size, and 2 s/point measuring time (Figures S5 and S6). No 

beam damage was observed. EXAFS data were reduced with the Athena software6 and fit with 

WinXAS.7 Theoretical amplitude and phase shift functions were generated with FEFF78 using the 

arsenopyrite structure9 for As and Se-substituted arsenopyrite for Se. The amplitude reduction factor 

(So
2) was fixed to 0.9. Fit results are given in Table 2. 

1.7. Density Functional Theory (DFT) 

Calculations were considered being converged when the total energy obtained in the self-consistent 

field (SFC) procedure differed by less than 10-7 a.u. (Eh) in two successive cycles (0.0027 meV). 

Default thresholds were used for the geometry optimizations. The two-electron integral tolerance 

setting 7 7 7 9 30 (TOLINTEG keyword) was preferred because of the recommendation of combined 

hybrid functionals and pseudopotentials.10 Other settings were tested to verify that the SCF 

convergence was well achieved (Table S15, 6 6 6 6 12 is default). The shrinking factor IS also was 

tested (Tables S16 and S17). A factor of 6 was sufficient to converge the total energy with a precision 

of 10-7 a.u. The ANDERSON’s method11 and a FMIXING of 90% were used to accelerate the 

convergence. No symmetry restriction was applied during geometry optimization. 

 

Basis sets and their abbreviations in Tables are: 

Sulfur 

Lichanot: all-electron split-valence 6-311G12 

TZVP: triple-zeta valence with polarization13 

Durand: effective Durand pseudopotential14 

Iron: 

Towler: all-electron split-valence 6-411d41G basis set15 

TZVP: Triple-zeta valence with polarization13 

ECP_Heifets: effective core pseudopotential16, 17 

Durand: effective Durand pseudopotential14 

Arsenic: 

pp_Heyd: effective core pseudopotential, m-pVDZ double zeta quality with polarization functions10 

TZVP: Triple-zeta valence with polarization13 

Durand: effective Durand pseudopotential14 

HWLC, val Durand: Hay-Wadt large-core pseudopotential18 with valence electrons from Durand14 

HWLC, val TZVP: Hay-Wadt large-core pseudopotential18 with valence electrons from TZVP 

HWLC, val Heyd: Hay-Wadt large-core pseudopotential18 with valence electrons from pp_Heyd10 

Selenium 

pp_Heyd: effective core pseudopotential, m-pVDZ double zeta quality with polarization functions10 

TZVP: Triple-zeta valence with polarization13 
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2. Supplementary tables 

Table S1. Comparison between experimental and calculated ionization energies for S. Energy is in 

kcal/mol. 

 S1+ S2+ S1- S2- 

  Energy 
Difference, 

% 
Energy 

Difference, 

% 
Energy 

Difference, 

% 
Energy 

Difference, 

% 

Experiment 238.28 - 536.82 - -4761 - 165.37 - 

Basis set Functional         

Lichanot 
PBEsol0 277.13 16.31 508.01 -5.37 -74.78 57.07 102.03 -38.30 

PW1PW 276.48 16.03 509.90 -5.01 -71.74 50.69 106.84 -35.40 

TZVP 
PBEsol0 273.63 14.84 506.37 -5.67 -64.60 35.68 123.28 -25.45 

PW1PW 273.76 14.89 509.07 -5.17 -62.14 30.51 127.87 -22.68 

Durand 
PBEsol0 286.43 20.21 516.36 -3.81 -78.51 64.90 114.44 -30.80 

PW1PW 285.57 19.85 518.62 -3.39 -75.24 58.04 119.40 -27.80 

 

 

Table S2. Comparison between experimental and calculated ionization energies for Fe. Energy is in 

kcal/mol. 

 Fe1+ Fe2+ Fe3+ 

  Energy 
Difference, 

% 
Energy 

Difference, 

% 
Energy 

Difference, 

% 

Experiment 181.76 - 372.58 - 704.97 - 

Basis set Functional       

Towler 
PBEsol0 98.08 -46.03 425.68 14.25 796.65 13.00 

PW1PW 92.65 -49.03 422.34 13.35 796.34 12.96 

TZVP 
PBEsol0 - - 431.68 15.86 791.09 12.22 

PW1PW - - 428.67 15.05 790.75 12.17 

ECP_Heifets 
PBEsol0 124.94 -31.26 435.25 16.82 798.44 13.26 

PW1PW - - 432.36 16.05 798.60 13.28 

Durand 
PBEsol0 59.11 -67.48 424.65 13.98 830.09 17.75 

PW1PW 56.93 -68.68 425.49 14.20 835.08 18.46 
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Table S3. Comparison between experimental and calculated ionization energies for As. Energy is in kcal/mol. 

  As1+ As2+ As3+ As4+ As5+ As1- 

  Energy 
Difference, 

% 
Energy 

Difference, 

% 
Energy 

Difference, 

% 
Energy 

Difference, 

% 
Energy 

Difference, 

% 
Energy 

Difference, 

% 

Experiment 225.14 - 427.55 - 652.03 - 1153.45 - 1443.71 - -18.58 - 

Basis set Functional             

pp_Heyd 
PBEsol0 202.00 -10.28 396.91 -7.17 608.25 -6.71 1164.90 0.99 1415.94 -1.92 -21.34 14.86 

PW1PW 202.20 -10.19 399.56 -6.55 613.82 -5.86 1164.67 0.97 1426.68 -1.18 -19.77 6.39 

TZVP 
PBEsol0 206.33 -8.35 396.73 -7.21 606.42 -6.99 1147.54 -0.51 1393.32 -3.49 -32.01 72.26 

PW1PW 206.45 -8.30 399.51 -6.56 611.98 -6.14 1147.32 -0.53 1404.77 -2.70 -30.51 64.16 

Durand 
PBEsol0 222.98 -0.96 426.41 -0.26 643.15 -1.36 1096.45 -4.94 - - -32.09 72.65 

PW1PW 224.98 -0.07 431.10 0.83 650.70 -0.20 1096.98 -4.90 - - -31.81 71.19 

HWLC, val 

Heyd 

PBEsol0 222.05 -1.37 384.76 -10.01 542.72 -16.76 1070.10 -7.23 - - -57.74 210.72 

PW1PW 223.62 -0.67 387.34 -9.40 546.53 -16.18 1070.81 -7.16 - - -58.07 212.48 

HWLC, val 

TZVP 

PBEsol0 62.89 -72.07 393.71 -7.91 602.00 -7.67 1119.48 -2.95 - - -168.58 807.18 

PW1PW 204.90 -8.99 398.43 -6.81 609.28 -6.56 1120.05 -2.90 - - -27.69 48.99 

HWLC, val 

Durand 

PBEsol0 222.88 -1.00 424.60 -0.69 639.18 -1.97 1092.61 -5.27 - - -33.09 78.04 

PW1PW 224.85 -0.13 429.19 0.38 646.61 -0.83 1093.05 -5.24 - - -32.84 64.16 

 

Table S4. Comparison between experimental and calculated ionization energies for Se. Energy is in kcal/mol. 

  Se1+ Se2+ Se3+ Se4+ Se5+ Se6+ Se1- 

  Energy 
Difference, 

% 
Energy 

Difference, 

% 
Energy 

Difference, 

% 
Energy 

Difference, 

% 
Energy 

Difference, 

% 
Energy 

Difference, 

% 
Energy 

Difference, 

% 

Experiment 224.25 - 487.51 - 729.03 - 987.78 - 1570.90 - 1882.09 - -46.57  

Basis 

set 
Functional               

pp_Heyd PBEsol0 255.19 13.80 462.56 -5.12 690.10 -5.34 935.06 -5.34 1575.63 0.30 1851.21 -1.64 -65.50 40.64 

 PW1PW 253.65 13.11 463.47 -4.93 693.75 -4.84 941.59 -4.68 1575.70 0.31 1863.50 -0.99 -61.97 33.07 

TZVP 
PBEsol0 265.31 18.31 468.62 -3.87 697.47 -4.33 947.97 -4.03 1527.69 -2.75 1776.41 -5.62 -82.82 77.84 

PW1PW 263.52 17.51 469.96 -3.60 701.78 -3.74 954.54 -3.36 1527.76 -2.75 1788.87 -4.95 -79.34 70.37 

 



S6 
 

Table S5. Results of basis set and functionals testing for pyrite single cell. First two 

combinations were chosen for As-pyrite and Se-pyrite calculations, respectively. 

Pyrite FeS
2
   

Basis sets Functional 
Lattice 

parameter a, Å 

Difference, 

% 

Experiment (Rieder et al., 2007) 5.416 - 

S: Lichanot 
PW1PW 5.518 1.89 

Fe: ECP_Heifets 

S: Lichanot 

Fe: TZVP 
PW1PW 5.471 1.01 

S: Lichanot 

Fe: Towler 

PBEsol0 5.418 0.06 

PW1PW 5.480 1.17 

S: TZVP 

Fe: Towler 

PBEsol0 5.330 -1.58 

PW1PW 5.393 -0.42 

S: TZVP 

Fe: TZVP 

PBEsol0 5.340 -1.40 

PW1PW 5.402 -0.27 

S: TZVP 

Fe: ECP_Heifets 

PBEsol0 5.363 -0.97 

PW1PW 5.437 0.38 

S: Durand 

Fe: Durand 

PBEsol0 5.674 4.76 

PW1PW 5.767 6.47 
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Table S6. Results of basis set and functionals testing for arsenopyrite single cell. 

Arsenopyrite FeAsS          

Basis sets Functional 

 Lattice parameters angle  

a, Å 
 Difference, 

% 
b, Å 

Difference, 

% 
c, Å 

Difference, 

% 
β, ° 

Difference, 

% 

Experiment (Bindi, 2012) 5.761  - 5.684 - 5.767 - 111.721 - 

S: lichanot 

As: pp_Heyd 

Fe: ECP_Heifets 

PBEsol0 5.642  -2.07 5.646 -0.67 5.667 -1.73 112.434 0.64 

PW1PW 5.714  -0.82 5.717 0.58 5.737 -0.53 112.308 0.53 

S: lichanot 

As: TZVP 

Fe: ECP_Heifets 

PBEsol0 5.637  -2.15 5.637 -0.84 5.660 -1.86 112.590 0.78 

PW1PW 5.706  -0.96 5.703 0.34 5.726 -0.72 112.421 0.63 

S: lichanot 

As: TZVP 

Fe: Towler 

PBEsol0 5.618  -2.48 5.610 -1.31 5.635 -2.30 112.595 0.78 

PW1PW 5.683  -1.36 5.669 -0.27 5.697 -1.22 112.455 0.66 

S: lichanot 

As: pp_Heyd 

Fe: Towler 

PBEsol0 5.619  -2.47 5.615 -1.21 5.643 -2.15 112.389 0.60 

PW1PW 5.684  -1.33 5.677 -0.13 5.707 -1.05 112.219 0.45 

S: TZVP 

As: TZVP 

Fe: TZVP 

PBEsol0 5.580  -3.14 5.587 -1.71 5.609 -2.74 112.377 0.59 

PW1PW 5.643  -2.05 5.644 -0.70 5.674 -1.62 112.215 0.44 

S: Durand 

As: Durand 

Fe: Durand 

PBEsol0 5.743  -0.31 5.808 2.17 5.734 -0.57 114.650 2.62 

PW1PW 5.912  2.62 6.003 5.62 5.951 3.18 116.137 3.95 

S: Lichanot 

As: HWLC, val Durand 

Fe: Towler 

PBEsol0 5.622  -2.42 5.611 -1.29 5.629 -2.40 112.698 0.87 

PW1PW 5.673  -1.53 5.662 -0.39 5.681 -1.50 112.540 0.73 

S: Lichanot 

As: HWLC, val TZVP 

Fe: Towler 

PBEsol0 5.632  -2.24 5.627 -1.00 5.651 -2.02 112.595 0.78 

PW1PW 5.687  -1.29 5.681 -0.05 5.706 -1.06 112.430 0.63 
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Table S7. Results of basis set and functionals testing for dzharkenite single cell. 

Dzharkenite FeSe
2
   

Basis sets Functional 
Lattice 

parameter a, Å 

Difference, 

% 

Experiment (Mandarino, 1995) 5.783 - 

Se: pp_Heyd PW1PW 5.792 0.16 

Fe: TZVP PBEsol0 5.721 1.12 

Se: pp_Heyd 

Fe: ECP_Heifets 
PW1PW 5.822 0.63 

Se: pp_Heyd 

Fe: Towler 

PBEsol0 5.705 1.40 

PW1PW 5.774 0.21 

 

Table S8. Optimized versus experimental lattice parameter and interatomic distances of pyrite. PW1PW 

functional, Lichanot basis set for S and ECP_Heifets basis set for Fe were applied for calculations. 

Parameter Optimized structure Rieder et al., 2007 difference, % 

a, Å 5.518 5.416 1.89 

S-S, Å 2.15 2.16 -0.46 

Fe-S, Å 2.31 2.26 2.21 

S-S, Å 3.15 3.08 2.27 

S-S, Å 3.38 3.32 1.81 

 

Table S9. Optimized versus experimental lattice parameter and interatomic distances of pyrite. PW1PW 

functional, Lichanot basis set for S and TZVP basis set for Fe were applied for calculations. 

Parameter Optimized structure Rieder et al., 2007 difference, % 

a, Å 5.471 5.416 1.02 

S-S, Å 2.15 2.16 -0.46 

Fe-S, Å 2.29 2.26 1.33 

S-S, Å 3.12 3.08 1.30 

S-S, Å 3.35 3.32 0.90 

 

Table S10. Optimized versus experimental lattice parameter and interatomic distances of marcasite. 

PW1PW functional, Lichanot basis set for S and ECP_Heifets basis set for Fe were applied for 

calculations. 

Parameter Optimized structure Rieder et al., 2007 difference, % 

a, Å 4.508 4.446 1.39 

b, Å 5.516 5.425 1.68 

c, Å 3.443 3.386 1.68 

S-S, Å 2.18 2.21 -1.36 

S-Fe, Å 2.28 2.24 1.79 
 2.30 2.25 2.22 

S-S, Å 3.05 2.97 2.69 
 3.19 3.12 2.24 
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 3.19 3.12 2.24 
 3.19 3.12 2.24 
 3.19 3.12 2.24 
 3.29 3.23 1.86 
 3.29 3.23 1.86 
 3.29 3.23 1.86 
 3.29 3.23 1.86 
 3.44 3.39 1.47 
 3.44 3.39 1.47 

 

Table S11. Optimized versus experimental lattice parameter and interatomic distances of marcasite. 

PW1PW functional, Lichanot basis set for S and TZVP basis set for Fe were applied for calculations. 

Parameter Optimized structure Rieder et al., 2007 difference, % 

a, Å 4.482 4.446 0.84 

b, Å 5.484 5.425 1.09 

c, Å 3.409 3.386 0.68 

S-S, Å 2.18 2.21 -1.36 

S-Fe, Å 2.26 2.24 0.89 
 2.28 2.25 1.33 

S-S, Å 3.03 2.97 2.02 
 3.16 3.12 1.28 
 3.16 3.12 1.28 
 3.16 3.12 1.28 
 3.16 3.12 1.28 
 3.26 3.23 0.93 
 3.26 3.23 0.93 
 3.26 3.23 0.93 
 3.26 3.23 0.93 
 3.41 3.39 0.59 
 3.41 3.39 0.59 

 

Table S12. Optimized versus experimental lattice parameter and interatomic distances of arsenopyrite. 

PW1PW functional, all-electron split-valence Lichanot basis set for S, pp_Heyd basis set for As and ECP 

_Heifets basis set for Fe were applied for calculations. 

Parameter Optimized structure Bindi, 2012 difference, % 

a, Å 5.714 5.761 -0.82 

b, Å 5.717 5.684 0.58 

c, Å 5.737 5.767 -0.52 

angle β, ° 112.31 111.72 0.53 

As-S, Å 2.36 2.37 -0.42 

As-Fe, Å 2.38 2.37 0.42 
 2.39 2.41 -0.83 
 2.40 2.41 -0.41 

As-As, Å 3.02 3.04 -0.66 
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 3.18 3.19 -0.31 
 3.18 3.19 -0.31 
 3.35 3.35 0.00 
 3.35 3.35 0.00 

As-S, Å 3.05 3.06 -0.33 
 3.05 3.11 -1.93 
 3.30 3.32 -0.60 
 3.33 3.33 0.00 
 3.35 3.33 0.60 
 3.35 3.38 -0.89 

 

Table S13. Optimized versus experimental lattice parameter and interatomic distances of löllingite. 

PW1PW functional, pp_Heyd basis set for As and ECP_Heifets basis set for Fe were applied for 

calculations. 

Parameter Optimized structure Ondrus et al., 2001 difference, % 

a, Å 5.224 5.268 -0.84 

b, Å 6.001 5.963 0.64 

c, Å 2.86 2.9 -1.38 

As-As, Å 2.47 2.47 0.00 

As-Fe, Å 2.35 2.41 -2.49 
 2.35 2.41 -2.49 
 2.38 2.37 0.42 

As-As, Å 2.86 2.9 -1.38 
 2.86 2.9 -1.38 
 3.28 3.29 -0.30 
 3.28 3.29 -0.30 
 3.28 3.29 -0.30 
 3.28 3.29 -0.30 
 3.41 3.4 0.29 
 3.41 3.4 0.29 
 3.41 3.4 0.29 
 3.41 3.4 0.29 
 3.78 3.81 -0.79 
 3.78 3.81 -0.79 
 3.74 3.77 -0.80 

 

Table S14. Optimized versus experimental lattice parameter and interatomic distances of dzharkenite. 

PW1PW functional, pp_Heyd basis set for Se and TZVP basis set for Fe were applied for calculations. 

Parameter Optimized structure Mandarino, 1995 difference, % 

a, Å 5.792 5.783 0.16 

Se-Se, Å 2.40 2.28 5.03 

Fe-Se, Å 2.41 2.42 -0.31 

Se-Se, Å 3.27 3.29 -0.76 

Se-Se, Å 3.55 3.55 0.0 
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Table S15. TOLINTEG parameter, total energy, cell parameter and volume in single unit cell of pyrite. 

Basis sets applied for calculations were: Lichanot for S, ECP_Heifets for Fe. PW1PW functional was 

used for all calculations. 

TOLINTEG Total energy, Eh Total energy, kcal/mol a, Å volume, cm3 

Experiment 

(Rieder et al., 2007) 
- - 5.416 158.87 

6 6 6 6 12 -3681.8115 -2310371.6 5.5107 167.35 

7 7 7 7 14 -3681.8088 -2310369.9 5.5183 168.04 

7 7 7 9 30 -3681.8114 -2310371.5 5.5179 168.00 

8 8 8 8 16 -3681.8109 -2310371.2 5.5194 168.14 

9 9 9 9 18 -3681.8122 -2310372.1 5.5178 168.00 

10 10 10 10 20 -3681.8155 -2310374.1 5.5174 167.95 

11 11 11 11 22 -3681.8149 -2310373.7 5.5159 167.82 

 

 

Table S16. Shrinking factors, k-point density and total energy in supercells 2 x 2 x 2 for pyrite (Fe32S64). 

Basis sets applied for calculations were: Lichanot for S, ECP_Heifets for Fe. PW1PW functional and 

TOLINTEG 777930 were applied. 

Shrinking factor # k-points Total energy, Eh 
Total energy, 

kcal/mol 

Energy difference, 

kcal/mol 

SHRINK 4 4 14 -29454.49091433 -18482972.10059 - 

SHRINK 6 6 40 -29454.49091430 -18482972.10057 0.00002 

SHRINK 8 8 90 -29454.49091431 -18482972.10058 -0.00001 

SHRINK 10 10 172 -29454.49091432 -18482972.10059 -0.00001 

SHRINK 12 12 294 -29454.49091432 -18482972.10058 0.00000 

SHRINK 14 14 464 -29454.49091430 -18482972.10057 0.00001 

SHRINK 16 16 690 -29454.49091421 -18482972.10051 0.00006 

SHRINK 18 18 980 -29454.49091432 -18482972.10059 -0.00007 

 

 

Table S17. Shrinking factors, k-point density and total energy in supercells 3 x 2 x 2 for pyrite (Fe48S96). 

Basis sets applied for calculations were: Lichanot for S, ECP_Heifets for Fe. PW1PW functional and 

TOLINTEG 777930 were applied. 

Shrinking factor # k-points Total energy, Eh 
Total energy, 

kcal/mol 

Energy difference, 

kcal/mol 

SHRINK 4 4 36 -44181.73636383 -27724458.146073 - 

SHRINK 6 6 112 -44181.73636379 -27724458.146049 0.000024 

SHRINK 8 8 260 -44181.73636380 -27724458.146052 -0.000004 

SHRINK 10 10 504 -44181.73636379 -27724458.146049 0.000003 

SHRINK 12 12 868 -44181.73636379 -27724458.146051 -0.000002 

SHRINK 14 14 1376 -44181.73636379 -27724458.146049 0.00000 

SHRINK 16 16 2052 -44181.73636380 -27724458.14605 0.00000 

SHRINK 18 18 2920 -44181.73636380 

 

-27724458.14605 0.00000 
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Table S18. Se K-edge absorption energies in eV at the inflection point 

Compound This studya Ryser et al. (2005) 
Matamoros-Veloza 

et al. (2014)b 

Ferroselite (FeSe2) 12657.2 12657.0 12656.3 

Achavelite (FeSe) 12657.4    

Arsenopyrite (FeAsS:Se) 12657.8    

Elemental Se (Se0) 12658.0 12658.0 12658.0 

Marcasite 12658.2    

Pyrite 12658.4    

Na2SeO3 12662.2 12662.0 12662.3 

Na2SeO4 12665.5 12664.0 12665.4 
aUncertainty 0.1 eV; bUncertainty 0.4 eV 

 

Table S19. As K-edge absorption energies in eV 

Compound Inflection point White line energy 

Arsenopyrite (FeAsS) 11865.9 11867.6 

Pyrite (FeS2) 11866.2 11867.9 

Realgar (As4S4) 11866.8 11868.4 

As2O3 11868.6 11870.0 

As2O5 11872.3 11873.6 

 

Table S20. Calculated lattice parameters 

Model Supercell a, Å b, Å c, Å α, ° β, ° γ, ° 

2Se-1 222 10.964 10.964 10.964 90.043 90.043 90.043 

2Se-2 222 10.964 10.964 10.964 89.958 90.042 89.958 

2Se-3 222 10.964 10.964 10.964 90.000 90.000 89.957 

2Se-4 222 10.964 10.964 10.964 90.000 89.995 89.956 

3Se-1 322 16.456 10.964 10.964 89.956 90.016 89.985 

3Se-2 322 16.456 10.964 10.964 89.958 90.014 89.983 

3Se-3 322 16.456 10.964 10.964 89.986 89.986 89.986 

3Se-4 322 16.445 10.964 10.964 89.984 89.986 89.985 

2As-1 222 11.070 11.042 11.062 89.986 89.941 90.125 

2As-2 222 11.075 11.080 11.023 89.705 90.157 90.013 

2As-3 222 11.056 11.060 11.060 90.034 90.086 90.061 

2As-4 222 11.050 11.066 11.059 90.056 90.356 89.956 

3As-1 322 16.589 11.052 11.064 89.962 89.989 90.017 

3As-2 322 16.608 11.035 11.071 89.895 89.990 89.926 

3As-3 322 16.583 11.056 11.061 90.036 90.077 89.982 

3As-4 322 16.586 11.057 11.059 90.016 89.984 90.225 

3As-5 322 16.585 11.063 11.056 89.943 90.029 90.072 

3As-6 322 16.591 11.059 11.059 89.976 89.977 89.963 
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3As-7 322 16.580 11.065 11.055 89.899 89.847 89.931 

3As-8 322 16.578 11.061 11.056 90.040 90.176 90.137 

3. Supplementary figures 

 



S14 

 

Figure S1. Photographs of pyrite and three references: arsenopyrite (FeAsS), ferroselite (orthorhombic 

FeSe2), and marcasite (orthorhombic FeS2). 

 
 

 
Figure S2. XRD patterns of pyrite (a) and references (b). Blue dashed lines in (a) indicate the reflections 

of pyrite (cubic FeS2) and red dashed lines the reflections of marcasite (orthorhombic FeS2). On the right 

is an enlargement of the angular region where the second most intense hkl reflection of marcasite (211) 
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occurs (52°) and which does not overlap with any reflection from pyrite. No marcasite impurity is 

detected in this diagnostic region. 

 

 

 
Figure S3. (a) Two color and one color EPMA maps of the distribution of As, Se, S and Au in the zoned 

pyrite from Bolivia (Bol). Spots with numbers indicate the location of the EPMA analyses. Map size: 

115 (V) x 135 (H) μm2; pixel size: 1 x 1 µm2; probe diameter: 1 µm; dwell time 2 sec; electron voltage 

= 20 kV, current = 500 nA. (b) EPMA analyses (wt.%). 
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Figure S4. Scatter plots of S, Fe, As, Se, and Au fluorescence counts derived from the EPMA maps of 

Figure S3 and Pearson correlation coefficients ρ. 

 

 

 

 



S17 

 

 
Figure S5. (a) SXRF map of the distribution of As in pyrite from Bolivia (Bol). Map size: 100 (V) x 60 

(H) μm2. (b) Micro SXRF spectra from spots marked 6-9. (c) Bulk SXRF spectrum from arsenopyrite 

diluted in boron nitride (BN). 
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Figure S6. As K-edge micro EXAFS spectra measured on spots 6-9. 
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Figure S7. Bonding environment of Se in the Fe32Se2S62 (a) and Fe48Se3S93 (b) equilibrium structures. The S-S edges in yellow are 3.08 Å long 

and the S-S edges in green are 3.32 Å long in unsubstituted pyrite. The red line connects the dianionic pair. The DFT Se-Se2 distance of 3.14-3.14 

Å on short edges is similar to the EXAFS distance of 3.16 Å for model 2 (Table 2). EXAFS does not have the sensitivity to detect the second Se-

Se2 distance at 3.37 Å on long edges.  

 



S20 

 

 
Figure S8. Fit of the first EXAFS shell for sample 2 POI g from Ryser et al.19 The first shell 

was fit originally with 1 Se at 2.25 Å and 3 Fe at 2.25 Å and the two Debye-Waller factors  

adjusted independently. Data analysis shows that the fit was underconstrained and the 

coordination number (CN) and Debye-Waller (σ) parameters correlated. The EXAFS function 

was refitted here by covarying the two  values to suppress correlations. In (a) the first shell 

contains 1 Se and 3 Fe as in the original fit, and in (b) the Se atom was replaced with S. Results 

show that the 1S + 3Fe model provides a better fit to data. We conclude from this that [SeSe]1 

pairs are unlikely to exist in sample 2 POI g and that Se most likely forms a SeS dianion group. 
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6. EXAFS spectra 
k3-weighted As-EXAFS   k3-weighted Se-EXAFS  

2.0000  0.26616    2.0000  0.79829 

2.0500  0.39624    2.0500  0.94560 

2.1000  0.49244    2.1000  1.0307 

2.1500  0.62861    2.1500  1.0777 

2.2000  0.76271    2.2000  1.0826 

2.2500  0.98235    2.2500  1.0915 

2.3000  1.1905    2.3000  1.1656 

2.3500  1.3954    2.3500  1.2407 

2.4000  1.5132    2.4000  1.2305 

2.4500  1.5907    2.4500  1.1320 

2.5000  1.5609    2.5000  0.86891 

2.5500  1.4164    2.5500  0.50212 

2.6000  1.2083    2.6000  0.13255 

2.6500  0.77657    2.6500  -0.26528 

2.7000  0.33466    2.7000  -0.76171 

2.7500  -0.25579    2.7500  -1.3097 
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2.8000  -0.78737    2.8000  -1.8355 

2.8500  -1.2198    2.8500  -2.2814 

2.9000  -1.5274    2.9000  -2.5474 

2.9500  -1.6071    2.9500  -2.6568 

3.0000  -1.5976    3.0000  -2.6140 

3.0500  -1.5973    3.0500  -2.4971 

3.1000  -1.6419    3.1000  -2.3552 

3.1500  -1.8581    3.1500  -2.1781 

3.2000  -2.0263    3.2000  -1.9817 

3.2500  -2.1374    3.2500  -1.7655 

3.3000  -2.0677    3.3000  -1.3348 

3.3500  -1.6056    3.3500  -0.61562 

3.4000  -0.69313    3.4000  0.37972 

3.4500  0.25093    3.4500  1.5993 

3.5000  1.2780    3.5000  2.7271 

3.5500  2.0393    3.5500  3.6033 

3.6000  2.7763    3.6000  4.2319 

3.6500  3.0515    3.6500  4.3552 

3.7000  3.1067    3.7000  4.0872 

3.7500  3.1547    3.7500  3.8606 

3.8000  2.8496    3.8000  3.5537 

3.8500  2.0341    3.8500  2.9682 

3.9000  1.1905    3.9000  1.7557 

3.9500  0.050863    3.9500  -0.21023 

4.0000  -0.90771    4.0000  -1.1319 

4.0500  -1.5305    4.0500  -2.1138 

4.1000  -1.8800    4.1000  -2.9864 

4.1500  -2.3348    4.1500  -3.4378 

4.2000  -2.5036    4.2000  -3.4491 

4.2500  -2.2935    4.2500  -3.5551 

4.3000  -2.0885    4.3000  -2.9777 

4.3500  -1.6766    4.3500  -2.7266 

4.4000  -1.7180    4.4000  -2.6194 

4.4500  -2.0713    4.4500  -2.4049 

4.5000  -2.6801    4.5000  -2.6267 

4.5500  -3.4607    4.5500  -3.3521 

4.6000  -3.6702    4.6000  -3.2854 

4.6500  -3.4240    4.6500  -3.3018 

4.7000  -1.9083    4.7000  -1.4318 

4.7500  -0.29493    4.7500  0.17050 

4.8000  1.6841    4.8000  1.6898 

4.8500  3.4136    4.8500  3.7550 

4.9000  4.6399    4.9000  4.6745 

4.9500  5.2130    4.9500  5.3861 

5.0000  6.1376    5.0000  5.9509 

5.0500  6.9637    5.0500  7.0060 

5.1000  7.2470    5.1000  6.8002 

5.1500  6.9194    5.1500  7.5756 

5.2000  5.9423    5.2000  5.8610 

5.2500  5.1046    5.2500  5.6884 

5.3000  3.5979    5.3000  3.6158 

5.3500  2.0693    5.3500  1.2811 

5.4000  0.069989    5.4000  0.040582 
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5.4500  -1.7929    5.4500  -2.3178 

5.5000  -3.0620    5.5000  -3.8000 

5.5500  -3.5339    5.5500  -4.8479 

5.6000  -4.0887    5.6000  -5.0913 

5.6500  -4.0167    5.6500  -5.4134 

5.7000  -5.3636    5.7000  -5.0293 

5.7500  -6.9250    5.7500  -6.5259 

5.8000  -8.0400    5.8000  -7.8269 

5.8500  -8.2341    5.8500  -7.5178 

5.9000  -7.1403    5.9000  -7.0566 

5.9500  -5.9404    5.9500  -4.7290 

6.0000  -4.2905    6.0000  -3.5815 

6.0500  -3.2413    6.0500  -0.90567 

6.1000  -1.9562    6.1000  0.84439 

6.1500  -0.12405    6.1500  2.5368 

6.2000  1.7767    6.2000  3.3244 

6.2500  3.0902    6.2500  3.6316 

6.3000  3.2769    6.3000  4.3131 

6.3500  2.6038    6.3500  2.6509 

6.4000  1.7326    6.4000  2.7221 

6.4500  2.2010    6.4500  1.4240 

6.5000  2.5108    6.5000  2.6028 

6.5500  3.7087    6.5500  2.6989 

6.6000  3.8455    6.6000  4.1819 

6.6500  4.3133    6.6500  3.3907 

6.7000  4.8254    6.7000  4.9749 

6.7500  5.2282    6.7500  4.4594 

6.8000  6.3380    6.8000  6.0585 

6.8500  5.9066    6.8500  5.1488 

6.9000  5.1261    6.9000  4.5620 

6.9500  5.0682    6.9500  2.6317 

7.0000  3.8286    7.0000  1.0440 

7.0500  2.3723    7.0500  0.74569 

7.1000  -0.093105    7.1000  -2.0813 

7.1500  -2.8204    7.1500  -2.7736 

7.2000  -5.9806    7.2000  -6.8532 

7.2500  -7.2432    7.2500  -8.2583 

7.3000  -6.8103    7.3000  -7.2454 

7.3500  -6.7082    7.3500  -5.4410 

7.4000  -7.0758    7.4000  -6.3527 

7.4500  -6.9946    7.4500  -6.2466 

7.5000  -6.8165    7.5000  -6.1353 

7.5500  -6.3441    7.5500  -6.7658 

7.6000  -4.6438    7.6000  -4.3765 

7.6500  -3.0112    7.6500  -3.7602 

7.7000  -2.1338    7.7000  -2.4431 

7.7500  -0.76941    7.7500  -2.1632 

7.8000  -0.65473    7.8000  -2.1219 

7.8500  -1.5031    7.8500  -2.7195 

7.9000  -0.18552    7.9000  -1.6914 

7.9500  2.1588    7.9500  1.0890 

8.0000  6.4714    8.0000  6.1445 

8.0500  9.7006    8.0500  9.9183 
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8.1000  10.657    8.1000  9.9178 

8.1500  10.459    8.1500  11.498 

8.2000  9.6748    8.2000  9.5717 

8.2500  9.3580    8.2500  12.636 

8.3000  6.9566    8.3000  8.7415 

8.3500  4.7569    8.3500  7.0991 

8.4000  1.6793    8.4000  3.2567 

8.4500  -1.5539    8.4500  1.1611 

8.5000  -3.9910    8.5000  -2.1571 

8.5500  -3.5303    8.5500  -2.9457 

8.6000  -3.5021    8.6000  -3.1676 

8.6500  -3.0120    8.6500  -2.6443 

8.7000  -3.6894    8.7000  -1.6841 

8.7500  -4.3190    8.7500  -5.3677 

8.8000  -5.2845    8.8000  -3.9108 

8.8500  -4.7537    8.8500  -4.8447 

8.9000  -3.1674    8.9000  -0.25019 

8.9500  -1.2276    8.9500  -1.9238 

9.0000  -1.8260    9.0000  0.37759 

9.0500  -0.56155    9.0500  -0.46755 

9.1000  -0.36057    9.1000  -3.1691 

9.1500  -2.6416    9.1500  -4.9440 

9.2000  -3.8554    9.2000  -8.1887 

9.2500  -5.8516    9.2500  -6.3057 

9.3000  -6.9440    9.3000  -9.4222 

9.3500  -7.0953    9.3500  -11.060 

9.4000  -7.0426    9.4000  -10.729 

9.4500  -5.6286    9.4500  -6.8438 

9.5000  -3.0549    9.5000  -6.1101 

9.5500  0.36686    9.5500  0.60362 

9.6000  2.8004    9.6000  1.1010 

9.6500  6.5784    9.6500  3.4045 

9.7000  7.7103    9.7000  9.7957 

9.7500  9.4691    9.7500  15.959 

9.8000  9.9380    9.8000  16.615 

9.8500  9.2164    9.8500  14.028 

9.9000  9.5655    9.9000  16.171 

9.9500  10.626    9.9500  10.314 

10.000  6.9965    10.000  9.6327 

10.050  6.6688    10.050  10.408 

10.100  5.7293    10.100  7.9521 

10.150  7.2677    10.150  9.5880 

10.200  5.3881    10.200  7.2901 

10.250  3.4387    10.250  0.71264 

10.300  -2.2982    10.300  -4.6975 

10.350  -5.8703    10.350  -8.5842 

10.400  -9.2306    10.400  -13.201 

10.450  -11.322    10.450  -13.734 

10.500  -12.674    10.500  -17.842 

10.550  -13.590    10.550  -16.526 

10.600  -14.174    10.600  -17.544 

10.650  -13.735    10.650  -16.427 

10.700  -11.464    10.700  -11.374 
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10.750  -8.2448    10.750  -7.0344 

10.800  -4.3659    10.800  -4.0859 

10.850  -3.2943    10.850  -4.4864 

10.900  -0.13950    10.900  -0.25827 

10.950  2.9273    10.950  0.34795 

11.000  6.5308    11.000  7.5629 

11.050  8.1810    11.050  9.1282 

11.100  9.1027    11.100  11.082 

11.150  9.5960    11.150  8.4138 

11.200  8.6832    11.200  9.3127 

11.250  9.6212    11.250  7.3250 

11.300  9.6674    11.300  14.185 

11.350  8.9892    11.350  11.587 

11.400  7.4469    11.400  10.299 

11.450  3.9599    11.450  7.8726 

11.500  0.44762    11.500  3.5633 

11.550  -0.95937    11.550  -0.83420 

11.600  -2.4085    11.600  -7.1820 

11.650  -3.3124    11.650  -7.9555 

11.700  -4.5783    11.700  -6.7431 

11.750  -3.9655    11.750  -7.1201 

11.800  -4.4998    11.800  -4.4345 

11.850  -3.0126    11.850  0.56694 

11.900  -2.2824    11.900  -0.72288 

11.950  -0.048844    11.950  1.1418 

12.000  -1.0915    12.000  2.0238 

12.050  -3.6917    12.050  0.090986 

12.100  -3.2344    12.100  -1.1576 

12.150  -3.1282    12.150  -3.3562 

12.200  -4.7111    12.200  -5.2304 

12.250  -2.3019    12.250  -8.4865 

12.300  -1.0214    12.300  -1.5842 

12.350  0.32290    12.350  -2.7759 

12.400  0.080365    12.400  -4.6243 

12.450  -1.5143    12.450  -3.3260 

12.500  0.18834    12.500  -5.8521 

12.550  1.0020    12.550  -0.85200 

12.600  -1.0671    12.600  -0.99685 

12.650  -0.032443    12.650  0.10999 

12.700  -1.1906    12.700  -2.7454 

12.750  1.0653    12.750  2.5813 

12.800  3.5748    12.800  -0.55342 

12.850  2.4904    12.850  5.3239 

12.900  1.2055    12.900  2.9285 

12.950  3.1667    12.950  11.961 

13.000  4.3522    13.000  9.1107 

13.050  6.7235    13.050  12.655 

13.100  5.9964    13.100  9.2925 

13.150  4.8332    13.150  9.2028 

13.200  2.7348    13.200  8.1624 

13.250  1.3229    13.250  3.8166 

13.300  -0.71824    13.300  7.7472 

13.350  -1.3552    13.350  -3.7454 
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13.400  -2.2247    13.400  -2.7199 

13.450  -3.0564    13.450  -2.7324 

13.500  -4.0179    13.500  -5.1474 

13.550  -5.1273    13.550  -8.8529 

13.600  -4.8137    13.600  -5.8019 

13.650  -6.1890    13.650  -13.225 

13.700  -7.3673    13.700  -13.746 

13.750  -6.2048    13.750  -10.505 

13.800  -4.6294    13.800  -1.1338 

13.850  -5.9750    13.850  -1.2276 

13.900  -3.4949    13.900  -6.8623 

13.950  0.70274    13.950  -2.9457 

14.000  1.1562    14.000  -8.2199 

14.050  4.5725    14.050  -4.8167 

14.100  4.5363    14.100  -3.4426 

14.150  7.1013 

14.200  5.2192 

14.250  5.2430 

14.300  6.3670 

14.350  5.4506 

14.400  2.9672 

14.450  2.1376 

14.500  2.9301 

14.550  2.3790 

14.600  1.1721 

14.650  -1.3919 

14.700  2.0720 

14.750  0.58659 

14.800  1.8174 

14.850  2.3578 

14.900  -4.2839 

14.950  -4.6901 

15.000  -6.2599 

15.050  -5.5322 

15.100  -1.9332 

15.150  -5.1721 

15.200  -7.3530 

15.250  -7.3808 

15.300  -2.1165 

15.350  -2.8451 

15.400  -1.2475 

15.450  -0.82886 

15.500  2.9280 

15.550  1.9028 

15.600  2.5773 

15.650  2.3333 

15.700  0.98683 

15.750  4.6828 

15.800  4.2982 

15.850  2.2402 

15.900  3.5881 

15.950  4.1250 


