
HAL Id: hal-02465446
https://hal.science/hal-02465446v1

Preprint submitted on 4 Feb 2020 (v1), last revised 10 Mar 2021 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal quantization of the mean measure and
application to clustering of measures
Frédéric Chazal, Clément Levrard, Martin Royer

To cite this version:
Frédéric Chazal, Clément Levrard, Martin Royer. Optimal quantization of the mean measure and
application to clustering of measures. 2020. �hal-02465446v1�

https://hal.science/hal-02465446v1
https://hal.archives-ouvertes.fr


Optimal quantization of the mean

measure and application to clustering of

measures

Frédéric Chazal 1, Clément Levrard2 and Martin Royer1

1DataShape, Inria Saclay, e-mail: frederic.chazal@inria.fr; martin.royer@inria.fr
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Abstract: This paper addresses the case where data come as point sets,
or more generally as discrete measures. Our motivation is twofold: first we
intend to approximate with a compactly supported measure the mean of
the measure generating process, that coincides with the intensity measure
in the point process framework, or with the expected persistence diagram
in the framework of persistence-based topological data analysis. To this aim
we provide two algorithms that we prove almost minimax optimal.

Second we build from the estimator of the mean measure a vectoriza-
tion map, that sends every measure into a finite-dimensional Euclidean
space, and investigate its properties through a clustering-oriented lens. In
a nutshell, we show that in a mixture of measure generating process, our
technique yields a representation in Rk, for k ∈ N∗ that guarantees a good
clustering of the data points with high probability. Interestingly, our re-
sults apply in the framework of persistence-based shape classification via
the ATOL procedure described in [28].

1. Introduction

This paper handles the case where we observe n i.i.d measures X1, . . . , Xn,
rather than n i.i.d sample points, the latter case being the standard input of
many machine learning algorithms. Such kind of observations naturally arise in
many situations, for instance when data are spatial point patterns: in species
distribution modeling [27], repartition of clusters of diseases [13], modelisation
of crime repartition [29] to name a few. The framework of i.i.d sample measures
also encompasses analysis of multi-channel time series, for instance in embank-
ment dam anomaly detection from piezometers [17], as well as topological data
analysis via persistence diagrams [14, 7]. The objective of the paper is twofold:
first we want to build from data a compact representation of the mean of the
measure, in the arithmetic sense. Second, based on the first construction, we
intend to provide a provably efficient clustering technique for measures.

Applications for the first objective might be found whenever the sample mea-
sures are organized around a central measure of interest, for instance in image
analysis [12] or point processes modeling [27, 13, 29]. In [12], the central mea-
sure is defined as the Wasserstein barycenter of the distribution of measures.
Namely, if we assume that X1, . . . , Xn are i.i.d measures on R

d drawn from X ,
where X is a probability distribution on the space of measures, then the central
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/Clustering with quantized MM 2

measure is defined as µW = argminν E (W2(X, ν))
2
, where ν ranges in the space

of measures and W2 denotes the Wasserstein distance. Note that this definition
only makes sense in the case where X(Rd) is constant a.s., that is when we
draw measures with the same total mass. Moreover, computing the Wasserstein
barycenter of X1, . . . , Xn in practice is too costly for large n’s, even with ap-
proximating algorithms [12, 25]. To overcome these difficulties, we choose to
define the central measure as the arithmetic mean of X , denoted by E(X), that
assigns the weight E [X(A)] to a borelian set A. In the point process theory, the
mean measure is often referred to as the intensity function of the process.

An easily computable estimator of this mean measure is the sample mean
measure X̄n = (

∑n
i=1Xi) /n. We intend to build a k-points approximation of

E(X), that is a distribution Pc supported by c = (c1, . . . , ck) that approximates
well E(X), based on X1, . . . , Xn. To this aim, we introduce two algorithms
(batch and mini-batch) that extend classical quantization techniques intended
to solve the k-means problem [22]. In fact, these algorithms are build to solve
the k-means problem for X̄n. We prove in Section 2.2 that these algorithms
provide minimax optimal estimators of a best possible k-points approximation
of E(X), provided that E(X) satisfies some structural assumption. Interestingly,
our results also proves optimality of the classical quantization techniques [22, 21]
in the point sample case.

The second objective, clustering of measures, has a wide range of possible
applications: in the case where data come as a collection of finite point sets for
instance, including ecology [27], genetics [28, 2], graphs clustering [6, 16] and
shapes clustering [7]. Our technique is based on a vectorization of the measures,
that is a map v that sends every measureX1 into R

k. We build this vectorization
using the optimal k-points c = (c1, . . . , ck) obtained in the first part (Section
2.2), transforming each Xi into a vector vi ∈ R

k that roughly encodes how
much weight Xi spreads around every cj . Note that a vectorization based on
a fixed grid of Rd is possible, however the dimension of such a vectorization
would be quite large. In the particular framework of topological data analysis
and persistence diagrams clustering, vectorization via evaluation onto a fixed
grid is the technique exposed in [3], whereas our method has clear connections
with the procedures described in [32, 28].

For this vectorization scheme, we provide general conditions on the structure
of the sample measures that allow an almost exact clustering based on the
vectorization space. It is worth mentioning that our theoretical results include
vectorization via evaluations of kernel functions around each point cj , for a
general class of kernel functions that encompasses the one used in [28]. Further,
we also prove in Section 4 that theses structural conditions are fulfilled in a
framework of shape classification via persistence diagrams. As a consequence, we
theoretically asses the performance of the procedure exposed in [28]. Up to our
knowledge, this provides the only theoretical guarantee on such a persistence-
based clustering algorithm.

The paper is organized as follows: in Section 2, we introduce notation along
with the exposition of the problem of mean measure quantization. Then, two
theoretically grounded algorithms are described to solve this problem from the
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/Clustering with quantized MM 3

sample X1, . . . , Xn. Section 3 exposes our general vectorization technique, and
conditions that guarantee a correct clustering based on it. Section 4 investigates
the special case where the measures are persistence diagrams built from sam-
plings of different shapes, showing that all the previously exposed theoretical
results apply in this framework. Sections 5, 6 and 7 gather the main proofs of the
results. At last, Section 8 gives the proof of intermediate and technical results.

2. Quantization of the mean measure

2.1. Definition and notation

Throughout the paper we will consider finite measures on the d-dimensional
ball B(0, R) of the Euclidean space R

d, and denote by M(R,M) the set of
such measures of total mass smaller than M . For an element µ ∈ M(R,M) we
denote by M(µ) its total mass. Further, if µ ∈ M(R,M) and f is a borelian
function from R

d to R, we denote by µ(du) • f(u) integration of f with respect
to µ, whenever µ(du) • |f |(u) is finite. We let X denote a random variable
taking values in M(R,M), and X1, . . . , Xn denote an i.i.d. sample with the
same distribution as X . Definition 1 below introduces the mean measure.

Definition 1. Let B(Rd) denote the borelian sets of R
d. The mean measure

E(X) is defined as the measure such that

∀A ∈ B(Rd) E(X)(A) = E (X(A)) .

As well, the empirical mean measure X̄n may be defined via

∀A ∈ B(Rd) X̄n(A) =
1

n

n
∑

i=1

Xi(A).

In the case where the measures of interest are persistence diagrams, the mean
measure defined above is the expected persistence diagram, defined in [10]. If
the sample measures are point processes, E(X) is the intensity function of the
process. It is straightforward that, if P (X ∈ M(R,M)) = 1, then both E(X)
and X̄n are (almost surely) elements of M(R,M). The goal of this paper is to
build a k-points approximation of E(X) based on X1, . . . , Xn.

If µ1, µ2 ∈ M(R,M) satisfy M(µ1) =M(µ2), and p ∈ [[1,+∞]], we may de-
fineWp(µ1, µ2) as the p-Wasserstein distance between µ1 and µ2. LetMk(R,M)
denote the subset of M(R,M) that consists of distributions supported by k
points. Adopting the vocabulary of quantization, each support point of a finite
k-points distribution is called a codepoint, and the vector made of k codepoints
c1, . . . , ck is called a codebook. For any codebook c = (c1, . . . , ck) ∈ B(0, R)k,
we let

Wj(c) = {x ∈ R
d | ∀i < j ‖x− cj‖ < ‖x− ci‖ and ∀i > j ‖x− cj‖ ≤ ‖x− ci‖},

N(c) = {x | ∃i < j x ∈Wi(c) and ‖x− cj‖ = ‖x− cj‖},
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so that (W1(c), . . . ,Wk(c)) forms a partition of R
d and N(c) represents the

skeleton of the Voronoi diagram associated with c. Given a codebook c, a stan-
dard way to approximate E(X) with a probability distribution supported by c

is to consider Pc =
∑k

j=1 E(X)(Wj(c))δcj . It is then easy to see that, for any

other distribution P ′
k =

∑k
j=1 µjδcj such that

∑k
j=1 µj =M(E(X)), supported

by c,

W 2
2 (E(X), P ′

k) ≥W 2
2 (E(X), Pc) = E(X)(du) • min

j=1,...,k
‖u− cj‖2 = R(c).

Thus, finding the best k-points approximation of E(X) in terms of W2 boils
down to minimize R(c). Note that R(c) is often referred to as the distortion
of c, in the quantization framework. According to [15, Corollary 3.1], since
E(X) ∈ M(R,M), there exists minimizers c∗ of R(c), and we let Copt denote
the set of such minimizers. In what follows, R∗ will denote the optimal distortion
achievable with k points, that is R∗ = R(c), where c ∈ Copt. Basic properties of
Copt are recalled below.

Proposition 2. [20, Proposition 1] Recall that E(X) ∈ M(R,M), then

1. B = infc∈Copt,j 6=i ‖c∗i − c∗j‖ > 0,
2. pmin = infc∈Copt,j=1,...,k E(X) (Wj(c

∗)) > 0.

In what follows, we will further assume that E(X) satisfies a so-called margin
condition, defined in [18, Definition 2.1] and recalled below.

Definition 3. E(X) ∈ M(R,M) satisfies a margin condition with radius r0 > 0
if and only if, for all 0 ≤ t ≤ r0,

sup
c∗∈Copt

E(X) (B(N(c∗), t)) ≤ Bpmin

128R2
t.

In a nutshell, a margin condition ensures that the mean distribution E(X) is
well-concentrated around k poles. Following [20], a margin condition will ensure
that usual k-means type algorithms are almost optimal in terms of distortion.
These algorithms are recalled below and adapted to the mean-measure quanti-
zation framework.

2.2. Batch and mini-batch algorithms

Let X1, . . . , Xn be i.i.d random measures in MNmax
(R,M) (where we recall

that MNmax
(R,M) is the set of distributions in M(R,M) supported by at most

Nmax points). This section exposes two algorithms that are intended to approxi-
mate a best k-points empirical codebook, that is a codebook ĉn which minimizes
W2(X̄n, P̂c), for c ∈ B(0, R)k, P̂c being defined by

∑k
j=1 X̄n(Wj(c))δcj . These

algorithms are extensions of two well-known clustering algorithms, namely the
Lloyd algorithm ([21]) and Mac Queen algorithm ([22]). We first introduce the
counterpart of Lloyd algorithm.
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Algorithm 1: Batch algorithm (Lloyd)

Input :X1, . . . , Xn and k ;
# Initialization

Sample c
(0)
1 , c

(0)
2 ,. . . c

(0)
k from X̄n. ;

while c(t+1) 6= c(t) do :
# Centroid update.

for j in 1 . . k :

c
(t+1)
j = 1

X̄n(Wj(c(t)))
X̄n(du) •

[

u1Wj(c(t))(u)
]

;

Output : c(T ) (codebook of the last iteration) .

Note that Algorithm 1 is a batch algorithm, in the sense that every iteration
need to process the whole data set X1, . . . , Xn. Fortunately, Theorem 4 below
ensures that a limited number of iterations are required for Algorithm 1 to
provide an almost optimal solution. In the sample point case, that is when

we observe n i.i.d points X
(1)
i , Algorithm 1 is the usual Lloyd’s algorithm.

In this case, the mean measure E(X) is the distribution of X
(1)
1 , that is the

usual sampling distribution of the n i.i.d points. As well, the counterpart of
Mac-Queen algorithm ([22]) for standard k-means clustering is the following
mini-batch algorithm.

Algorithm 2: Mini-batch algorithm (Mac-Queen)

Input :X1, . . . , Xn, divided into mini-batches (B1, . . . , BT ) of sizes (n1, . . . , nT ),
and k ;
# Initialization

Sample c
(0)
1 , c

(0)
2 ,. . . c

(0)
k from X̄n. ;

for j = 0, . . . , T − 1 do :
# Centroid update.

for j in 1 . . k :

c
(t+1)
j = c

(t)
j − 1

(t+1)X̄Bt+1(Wj(c(t)))
X̄Bt+1(du) •

[

(c
(t)
j − u)1Wj(c(t))(u)

]

;

Output : c(T ) (codebook of the last iteration) .

Whenever ni = 1 for i = 1, . . . , n, Algorithm 2 is a slight modification of the
original Mac-Queen algorithm ([22]). Indeed, the Mac-Queen algorithm takes
mini-batches of size 1, and estimates the population of the cell j at the t-th

iteration via
∑t

ℓ=1 p̂
(ℓ)
j instead of tp̂

(t)
j , where p̂

(t)
j = X̄Bt

(

Wj(c
(t))
)

. These
modifications are motivated by Theorem 5, that guarantees near-optimality of
the output of Algorithm 2, provided that the mini-batches are large enough.

2.3. Theoretical guarantees

This section exposes theoretical guarantees for the two algorithms introduced
in Section 2.2. Note that these guarantees are stated on the excess distortion
R(cT ) − R∗, where cT is the output of the considered algorithm. In fact, the
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same bounds hold also for ‖cT − c∗‖2, up to the M(E(X)) factor. A special
interest will be paid to the sample-size dependency of the excess distortion.
From this standpoint, a first negative result may be derived from the quantiza-
tion framework. Indeed, from [20, Proposition 7], we may deduce that, for any
empirically designed codebook ĉ,

inf
{X|E(X) has a r0-margin}

E(R(ĉ)−R∗) ≥ c0M(E(X))R2 k
1− 2

d

n
. (1)

In fact, this bounds holds in the special case where X satisfies the additional
assumption X = δX(1) a.s., pertaining to the vector quantization case. Thus it
holds in the general case. This small result ensures that the sample-size depen-
dency of the minimax excess distortion over the class of distribution of discrete
measures whose mean measure satisfies a margin condition with radius r0 is of
order 1/n or greater.

A first upper bound on this minimax excess distortion may be derived from
the following Theorem 4, that investigates the performance of the output of
Algorithm 1.

Theorem 4. Assume that E(X) satisfies a margin condition with radius r0, and

denote by R0 = Br0
16

√
2R

, κ0 = R0

R . Choose T = ⌈ log(n)
log(4/3)⌉, and let c(T ) denote

the output of Algorithm 1. If c(0) ∈ B(Copt, R0), then, for n large enough, with

probability 1− 24e−c1np
2
minκ

2
0/M

2 − e−x, where c1 is a constant, we have

R(c(T ))−R∗ ≤M(E(X))

(

B2r20
512R2n

+ C
M2R2k2d log(k)

np2min

(1 + x)

)

,

for all x > 0, where C is a constant.

Combined with (1), Theorem 4 ensures that Algorithm 1 reaches the minimax
precision rate in terms of excess distortion after O(log(n)) iterations, provided
that the initialization is good enough. In the standard quantization case, The-
orem 4 might be compared with [18, Theorem 3.1] for instance. In this case,
the dependency on the dimension d provided by Theorem 4 is sub-optimal.
Slightly anticipating, dimension-free bounds in the mean-measure quantization
case exist, for instance by considering the output of Algorithm 2.

In practice, Theorem 4 guarantees that choosing T = 2 log(n) and repeating
several Loyd algorithms starting from different initializations provides an opti-
mal quantization scheme. Note that combining [20, Theorem 3] or [30] and a de-
viation inequality for distortions such as in [18] gives an alternative proof of the
optimality of Lloyd type schemes, in the sample points case where Xi = δ

X
(1)
i

.

Theorem 4 provides in addition an upper bound on the number of iterations
needed, as well as an extension of these results to the quantization of mean
measure case. Its proof, that may be found in Section 5.1, relies on stochastic
gradient techniques in the convex and non-smooth case. Bounds for the single-
pass Algorithm 2 might be stated the same way.
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Theorem 5. Assume that E(X) satisfies a margin condition with radius r0,
and denote by R0 = Br0

16
√
2R

, κ0 = R0/R. If (B1, . . . , BT ) are equally sized mini-

batches of length ckM2 log(n)/(κ0pmin)
2, where c is a positive constant, and

c(T ) denotes the output of Algorithm 2, then, provided that c(0) ∈ B(Copt, R0),
we have

E

(

R(c(T ))−R∗
)

≤M(E(X))

(

Ck2M3R2 log(n)

nκ20p
3
min

)

.

A proof of Theorem 5 is given in Section 5.3. Theorem 5 entails that the
resulting codebook of Algorithm 2 has an optimal distortion, up to a log(n)
factor and provided that a good enough initialization is chosen. As for Algorithm
1, in practice, several initializations may be tried and the codebook with the
best empirical distortion is chosen. Note that Theorem 5 provides a bound on
the expectation of the distortion. Crude deviation bounds can be obtained using
for instance a bounded difference inequality (see, e.g., [5, Theorem 6.2]). In the
point sample case, more refined bounds can be obtained, using for instance [18,
Theorem 4.1, Proposition 4.1]. To investigate whether these kind of bounds
still hold in the measure sample case is beyond the scope of the paper. Note
also that the bound on the excess distortion provided by Theorem 5 does not
depend on the dimension d. This is also the case in [18, Theorem 3.1], where
a dimension-free theoretical bound on the excess distortion of an empirical risk
minimizer is stated in the sample points case. Interestingly, this bound also
has the correct dependency in n, namely 1/n. According to Theorem 4 and 5,
providing a quantization scheme that provably achieves a dimension-free excess
distortion of order 1/n in the sample measure case remains an open question.

3. Clustering of measures based on the quantized mean measure

3.1. Vectorization of measures

This Section introduces a vectorization method for measures, based on the
quantization of the mean measure, that preserves separation between clusters
if any. The intuition is the following: for a codebook c = (c1, . . . , ck) and
a scale r, we may represent a discrete measure X via the vector of weights
(X(B(c1, r)), . . . , X(B(ck, r))) that encodes the mass that X spreads around
every pole cj . Now, if X

(1) and X(2) are measures such that |X(1)(B(cj0 , r)) −
X(2)(B(cj0 , r))| is large, for some j0, then the representations of X(1) and X(2)

will be well separated. In practice, convolution with kernels is often preferred
to local masses (see, e.g., [28]). To ease computation, we will restrict ourselves
to the following class of kernel functions.

Definition 6. For (p, δ) ∈ N
∗ × [0, 1/2], a function ψ : R+ → R

+ is called a
(p, δ)-kernel function if

• ‖ψ‖∞ ≤ 1,
• sup|u|≤1/p ψ(u) ≥ 1− δ,
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• sup|u|>2p ψ(u) ≤ δ,
• ψ is 1-Lipschitz.

Note that a (p, δ)-kernel is also a (q, δ)-kernel, for q > p. This definition of a
kernel function encompasses widely used kernels, such as Gaussian or Laplace
kernels. In particular, the function ψ(u) = exp(−u) that is used in [28] is a
(p, 1/p)-kernel for p ∈ N

∗. The 1-Lispchitz requirement is not necessary to prove
that the representations of two separated measures will be well-separated. How-
ever, it is a key assumption to prove that the representations of two measures
from the same cluster will remain close in R

k. From a theoretical viewpoint, the
more convenient kernel is ψ0 : x 7→ (1− ((x−1)∨0))∨0, which is a (1, 0)-kernel,
thus a (p, 0)-kernel for all p ∈ N

∗.
From now on we assume that the kernel ψ is fixed, and, for a k-points code-

book c and scale factor σ, consider the vectorization

vc,σ :

{

M(R,M) → [0,M ]k

X 7→ (X(du) • ψ(‖u− c1‖/σ), . . . , X(du) • ψ(‖u− ck‖/σ))
(2)

Note that the dimension of the vectorization depends on the cardinality of the
codebook c. To guarantee that such a vectorization is appropriate for a classi-
fication purpose is the aim of the following section.

3.2. Discrimination and clustering based on the mean measure

In this section we investigate under which conditions the vectorization exposed
in the above section provides a representation that is provably suitable for clus-
tering. To this aim, for the sample X1, . . . , Xn, we introduce (Z1, . . . , Zn) ∈
[[1, L]]n the vector of (hidden) label variables. As well, we let M1, . . . ,ML be
such that, if Zi = ℓ, Xi ∈ M(R,Mℓ), and denote by M = maxℓ≤LMℓ. For a
given codebook c, we introduce the following definition of (p, r,∆)-scattering to
quantify how well c will allow to separate clusters via the related vectorization.

Definition 7. Let (p, r,∆) ∈ (N∗×R
+×R

+). A codebook c ∈ B(0,M)k is said
to (p, r,∆) -shatter X1, . . . , Xn if, for any i1, i2 ∈ [[1, n]] such that Zi1 6= Zi2 ,
there exists ji1,i2 ∈ [[1, k]] such that

Xi1(B(cji1,i2
, r/p)) ≥ Xi2(B(cji1,i2

, 4pr)) + ∆,

or

Xi2(B(cji1,i2
, r/p)) ≥ Xi1(B(cji1,i2

, 4pr)) + ∆.

In a nutshell, the codebook c shatters the sample if two different measures
from two different clusters have different masses around one of the codepoint of
c, at scale r. Note that, for any i, j,Xi(B(cj, r/p)) ≥ Xi({cj}), so that a stronger
definition of shattering in terms of Xi({cj})’s might be stated, in the particular
case where Xi({cj}) > 0. The following Proposition ensures that a codebook
which shatters the sample yields a vectorization into separated clusters, provided
the kernel decreases fast enough.
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/Clustering with quantized MM 9

Proposition 8. Assume that c ∈ B(0, R)k shatters X1, . . . , Xn, with parame-
ters (p, r,∆). Then, if Ψ is a (p, δ)-kernel, with δ ≤ ∆

4M , we have, for all i1, i2
∈ [[1, n]],

Zi1 6= Zi2 ⇒ ‖vc,σ(Xi1)− vc,σ(Xi2)‖∞ ≥ ∆

2
,

for σ ∈ [r, 2r].

A proof of Proposition 8 can be found in Section 6.1. This proposition shed
some light on howX1, . . . , Xn has to be shattered with respect to the parameters
of Ψ. Indeed, assume that ∆ = 1 (that is the case if the Xi’s are integer-valued
measures, such as count processes for instance). Then, to separate clusters, one
has to choose δ small enough compared to 1/M , and thus p large enough if
Ψ is non-increasing. Hence, the vectorization will work roughly if the support
points of two different counting processes are rp-separated, for some scale r. This
scale r will then drive the choice of the bandwith σ. As shown in the following
Section 4.2, this will be the case if the sample measures are persistence diagrams
of well separated shapes. If the requirements of Proposition 8 are fulfilled, then
a standard hierarchical clustering procedure such as Single Linkage with L∞
distance will separate the clusters for the scales smaller than ∆/2.

Now, to achieve a perfect clustering of the sample based on our vectorization
scheme, we have to ensure that measures from the same cluster are not too far
in terms of Wasserstein distance, implying in particular that they have the same
total mass. This motivates the following definition.

Definition 9. The sample of measures X1, . . . Xn is called w-concentrated if,
for all i1, i2 in [[1, n]] such that Zi1 = Zi2 ,

• Xi1(R
d) = Xi2(R

d),
• W1(Xi1 , Xi2) ≤ w.

It now falls under the intuition that well-concentrated and shattered sample
measures are likely to be represented in R

k by well-clusterable points. A precise
statement is given by the following Proposition 10.

Proposition 10. Assume that X1, . . . , Xn is w-concentrated. If Ψ is 1-Lipschitz,
then, for all c ∈ B(0, R)k and σ > 0, for all i1, i2 in [[1, n]] such that Zi1 = Zi2 ,

‖vc,σ(Xi1)− vc,σ(Xi2)‖∞ ≤ w

σ
.

Therefore, if X1, . . . , Xn is (p, r,∆)-shattered by c, and (r∆/4)-concentrated,
then, for any (p, δ)-kernel satisfying δ ≤ ∆

4M , we have

Zi1 = Zi2 ⇒ ‖vc,σ(Xi1)− vc,σ(Xi2)‖∞ ≤ ∆
4 ,

Zi1 6= Zi2 ⇒ ‖vc,σ(Xi1)− vc,σ(Xi2)‖∞ ≥ ∆
2 ,

for σ ∈ [r, 2r].
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A proof of Proposition 10 is given in Section 6.2. An immediate consequence
of Proposition 10 is that (p, r,∆)-shattered and r∆/4-concentrated sample mea-
sures can be vectorized in R

k into a point cloud that is structured in L clusters.
These clusters can be exactly recovered via Single Linkage clustering, with stop-
ping parameter in ]∆/4,∆/2]. In practice, tuning the parameter σ is crucial.
Some heuristic is proposed in [28] in the special case of i.i.d persistence dia-
grams. An alternative calibration strategy is proposed in the following Section
4.2.

At last, from Propositions 8 and 10, if an optimal k-codebook of the mean
measure shatters well the sample, then we can prove that the output of Algo-
rithm 1 provides a relevant vectorization, with high probability. To properly
define the mean measure in this case, we assume that the sample measures
X1, . . . , Xn are drawn from a mixture model X . We let Z ∈ [[1, L]] denote a
latent variable, with P(Z = ℓ) = πℓ, and we assume that

X | {Z = ℓ} ∼ X(ℓ),

where X(ℓ) ∈ M(R,Mℓ), or equivalently X = X(Z). We also denote by M̄ =
∑L

ℓ=1 πℓMℓ, so that E(X) ∈ M(R, M̄). In this framework, provided that c∗

shatters well X1, . . . , Xn, so will ĉn, where ĉn is built with Algorithm 1.

Corollary 11. Assume that E(X) satisfies the assumption of Theorem 4, and
that c∗ provides a (p, r,∆) shattering of X1, . . . , Xn, with p ≥ 2. Let ĉn denote

the output of Algorithm 1. Then, with probability larger than 1−exp
[

−C
(

nr2p2
min

p2M2R2k2d log(k) −
p2
minB

2r20
M2R4k2d log(k)

)]

,

ĉn is a (⌊p
2⌋, r,∆) shattering of X1, . . . , Xn, where C is a constant.

A proof of Corollary 11 is given in Section 6.3. To fully assess the relevance
of our vectorization technique, it remains to prove that k-points optimal code-
books for the mean measure provide a shattering of the sample measure, with
high probability. This kind of result implies more structural assumptions on
the components of the mixture X . The following Section 4.1 investigates the
case where the sample measures are in fact persistence diagrams from differ-
ents shapes. In this particular case, we can show that quantization of the mean
diagram is a relevant strategy to extract shattering codebooks.

4. Application for persistence diagrams

4.1. Mean measure of persistence diagrams

In this section we investigate the properties of our mean-measure quantization
scheme in a particular instance of i.i.d. measure observations. Indeed, we as-
sume that we observe n i.i.d persistence diagrams Di, that are thought of as
discrete measures on the half-plane H+ = {(b, d) ∈ R

2 | 0 ≤ b ≤ d}. In other
words, the observations consist in n discrete measures Di =

∑ni

j=1 µi,jδxi,j
,

where xi,j ∈ H+ and µi,j are weights that can be tuned beforehand. We will
show that, whenever the persistence diagrams are generated from different sam-
plings of the same shape, the mean persistence diagram and its best k-points
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approximation are relevant topological features. Then, in a mixture of shapes
framework, we will show that the mean persistence diagram might be used to
build a vectorization of the persistence diagrams that allows a provably correct
classification. In this section, a compact d-dimensional submanifold M of RD

is given, with positive reach τM (see, e.g., [24]). The object of interest will be
the thresholded persistence diagram generated via the distance to M , denoted
by dM (where the infinite connected component has been removed). Namely, if
D′ =

∑

x∈H+ n(x)δx is the persistence diagram of dM (n(x) denotes the multi-
plicity of x), we aim to recover

D =
∑

{(b,d)∈D|d−b≥s}
n(b, d)δ(b,d) :=

k0
∑

j=1

n(mj)δmj
,

where the mj ’s satisfy m2
j − m1

j ≥ s. In general, such a thresholded diagram
might have an infinite number of points, that is k0 = +∞. Whenever M is a
compact set of Rd, the following lemma ensures that k0 is finite.

Lemma 12. Let M be a compact subset of Rd. The persistence diagram of the
distance function dM is denoted by D and, for any s > 0, the truncated diagram
consisting of the points m = (m1,m2) ∈ D such that m2 −m1 ≥ s is finite.

A proof of Lemma 12 is given in Section 8.1. Further, we let P denote a distri-
bution on M that has a density f(x) with respect to the Hausdorff measure on
M , bounded from below by fmin. We generate the sample persistence diagrams
as follows: for i = 1, . . . , n, Yi

N denote an i.i.d N -sample drawn fromM . Accord-
ing to Lemma 13 below, the distance to Y

i
N is a provably good approximation

of dM .

Lemma 13. [1, Lemma B.7] Let M ⊂ R
D be a d-dimensional submanifold with

positive reach τM , and let YN = Y1, . . . , YN be an i.i.d. sample drawn from a
distribution that has a density f(x) with respect to the Hausdorff measure of M .

Assume that for all x ∈M , 0 < fmin ≤ f(x), and let h =
(

Cdk log(N)
fminN

)
1
d

, where

Cd is a constant depending on d. If h ≤ τM/4, then, with probability larger than

1−
(

1
N

)
k
d , we have

‖dM − dYN
‖∞ ≤ h.

For convenience, in what follows we assume that for i ≤ n, ‖dM−dYi
N
‖∞ ≤ h,

where h =
(

Cd log(N)
fminN

)
1
d

, for a constant Cd depending only on d. That occurs

with high probability provided N is large enough. Then, for every i = 1, . . . , n,
if D′

i is the persistence diagram of the sublevel sets of dYi
n
, we let

Xi =
∑

{xi,j∈D′

i|x2
i,j−x1

i,j≥s−h}
δxi,j

.

Note that s ≥ h provided N is large enough. This amounts to threshold the
points of the persistence diagramD′

i that are close to the diagonal. The following
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Lemma 14 ensures that Xi and D are close enough, in terms of bottleneck
distance.

Lemma 14. [11] If X and Y are compact sets of RD, then

dB (D(dX), D(dY )) ≤ ‖dX − dY ‖∞.

This stability result allows us to state a result on the expected persistence
diagram E(X). We recall that the thresholded persistence diagram of dM is

D =
∑k0

j=1 n(mj)δmj
, and we denote by m = (m1, . . . ,mk0).

Proposition 15. Let h =
(

Cd log(N)
fminN

)
1
d

. Then, for N large enough, with prob-

ability larger than 1−
(

1
N

)
3
d , we have

‖m− c∗‖∞ ≤ 8
√
Mh,

where c∗ is a k0 optimal codebook for E(X) and M =
∑k0

j=1 n(mj).

The proof of Proposition 15 is given in Section 7.1. If h is chosen small enough,
Proposition 15 ensures that quantizing the expected persistence diagram yields
a k0-points distribution on the half-plane that is provably close to the targeted
persistence diagram. This is of particular interest in the following Section 4.2,
where we show that the mean persistence diagram provides a relevant feature
in a mixture of shapes framework.

4.2. Vectorization and clustering of persistence diagrams

From the mean persistence diagram exposed in Section 4.1, we can build an
embedding from the space of persistence diagrams to a finite-dimensional Eu-
clidean space, that we will prove suitable for shape classification. A case of
interest for shape classification is when X is a mixture distribution whose each
component is drawn from a shape, as in Section 4.1. To be more precise, we let
L ∈ N

∗ denote the number of components, and for ℓ ≤ L, we let S(ℓ) denote

a compact dℓ-submanifold, and D
(ℓ)
≥s the thresholded persistence diagram built

from dS(ℓ) (where points that have persistence smaller than s are removed).
As well, we denote by X(ℓ) denote the distribution of the thresholded persis-

tence diagram built from the distance toNℓ points drawn on S(ℓ), with threshold
s − hℓ. Given a latent variable Z on [[1, L]], with P(Z = ℓ) = πℓ, the mixture
distribution X of thresholded persistence diagrams is given by

X | {Z = ℓ} ∼ X(ℓ),

or equivalently X = X(Z). To make discrimination between shapes possible, we
have to assume that their persistence diagrams differ by at least one point.
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Definition 16. The shapes S(1), . . . , S(ℓ) are discriminable at scale s if for
any 1 ≤ ℓ1 < ℓ2 ≤ L there exists mℓ1,ℓ2 ∈ H+ such that

D
(ℓ1)
≥s ({mℓ1,ℓ2}) 6= D

(ℓ2)
≥s ({mℓ1,ℓ2}),

where the thresholded persistence diagrams are considered as measures.

Note that if mℓ1,ℓ2 satisfies the discrimination condition stated above, then

mℓ1,ℓ2 ∈ D
(ℓ1)
≥s or mℓ1,ℓ2 ∈ D

(ℓ2)
≥s . To discriminate between shapes, we have to

ensure that every mℓ1,ℓ2 is represented via an optimal codebook. This is the aim
of the following Proposition.

Proposition 17. Let hℓ =
(

Cdℓ
(d2

ℓ+2) log(Nℓ)

fmin,ℓNℓ

)1/dℓ

, and h = maxℓ≤L hℓ. More-

over, let Mℓ = D
(ℓ)
≥s(H

+), M̄ =
∑L

ℓ=1 πℓMℓ, and πmin = minℓ≤L πℓ.

Assume that S(1), . . . , S(L) are discriminable at scale s, and let m1, . . . ,mk0

denote the discrimination points. Let K0(h) denote

inf{k ≥ 0 | ∃t1, . . . , tk
L
⋃

ℓ=1

D
(ℓ)
≥s \ {m1, . . . ,mk0} ⊂

K0(h)
⋃

s=1

B∞(ts, h)}.

Let k ≥ k0 + K0(h), and (c∗1, . . . , c
∗
k) denote an optimal k-points quantizer of

E(X). Then, provided that Nℓ is large enough for all ℓ, we have

∀j ∈ [[1, k0]] ∃p ∈ [[1, k]] ‖c∗p −mj‖∞ ≤ 5
√
M̄h√
πmin

.

The proof of Proposition 17 is given in Section 7.2. If D̄≥s denotes the mean

persistence diagram
∑L

ℓ=1 πℓD
(ℓ)
≥s, and D̄≥s has K0 points, then it is immediate

that k0 + K0(h) ≤ K0. Moreover, we also have k0 ≤ L(L+1)
2 . Proposition 17

ensures that the discrimination points are well enough approximated by optimal
k-centers of the expected persistence diagram E(X), provided the shapes S(ℓ)

are well-enough sampled and k is large enough so that D̄≥s is well-covered by k
balls with radius h. Note that this is always the case if we choose k = K0, but
also allows for smaller k’s.

In turn, provided that the shapes S(1), . . . , S(L) are discriminable at scale s
and that k is large enough, we can prove that an optimal k-points codebook c∗

is a (p, r,∆)-shattering of the sample, with high probability.

Proposition 18. Assume that the requirements of Proposition 17 are satisfied.
Let B̃ = mini=1,...,k0,j=1,...,K0,j 6=i ‖mi −mj‖∞ ∧ s. Let κ > 0 be a small enough
constant. Then, if Nℓ is large enough for all ℓ ∈ [[1, ℓ]], X1, . . . , Xn is (p, r, 1)-

shattered by c∗, with probability larger than 1 − nmaxℓ≤LN
−
(

(κB̃)dℓ fmin,ℓNℓ
Cℓdℓ log(Nℓ)

)

ℓ ,
provided that

• r
p ≥ 2κB̃
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• 4rp ≤
(

1
2 − κ

)

B̃.

Moreover, on this probability event, X1, . . . , Xn is 2MκB̃-concentrated.

A proof of Proposition 18 is given in Section 7.2. In turn, Proposition 18 can
be combined with Proposition 10 and Corollary 11 to provide guarantees on
the output of Algorithm 1 combined with a suitable kernel. We choose to give
results for the theoretical kernel ψ0 : x 7→ (1 − ((x − 1) ∨ 0)) ∨ 0, and for the
kernel used in [28], ψAT (x) = exp(−x).
Corollary 19. Assume that the requirements of Proposition 18 are satisfied. For
short, denote by vi the vectorization of Xi based on the output of Algorithm 1.

Then, with probability larger than 1−exp
[

−C
(

nr2p2
min

p2M2R2k2d log(k) −
p2
minB

2r20
M2R4k2d log(k)

)]

−

nmaxℓ≤LN
−
(

(κB̃)dℓfmin,ℓNℓ

Cℓdℓ log(Nℓ)

)

ℓ , where κ and C are small enough constants, we
have

Zi1 = Zi2 ⇒ ‖vi1 − vi2‖∞ ≤ 1
4 ,

Zi1 6= Zi2 ⇒ ‖vi1 − vi2‖∞ ≥ 1
2 ,

for σ ∈ [r, 2r] and the following choices of p and r:

• If Ψ = ΨAT , pAT = ⌈4M⌉, and rAT = B̃
32pAT

.

• If Ψ = Ψ0, p0 = 1 and r0 = B̃
32 .

A proof of Corollary 19 is given in Section 7.3. Corollary 19 can be turned
into probability bounds on the exactness of the output of hierarchical clustering
schemes applied to the sample points. For instance, on the probability event
described by Corollary 19, Single Linkage with norm ‖.‖∞ will provide an ex-
act clustering. The probability bound in Corollary 19 shed some light on the
quality of sampling of each shape that is required to achieve a perfect classifi-
cation: roughly, for Nℓ in Ω(log(n)), the probability of misclassification can be
controlled. Note that though the key parameter B̃ is not known, in practice it
can be scaled as several times the minimum distance between two points of a
diagram.
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5. Proofs for Section 2

5.1. Proof of Theorem 4

Throughout this section we assume that E(X) satisfies a margin condition with
radius r0, and that P(X ∈ MNmax

(R,M)) = 1. We adopt the following no-
tation: for any c ∈ B(0, R)k, we denote by p̂j(c) = X̄n(Wj(c)), as well as
pj(c) = E(X)(Wj(c)). Moreover, we denote by m̂(c) (resp. m(c)) the code-
books satisfying

m̂(c)j =
X̄n(du)

(

u1Wj(c)(u)
)

p̂j(c)
,

m(c)j =
E(X)(du)

(

u1Wj(c)(u)
)

pj(c)
,

if p̂j(c) > 0 (resp. pj(c) > 0), and m̂(c)j = 0 (resp. m(c)j = 0) if p̂j(c) = 0
(resp. pj(c) = 0). The proof of Theorem 4 makes intensive use of the following
lemmas. The first lemma gathers concentration results

Lemma 20. With probability larger than 1− 8e−x, for all c ∈ B(0, R)k,

p̂j(c) ≤ pj(c) +

√

4Mc0kd log(k) log(2nNmax)

n
+

4Mx

n

√

pj(c)

p̂j(c) ≥ pj(c)−
4Mc0kd log(k) log(2nNmax)

n
− 4Mx

n
−
√

4Mc0kd log(k) log(2nNmax)

n
+

4Mx

n

√

pj(c),

where c0 is an absolute constant. Moreover, with probability larger than 1−e−x,
we have

sup
c∈B(0,R)k

‖
(

(X̄n − E(X))(du) •
[

(cj − u)1Wj(c)(u)
])

j=1,...,k
‖ ≤ CRM√

n

(

k
√

d log(k) +
√
x
)

,

where C is a constant.

The proof of Lemma 20 is given in Section 8.2, and is based on empirical
processes theory. The second Lemma roughly ensures that the gradient of the
distortion function is Lipschitzian around optimal codebooks.

Lemma 21. Assume that E(X) ∈ M(R,M) satisfies a margin condition with
radius r0, and denote by R0 = Br0

16
√
2R

. Let c∗ ∈ Copt, and c such that ‖c−c∗‖ ≤
R0. Then

• ∑k
j=1 |pj(c) − pj(c

∗)| ≤ pmin

64 ,

• ∑k
j=1 ‖E(X)(du)((u − cj)1Wj(c)(u))− pj(c

∗)(c∗j − cj)‖ ≤ pmin

8
√
2
‖c− c∗‖.

The proof of Lemma 21 follows from [19, Section A.3]. At last, Lemma 22
below ensures that every step of Algorithm 1 is, up to concentration terms, a
contraction towards an optimal codebook. We recall here that R0 = Br0

16
√
2R

,

κ0 = R0

R .
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Lemma 22. Assume that c ∈ B(c∗, R0). Then, with probability larger than
1− 8e−c1npmin/M , for n large enough, we have,

‖m̂(c)− c∗‖2 ≤ 3

4
‖c− c∗‖2 + K

p2min

D2
n,

where Dn = sup
c∈B(0,R)k ‖

(

(X̄n − E(X)) •
[

(cj − x)1Wj (c)(x)
])

j=1,...,k
‖ and K

is a positive constant.
Furthermore, with probabilty larger than 1− 8e−c1npmin/M − e−c1np

2
minκ

2
0/M

2

,
for all c ∈ B(c∗, R0), the above inequality holds and m̂(c) ∈ B(c∗, R0), for n
large enough.

The proof of Lemma 22 is postponed to the following Section 5.2. We are
now in position to prove Theorem 4.

Proof of Theorem 4. First note that Algorithm 1 is defined by c(t+1) = m̂(c(t)).
Equipped with Lemma 22, the proof of Theorem 4 is straightforward. We settle
on the event on which these Lemmas hold, that has probability larger than
1− 24e−cnκ2

0p
2
min/M

2

, for c small enough. On this event, we have that

‖c(t) − c∗‖2 ≤
(

3

4

)t

‖c(0) − c∗‖2 +
(

t−1
∑

p=0

(

3

4

)p
)

K

p2min

D2
n

≤
(

3

4

)t

‖c(0) − c∗‖2 + 4K

p2min

D2
n.

Then we might bound Dn according to Proposition 20, that leads to the results.

5.2. Proof of Lemma 22

Proof of Lemma 22. Let c ∈ B(c∗, R0). We decompose ‖m̂(c)− c∗‖2 as follows.

‖m̂(c)− c∗‖2 = ‖c− c∗‖2 + 2 〈m̂(c) − c, c− c∗〉+ ‖m̂(c)− c‖2. (3)

Next, we bound the first term of (3).

2 〈m̂(c) − c, c− c∗〉 = 2

k
∑

j=1

1

p̂j(c)

〈

X̄n(du)((u − cj)1Wj(c)(u)), cj − c∗j
〉

≤ 2

k
∑

j=1

1

p̂j(c)

〈

E(X)(du)((u − cj)1Wj(c)(u)), cj − c∗j
〉

+ 2Dn

√

√

√

√

k
∑

j=1

‖cj − c∗j‖2
p̂j(c)2

≤ 2

k
∑

j=1

1

p̂j(c)

〈

pj(c
∗)(c∗j − cj), cj − c∗j

〉

+
2pmin

8
√
2
‖c− c∗‖

√

√

√

√

k
∑

j=1

‖cj − c∗j‖2
p̂j(c)2

+ 2Dn

√

√

√

√

k
∑

j=1

‖cj − c∗j‖2
p̂j(c)2

,
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where the last line follows from Lemma 21. Now, using Lemma 20 with x =
c1npmin/M , for c1 a small enough absolute constant, entails that, with proba-
bility larger than 1− 8ec1npmin/M , for n large enough and every c ∈ B(c∗, R0),

p̂j(c) ≥
63

64
pj(c)−

pmin

64
≥ 31

32
pmin

p̂j(c) ≤
33

32
pj(c

∗),

according to Lemma 21. Therefore

2 〈m̂(c) − c, c− c∗〉 ≤ −2

k
∑

j=1

pj(c
∗)

p̂j(c)
‖cj − c∗j‖2 +

32

124
√
2
‖c− c∗‖2

+K1‖c− c∗‖2 +K−1
1

322

312p2min

D2
n, (4)

where K1 > 0 is to be fixed later. Then, the second term of (3) may be bounded
as follows.

‖m̂(c) − c‖2 =

k
∑

j=1

‖X̄n(du)((u − cj)1Wj(c)(u))‖2
p̂j(c)2

=

k
∑

j=1

∥

∥pj(c
∗)(cj − c∗j ) + ∆j(c) + ∆n,j(c)

∥

∥

2

p̂j(c)2
,

where

∆j(c) = E(X)(du)
[

(u − cj)1Wj(c)(u)− (u − c∗j )1Wj(c∗)(u)
]

,

so that
∑k

j=1 ‖∆j(c)‖ ≤ pmin

8
√
2
‖c− c∗‖, according to Lemma 21, and

∆n,j(c) = (X̄n − E(X))(du)((u − cj)1Wj(c)(u)),

so that
∑k

j=1 ‖∆n,j‖2 ≤ D2
n. Thus,

‖m̂(c) − c‖2 ≤ (1 +K2 +K3)

k
∑

j=1

pj(c
∗)2

p̂j(c)2
‖cj − c∗j‖2 +

(

1 +K−1
2 +K4

)

k
∑

j=1

‖∆j(c)‖2
p̂j(c)2

+
(

1 +K−1
3 +K−1

4

)

k
∑

j=1

‖∆n,j(c)‖2
p̂j(c)2

≤ (1 +K2 +K3)

k
∑

j=1

pj(c
∗)2

p̂j(c)2
‖cj − c∗j‖2 +

(

1 +K−1
2 +K4

) 322

312 × 128
‖c− c∗‖2

+
(

1 +K−1
3 +K−1

4

) 322

312p2min

D2
n, (5)
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wherer K2, K3 and K4 are positive constants to be fixed later. Combining (4)
and (5) yields that

‖m̂(c) − c∗‖2 ≤ ‖c− c∗‖2
(

1 +K1 +
32

124
√
2
+

322

312 × 128

(

1 +K−1
2 +K4

)

)

− 2

k
∑

j=1

pj(c
∗)

p̂j(c)
‖cj − c∗j‖2 + (1 +K2 +K3)

k
∑

j=1

pj(c
∗)2

p̂j(c)2
‖cj − c∗j‖2

+D2
n

322

312p2min

(

1 +K−1
1 +K−1

3 +K−1
4

)

.

Taking K2 = 1
32 gives, through numerical computation,

‖m̂(c)− c∗‖2 ≤ ‖c− c∗‖2
(

0.62 +K1 +K3
322

312
+K4

322

312 × 128

)

+D2
n

322

312p2min

(

1 +K−1
1 +K−1

3 +K−1
4

)

≤ 3

4
‖c− c∗‖2 + K

p2min

D2
n,

for K1, K3 and K4 small enough. Now, according to Lemma 20, it holds

K

p2min

D2
n ≤ R2

0

4

with probability larger than 1 − e−c1np
2
minκ

2
0/M

2

, for some constant c1 small
enough. This gives the second assertion of Lemma 22.

5.3. Proof of Theorem 5

The proof of Theorem 5 will make use of the following deviation bounds.

Lemma 23. Let c ∈ B(0, R)k. Then, with probability larger than 1− 2ke−x, we
have, for all j = 1, . . . , k,

|p̂j(c) − pj(c)| ≤
√

2Mpj(c)x

n
+
Mx

n
.

Moreover, with probability larger than 1− e−x, we have,

∥

∥

∥(X̄n − E(X))(du) •
(

(cj − u)1Wj(c)(u)
)

j=1,...,k

∥

∥

∥ ≤ 4RM
√
k√

n

(

1 +
√
x
)

.

A proof of Lemma 23 is given in Section 8.3. Equipped with Lemma 23, the
proof of Theorem 5 follows the proof of [26, Lemma 1].
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Proof of Theorem 5. Assume that n ≥ k. According to Lemma 23, if nt = |Bt| =
CM
pmin

log(n), for C large enough to be fixed later, then, taking x = 4 log(2n) leads

to, for all t ≤ T , with probability larger than 1− k
n3 ,

|p̂(t)j − p
(t)
j | ≤

pmin +
√

p
(t)
j pmin

256
∥

∥

∥

∥

(X̄n − E(X))(du) •
(

(c
(t)
j − u)1Wj(c(t))(u)

)

j

∥

∥

∥

∥

≤ 8R

√

kpmin

CM
,

where p̂
(t)
j denotes X̄Bt

(Wj(c
(t)). Let AT denote this probability event. First

we prove that if c(0) ∈ B(c∗, R0), then, on AT , for all t ≤ T , c(t) ∈ B(c∗, R0).
We proceed recursively, assuming that c(t) ∈ B(c∗, R0). Then, on AT , applying
Lemma 21 yields that 33

32p
∗
j ≥ p̂tj ≥ 31

32p
∗
j . Denoting by at = ‖c(t) − c∗‖2 and

gt+1 =

(

X̄Bt+1
(du)•(c(t)j −u)1

Wj(c
(t))

(u)

p̂t+1
j

)

j

, the recursion equation entails that

at+1 ≤ at −
2

t+ 1
〈gt+1, c− c∗〉+ 1

(t+ 1)2
‖gt+1‖2 . (6)

As in the proof of Theorem 4, denote by

∆t
j = E(X)(du) •

(

(u − c
(t)
j )1Wj(c(t))(u)

)

− p∗j (c
∗
j − c

(t)
j )

∆t+1
n,j = (X̄Bt+1 − E(X)(du)) • (u − c

(t)
j )1Wj(c(t))(u)

Dt+1
n =

√

√

√

√

k
∑

j=1

‖∆t+1
n,j ‖2.

We have that

− 2

t+ 1
〈gt+1, c− c∗〉 ≤ − 2

t+ 1

k
∑

j=1

(

p∗j
p̂t+1
j

‖c(t)j − c∗j‖2 −
‖∆t+1

j,n ‖‖c(t)j − c∗j‖
p̂t+1
j

−
‖c(t)j − c∗j‖‖∆t

j‖
p̂t+1
j

)

≤ −2
32

33(t+ 1)
‖c(t) − c∗‖2 + 64

31pmin(t+ 1)
‖c(t) − c∗‖Dt+1

n

+
64

8
√
2× 31(t+ 1)

‖c(t) − c∗‖2

≤ ‖c(t) − c∗‖2
( −64

33(t+ 1)
+

K4

t+ 1
+

64

8
√
2× 31(t+ 1)

)

+K−1
4

(

32

31pmin
Dt+1

n

)2

,

according to Lemma 21, where K4 denotes a constant. Next, the second term
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in (6) may be bounded by

‖gt+1‖2 ≤
k
∑

j=1

1

(p̂t+1
j )2

(p∗j )
2‖c(t)j − c∗j‖2 (1 +K1 +K2) +

p2min

128minj (p̂
t+1
j )2

‖c(t) − c∗‖2
(

1 +K−1
2 +K3

)

+
1

minj (p̂
t+1
j )2

(

1 +K−1
1 +K−1

3

)

(Dt+1
n )2

≤ 322

312
‖c(t) − c∗‖2

(

1 +K1 +K2 +
1 +K−1

2 +K3

128

)

+ (Dt+1
n )2

322(1 +K−1
1 +K−1

3 )

312p2min

,

where K1, K2 and K3 are constants to be fixed later. Combining pieces and
using t+ 1 ≥ 1 leads to

at+1 ≤ at+
at
t+ 1

(−64

33
+

64

8
√
2× 31

+K4 +
322

312

(

1 +K1 +K2 +
1 +K−1

2 +K3

128

))

+
(

Dt+1
n

)2
(

322

312p2min

K−1
4 +

322(1 +K−1
1 +K−1

3 )

312p2min

)

.

Choosing K2 = 1
32 entails that

(−64

33
+

64

8
√
2× 31

+K4 +
322

312

(

1 +K1 +K2 +
1 +K−1

2 +K3

128

))

≤ −0.38 +K4 +
322

312

(

K1 +
K3

128

)

,

so that, for K1, K3 and K4 small enough, we have

at+1 ≤ 0.8at +
K

p2min

(Dt+1
n )2.

Now, if nt = c0
kM2

p2
minκ

2
0
, n ≥ k, where c0 is an absolute constant, Lemma 23 with

x = 4 log(2n) yields that

at+1 ≤ 0.8at + 0.2R2
0 ≤ R2

0.

Next, if Ft denotes the sigma-algebra corresponding to the observations of
the t first mini-batches B1, . . . , Bt, and Et denotes the conditional expectation
with respect to Ft. We will show that

Eat+1 ≤
(

1− 2−K1

t+ 1

)

Eat +
12kMR2

pmin(t+ 1)2
, (7)

where K1 <
1
5 . Starting from (6), we may write

Eat+1 = Eat −
2

t+ 1
E

〈

gt+1, c
(t) − c∗

〉

+
1

(t+ 1)2
E‖gt+1‖2.
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Next, since on AT it holds that
〈

X̄Bt+1(du)(c
(t)
j − u)1Wj(c(t))(u), c

(t)
j − c∗j

〉

≥ 0,

we may write

E

〈

−gt+1, c
(t) − c∗

〉

= E

(〈

−gt+1, c
(t) − c∗

〉

1AT

)

+R1

≤ E

k
∑

j=1

32

33p∗j

〈

X̄Bt+1(u− ctj)1Wj(ct)(u), c
t
j − c∗j

〉

1AT
+R1

≤ E

k
∑

j=1

32

33p∗j

〈

X̄Bt+1(u− ctj)1Wj(ct)(u), c
t
j − c∗j

〉

+R1 +R2,

where, for i = 1, 2, Ri ≤ 4kR2M
pmin

P(Ac
T ) ≤ 4k2R2M

n3pmin
≤ 4kMR2

pmin(t+1)2 . Next, we have

that

Et

k
∑

j=1

32

33p∗j

〈

X̄Bt+1(u− c
(t)
j )1Wj(ct)(u), c

(t)
j − c∗j

〉

≤
k
∑

j=1

32

33p∗j
Et

[〈

X̄Bt+1(u− ctj)1Wj(ct)(u), c
t
j − c∗j

〉]

≤ −32

33
at +





k
∑

j=1

32

33p∗j

〈

∆t+1
j , ctj − c∗j

〉





≤
(

−32

33

(

1− 1

8
√
2

)

at

)

,

according to Lemma 21. Since ‖gt+1‖2 ≤ 4kR2 and pmin ≤ M
k , we immediatly

get

Eat+1 ≤
(

1− 2−K1

t+ 1

)

Eat +
12kMR2

pmin(t+ 1)2
,

with K1 ≤ 0.5. Equipped with (7), we can prove Theorem 5, the same way as
in the proof of [26, Lemma 1]. Namely, we prove recursively that

Eat ≤
24kMR2

pmint
.

Denote by G = 12kMR2

pmin
. The case t = 1 is obvious. Next, assuming that Eat ≤

2G
t and using (7) we may write

Eat+1 ≤
(

1− 2

t+ 1

)

Eat +
K1

t+ 1
Eat +

G

(t+ 1)2

≤ G

t(t+ 1)
[2t+ 2K1 − 1] .

Since K1 ≤ 1
2 , we get that Eat+1 ≤ 2G/(t+ 1).
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6. Proofs for Section 3

6.1. Proof of Proposition 8

Assume that X1, . . . , Xn is (p, r,∆)-shattered by c, let i1, i2 in [[1, n]] be such
that Zi1 6= Zi2 , and without loss of generality assume that

Xi1(B(c1, r/p)) ≥ max
u∈B(c1,r/p)

Xi2(B(u, 4rp)) + ∆.

Let Ψ be a (p, δ)-kernel and σ ∈ [r, 2r]. We have

Xi1(du) •Ψ((u− c1)/σ) ≥ Xi1(du) •
[

Ψ(‖u− c1‖/σ)1B(c1,r/p)(u)
]

≥ (1 − δ)Xi1 (B(c1, r/p))
≥ Xi1 (B(c1, r/p))− δM.

On the other hand, we have that

Xi2(du) •Ψ(‖u− c1‖/σ) ≤Xi2(du) •
[

Ψ(‖u− c1‖/σ)1B(c1,4pr)

]

+Xi2(du) •
[

Ψ(‖u− c1‖/σ)1(B(c1,4pr))c
]

≤ Xi2(B(c1, 4pr)) + δXi2((B(c1, 4pr))c)
≤ Xi1 (B(c1, r/p))−∆+ δM.

We deduce that

‖vc,σ(Xi1)− vc,σ(Xi2)‖∞ ≥ ∆− 2δM ≥ ∆

2
,

whenever δ ≤ ∆
4M .

6.2. Proof of Proposition 10

Let i1, i2 in [[1, n]] such that Zi1 = Zi2 . Let (Y1, Y2) be a random vector such
that Y1 ∼ Xi1 , Y2 ∼ Xi2 , and E(‖Y1 − Y2‖) ≤ w. Let c ∈ B(0, R), we have

|Xi1(du) •Ψ(‖u− c‖/σ)−Xi2(du) •Ψ(‖u− c‖/σ)|
≤ |E [Ψ(‖Y1 − c‖/σ)−Ψ(‖Y2 − c‖/σ)]|

≤ E

(‖Y1 − Y2‖
σ

)

≤ w

σ
,

hence ‖vc,σ(Xi1)−vc,σ(Xi2)‖∞ ≤ w/σ. Now if X1 . . . , Xn is r∆/4-concentrated,
and σ ∈ [r, 2r], we have ‖vc,σ(Xi1)− vc,σ(Xi2)‖∞ ≤ ∆

4 .
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6.3. Proof of Corollary 11

According to Theorem 4, for n large enough, with probability larger than 1 −
exp

[

−C
(

nr2p2
min

p2M2R2k2d log(k) −
p2
minB

2r20
M2R4k2d log(k)

)]

, we have ‖ĉn − c∗‖ ≤ r
p . Let i1, i2

∈ [[1, n]] be such that Zi1 6= Zi2 . Without loss of generality assume that

Xi1 (B(c∗1, r/p)) ≥ Xi2 (B(c∗1, 4pr)) + ∆.

ThenXi1 (B(ĉ1, 2r/p)) ≥ Xi1 (B(ĉ1, r/p))), andXi2 (B(ĉ1, 4(p/2)r)) ≤ Xi2 (B(c∗1, 4pr))
entails that

Xi1 (B(ĉ1, 2r/p)) ≥ Xi2 (B(ĉ1, 4(p/2)r)) + ∆.

7. Proofs for Section 4

7.1. Proof of Proposition 15

Proof. Proof of Proposition 15 Let D′
1 denote the persistence diagram build

from the sublevel sets of dYN
, where YN is an N -sample drawn on M (with-

out the infinite connected component), and let R denote the diameter of M .
Then, every point of D′

1 is in B(0, R). For short denote by αN = ( 1
N )d+1/d,

and we take N large enough so that αN ≤ h2

R2 ∧ 1
2 . For a positive t, we de-

note by D≥t =
∑

{m∈D′|x2−x1≥t} n(m)δm, where we recall that D′ denotes the
persistence diagram built from the sublevels sets of dM . Since D≥ s

2
is finite,

there exists h0 such that, for every m ∈ D≥s−h0 , m ∈ D≥s. At last, denote by

B̃ = mini6=j ‖mi −mj‖∞, where the mj’s are the points of D≥s, and choose n

large enough so that h ≤ h0

2 ∧ B̃
2 .

For such an h, we have, with probability larger than 1− αN so that ‖dYN
−

dM‖∞ ≤ h, for every j ∈ [[1, k0]], x
(j)
i1
, . . . , x

(j)
inj

∈ D1,≥s−h ∩ B∞(mj , h), and

|D1,≥s−h| = M . To bound M(E(D1,≥s−h)), note that, with probability larger
than 1−αN ,M(D1,≥s−h) =M , and with probability smaller than αN ,M(D1,≥s−h) ≤
Nd, so that

|M(E(D1,≥s−h))−M | ≤ αN

(

M +Nd
)

.

Next, we choose N large enough so that |M(E(D1,≥s−h))−M | ≤ M
2 . Denoting

by m = (m1, . . . ,mk0), we have

R(m) ≤ 2h2M(1− αN ) + αN4R2 × 3M/2 ≤ 8Mh2.

Now, if there exists j such that, for all i ∈ [[1, k0]], ‖cj −mi‖∞ > 8
√
Mh, then

R(c) > (1− αN )16Mh2 ≥ 8Mh2 ≥ R(m).
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7.2. Proof of Proposition 17

We let αℓ =
(

1
Nℓ

)dℓ+
2
dℓ , and A = {‖dYNZ

− dMZ
‖∞ > hZ}, so that P(A | Z =

ℓ) ≤ αℓ. Also, letmk0+1, . . . ,mk0+K0(h) be such that
⋃L

ℓ=1D
(ℓ)
≥s\{m1, . . . ,mk0} ⊂

⋃K0(h)
s=1 B∞(mk0+s, h), andm = (m1, . . . ,mk0+K0(h)). At last, we letR = maxℓ≤L diam(Sℓ).

For Nℓ large enough so that D
(ℓ)
≥s−hℓ

= D
(ℓ)
≥s and s/2 > hℓ, we have

R(m) = E

(

∑

ℓ=1

1Z=ℓX
(ℓ)(du) • min

j=1,...,k0+K0(h)
‖u−mj‖2

)

= E

(

∑

ℓ=1

1Z=ℓ∩AX
(ℓ)(du) • min

j=1,...,k0+K0(h)
‖u−mj‖2

)

+ E

(

∑

ℓ=1

1Z=ℓ∩AcX(ℓ)(du) • min
j=1,...,k0+K0(h)

‖u−mj‖2
)

≤ E

(

∑

ℓ=1

1Z=ℓ∩A4R
2Ndℓ

)

+ E

(

∑

ℓ=1

1Z=ℓ∩AcM (ℓ)2h2ℓ

)

≤ 2h2M̄ + 4R2
L
∑

ℓ=1

πℓαℓN
dℓ .

For Nℓ large enough so that αℓN
dℓ

ℓ ≤ M̄h2
ℓ

R2 , we have

R(m) ≤ 6h2M̄.

On the other hand, let c be a k-points codebook such that, for every p ∈ [[1, k]],

‖m1 − cp‖∞ > 5
√

M̄
πmin

h. Then we have

R(c) ≥ E







L
∑

ℓ=1

1Ac∩Z=ℓX
(ℓ)(B∞(m1, h))



5

√

M̄

πmin
− 1





2





h2

≥ E







L
∑

ℓ=1

1Ac∩Z=ℓn
(ℓ)(m1)



5

√

M̄

πmin
− 1





2





h2.

Now let ℓ0 be such that n(ℓ0)(m1) ≥ 1, and assume that the Nℓ’s are large
enough so that αℓ ≤ 1

2 . It holds

R(c) ≥



5

√

M̄

πmin
− 1





2

h2πℓ0(1− αℓ0)

≥ 8M̄h2

> R(m),

hence the result.
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Proof of Proposition ??

We let M = maxℓ≤LMℓ, h0 be such that D̄≥s−h0 = D̄≥s. Let κ ≤ 1
16 ∧ h0

2B̃
.

Under the assumptions of Proposition 17, we choose Nℓ, ℓ ≤ L large enough so
that

5
√
M̄h√
πmin

≤ κB̃.

Next, denote by αℓ = N
−
(

(κB̃)dℓfmin,ℓNℓ
Cℓdℓ log(Nℓ)

)

ℓ . Then we have

P

(

∃i ∈ [[1, n]] | dB(Xi, D
Zi

≥s) > κB̃
)

≤
n
∑

i=1

P

(

dB(Xi, D
Zi) > κB̃

)

≤
n
∑

i=1

L
∑

ℓ=1

πℓαℓ

≤ nmax
ℓ≤L

αℓ.

For the remaining of the proof we assume that, for i = 1, . . . , n, dB(Xi, D
Zi

≥s) ≤
κB̃, that occurs with probability larger than 1− nmaxℓ≤L αℓ. Let i1 6= i2, and

assume that Zi1 = Zi2 = z. Then W∞(Xi1 , Xi2) = dB(Xi1 , Xi2) ≤ 2κB̃. Hence
W1(Xi1 , Xi2) ≤ 2MκB̃.

Now assume that Zi1 6= Zi2 , and without loss of generality mZi1 ,Zi2
= m1

with D
Zi1

≥s ({m1}) ≥ D
Zi2

≥s ({m1}) + 1. Let (p, r) in N
∗ × R

+ be such that r/p ≥
2κB̃ and 4rp ≤

(

1
2 − κ

)

B̃. Since ‖c∗1 −m1‖∞ ≤ κB̃ and dB(Xi1 , D
Zi1

≥s ) ≤ κB̃ <
h0, we get

Xi1

(

B(c∗1,
r

p
)

)

= D
Zi1

≥s ({m1}).

On the other hand, since 4rp ≤ (12 − κ)B̃, we also have

Xi2 (B(c∗1, 4rp)) = D
Zi2

≥s ({m1}).

Thus X1, . . . , Xn is (p, r, 1)-shattered by c∗.

7.3. Proof of Corollary 19

In the case where Ψ = ΨAT , we have that ΨAT is a (p, 1/p) kernel. The re-
quirement 1/p ≤ 1

4M of Proposition 8 is thus satisfied for pAT = ⌈4M⌉. On the

other hand, choosing rAT = B̃
32pAT

ensures that 8rAT pAT ≤ (1/2 − κ)B̃ and
rAT

2pAT
≥ 2κB̃, for κ small enough. Thus, the requirements of Proposition 18 are

satisfied: c∗ is a (2pAT , r, 1) shattering of X1, . . . , Xn). At last, using Corollary
11, we have that ĉn is a (pAT , rAT , 1) shattering of X1, . . . , Xn, on the prob-
ability event described by Corollary 11. It remains to note that 2κB̃ ≤ rAT

4
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for κ small enough to conclude that X1, . . . , Xn is rAT

4 -concentrated on the
probability event described in Proposition 18. Thus Proposition 10 applies.

The case Ψ = Ψ0 is simpler. Since Ψ0 is a (1, 0)-kernel, we obviously have
that 0 ≤ 1

2M , so that the requirement of Proposition 18 is satisfied. With p0 = 1

and r0 = B̃
16 we immediatly get that r0/(2p0) ≥ 2κB̃ and 8r0p0 ≤ (1/2− κB̃),

for κ small enough, so that ĉ is a (p0, r0, 1) shattering of X1, . . . , Xn. As well,
2MκB̃ ≤ r0

4 , for κ small enough. Thus Proposition 10 applies.

8. Technical proof

8.1. Proof of Lemma 12

The lemma follows from standard arguments in geometric inference and persis-
tent homology theory.

First, the definition of generalized gradient of dM - see [8] or [4] Section 9.2 -
implies that the critical points of dM are all contained in the convex hull of M .
As a consequence, they are all contained in the sublevel set d−1

M ([0, 2diam(M)]).
It follows from the Isotopy Lemma - [4] Theorem 9.5 - that all the sublevel
sets d−1

M ([0, t]), t > 2diam(M) have the same homology. As a consequence,
no point in D has a larger coordinate than 2diam(M) and D is contained in
[0, 2diam(M)]2.

Since M is compact, the persistence module of the filtration defined by the
sublevel sets of dM is q-tame (Corollary 3.35 in [9]). Equivalently, this means
that for any b0 < d0, the intersection of D with the quadrant Q(b0,d0) = {(b, d) :
b < b0 and d0 < d} is finite. Noting that the intersection of [0, 2diam(M)]2 with
the half-plane {(b, d) : d ≥ b+ s} can be covered by a finite union of quadrants
Q(b,b+ s

2
concludes the proof of the lemma.

8.2. Proof of Lemma 20

Let Z1 denote the process

Z1 = sup
c∈B(0,R)k,j=1,...,k

∣

∣

∣

∣

(

X̄n

M
− E(X)

M

)

1Wj(c)

∣

∣

∣

∣

.

Note that the VC dimensions of Voronoi cells in a k-points Voronoi diagram is
at most c0kd log(k) ([31, Theorem 1.1]). We first use a symmetrization bound.

Lemma 24. Let F denote a class of functions taking values in [0, 1], and
X1, . . . , Xn, X

′
1, . . . , X

′
n i.i.d random variables drawn from P . Denote by Pn

and P ′
n the empirical distributions associated to the Xi’s and X ′

i’s. If nt
2 ≥ 1,

imsart-generic ver. 2014/10/16 file: OptimalMMQuantvHal.tex date: February 4, 2020



/Clustering with quantized MM 29

then

P

(

sup
f∈F

(P − Pn)f√
Pf

≥ 2t

)

≤ 2P

(

sup
f∈F

(P ′
n − Pn)f

√

(P ′
nf + Pnf)/2

≥ t

)

P

(

sup
f∈F

(Pn − P )f√
Pnf

≥ 2t

)

≤ 2P

(

sup
f∈F

(Pn − P ′
n)f

√

(P ′
nf + Pnf)/2

≥ t

)

.

For the sake of completeness a proof of Lemma 24 is given in Section 8.4.
Next, introducing σ1, . . . , σn independent Rademacher variables, we get

P

(

sup
f∈F

(P ′
n − Pn)f

√

(P ′
nf + Pnf)/2

≥ t

)

≤ P

(

sup
f∈F

1
n

∑n
i=1 σi(f(Xi)− f(X ′

i))
√

(P ′
nf + Pnf)/2

≥ t

)

≤ EX1,...,Xn,X′

1,...,X
′

n

(

Pσ

(

sup
f∈F

1
n

∑n
i=1 σi(f(Xi)− f(X ′

i))
√

(P ′
nf + Pnf)/2

≥ t

))

.

For a set of functions F and elements x1, . . . , xq ∈ M(R) we denote by SF (x1, . . . , xq)
the cardinality of the set {(f(x1), . . . , f(xq)) | f ∈ F}. Let F1 denote the sets of

functions {X ∈ M(R,M) 7→ X(W )/M | W =
⋂k

j=1Hj , Hj half-space}. Since,
for every i ∈ [[1, n]], Xi =

∑ni

j=1 µi,jδx(i)
j

, we have

SF1(X1, . . . , Xn, X
′
1, . . . , X

′
n) ≤ |{(1W (x

(i)
j ))i=1,...,2n,j=1,...,ni

|W =

k
⋂

j=1

Hj , Hj half-space}|

≤
(

2

(

n
∑

i=1

ni + n′
i

))c0kd log(k)

,

using [23, Theorem 1], and [31, Theorem 1] to bound the VC-dimension of the
sets W ’s. On the other hand, for any f ∈ F1, it holds

∑n
i=1(f(X

′
i)− f(Xi))

2

∑n
i=1(f(Xi) + f(X ′

i))
≤ 1.

Thus, combining Hoeffding’s inequality and a plain union bound yields

(

Pσ

(

sup
f∈F

1
n

∑n
i=1 σi(f(Xi)− f(X ′

i))
√

(P ′
nf + Pnf)/2

≥ t

))

≤
(

2

n
∑

i=1

(ni + n′
i)

)c0kd log(k)

e−nt2 ,

hence, since for i = 1, . . . , n, Xi ∈ MNmax
(R,M),

P

(

sup
f∈F

(P ′
n − Pn)f

√

(P ′
nf + Pnf)/2

≥ t

)

≤ (4nNmax)
c0kd log(k)e−nt2 ,

that proves the second inequality of Lemma 20. The first inequality of Lemma
20 derives the same way from the second inequality of Lemma 24.
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We turn to the third inequality of Lemma 20. Let Z denote the process

Z = sup
c∈B(0,R)k,‖t‖≤1

〈

(

(
X̄n

M
− E(X)

M
) •
[

(cj − u)1Wj(c)(u)
]

)

j=1,...,k

, t

〉

,

and, for j = 1, . . . , k,

Zj = sup
c∈B(0,R)k,‖tj‖≤1

〈

1

M
(X̄n − E(X)) •

[

(cj − u)1Wj(c)(u)
]

, tj

〉

,

so that Z ≤
√

∑k
j=1 Z

2
j . According to the bounded differences inequality ([5,

Theorem 6.2]), we have

P

(

Zj ≥ E(Zj) +

√

8R2

n
x

)

≤ e−x.

Using symmetrization we get

EZj ≤
2

n
EX1,...,Xn

Eσ sup
c∈B(0,R)k,‖t‖≤1

n
∑

i=1

σi

〈

Xi

M
•
[

(cj − .)1Wj(c)(.)
]

, tj

〉

,

where σ1, . . . , σn are i.i.d Rademacher variables. Now assume that X1, . . . , Xn is
fixed and j = 1. For a set F of real-valued functions we denote by N (F , ε, ‖.‖)
its ε-covering number with respect to the norm ‖.‖. Denoting by Γ0, Γ1 and Γ2

the following sets

Γ0 =
{

γ
(0)
(c,t1)

: X 7→ X
M •

[

〈c1−.,t1〉
2R 1W1(c)(.)

]

| c ∈ B(0, R)k, t1 ∈ B(0, 1)
}

,

Γ1 =
{

γ
(1)
(c1,t1)

: x 7→ 〈c1−x,t1〉
2R | c1 ∈ B(0, R), t1 ∈ B(0, 1)

}

,

Γ2 =
{

γ
(2)
c′

: x 7→ 1W1(c)(x) | c ∈ B(0, R)k
}

,

so that, for every (c, t1), (c
′, t′1) ∈ (B(0, R)k × B(0, 1))2 ,

γ
(0)
(c,t1)

(Xi)− γ
(0)
(c′,t′1)

(Xi) =
Xi

M
•
[

γ
(1)
(c1,t1)

(.)γ(2)
c

(.) − γ
(1)
(c′1,t

′

1)
(.)γ

(2)
c′

(.)
]

.

Let ε > 0. If ‖γ(1)(c1,t1)
− γ

(1)
(c′1,t

′

1)
‖∞ ≤ ε, we may write

(γ
(0)
(c,t1)

(Xi)− γ
(0)
(c′,t′1)

(Xi))
2 ≤

(

ε+
Xi

M
•
[

|γ(2)
c

− γ
(2)
c′

|
]

)2

.

Thus,

‖γ(0)(c,t1)
− γ

(0)
(c′,t′1)

‖2L2(Pn)
≤ 2ε2 +

2

n

n
∑

j=1

‖γ(2)
c

− γ
(2)
c′

‖2L2(Xi/M)

≤ 2ε2 + 2‖γ(2)
c

− γ
(2)
c′

‖2L2(X̄n/M)

≤ 2ε2 + 2‖γ(2)
c

− γ
(2)
c′

‖2L2(X̄n/M(X̄n)).
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We deduce

N (Γ0, ε, L2(Pn)) ≤ N (Γ1, ε/2, ‖.‖∞)×N (Γ2, ε/2, L2(X̄n/M(X̄n))),

for every ε > 0. According to [23, Theorem 1], we may write

N
(

Γ1,
ε

2
, ‖.‖∞

)

≤
(

4

ε

)K(d+1)

N
(

Γ2,
ε

2
, L2(X̄n/M(X̄n))

)

≤
(

4

ε

)c0Kkd log(k)

,

where K is a constant and ε < 2. Thus, for every ε < 2,

N (Γ0, ε, L2(Pn)) ≤
(

4

ε

)Ckd log(k)

.

Using Dudley’s entropy integral (see, e.g., [5, Corollary 13.2]) yields, for k ≥ 2,

EσZj ≤ CR

√

kd log(k)

n
,

hence the result.

8.3. Proof of Lemma 23

The first bound of Lemma 23 follows from Bernstein’s inequality. To prove the
second inequality, we first bound the expectation as follows.

E

(∥

∥

∥(X̄n − E(X))(du) •
(

(cj − u)1Wj(c)(u)
)

j=1,...,k

∥

∥

∥

)

≤
√

E

∥

∥

∥(X̄n − E(X))(du) •
(

(cj − u)1Wj(c)(u)
)

j=1,...,k

∥

∥

∥

2

≤

√

√

√

√

1

n2

n
∑

i=1

E

(

‖(Xi − E(X)) •
(

(cj − u)1Wj(c)(u)
)

j=1,...,k
‖2
)

≤
√

(4RM)2k

n
=

4RM
√
k√

n

A bounded difference inequality (see, e.g., [5, Theorem 6.2] entails that, with
probability larger than 1− e−x,

∥

∥

∥(X̄n − E(X))(du) •
(

(cj − u)1Wj(c)(u)
)

j=1,...,k

∥

∥

∥ ≤ 4RM
√
k√

n
+

√

8kR2M2x

n
,

hence the result.

8.4. Proof of Lemma 24
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