IRS IN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

Evidencing the role of plants vs soils in the understanding of ¹³⁷Cs phyto-availability using a coupled experimental and modelling approach

Alexandre Flouret^a, P. Henner^a, A. Martin-Garin^a F. Lafolie^b and L. Février^a

^a LR2T/SRTE, IRSN, France, ^B UMR EMMAH, INRA, France

Association Française pour l'Etude du Sol

(Transfert des principaux radionucléides dans les différents compartiments de l'environnement, http://www.irsn.fr)

Soil

Plant

AIEA, 2009 - Tecdoc 1616

• Plant absorption of cesium is a linear function of soil concentration.

0,0E+00

• All cesium in soil is considered available

To Improve the modeling of cesium availability into the soil/solution/plant continuum

➔ Operational for a large variety of soil and plant

Context Aim M	odel Materials & Meth			ods Re	esults Conclusion	
Soil-Solution model	6.004.0)	Solution-Plant model				
Physio-chemical characteristics	Illit	e	Montmorillonite	Kaolinite		
Site capacity $\equiv X - (meq/Kg)$,	870	20		
Site density $\equiv SOH$ (sites/nm ²)		*10 ⁻³	3.6*10 ⁻⁵	1.5*10 ⁻⁴	R	
Surface specific area (m ² /g)			800	10	P	
Surface complexation reaction on \equiv SOH s	sites		LogK _{sc}		E C	
$SO^{-0.5} + H^+ \leftrightarrow SOH^{0.5}$		6	3.4	5	Гр	
$SO^{-0.5} + Cs^+ \leftrightarrow SOCs^{0.5} + H^+$ $SO^{-0.5} + Na^+ \leftrightarrow SONa^{0.5} + H^+$ $SO^{-0.5} + K^+ \leftrightarrow SOK^{0.5} + H^+$			4.3	3		
		3	-1.3	-3.6		
			0.1	-1.75		
$SO^{-0.5} + NH_4^+ \leftrightarrow SONH_4^{0.5} + H^+$				-1.75		
$SO^{-0.5} + Ca^{2+} \leftrightarrow SOCa^{1.5} + H^+$	-5		-1.4	-5.9	$F_{max} * C_w$	
$SO^{-0.5} + Mg^{2+} \leftrightarrow SOMg^{1.5} + H^+$	<i>⊢ H⁺</i> -5		-1.4	-5.9 ^P p =	$\overline{K_m + C_w}$	
$SO^{-0.5} + Sr^{2+} \leftrightarrow SOSr^{1.5} + H^+$	-5		-1.4	-5.9		
Cation exchange reaction on $\equiv X - sites$			LogK _C		ant flux → F _p (mol/g/d)	
$XNa + Cs^+ \leftrightarrow XCs + Na^+$	2.4	5	1.39	2.1	រ < 1mM	
$XK + Cs^+ \leftrightarrow XCs + K^+$	0.9	5	0.8	2.1	F _{max} = F _{max1}	
$XNH_4 + Cs^+ \leftrightarrow XCs + NH_4^+$	1.6		0.8	2.1	$K_m = K_{m1}$	
$X_2Ca + 2Cs^+ \leftrightarrow XCs + Ca^{2+}$	5.2		1.7	4.49	u > 1mM	
$X_2Sr + 2Cs^+ \leftrightarrow XCs + Sr^{2+}$	5.2		2.37		$F_{max} = F_{max^2}$	
$X_2Mg + 2Cs^+ \leftrightarrow XCs + Mg^{2+}$	5.2		2.45		$K_m = K_{m2}$	

C	ontext	Ain	n Model <i>I</i>	Material & <i>N</i>	Nethod	Results	Conclusion
Ма	terial &	& Method					
<u>3 c</u>	ontrast	<u>ed soils :</u>					
Soil	рН	CEC (meq/kg)	Organic carbon (g/kg)	Illite (g/kg)	Montmorillo	onite (g/kg)	Kaolinite (g/kg)

66,05

144,77

5,93

49,78

42,40

153,9

2 Plants :

7,5

5,5

9,12

98,9

76,4

11,1

Ε

Η

S

5

- Millet → low absorption capacity
- Mustard → High absorption capacity

11,17

28,5

0,18

20,30

76,4

41,55

ETSON

Linear adsorption, no plateau:

- Available Cs stock have no been depleted
- Plant maximal absorption capacity have not been reached

- Same flux (Fp) for each plant on the same soil
- Fp (Soil-S) = 100 x Fp (Soil-E)

 137 Cs soil retention capacity is different for the two soils

 $\boldsymbol{\boldsymbol{\forall}}$ A good modeling of the soil-solution continuum is needed

Sol / Solution / Plant / Modeling (PHREEQC)

Conclusion & Perspective

- Contrasted experimental data
 - o ¹³⁷Cs availability
 - Soils have stronger impact than plants on¹³⁷Cs mobility in soil-solution-plant continuum

♦ A good modeling of soil-solution¹³⁷Cs distribution over time is needed

- Complementary data :
 - K and other major elements have been measured in soil, solution and plant
- Soil-solution modeling \rightarrow Ok
- Soil-solution-plant modeling : ongoing

 ¹³⁷ Cs translocation
- Model comparison (E-K model vs surface complexation model)

ContextAimModelMaterial & MethodResultsConclusionThank you

<u>Paper</u>

 Flouret A. et al., « Effect of soil and plant characteristics on ¹³⁷Cs transfer in contrasted RHIZOtest experiments », in prep

	Illite (%)		Montmor	illonite (%)	Kaolinite (%)	
	0.01	2	23	27	4	9
Min (%)	0.01		23		4	
Average (%)	1.005		25		6.5	
Max (%)	2		27		9	

- Biomass are different for each type of plants
- Biomass are different for each type of soils for the same plant

MEMBRE DE

ETSON

IRS

ETSON

Illite et Smectites (Montmorillonite, bentonite)

