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Abstract (300 words) 10 

Emission of ionizing radiation (IR) in the environment is a natural phenomenon which can be 11 

enhanced by human activities. Ecosystems are then chronically exposed to IR. But environmental risk 12 

assessment of chronic exposure suffers from a lack of knowledge. Extrapolation of data from acute to 13 

chronic exposure is not always relevant, and can lead to uncertainties as effects could be different 14 

between the two irradiation modes, especially regarding reproduction endpoint, which is an 15 

ecologically relevant parameter. In the present study, we decided to refine the understanding of the 16 

molecular mechanisms involved in response to acute and chronic -irradiation by a global proteome 17 

label free LC-MS/MS analysis. C. elegans were exposed to 3 common cumulated radiation doses for 18 

acute or chronic exposure condition and global modification of the proteome was studied. This 19 

analysis of protein expression has demonstrated the modulation of proteins involved in regulatory 20 

biological processes such as lipid transport, DNA replication, germ cell development, apoptosis, ion 21 

transport, cuticle development, and aging at lower doses than those for which individual effects on 22 

reproduction have been previously observed. Thus, these proteins could constitute early and 23 

sensitive markers of radio-induced reprotoxicity; more specifically HAT-1, RPS-19 in acute and VIT-3 24 

for chronic conditions that are expressed in a dose-dependent manner. Finally, to focus on 25 

reproduction process, this analysis showed either repression or overexpression of 12 common 26 

proteins in organisms exposed to acute or chronic irradiation, respectively. These proteins include 27 

the vitellogenin cluster notably involved in lipid transport and oocyte maturation and proteins 28 
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involved in cuticle development and molting i.e COL-14, GLF-1, NOAH-1, NOAH-2, ACN-1. This results 29 

show that protein expression modulation is a sensitive and predictive marker of radio-induced 30 

reproductive effects, but also highlight limitation of data extrapolation from acute to chronic 31 

exposure for environmental risk assessment. 32 

 33 

 34 

  35 
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Introduction  40 

Emission of ionizing radiation in the environment is a natural phenomenon which can be enhanced 41 

by human activities. Therefore, ecosystems are chronically exposed to ionizing radiations. In this 42 

context, ecologically relevant predictions of long-term biological effects induced by chronic doses of 43 

ionizing radiation on nonhuman biota are necessary. But environmental risk assessment of chronic 44 

exposure suffers from a lack of knowledge and a lack of sensitivity [1, 2]. Data extrapolation from 45 

acute to chronic exposure is not always relevant, and can lead to uncertainties. Indeed, for a same 46 

dose, radio-induced effects are often different between the two irradiation modes, especially 47 

regarding the reproduction endpoint, which is an ecologically relevant parameter directly influencing 48 

population dynamics [3-5]. 49 

Moreover one of the limitations of the risk assessment conducted on major physiological functions is 50 

their sensitivity. The use of molecular markers, usually more sensitive and modulated before 51 

individual-level effects, could be a solution. However, studies on cellular and molecular levels 52 

represent only 7 and 12%, respectively of the studies on environmental species [6]. In addition, the 53 

difficulty is then to be able to associate these molecular changes with the consequences on 54 

physiological functions [7, 8]. In this sense, scientific advances have been made in the understanding 55 

of the radiation-induced molecular and cellular mechanisms. However, to date, underlying molecular 56 

mechanisms governing the differences in the observed effects are poorly understood [9, 10]. While 57 

effects of ionizing radiation on DNA, have been extensively described and are now rather well-58 

understood, the contribution of other radiation-induced molecular alterations, especially on proteins 59 

remains unclear. Proteins, which are the functional molecules of organisms, might be relevant 60 

biomarkers. Few studies have investigated the impact of an acute exposure to ionizing radiation (0.3-61 
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3 Gy) on mammal cell proteome and showed that modulation of protein expression could be a 62 

relevant biomarker to detect ionizing radiation exposure, to predict severity of associated lesions and 63 

ultimately to manage clinically these lesions [11-13]. However, these proteomic studies concern only 64 

acute irradiation of mammals. Data concerning the proteome sensitivity of non-human biota after 65 

chronic irradiation are scarce.  66 

The free living nematode Caenorhabditis elegans is a particularly convenient model organism to 67 

address this environmental risk assessment based proteomic issue [14, 15]. With its fully sequenced 68 

genome and its short life cycle, C. elegans has been successfully used to study acute and chronic 69 

irradiation effects and their consequences on germline development and hatching [4, 16-19]. 70 

Indeed our first results showed that a decrease of the number of progeny associated with a decrease 71 

of the embryo hatchability occurred from and above 30 Gy of acute irradiation [4]. In this paper, the 72 

decrease of the progeny number per individual have been hypothesized to be correlated to an 73 

increase of apoptosis whereas an explanation for the decrease of hatching success can be unrepaired 74 

DNA-damage then leading to non-viable eggs.   75 

After chronic irradiation, a recent study of our team has shown that reproduction is the more 76 

sensitive macroscopic parameter regarding survival and growth [17]. Moreover, our first study has 77 

also highlighted that, contrary to acute irradiation, chronic irradiation from 3.3 Gy induced a 78 

decrease of the number of progeny without impacting the hatching success [4]. This could suggest 79 

that in such conditions, gametogenesis is more impacted than embryogenesis. However, mechanisms 80 

have not been fully elucidated yet; some of our team results coming from a multi-generation study 81 

revealed that, after three generations continuously irradiated, an increase of apoptosis, a decrease of 82 

the sperm cells number and an oocytes cell cycle arrest could explain this phenomenon[3]. As 83 

proteins are involved in key biological processes, including DNA repair, cell cycle control and 84 

apoptosis, as our first results have also shown that proteolytic response of cells are different 85 

between acute and chronic [4], it seems relevant to assess their global expression after both acute 86 
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and chronic exposure in order to better understand the toxicity mechanisms in response to ionizing 87 

radiations.  88 

Therefore, in the present study, we decided to refine the understanding of the molecular 89 

mechanisms involved in response to acute and chronic irradiation, i.e. reprotoxicity effects 90 

demonstrated in our first publications [4, 17], by a global proteome analysis. C. elegans were 91 

exposed to 3 common cumulated radiation doses of acute or chronic exposure. Because the 3 92 

radiation doses were either comparable or lower than the ones used in previous works showing an 93 

effect on the reproduction, we then expected to identify early and sensitive biomarkers of the 94 

impaired reproduction and improve risk assessment sensitivity. After radiation exposure, the global 95 

modification of the proteome was studied by using both a DIGE and a label free LC-MS/MS proteomic 96 

approach. Our objectives were to test the following hypotheses: (1) whether or not the proteome 97 

expression correlated both with the dose and the irradiation mode; (2) if the proteome expression 98 

modification was associated with effects on reproduction then leading to a direct link with an 99 

ecological risk assessment. 100 

 101 

  102 
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Material and methods 103 

C. elegans maintenance and age synchronization 104 

The wild-type N2 strain of C. elegans provided by CGC (Caenorhabditis Genetic Center) was used in 105 

this study. Populations were maintained at 19°C and 80% of humidity on 9cm petri dishes poured 106 

with NGM (Nematode Growth Medium) and seeded with Escherichia Coli OP50 as food source. 107 

E. coli OP50 were grown in L-Browth medium at 37°C overnight. Petri dishes were seeded with 1mL 108 

of saturated culture of bacteria and UV killed (Bio-Link Crosslinker,  = 254 nm; intensity = 200 mWm-109 

2) for 20 minutes to avoid food heterogeneity between dishes. 100 gravid worms were randomly 110 

selected from the stock population and placed on 9 cm petri dishes. 96 h later, eggs were separated 111 

from adult worms by a bleaching procedure and collected embryos were allowed to grow in a control 112 

incubator for 96 h. The gravid worms were separated from eggs already laid by a sucrose gradient (3 113 

– 7 %), and then re-synchronized by a bleaching procedure in order to collect the eggs in utero 114 

synchronized over 3 h.  115 

 116 

Irradiation 117 

Irradiations were performed in incubators (19 °C and 80 % humidity) in controlled conditions; data 118 

loggers were used in order to measure humidity and temperature during irradiation. Nematode 119 

plates were placed perpendicularly or parallely (for acute and chronic exposure respectively) to the 120 

cesium-137 source to obtain a homogeneous dose rate at the surface of the plate. Radio Photo 121 

Luminescent dosimeters (RPL, GD-301 type, Chiyoda Technol Corporation, Japan) were placed on 122 

each experimental unit in order to measure the delivered cumulated dose received by organisms. At 123 

the end of each irradiation, worms were collected, rinsed with M9 medium (5 g.L-1 NaCl, 25 mM KPO4 124 

buffer and 1 mM MgSO4) to ensure bacteria removal, centrifuged and pellets were snap frozen. 125 

 126 

Acute - For acute irradiation, 3000 age-synchronized embryos were transferred to fresh 6 cm plates 127 

and allowed to reach L4-YA stage in a control incubator. Nematodes were then irradiated with a 128 

cesium-137 source (200 TBq) using the GSR-D1 apparatus from RadExpe platform (Curie Institute, 129 
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France). L4-YA C. elegans were irradiated at 1 Gy.min-1 during different times in order to test 3 130 

cumulated doses (excluding control): 0.5, 1 and 3.3Gy. 131 

 132 

Chronic - For chronic irradiation, 3000 age synchronized nematodes were exposed to cesium-137 133 

source using the platforms MIRE (Mini Irradiator for Radio-Ecology) (1.6 GBq) from embryo stage to 134 

L4-YA adult stage to cover the complete lifecycle (65 h). Three dose rates (excluding controls): 7, 14, 135 

50mGy.h-1 corresponding to three cumulated doses (0.5, 1 and 3.3Gy) were tested.  136 

 137 

Protein extraction and purification 138 

After irradiation, 3000 C. elegans per replicate were subjected to protein extraction. 300 µl of 0.5-139 

mm diameter zirconium beads and an equal amount of lysis buffer (30 mM Tris–HCl pH 7.4, 150mM 140 

NaCl, 1.0%(v/v) Igepal CA-630 (NP-40), 1%(v/v) TritonX-100, 0.5% (w/v) sodium deoxycholate, 141 

0.1%(w/v) sodium dodecyl sulfate (SDS), 2%(v/v) glycerol, 2 mM 1,4-dithiothreitol (DTT), 1 mg.ml-1 142 

leupeptin, 1 mg.ml-1 aprotinin, 1 mM phenylmethylsulfonyl fluoride, 1 mM 143 

ethylenediaminetetraacetic acid (EDTA)) were added on top of worm pellets and incubated for 15 144 

min on ice. C. elegans were then homogenized by three 6800-rpm cycles in the Precellys grinder 145 

system (Bertin Technologies, Montigny-le-Bretonneux). After 1 h incubation on ice, lysates were 146 

centrifuged (13500 g) at 4°C for 15 min. Supernatant was sampled, protein concentration was 147 

determined using the BCA kit (Thermo Scientific) using BSA as a standard, according to the 148 

manufacturer's instructions and the remaining volume quick frozen with liquid nitrogen.  149 

20 µg of proteins were precipitated on ice for 20 min by the addition of 10 % TCA (v/v). After washing 150 

steps, pellets were resuspended in UTC9231 (9 M urea, 2 M thiourea, 3% (w/v) CHAPS, 1% (w/v) 151 

ASB14, 20 mM Tris, pH 9.5) under stirring (1600 rpm) at 30°C in the dark for two hours. 152 

 153 

Label free sample preparation and mass spectrometry analysis 154 

15 µg of proteins per replicate were loaded on a NuPAGE gel 4-12% (Life Technologies). Samples 155 

were then subjected to electrophoresis during 6min at 80V using a MOPS buffer (Thermo Fisher 156 
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Scientific) in order to stack proteins on the top of the gel before proceeding to coomassie blue 157 

staining. Protein bands were then excised with a scalpel and digested with trypsin. 158 

Each condition (0.5, 1 and 3.3 Gy) was injected in 3 biological replicates and 2 technical replicates in 159 

liquid chromatography (Ultimate 3000 RSLCnano chromatography system (Thermo Fisher Scientific)) 160 

coupled with an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Fisher Scientific). First 161 

peptides were concentrated and purified on a pre-column from Dionex (C18 PepMap100, 2 cm × 100 162 

µm I.D, 100 Å pore size, 5 µm particle size) in solvent A (0.1% formic acid in 2% acetonitrile). In the 163 

second step, peptides were separated on a reverse phase LC EASY-Spray C18 column from Dionex 164 

(PepMap RSLC C18, 50 cm × 75 µm I.D, 100 Å pore size, 2 µm particle size) at 300 nL/min flow rate 165 

and 40°C. After column equilibration using 4% of solvent B (20% water - 80% acetonitrile - 0.1% 166 

formic acid), peptides were eluted from the analytical column by a two steps linear gradient (4-20% 167 

acetonitrile/H2O; 0.1 % formic acid for 220 min and 20-45% acetonitrile/H2O; 0.1 % formic acid for 20 168 

min). For peptide ionization in the EASY-Spray nanosource, spray voltage was set at 2.2 kV and the 169 

capillary temperature at 275 °C. The mass spectrometer was used in data dependent mode to switch 170 

consistently between MS and MS/MS. Time between Masters Scans was set to 3 seconds. MS spectra 171 

were acquired with the Orbitrap in the range of m/z 375-1500 at a FWHM resolution of 60 000 172 

measured at 200 m/z. AGC target was set at 4.0.105 with a 50 ms Maximum Injection Time. The more 173 

abundant precursor ions were selected and collision induced dissociation fragmentation at 35% was 174 

performed and analyzed in the ion trap using the “Inject Ions for All Available Parallelizable time” 175 

option with a maximum injection time of 105 ms and an AGC target of 1.0.105. Charge state 176 

screening was enabled to include precursors with 2 and 7 charge states. Dynamic exclusion was 177 

enabled with a repeat count of 1 and a duration of 60s. These chromatographic conditions were 178 

previously optimized with a protein pool from all the samples. 179 

Quantitative proteomics processing 180 

For data processing we used the free suite MaxQuant version 1.5.3.8[20]. The relative intensities 181 

based on label-free quantification (LFQ) were calculated using the MaxLFQ algorithm[21]. The 48 LC-182 
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MS raw acquisitions were processed by the Andromeda search engine integrated into MaxQuant[21]. 183 

The identification of the precursor ions present in the mass spectra was performed by comparison 184 

with the protein database of C. elegans extracted from UniProt on the 17th of January, 2017 and 185 

containing 28,794 entries. This database was supplemented with a set of 245 proteins that are 186 

commonly found as contaminants. The following parameters were used for this search: (i) trypsin 187 

cleavage authorization before prolines; (ii) authorization of two failed cleavages; (iii) fixed 188 

modification of cysteines by carbamidomethylation (+57.02146 Da) and variable modification of 189 

methionines by oxidation (+15.99491) and N-terminal proteins by acetylation (+42.0116); (iv) 190 

authorization of 5 modifications per peptide; and (v) minimum peptides length of 7 amino acids and 191 

a maximum mass of 4600 Da. 192 

Spectra alignment was performed in two dimensions; the elution time of the precursor ions (min) 193 

and the mass over charge (m/z; amu). The "Match between runs" option has been enabled to allow 194 

the transfer of identifications between LC-MS/MS based on the mass and the retention time using 195 

the default settings. The false positive rate on identification was set at 1%. The statistical analysis was 196 

carried out with the Perseus program (version 1.6.0.7) of the MaxQuant environment. The 197 

normalized intensity LFQ was transformed by a base logarithm 2 to obtain a normal distribution. 198 

Differential protein expressions were evidenced by the application of a multiple ANOVA t-test or 199 

student t-test performed by controlling the false positive rate at 1% using 250 permutations. Proteins 200 

differentially expressed between samples were analyzed based on the log2 difference of the LFQ 201 

intensity of the protein between controls and the different doses (0.5Gy vs. control, 1Gy vs. control 202 

and 3.3Gy vs. control) and log10 of the associated p. value. The differential proteomics analysis was 203 

carried out on identified proteins after removal of proteins only identified with modified peptides, 204 

peptides shared with other proteins, proteins from contaminant database and proteins which are 205 

only represented in 2 replicates of 6 of the same condition. The mass spectrometry proteomics data, 206 

including search result, have been deposited to the ProteomeXchange Consortium 207 

(www.proteomexchange.org) via the PRIDE partner repository with datasets identifiers PXD011731. 208 

http://www.proteomexchange.org/
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 209 

Enrichment analysis 210 

Following the differential identification of proteins expressed after irradiation in C. elegans, an 211 

analysis of biological functions was performed using the DAVID gene interaction tool[22]. Indeed, the 212 

proteins have been grouped according to the biological processes that they govern (GOTERM) for a 213 

simplified analysis. After selection of the model organism (C. elegans), the UniProt accession number 214 

of the differently expressed major proteins were implemented in the David gene tool, as well as the 215 

background noise (all the majority proteins identified in our study). Then, the biological processes, in 216 

which the variant proteins were involved between the different irradiation conditions, were searched 217 

and classified according to their ease score (<0.1); excel files of each David gene analysis is given as 218 

supplementary data: Suppl-File8_Acute ttest David Ease 01_GO-BP.xls, Suppl-File7_Acute ANOVA 219 

David Ease 01_GO-BP, Suppl-File3_Chronic ttest David Ease 01_GO-BP, Suppl-File4_Chronic ANOVA 220 

David Ease 01_GO-BP. Finally, biological processes were sorted and presented in this article 221 

according to their p. value (<0.05), and results visualization with treemap was done using Revigo tool 222 

to avoid redundancy between the different biological processes (medium similarity (0.7); semantic 223 

similarity measure to use SimRel, and C. elegans database)[23]. 224 

 225 

  226 
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Results  227 

Chronic exposure to gamma-rays 228 

Mis-regulation of protein expression from 0.5 Gy of chronic gamma radiation exposure. 229 

The analysis of differential protein expression by the 2D-DIGE methodology (Supplementary data) 230 

showed only one protein spot as variant after chronic irradiation of C. elegans from 0.5 to 3.3 Gy, 231 

compared to controls. A label-free approach was then performed on the same samples in order to 232 

increase the sensitivity of the proteome analysis. Indeed, the label free LC-MS/MS based proteomic 233 

approach was able to identify 2647 proteins. The most abundant identified proteins with high iBAQ 234 

(intensity-based absolute quantification) and the less abundant proteins with low iBAQ are presented 235 

in supplementary Figure S1. This figure shows that our proteomics analysis covers a dynamic range 236 

around 6 log of protein intensity (orders of magnitude). ANOVA analysis was performed on all 237 

conditions, 168 proteins were found significant (FDR<0.01) and their z-scored LFQ values were heat-238 

mapped (Figure 1 - Exhaustive data are given as supplementary excel file: Suppl-File1_ANOVA 239 

conditionChronic 4clusters.xls) showing 4 clusters of proteins (A, B, C, D) within the whole targets, 2 240 

of them (A and D) making it possible to distinguish control and irradiated conditions whereas the two 241 

others tend to isolate the 1 Gy exposure condition. The cluster A encompassed proteins that were 242 

mainly decreased in the irradiation conditions group versus the controls. The cluster D included 243 

proteins which increased under irradiation versus control. Finally, cluster B and C contained proteins 244 

that were more or less upregulated in one specific irradiation condition 0.5 and 1 Gy respectively. As 245 

presented in Erreur ! Source du renvoi introuvable. (Exhaustive data are given as supplementary 246 

excel file: Suppl-File2_Chronic-fdr001so01-pairwise full data.xls), the further pairwise analysis of the 247 

protein differential expression showed that among the 2647 proteins, 87 were significantly mis-248 

regulated following chronic exposure (sum of the misregulated proteins after pairwise analysis of 249 

conditions - log2 fold change > ±0.58 and log p.value > +/- 1.3). Finally, 51% of these 87 mis-regulated 250 

proteins were over-expressed compared to controls, while 49% of proteins were repressed. In 251 

addition, some of the misregulated proteins were common between the 3 doses (25.6 %). More 252 
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specifically, 42 (23 up-, 19 down-), 52 (24 up-, 28 down-) and 39 (14 up-, 25 down-regulated) proteins 253 

were mis-regulated compared to controls at 0.5 Gy, 1 Gy, and 3.3 Gy, respectively. These results 254 

show that proteome modulation between control and irradiated organisms occurs as soon as 0.5 Gy. 255 

 [Figure 1] 256 

Figure 1: Chronic irradiation-heat map representing the Z-Scored LFQ intensity for each protein determined as significant 257 
after ANOVA analysis over the 3 groups. The top represents the different conditions including biological and analytical 258 
replicates. Four protein clusters annotated A, B, C and D are highlighted according to the ANOVA analysis between the 3 259 
doses. 260 

Protein enrichment analysis makes possible to associate protein expression level and radio-261 

induced reproductive disturbance  262 

Biological processes associated to misregulated proteins found in the pairwise analysis were 263 

evaluated using gene ontology enrichment to find the possible disturbed pathways. A sum-up was 264 

done in Figure 2, the full results are in the excel file Suppl-File3_Chronic ttest David Ease 01_GO-265 

BP.xls. We found that misregulated proteins are involved in lipid transport (9% in lipid transport, p. 266 

value = 2.6x10-5; 12.8% in lipid localization, p. value = 0.01; 3.8% in divalent inorganic cation 267 

transport, p. value = 0.04; 3.8% in divalent metal ion transport, p. value = 0.04; 17.9% in single-268 

organism transport, p. value = 0.05), in cuticle development (7.7% in cuticle development, p. value = 269 

0.005; 3.8% in molting cycle process, p. value = 0.007; 11.5% in molting cycle, p. value = 0.01; 12.8% 270 

in germ cell development, p. value = 0.03), in DNA-dependent DNA replication (6.4% in DNA-271 

dependent DNA replication, p. value = 1.3x10-4; 6.4% in DNA metabolic process, p. value = 0.03), in 272 

DNA unwinding (5.1 %, p. value = 0.002) and in cellular divalent inorganic cation homeostasis (3.8%, 273 

p. value = 0.01). In addition, protein enrichment was performed on ANOVA data (Figure S2) and 274 

particularly on clusters A and D to analyze the biological processes distinguishing control and 275 

irradiated conditions (Table 1; Suppl-File4_Chronic ANOVA David Ease 01_GO-BP.xls).  276 

Table 1: Gene ontology enrichment based analysis of biological process associated to the 4 protein clusters found after 277 
ANOVA analysis between the 3 doses of chronic exposure with Z-scored value of LFQ, and their associated p. values. 278 

[Table 1] 279 

Cluster A corresponds mainly to biological processes such as cuticle development (9.5% of proteins 280 

and p. value = 1.3x10-3), molting cycle (14% of proteins and p. value = 2x10-3), regulation of growth 281 
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(16%, p. value = 8.4x10-4), defense response (9.5%, p. value= 3.7x10-2) and locomotion (28%, p. 282 

value = 1.5x10-2). The cluster D corresponds to biological process such as embryo development 283 

ending in birth or hatching (61%, p. value = 5x10-9); DNA replication (15.9%, p. value = 3.8x10-7), 284 

nitrogen compound metabolism (41%, p. value = 7.5x10-4) and lipid transport (13.6%, p. value = 285 

1.8x10-6). For a simplified analysis, we chose to only analyze and describe biological processes that 286 

are potentially linked with reprotoxicity or radiotoxicity, i.e. biological process such as embryo 287 

development ending in birth or hatching, cell cycle processes and DNA replication processes. All of 288 

these proteins are overexpressed in at least one dose compared to control. 289 

[Figure 2] 290 

Figure 2 : Independent DAVID gene functional enrichment analysis based on results of all proteins identified as 291 
modulated after chronic irradiation (t-test, pairwise comparison). Significant GO-term biological processes (p. value 292 
<0.05) were then summarized using REVIGO. The % of proteins involved in the process is written in each case. Tree maps 293 
show a two-level hierarchy of GO terms (main clusters and cluster members) ; the size of the rectangles is relative to the 294 
log10 (p. value) absolute. With a same color, biological processes belonging to one main head process: lipid transport 295 
(purple), cuticle development (blue), DNA-dependent DNA replication (yellow). 296 

 297 

Interestingly, the ones involved in lipid transport but also in germcell development and particularly in 298 

oocyte maturation are VIT-1; VIT-2; VIT-3; VIT-4; VIT-5; VIT-6. These proteins are over-expressed 299 

from 0.5 Gy to 3.3 Gy and are yolk protein precursors (Figure 3A). 300 

[Figure 3] 301 

Figure 3: A/ Box plot of Vit-2 protein label free intensity for the three irradiation doses (C0: control, C1: 0.5 Gy, C2: 1 Gy, 302 
C3: 3.3 Gy). B/ Box plot of MCM-2 protein label free intensity for the three irradiation doses (C0: control, C1: 0.5 Gy, C2: 1 303 
Gy, C3: 3.3 Gy). 304 

In addition, the 2 proteins involved in the “embryo development ending in birth or hatching” 305 

biological process excepted vitellogenins are CPG-1 and CPG-2, two chondroitin proteoglycan protein 306 

that are over-expressed at 0.5 Gy compared to controls conditions, but there are not mis-regulated 307 

at higher doses tested. They are required for polar body extrusion during cytokinesis in embryo 308 

development and in meiotic chromosome segregation[24]. CPG-1 and CPG-2 are also involved in the 309 

cellular division process, mainly occurring in germ cells of C. elegans[24]. Moreover, the 4 proteins 310 

belonging to the “DNA replication pathway” process are MCM-2, MCM-3, MCM-6 and MCM-7 311 
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(Figure 3B), helicases involved in DNA replication after DNA repair for example that are 312 

overexpressed at 0.5 and 1 Gy. The MCM complex is expressed in all dividing cells during embryonic 313 

and postembryonic development, and is associated with chromatin[25].  314 

Proteins involved in reproduction process are mis-regulated as soon as 0.5 Gy. 315 

To answer our main question on the radio-induced toxicity mechanisms and determine relevant 316 

putative biomarkers of chronic exposure, we compared the mis-regulated proteins for the 3 radiation 317 

doses. The comparison highlighted 21 proteins in common. Results are presented in Figure .  318 

[Figure 4] 319 

Figure 4: Comparison of the differential proteins found in the 3 different conditions of chronic irradiation. A) Venn 320 
diagram of mis-regulated proteins (up or down-expressed) between 0.5, 1 and 3.3 Gy. The overlaps between conditions 321 
represent the amount of shared proteins within the conditions of interest. B) Heatmap of the Z-scored label free 322 
intensity of the 21 proteins in common between the three irradiation doses. 323 

Among the 21 proteins in common between the three tested doses, 13 are annotated in UniProt 324 

database, and are presented in Table . Among them VIT-1, VIT-2, VIT-3, VIT-4, VIT-5 and VIT-6 have 325 

already been identified in biological processes of interest. As indicated in Table , these proteins are 326 

equivalently modulated between control and the three irradiated groups, i.e. at 0.5, 1 and 3.3 Gy. 327 

Chronic exposure has an effect on expression of proteins involved in reproduction as soon as 0.5 Gy.  328 

Table 2: List of the common annotated misregulated proteins after chronic exposure to -rays at 0.5, 1 and 3.3Gy; 329 
modulation of their associated expression for each of the conditions. Differences are given as the log2 of the protein 330 
intensity ratio between the control and irradiated worms (negative or positive values, means that the protein is over-331 
expressed or repressed compared to control respectively).  332 

[Table 2] 333 

 334 

Acute exposure to gamma-rays 335 

Misregulated proteins in response to 3 moderate doses of acute gamma radiation 336 

In order to compare the global change of C. elegans proteome after acute vs. chronic exposure for a 337 

same cumulated dose and understand our radioinduced reprotoxicity results[4], we also performed a 338 

global analysis of the proteomic changes induced in C. elegans by acute gamma radiation from 0.5 to 339 
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3.3 Gy. Similarly to chronic exposure, 2D-DIGE methodology was used in the first instance 340 

(Supplementary data), refined by a label free LC-MS/MS based proteomic approach.  341 

The label free LC-MS/MS based proteomic approach was able to identified 2677 proteins. Similarly to 342 

chronic, the most abundant identified proteins with high iBAQ and the less abundant proteins with 343 

low iBAQ are presented in supplementary Figure S1. ANOVA analysis was performed on all 344 

conditions, 369 proteins were found significant (FDR<0.01) and their z-scored LFQ values were heat-345 

mapped (Figure 5 - Exhaustive data are given as supplementary excel file: Suppl-File5_ANOVA 346 

condition Acute 2 clusters.xls) showing 2 clusters of proteins (Cluster A and Cluster B) within the 347 

whole targets. Both clusters show that the condition 0.5 Gy is very close to the control. The cluster A 348 

encompassed proteins that were mainly increased in the two higher irradiation conditions group 349 

versus the controls. Conversely, the cluster B included proteins which decreased in the two higher 350 

irradiation conditions versus control. As presented in TableS3 (Exhaustive data are given as 351 

supplementary excel file: Suppl-File6_Acute-fdr001so01 pairwise full data.xls), a further pairwise 352 

analysis of the protein differential expression, showed that among the 2677 proteins, 338 were 353 

significantly mis-regulated following acute exposure (sum of all misregulated proteins after pairwise 354 

analysis of conditions - log2 fold change > ±0.58 and log p.value >+/- 1.1). Most of these 338 mis-355 

regulated proteins (70%) were over-expressed compared to controls, while 30% of proteins were 356 

repressed. In addition, some of them (2) were common between the 3 doses (0.6 %). More 357 

specifically, only 2 proteins (RPS-19 and HAT-1) were repressed at 0.5 Gy compared to controls. Then, 358 

at 1 Gy and 3.3 Gy, 32 (20 up-, 12 down-regulated) and 335 proteins (103 up-, 232 down-regulated) 359 

were mis-regulated, respectively. These results show a large deregulation of the proteome with 360 

increasing dose of radiation. Proteome modulation occurs as soon as 0.5Gy but only a small number 361 

of proteins is concerned. 362 

[Figure 5] 363 

Figure 5: Acute irradiation-heat map representing the Z-Scored LFQ intensity for each protein determined as significant 364 
after ANOVA analysis over the 3 groups. The top represents the different conditions including biological and analytical 365 
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replicates. Two protein clusters annotated A and B are highlighted according to the ANOVA analysis between the 3 366 
doses. 367 

 368 

Protein enrichment analysis after acute irradiation makes possible to associate protein expression 369 

level and radio-induced reproductive disturbance.  370 

Based on gene ontology enrichment (GO) and associated p. values, biological processes associated to 371 

mis-regulated proteins found in the pairwise analysis of label free LC-MS/MS proteomic approach 372 

were evaluated using gene ontology enrichment to find the possible disturbed pathways (Exhaustive 373 

data are given as supplementary excel file: Suppl-File7_Acute ttest David Ease 01_GO-BP.xls). The 374 

sum-up of the analysis is showed in Figure 6. In addition, protein enrichment was performed on 375 

ANOVA clusters (Figure S3; Table3) to analyze the biological processes distinguishing control and the 376 

highest doses of irradiation conditions. Exhaustive list of biological processes found for each set of 377 

data are given in supplementary data (Suppl-File8_Acute ANOVA David Ease 01_GO-BP.xls). For a 378 

simplified analysis, we then chose to analyze and describe biological pathways that are potentially 379 

linked with reprotoxicity or radiotoxicity. Results on protein enrichment have been discussed mainly 380 

on the proteins found to be modulated after pairwise analysis.  381 

[Figure 6] 382 

Figure 6: Independent DAVID gene functional enrichment analysis on the basis of results of all proteins identified as 383 
modulated after acute irradiation (t-test, pairwise comparison). Significant GO-term of biological processes (p.value 384 
<0.05) were then summarized using REVIGO. The tree maps show a two-level hierarchy of GO terms (main clusters and 385 
cluster members); the size of the rectangles is relative to absolute of log10(p value).  386 

The misregulated proteins were mainly involved in cuticle development process (with involvement in 387 

9 sub-processes: cuticle development, aging, embryo development ending in birth or egg hatching, 388 

embryo development, larval development, post-embryonic development, determination of adult 389 

lifespan, developmental growth, collagen and cuticulin-based cuticle development), alpha-amino acid 390 

metabolism (with involvement in 6 sub-processes: single-organism biosynthesis of organonitrogen 391 

compounds, organic substances and glycosyl compounds, metabolism of alpha amino acids and 392 

organonitrogen compounds), mitochondrion organization (mitochondrion organization, 4% proteins, 393 
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p. value = 0.03; ribosome biogenesis, 6.1% proteins, p. value = 0.04), biosynthesis (26.4% proteins, p. 394 

value = 0.02) and defense response (5.5% proteins, p. value = 0.04). 395 

Similarly to chronic, to have a deeper view on the radioinduced reprotoxicity mechanisms, a 396 

particular focus, i.e. analysis of misregulated proteins involved in each process of interest, was done 397 

on the biological processes linked to reproduction, i.e. “embryo development ending in birth or egg 398 

hatching”, “embryo development”, “defense response” and “reproduction”. All the proteins 399 

concerned are repressed in at least one dose compared to control.  400 

Interestingly, the 5 proteins involved in “embryonic development” are AIR-1, CGH-1, CIF-1, LAP-1 and 401 

MAG-1. These 5 proteins are repressed at 3.3 Gy compared to controls and belong more specifically 402 

to germ cell development. AIR-1 (aurora lpl1/related kinase) is involved in cytokinesis, CIF-1 403 

(COP9/Signalosome and eIF3 complex-shared subunit 1) and MAG-1 (Protein mago nashi homolog) 404 

are involved in oogenesis and LAP-1 (Leucine aminopeptidase 1) is involved in oviposition (Figure 405 

7A). 406 

[Figure 7] 407 

Figure 7: A/ Box plot of LAP-1 protein label free intensity for the three irradiation doses (A0: control, A1: 0.5 Gy, A2: 1 Gy, 408 
A3: 3.3 Gy). B/ Boxplot CGH-1 protein label free intensity for the three irradiation doses (A0: control, A1: 0.5 Gy, A2: 1 409 
Gy, A3: 3.3 Gy). 410 

Finally, CGH-1 (ATP-dependent RNA helicase cgh-1) is involved in oocyte and spermatozoid function 411 

and is also known to prevent physiological apoptosis in C. elegans germline (Figure 7B).  412 

Regarding “defense response” process, the proteins concerned are RPA-0 and SKR-1 and are 413 

repressed at 3.3 Gy compared to controls. RPA-0 (60S acidic ribosomal protein P0) is responsible for 414 

double strand break recognition and is required for the DNA repair and recombination after damage, 415 

while SKR-1 (skp1 related ubiquitin ligase compound) is involved in the negative modulation of the 416 

apoptosis response.   417 

Moreover, concerning the process “embryo development ending in birth or egg hatching”, 158 418 

proteins are involved in. Even if most of them are involved in several different biological processes, 419 
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some proteins have particular functions. Namely, vitellogenins 3, 4 and 5 are repressed at the two 420 

highest doses, and histones 4, 11, 48, 41 and 39 are repressed at 3.3 Gy compared to controls. The 421 

role of vitellogenins has already been previously described in the precedent section about chronic 422 

irradiation. Concerning histones, they are in eukaryotic cells nuclei the leading proteins in interaction 423 

with DNA which form the chromatin and pack the DNA into nucleosomes.  424 

Mis-regulation of proteins involved in embryonic development from 1 Gy acute exposure 425 

To determine relevant putative biomarkers of acute exposure, we compared the mis-regulated 426 

proteins for the 3 doses as well as for the 2 highest doses. Results of the annotated proteins in 427 

UniProt proteomic database are presented in Table .   428 

Table 4: List of the common annotated misregulated proteins after acute exposure to -rays at 0.5, 1 and 3.3Gy; 429 
modulation of their associated expression for each of the conditions. Differences are given as the log2 of the protein 430 
intensity ratio between the control and irradiated worms (negative or positive values, means that the protein is over-431 
expressed or repressed compared to control respectively). 432 

[Table 4] 433 

The two differential proteins found in the 0.5 Gy conditions versus control were also found in the two 434 

others conditions. So the 3 doses comparison highlighted these 2 proteins repressed at 0.5; 1 and 3.3 435 

Gy compared to controls ([Figure 8] 436 

Figure ). These proteins are RPS-19 (40S ribosomal protein S19) and HAT-1 (histone acetyltransferase 437 

1). In addition, 29 proteins are common between 1 Gy and 3.3 Gy, and are modulated in the same 438 

way between these conditions compared to controls.  439 

[Figure 8] 440 

Figure 8: Comparison of the differential proteins found in the 3 different conditions of acute irradiation. A) Venn diagram 441 
of mis-regulated proteins (up or down-expressed) between 0.5, 1 and 3.3 Gy. The overlaps between conditions represent 442 
the amount of shared proteins within the conditions of interest. B) Box plot of label free intensity of the 2 proteins in 443 
common between the three irradiation doses. 444 

Among the overexpressed proteins at 1 and 3.3 Gy, it is interesting to note SYM-1, needed for 445 

axogenesis and embryonic viability, and MUP-4 proteins which are essential for embryonic 446 

development. In addition, LYS-5 and LYS-6 have a lysozyme activity and ACN-1 is required for molting 447 

like NOAH-1, NOAH-2 and COL-14. In contrast, among the repressed proteins at 1 and 3.3 Gy, we find 448 
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again the vitellogenins 1, 3, 4 and 5, FAR-1 which is involved in lipid binding and CAT-4 which is 449 

involved in serotonin and dopamine biosynthesis that affects movement, mating behavior, foraging 450 

behavior, and cell migration.  451 

Different mode of action between acute versus chronic exposure to gamma radiation. 452 

Finally, to compare the mechanisms involved in the two irradiation modes, i.e. acute vs chronic, of 453 

exposure to gamma rays for the same final equivalent doses, we searched for common mis-regulated 454 

proteins between the two irradiation modes. We found that acute and chronic exposure share 12 455 

common mis-regulated proteins. The list of the 10 annotated proteins among the 12 proteins are 456 

presented in Table . 457 

Table 5: List of the 10 shared protein between acute and chronic exposure to -rays at 0.5, 1 and 3.3Gy and the 458 
modulation of their associated expression for each of the conditions. "" or "" means that the log2 of the protein 459 
intensity ratio between the exposure conditions and the controls is lower than -1 or higher than 1 respectively. "" or 460 
"" means that the log2 of the protein intensity ratio between the exposure conditions and the controls is lower 461 
than -0.58 or higher than 0.58 respectively. 462 

[Table 5] 463 

Among them, SYM-1 and vitellogenins, with a specificity of “vitellogenin 2” which was found only 464 

differentially repressed under acute 1Gy irradiation. 465 

 466 

  467 
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General discussion 468 

Environmental risk assessment of ionizing radiations on non-human biota suffers from lack of 469 

knowledge on chronic exposure and from a lack of sensitivity. Thus, our objectives in this study were 470 

to improve the knowledge on (1) the proteome expression modulation after acute or chronic doses 471 

of -rays and (2) the possible link between proteome expression modification and effects on 472 

reproduction to explain our previous results on radio-induced reprotoxicity. We thus focused the 473 

analysis on proteins and biological processes i/ making it possible to distinguish irradiated from 474 

control conditions, to find putative biomarkers, ii/ enabling the distinction between acute and 475 

chronic modes of irradiation and also iii/ highlighting biological processes relative to reproduction, 476 

the key biological function which acts directly on population dynamics. 477 

1- Opposite modulation of some key proteins after acute vs. chronic exposure to -rays 478 

Proteomic analyzes in each condition were able to show differential protein expression variations 479 

between control organisms and organisms exposed to acute or chronic irradiation at 3 different 480 

cumulated doses, whereas an effect on reproduction function has been shown at higher doses for 481 

both acute and chronic exposure (i.e 30 Gy and 3.3 Gy respectively[4]), attesting of the sensitivity of 482 

the proteomic approach. We first focus on these mis-regulated targets. Some of the identified 483 

proteins are involved in the reproduction of C. elegans i.e. germ line development, embryonic 484 

development, and these are over-expressed after chronic exposure and repressed after acute 485 

exposure. 11 proteins have been found to be oppositely regulated; 5 of them are involved in cuticle 486 

development and molting (i.e COL-14, GLF-1, NOAH-1, NOAH-2, ACN-1), not directly linked to 487 

reproduction. Among the other targets, vitellogenins VIT-1; VIT-2; VIT-3; VIT-4; VIT-5; VIT-6 are over-488 

expressed after chronic exposure whereas VIT-1, VIT-3, VIT-4 and VIT-5 are repressed at 1 and 3.3 Gy 489 

of acute exposure compared to controls. These proteins are yolk protein precursors; five closely 490 

related genes called vit-1 through vit-5 encode two polypeptides yp170A and yp170B, and vit-6 491 

encodes two smaller proteins yp115 and yp88[26]. In nematodes, vitellogenins are expressed in the 492 

intestine and secreted into the pseudo-coelomic space before being internalized by maturing 493 
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oocytes[27]. These proteins constitute a stock of nutritive reserves (including lipids) for the oocytes, 494 

allowing the transport of cholesterol thus promoting oocyte maturation. Accumulation of cholesterol 495 

in the gonads is necessary for the nematode's spawning capacity by allowing the cell cycle 496 

progression and the exit of cells in maturation from the pachytene phase[28]. Therefore, increasing 497 

transporters after chronic exposure could mean an increase need of lipids and cellular energy. 498 

However, lipid content was analyzed in our study but no significant decrease has been observed 499 

before 6.8 Gy [29], that let us suppose that the excess of yolk protein is not the consequence of lipid 500 

catabolism but rather the trigger[30]. Yolk protein excess can also be the result of cellular fight 501 

against oxidative stress that has been shown to be partly orchestrated by SKN-1[31], also involved in 502 

lipid homeostasis and yolk accumulation[32] in opposite ways[30]. In germline stem cell ablated C. 503 

elegans, this phenomenon has already been seen[32] and the role of yolk proteins in response to 504 

chronic exposure has been suspected [29]. The link between reproduction, lipids and even lifespan 505 

has been evidenced through numerous studies[33] but still requires investigations. At the opposite, 506 

the repression of vitellogenins after acute irradiation could possibly yield a lack of oocyte maturation 507 

and constitute one explanation for the decline in the egg-laying observed from 30 Gy [4]. 508 

Nethertheless, reduced yolk proteins are not always a sign of reproduction defect[34, 35]. In 509 

addition, all vitellogenins don’t have the same regulation and are not only involved in lipid transport. 510 

Indeed, in C. elegans, the transcription level of VIT-2 (protein only modulated after chronic exposure) 511 

and VIT-5 is controlled through a sperm-dependent signal[33]. Interestingly, a decrease of the sperm-512 

cell number has been previously shown by Buisset-Goussen et al. after chronic exposure to gamma 513 

rays of three generation of C. elegans[3]. Our quantitative proteomic approach performed on whole 514 

worms did not enable the identification of proteins involved in spermatogenesis disturbance. This 515 

can be due to a lack of sensitivity as only 10% of the C. elegans proteome was identified or because 516 

of a whole worm study instead of a specific gonad one which could enable to access to deeper 517 

mechanisms. Anyway, even if discordance between vitellogenin transcripts and yolk proteins levels 518 

has already been observed[33], these results can constitute a cascade of events due to irradiation 519 
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exposure, in which the trigger needs to be elucidated. This could have an importance in terms of 520 

environmental risk assessment based on integrated approach at different biological organization 521 

levels. 522 

SYM-1 protein involved in embryonic viability by helping the attachment of body muscle to the 523 

extracellular cuticle is also differentially modulated after acute or chronic exposure. This possibly 524 

suggests a perturbation of the embryo viability for the two irradiation modes but in a different 525 

manner and constitutes a specific marker of reproduction failure. The causal link, if any, remains to 526 

be investigated in both cases but, in literature, SYM-1 mutant present defects in the brood size but 527 

not in hatching success[36] similar to what have been found after chronic exposure. 528 

This set of proteins could constitute sensitive markers of interest. Indeed, these molecular markers 529 

are modulated at a lower dose than the effects observed at the individual level and tend to confirm 530 

the differences observed at the individual scale at 3.3 Gy, notably on the spawning capacity of the 531 

nematode[4]. However, except VIT-3 of which the overexpression increases with dose, these 532 

proteins, in both conditions, are equivalently modulated throughout all irradiated conditions. That 533 

could presume a binary induction with irradiation and not a dose response relationship. This will be 534 

necessary to investigate in the perspective of finding markers for environmental risk assessment of 535 

ionizing radiations. 536 

2- Specificity of chronic gamma radiation: disturbance of lipid transport, DNA replication and germ 537 

cell development processes.  538 

After chronic exposure, the most significant biological processes found after gene ontology 539 

enrichment analysis of the significantly modulated proteins are lipid transport, DNA replication, germ 540 

cell development, cellular chemical homeostasis, ion transport, cuticle development and locomotion. 541 

And the biological processes found after gene ontology enrichment analysis of the proteins found to 542 

be significant over all conditions (ANOVA analysis) are molting cycle, regulation of growth, defense 543 

response, embryo development ending in birth or hatching and nitrogen compound metabolism. 544 
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Likely to be disturbed by chronic exposure, these processes illustrate the possible link between the 545 

molecular responses, i.e. protein expression, and the individual parameters observed after chronic 546 

exposure to -rays, notably the reproduction disturbance, i.e. decrease of total progeny. The 547 

disturbance of defense response and proteolysis have already been observed after chronic exposure 548 

with a proteasome analysis that showed activation from 1 Gy of its 20S form, notably corresponding 549 

to oxidized protein proteolysis, and differential modulation of 26S and 30S proteasomes, ATP and 550 

ubiquitin dependent forms[4]. This general process can constitute part of a response of organisms 551 

fighting against oxidative stress.   552 

Focus on proteins involved in these processes has been done to go further on mechanisms; particular 553 

attention was given on proteins modulated over the three doses, or specifically dedicated to 554 

reproduction. The role of vitellogenins (lipid transport process) and SYM-1 (embryonic development 555 

process) has already been discussed and other proteins modulated over the three doses are more 556 

involved in cuticle development and molting cycle than in reproduction. Interesting proteins 557 

overexpressed at 0.5 and 1 Gy are helicase proteins from MCM complex (DNA replication process). 558 

The overexpression of MCM complex proteins may be linked to the necessity to increase DNA 559 

replication after DNA damage[37]. As this action can be concomitant with cell cycle arrest induced at 560 

cellular control points in response to DNA damage[38], this result could be linked with the division 561 

arrest of C. elegans germcell, i.e. oocyte precursors, already observed after chronic exposure at 562 

2.5Gy[3]. This result can also constitute part of oxidative stress fighting response. Finally, CPG-1 and 563 

CPG-2, overexpressed at 0.5 Gy, play essential roles in embryonic cell division in C. elegans and are 564 

required for polar body extrusion during cytokinesis in embryo development[24]. 565 

Then evidence found in this paper, i.e. possible disturbance in lipid transport and axogenesis, can 566 

argue both in gametogenesis and embryogenesis disturbance and oxidative stress response. This 567 

needs to be investigated more deeply to find the cause of the reproduction defect. In addition, it is 568 

interesting to see that developmental growth process is highlighted in this study whereas growth has 569 
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not been studied as endpoint; effect of gamma irradiation on growth has already been predicted and 570 

observed in Lecomte et al 2017 after chronic exposure[39]. 571 

3- Specificity of acute gamma radiation: hatching success, embryo development and apoptotic 572 

processes. 573 

Two protein clusters have been distinguished from ANOVA analysis of significant proteins and 574 

pairwise analysis; mainly, overexpressed proteins (at 1 and 3.3 Gy compared to control) were 575 

involved in i) molting cycle, cuticle development, developmental growth and lipoprotein 576 

biosynthesis, whereas repressed proteins (at 1 and 3.3 Gy compared to control) were involved in ii) 577 

adult lifespan, single organism metabolic process and aging, including embryo development ending in 578 

birth or egg hatching and embryo development. Indeed, similarly to chronic exposure, a focus was 579 

done on proteins found to be modulated by gamma acute exposure and belonging to the 580 

reproduction biological process and to other processes that could be correlated to a reproduction 581 

failure.  582 

Only two proteins are common to the three doses which is less than after chronic exposure. 583 

Repressed at 0.5, 1 and 3.3 Gy compared to the controls, they could be putative markers of acute 584 

irradiation (RPS-19 and HAT-1). RPS-19 is linked to ribosomal activity and translation that are generic 585 

processes. Parallely, histone acetyltransferases allow the decompaction of chromatin, thus 586 

promoting the transcription of genes[40], but also enabling DNA repair by increasing the accessibility 587 

of the DNA[41]. Histone modification can therefore modify gene transcription by interacting with 588 

chromatin structure, allowing more or less the accessibility to the transcription initiating proteins, for 589 

example. This result is enhanced by the fact that histones 4, 11, 48, 41 and 39 are also found to be 590 

repressed at 3.3 Gy. This repression of histone cluster after acute exposure can also be associated to 591 

a modification of chromatin compaction and finally to a default of gene transcription. It is also 592 

possible that the repression of these proteins from 0.5 Gy leads to a decrease in the DNA repair 593 

activity, leading to an increase of apoptosis and therefore to a possible defect in reproduction [18, 594 

42].  595 
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The role of vitellogenins (reproduction process) and SYM-1 (embryonic development process) has 596 

already been discussed. Other repressed proteins, such as AIR-1, CGH-1, CIF-1, LAP-1, and MAG-1 597 

belong to “hatching success” biological process and to biological processes such as embryonic 598 

development. More specifically CGH-1 is a probable RNA helicase required for gametogenesis, but 599 

also for embryonic cytokinesis[43, 44]; and CIF-1 is required for initiation of protein translation and 600 

therefore has a role in embryogenesis[45]. In addition, these 5 proteins are involved in oogenesis, 601 

suggesting that acute irradiation has an impact on gametogenesis. The fact that acute irradiation 602 

could first lead to a gametogenesis default prior than an embryogenesis default supports the 603 

hypothesis of a cumulative damage after acute exposure that cannot be repaired in developing 604 

gametes and transmitted to the developing embryos, leading therefore to a hatching success 605 

decline[34].   606 

In addition, two proteins, i.e. RPA-0 and SKR-1, seen to be repressed at 3.3 Gy compared to controls 607 

belong to the biological “apoptotic process”. RPA repression could suggest a modification or a 608 

disturbance of DNA break recognition. In addition, it has recently been shown that the SKR-1 protein 609 

i) has a negative regulation of the pro-apoptotic protein CEP-1 in C. elegans[46], and ii) is involved in 610 

the ubiquitinylation of proteins to allow their degradation by the proteasome[47]. About this latter, 611 

as previously demonstrated, proteasome activity is drastically inhibited after acute irradiation. More 612 

specifically, the two ubiquitin dependent forms of the proteasome are inhibited at 0.5 Gy and 200 Gy 613 

and from 50 Gy for the 30S and the 26S proteasomes respectively[4]. Down-regulation of SKR-1 could 614 

therefore be a consequence of proteasome activity loss and associated to a repression of CIF-1, 615 

already described and part of a complex involved in the regulation of ubiquitin. Finally, SKR-1 616 

repression can also suggest an inhibition of the negative regulation of CEP-1 and thus an increased 617 

apoptotic response after acute irradiation to eliminate damaged cells which is consistent with the 618 

literature [34, 42].  619 
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Finally, our results tend to show a disturbance of the gametogenesis but also of embryo 620 

development and egg hatching biological pathways. Even if the trigger of the decline in total egg 621 

production per individual and in egg hatching has not been fully elucidated, our study highlighted 622 

some biological processes involved in this decay. 623 

 Conclusion 624 

This study provides a first comprehensive analysis of the gamma irradiation proteomic response in a 625 

model organism, C. elegans. It extends precedent findings on reprotoxicity of gamma irradiation by 626 

refining molecular mechanisms of gamma rays action after two different modes of exposure. This 627 

global analysis of protein expression has demonstrated the modulation of proteins involved in 628 

regulatory biological processes such as lipid transport, DNA replication, germ cell development, 629 

apoptosis, ion transport, cuticle development, and aging (including embryo development ending in 630 

birth or egg hatching and embryo development) at lower doses than those for which individual 631 

effects on reproduction have been previously observed, and these results are validated by the use of 632 

2 complementary differential proteomic analysis methodologies. Thus, these proteins could 633 

constitute early and sensitive markers of radio-induced reprotoxicity; more specifically HAT-1, RPS-19 634 

in acute and VIT-3 in chronic conditions that are expressed in a dose-dependent manner. Other 635 

target proteins seem equivalently modulated throughout all irradiated conditions and could 636 

constitute exposure markers. To better understand their role in this context, functional validation of 637 

these markers should now be done using GFP-transgenes or specific mutants. 638 

Similarly to phenotypic endpoints, our results confirm that the molecular mechanisms induced by 639 

chronic irradiation differ from those induced by acute irradiation, thus highlighting limitations of data 640 

extrapolation obtained for acute exposure in order to predict the effects of chronic exposure. Indeed, 641 

the risk assessment of chronic exposure should be based on specific data from chronic exposures, i.e 642 

exposure times that are representative of environmental conditions. 643 
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To focus on the reproduction process, the proteomic analysis showed either repression or 644 

overexpression of 12 proteins, including a vitellogenin cluster, in organisms exposed to acute or 645 

chronic irradiation, respectively.  646 

Finally, our results seem showing more disturbance in proteins involved in oogenesis than in 647 

spermatogenesis after both acute and chronic exposure (except VIT-2). Further studies will be 648 

interesting to conduct on each gonad, i.e sperm-cell and oocytes, in order to understand their own 649 

sensitivity after acute vs. chronic exposure to gamma rays.  650 

Future directions will be necessary to test the relevance of the proteomic markers found in this study 651 

at ecologically relevant doses rates such as for example 10 µGy.h-1 which is considered as the no-652 

effect dose rate for ecosystems[48]. Moreover, it will also be interesting to improve the 653 

understanding of the radio-induced molecular mechanisms after chronic exposure by adopting a 654 

comparative approach (multi-phylum) including environmental species which are more or less 655 

radiosensitive. This could help to define environmental thresholds to protect population in the long 656 

term. 657 

 658 

  659 
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