

# Differential modification of the C. elegans proteome in response to acute and chronic gamma radiation: link with reproduction decline

Cécile Dubois, Matthieu Pophillat, Stéphane Audebert, Patrick Fourquet, Catherine Lecomte, Nicolas Dubourg, Simon Galas, Luc Camoin, Sandrine

Frelon

# ▶ To cite this version:

Cécile Dubois, Matthieu Pophillat, Stéphane Audebert, Patrick Fourquet, Catherine Lecomte, et al.. Differential modification of the C. elegans proteome in response to acute and chronic gamma radiation: link with reproduction decline. Science of the Total Environment, 2019, 676, pp.767-781. 10.1016/j.scitotenv.2019.04.039. hal-02465437

# HAL Id: hal-02465437 https://hal.science/hal-02465437v1

Submitted on 3 Feb 2020

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

# Differential modification of the *C. elegans* proteome in response to acute and chronic gamma radiation: link with reproduction decline

3 Dubois, Cécile<sup>1</sup>., Pophillat Matthieu<sup>2</sup>., Audebert Stéphane<sup>2</sup>., Fourquet Patrick<sup>2</sup>, Lecomte
 4 Catherine<sup>1</sup>., Dubourg Nicolas<sup>1</sup>., Galas Simon<sup>3</sup>., Camoin Luc<sup>2</sup>., Frelon Sandrine<sup>1</sup>.

<sup>1</sup>IRSN/PSE-ENV/SRTE - Laboratoire d'ecotoxicologie des radionucléides - BP3 - 13115 St Paul lez
 Durance Cedex – France. <sup>2</sup>Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM,
 Marseille Protéomique, Marseille, France. <sup>3</sup>IBMM, University of Montpellier, CNRS, ENSCM,
 Montpellier, France.

9

## 10 Abstract (300 words)

11 Emission of ionizing radiation (IR) in the environment is a natural phenomenon which can be 12 enhanced by human activities. Ecosystems are then chronically exposed to IR. But environmental risk 13 assessment of chronic exposure suffers from a lack of knowledge. Extrapolation of data from acute to 14 chronic exposure is not always relevant, and can lead to uncertainties as effects could be different 15 between the two irradiation modes, especially regarding reproduction endpoint, which is an 16 ecologically relevant parameter. In the present study, we decided to refine the understanding of the 17 molecular mechanisms involved in response to acute and chronic  $\gamma$ -irradiation by a global proteome 18 label free LC-MS/MS analysis. C. elegans were exposed to 3 common cumulated radiation doses for acute or chronic exposure condition and global modification of the proteome was studied. This 19 analysis of protein expression has demonstrated the modulation of proteins involved in regulatory 20 21 biological processes such as lipid transport, DNA replication, germ cell development, apoptosis, ion 22 transport, cuticle development, and aging at lower doses than those for which individual effects on reproduction have been previously observed. Thus, these proteins could constitute early and 23 sensitive markers of radio-induced reprotoxicity; more specifically HAT-1, RPS-19 in acute and VIT-3 24 25 for chronic conditions that are expressed in a dose-dependent manner. Finally, to focus on 26 reproduction process, this analysis showed either repression or overexpression of 12 common proteins in organisms exposed to acute or chronic irradiation, respectively. These proteins include 27 28 the vitellogenin cluster notably involved in lipid transport and oocyte maturation and proteins

involved in cuticle development and molting *i.e* COL-14, GLF-1, NOAH-1, NOAH-2, ACN-1. This results
show that protein expression modulation is a sensitive and predictive marker of radio-induced
reproductive effects, but also highlight limitation of data extrapolation from acute to chronic
exposure for environmental risk assessment.

36 Title Page

37 Protein expression differently modulated after acute and chronic exposure to  $\gamma$ -rays.

38 Keywords

39 Chronic vs acute exposure; gamma-rays; C. elegans; Proteome modulation; risk assessment

40 Introduction

41 Emission of ionizing radiation in the environment is a natural phenomenon which can be enhanced 42 by human activities. Therefore, ecosystems are chronically exposed to ionizing radiations. In this 43 context, ecologically relevant predictions of long-term biological effects induced by chronic doses of 44 ionizing radiation on nonhuman biota are necessary. But environmental risk assessment of chronic 45 exposure suffers from a lack of knowledge and a lack of sensitivity [1, 2]. Data extrapolation from 46 acute to chronic exposure is not always relevant, and can lead to uncertainties. Indeed, for a same 47 dose, radio-induced effects are often different between the two irradiation modes, especially 48 regarding the reproduction endpoint, which is an ecologically relevant parameter directly influencing 49 population dynamics [3-5].

50 Moreover one of the limitations of the risk assessment conducted on major physiological functions is 51 their sensitivity. The use of molecular markers, usually more sensitive and modulated before 52 individual-level effects, could be a solution. However, studies on cellular and molecular levels represent only 7 and 12%, respectively of the studies on environmental species [6]. In addition, the 53 54 difficulty is then to be able to associate these molecular changes with the consequences on physiological functions [7, 8]. In this sense, scientific advances have been made in the understanding 55 56 of the radiation-induced molecular and cellular mechanisms. However, to date, underlying molecular 57 mechanisms governing the differences in the observed effects are poorly understood [9, 10]. While 58 effects of ionizing radiation on DNA, have been extensively described and are now rather well-59 understood, the contribution of other radiation-induced molecular alterations, especially on proteins 60 remains unclear. Proteins, which are the functional molecules of organisms, might be relevant 61 biomarkers. Few studies have investigated the impact of an acute exposure to ionizing radiation (0.3G2 3 Gy) on mammal cell proteome and showed that modulation of protein expression could be a relevant biomarker to detect ionizing radiation exposure, to predict severity of associated lesions and ultimately to manage clinically these lesions [11-13]. However, these proteomic studies concern only acute irradiation of mammals. Data concerning the proteome sensitivity of non-human biota after chronic irradiation are scarce.

The free living nematode *Caenorhabditis elegans* is a particularly convenient model organism to address this environmental risk assessment based proteomic issue [14, 15]. With its fully sequenced genome and its short life cycle, *C. elegans* has been successfully used to study acute and chronic irradiation effects and their consequences on germline development and hatching [4, 16-19].

Indeed our first results showed that a decrease of the number of progeny associated with a decrease of the embryo hatchability occurred from and above 30 Gy of acute irradiation [4]. In this paper, the decrease of the progeny number per individual have been hypothesized to be correlated to an increase of apoptosis whereas an explanation for the decrease of hatching success can be unrepaired DNA-damage then leading to non-viable eggs.

76 After chronic irradiation, a recent study of our team has shown that reproduction is the more 77 sensitive macroscopic parameter regarding survival and growth [17]. Moreover, our first study has 78 also highlighted that, contrary to acute irradiation, chronic irradiation from 3.3 Gy induced a 79 decrease of the number of progeny without impacting the hatching success [4]. This could suggest 80 that in such conditions, gametogenesis is more impacted than embryogenesis. However, mechanisms 81 have not been fully elucidated yet; some of our team results coming from a multi-generation study revealed that, after three generations continuously irradiated, an increase of apoptosis, a decrease of 82 83 the sperm cells number and an oocytes cell cycle arrest could explain this phenomenon[3]. As 84 proteins are involved in key biological processes, including DNA repair, cell cycle control and 85 apoptosis, as our first results have also shown that proteolytic response of cells are different between acute and chronic [4], it seems relevant to assess their global expression after both acute 86

and chronic exposure in order to better understand the toxicity mechanisms in response to ionizingradiations.

89 Therefore, in the present study, we decided to refine the understanding of the molecular 90 mechanisms involved in response to acute and chronic irradiation, *i.e.* reprotoxicity effects 91 demonstrated in our first publications [4, 17], by a global proteome analysis. C. elegans were 92 exposed to 3 common cumulated radiation doses of acute or chronic exposure. Because the 3 93 radiation doses were either comparable or lower than the ones used in previous works showing an 94 effect on the reproduction, we then expected to identify early and sensitive biomarkers of the 95 impaired reproduction and improve risk assessment sensitivity. After radiation exposure, the global 96 modification of the proteome was studied by using both a DIGE and a label free LC-MS/MS proteomic 97 approach. Our objectives were to test the following hypotheses: (1) whether or not the proteome 98 expression correlated both with the dose and the irradiation mode; (2) if the proteome expression 99 modification was associated with effects on reproduction then leading to a direct link with an 100 ecological risk assessment.

101

#### 103 Material and methods

104

# C. elegans maintenance and age synchronization

105 The wild-type N2 strain of *C. elegans* provided by CGC (*Caenorhabditis* Genetic Center) was used in 106 this study. Populations were maintained at 19°C and 80% of humidity on 9cm petri dishes poured 107 with NGM (Nematode Growth Medium) and seeded with *Escherichia Coli OP50* as food source.

108 E. coli OP50 were grown in L-Browth medium at 37°C overnight. Petri dishes were seeded with 1mL 109 of saturated culture of bacteria and UV killed (Bio-Link Crosslinker,  $\lambda$  = 254 nm; intensity = 200 mWm<sup>-</sup> 110 <sup>2</sup>) for 20 minutes to avoid food heterogeneity between dishes. 100 gravid worms were randomly 111 selected from the stock population and placed on 9 cm petri dishes. 96 h later, eggs were separated 112 from adult worms by a bleaching procedure and collected embryos were allowed to grow in a control 113 incubator for 96 h. The gravid worms were separated from eggs already laid by a sucrose gradient (3 114 -7 %), and then re-synchronized by a bleaching procedure in order to collect the eggs in utero 115 synchronized over 3 h.

116

# 117 Irradiation

Irradiations were performed in incubators (19 °C and 80 % humidity) in controlled conditions; data 118 119 loggers were used in order to measure humidity and temperature during irradiation. Nematode 120 plates were placed perpendicularly or parallely (for acute and chronic exposure respectively) to the 121 cesium-137 source to obtain a homogeneous dose rate at the surface of the plate. Radio Photo 122 Luminescent dosimeters (RPL, GD-301 type, Chiyoda Technol Corporation, Japan) were placed on 123 each experimental unit in order to measure the delivered cumulated dose received by organisms. At the end of each irradiation, worms were collected, rinsed with M9 medium (5 g.L<sup>-1</sup> NaCl, 25 mM KPO<sub>4</sub> 124 125 buffer and 1 mM MgSO<sub>4</sub>) to ensure bacteria removal, centrifuged and pellets were snap frozen.

126

Acute - For acute irradiation, 3000 age-synchronized embryos were transferred to fresh 6 cm plates and allowed to reach L4-YA stage in a control incubator. Nematodes were then irradiated with a cesium-137 source (200 TBq) using the GSR-D1 apparatus from RadExpe platform (Curie Institute, France). L4-YA *C. elegans* were irradiated at 1 Gy.min<sup>-1</sup> during different times in order to test 3
cumulated doses (excluding control): 0.5, 1 and 3.3Gy.

132

133 Chronic - For chronic irradiation, 3000 age synchronized nematodes were exposed to cesium-137
 134 source using the platforms MIRE (Mini Irradiator for Radio-Ecology) (1.6 GBq) from embryo stage to
 135 L4-YA adult stage to cover the complete lifecycle (65 h). Three dose rates (excluding controls): 7, 14,
 136 50mGy.h<sup>-1</sup> corresponding to three cumulated doses (0.5, 1 and 3.3Gy) were tested.

137 138

#### Protein extraction and purification

After irradiation, 3000 C. elegans per replicate were subjected to protein extraction. 300 µl of 0.5-139 140 mm diameter zirconium beads and an equal amount of lysis buffer (30 mM Tris-HCl pH 7.4, 150mM 141 NaCl, 1.0%(v/v) Igepal CA-630 (NP-40), 1%(v/v) TritonX-100, 0.5% (w/v) sodium deoxycholate, 0.1%(w/v) sodium dodecyl sulfate (SDS), 2%(v/v) glycerol, 2 mM 1,4-dithiothreitol (DTT), 1 mg.ml<sup>-1</sup> 142 mg.ml<sup>-1</sup> 143 aprotinin, 1 mΜ phenylmethylsulfonyl leupeptin, 1 fluoride, 1 mΜ 144 ethylenediaminetetraacetic acid (EDTA)) were added on top of worm pellets and incubated for 15 145 min on ice. C. elegans were then homogenized by three 6800-rpm cycles in the Precellys grinder 146 system (Bertin Technologies, Montigny-le-Bretonneux). After 1 h incubation on ice, lysates were 147 centrifuged (13500 g) at 4°C for 15 min. Supernatant was sampled, protein concentration was 148 determined using the BCA kit (Thermo Scientific) using BSA as a standard, according to the 149 manufacturer's instructions and the remaining volume quick frozen with liquid nitrogen.

20 μg of proteins were precipitated on ice for 20 min by the addition of 10 % TCA (v/v). After washing
steps, pellets were resuspended in UTC9231 (9 M urea, 2 M thiourea, 3% (w/v) CHAPS, 1% (w/v)
ASB14, 20 mM Tris, pH 9.5) under stirring (1600 rpm) at 30°C in the dark for two hours.

153

## 154 Label free sample preparation and mass spectrometry analysis

15 μg of proteins per replicate were loaded on a NuPAGE gel 4-12% (Life Technologies). Samples
were then subjected to electrophoresis during 6min at 80V using a MOPS buffer (Thermo Fisher

Scientific) in order to stack proteins on the top of the gel before proceeding to coomassie bluestaining. Protein bands were then excised with a scalpel and digested with trypsin.

159 Each condition (0.5, 1 and 3.3 Gy) was injected in 3 biological replicates and 2 technical replicates in 160 liquid chromatography (Ultimate 3000 RSLCnano chromatography system (Thermo Fisher Scientific)) 161 coupled with an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Fisher Scientific). First 162 peptides were concentrated and purified on a pre-column from Dionex (C18 PepMap100, 2 cm × 100 163  $\mu$ m I.D, 100 Å pore size, 5  $\mu$ m particle size) in solvent A (0.1% formic acid in 2% acetonitrile). In the 164 second step, peptides were separated on a reverse phase LC EASY-Spray C18 column from Dionex 165 (PepMap RSLC C18, 50 cm × 75 μm I.D, 100 Å pore size, 2 μm particle size) at 300 nL/min flow rate 166 and 40°C. After column equilibration using 4% of solvent B (20% water - 80% acetonitrile - 0.1% 167 formic acid), peptides were eluted from the analytical column by a two steps linear gradient (4-20% 168 acetonitrile/H<sub>2</sub>O; 0.1 % formic acid for 220 min and 20-45% acetonitrile/H<sub>2</sub>O; 0.1 % formic acid for 20 169 min). For peptide ionization in the EASY-Spray nanosource, spray voltage was set at 2.2 kV and the 170 capillary temperature at 275 °C. The mass spectrometer was used in data dependent mode to switch 171 consistently between MS and MS/MS. Time between Masters Scans was set to 3 seconds. MS spectra 172 were acquired with the Orbitrap in the range of m/z 375-1500 at a FWHM resolution of 60 000 173 measured at 200 m/z. AGC target was set at 4.0.10<sup>5</sup> with a 50 ms Maximum Injection Time. The more 174 abundant precursor ions were selected and collision induced dissociation fragmentation at 35% was 175 performed and analyzed in the ion trap using the "Inject Ions for All Available Parallelizable time" option with a maximum injection time of 105 ms and an AGC target of 1.0.10<sup>5</sup>. Charge state 176 screening was enabled to include precursors with 2 and 7 charge states. Dynamic exclusion was 177 178 enabled with a repeat count of 1 and a duration of 60s. These chromatographic conditions were 179 previously optimized with a protein pool from all the samples.

180

#### Quantitative proteomics processing

For data processing we used the free suite MaxQuant version 1.5.3.8[20]. The relative intensities
based on label-free quantification (LFQ) were calculated using the MaxLFQ algorithm[21]. The 48 LC-

183 MS raw acquisitions were processed by the Andromeda search engine integrated into MaxQuant[21]. The identification of the precursor ions present in the mass spectra was performed by comparison 184 with the protein database of *C. elegans* extracted from UniProt on the 17<sup>th</sup> of January, 2017 and 185 186 containing 28,794 entries. This database was supplemented with a set of 245 proteins that are 187 commonly found as contaminants. The following parameters were used for this search: (i) trypsin 188 cleavage authorization before prolines; (ii) authorization of two failed cleavages; (iii) fixed 189 modification of cysteines by carbamidomethylation (+57.02146 Da) and variable modification of 190 methionines by oxidation (+15.99491) and N-terminal proteins by acetylation (+42.0116); (iv) 191 authorization of 5 modifications per peptide; and (v) minimum peptides length of 7 amino acids and 192 a maximum mass of 4600 Da.

193 Spectra alignment was performed in two dimensions; the elution time of the precursor ions (min) 194 and the mass over charge (m/z; amu). The "Match between runs" option has been enabled to allow 195 the transfer of identifications between LC-MS/MS based on the mass and the retention time using 196 the default settings. The false positive rate on identification was set at 1%. The statistical analysis was 197 carried out with the Perseus program (version 1.6.0.7) of the MaxQuant environment. The 198 normalized intensity LFQ was transformed by a base logarithm 2 to obtain a normal distribution. 199 Differential protein expressions were evidenced by the application of a multiple ANOVA t-test or 200 student t-test performed by controlling the false positive rate at 1% using 250 permutations. Proteins 201 differentially expressed between samples were analyzed based on the log2 difference of the LFQ 202 intensity of the protein between controls and the different doses (0.5Gy vs. control, 1Gy vs. control 203 and 3.3Gy vs. control) and log10 of the associated p. value. The differential proteomics analysis was 204 carried out on identified proteins after removal of proteins only identified with modified peptides, 205 peptides shared with other proteins, proteins from contaminant database and proteins which are 206 only represented in 2 replicates of 6 of the same condition. The mass spectrometry proteomics data, 207 including search result, have been deposited to the ProteomeXchange Consortium 208 (www.proteomexchange.org) via the PRIDE partner repository with datasets identifiers PXD011731.

209

# 210 Enrichment analysis

211 Following the differential identification of proteins expressed after irradiation in C. elegans, an 212 analysis of biological functions was performed using the DAVID gene interaction tool[22]. Indeed, the 213 proteins have been grouped according to the biological processes that they govern (GOTERM) for a 214 simplified analysis. After selection of the model organism (C. elegans), the UniProt accession number 215 of the differently expressed major proteins were implemented in the David gene tool, as well as the 216 background noise (all the majority proteins identified in our study). Then, the biological processes, in 217 which the variant proteins were involved between the different irradiation conditions, were searched 218 and classified according to their ease score (<0.1); excel files of each David gene analysis is given as 219 supplementary data: Suppl-File8\_Acute ttest David Ease 01\_GO-BP.xls, Suppl-File7\_Acute ANOVA 220 David Ease 01 GO-BP, Suppl-File3 Chronic ttest David Ease 01 GO-BP, Suppl-File4 Chronic ANOVA 221 David Ease 01\_GO-BP. Finally, biological processes were sorted and presented in this article 222 according to their p. value (<0.05), and results visualization with treemap was done using Revigo tool 223 to avoid redundancy between the different biological processes (medium similarity (0.7); semantic 224 similarity measure to use SimRel, and *C. elegans* database)[23].

225

#### 227 Results

#### 228 Chronic exposure to gamma-rays

#### 229 Mis-regulation of protein expression from 0.5 Gy of chronic gamma radiation exposure.

230 The analysis of differential protein expression by the 2D-DIGE methodology (Supplementary data) 231 showed only one protein spot as variant after chronic irradiation of *C. elegans* from 0.5 to 3.3 Gy, 232 compared to controls. A label-free approach was then performed on the same samples in order to 233 increase the sensitivity of the proteome analysis. Indeed, the label free LC-MS/MS based proteomic 234 approach was able to identify 2647 proteins. The most abundant identified proteins with high iBAQ 235 (intensity-based absolute quantification) and the less abundant proteins with low iBAQ are presented 236 in supplementary Figure S1. This figure shows that our proteomics analysis covers a dynamic range 237 around 6 log of protein intensity (orders of magnitude). ANOVA analysis was performed on all 238 conditions, 168 proteins were found significant (FDR<0.01) and their z-scored LFQ values were heat-239 mapped (Figure 1 - Exhaustive data are given as supplementary excel file: Suppl-File1\_ANOVA 240 conditionChronic 4clusters.xls) showing 4 clusters of proteins (A, B, C, D) within the whole targets, 2 241 of them (A and D) making it possible to distinguish control and irradiated conditions whereas the two 242 others tend to isolate the 1 Gy exposure condition. The cluster A encompassed proteins that were 243 mainly decreased in the irradiation conditions group versus the controls. The cluster D included 244 proteins which increased under irradiation versus control. Finally, cluster B and C contained proteins 245 that were more or less upregulated in one specific irradiation condition 0.5 and 1 Gy respectively. As 246 presented in Erreur! Source du renvoi introuvable. (Exhaustive data are given as supplementary 247 excel file: Suppl-File2 Chronic-fdr001so01-pairwise full data.xls), the further pairwise analysis of the 248 protein differential expression showed that among the 2647 proteins, 87 were significantly mis-249 regulated following chronic exposure (sum of the misregulated proteins after pairwise analysis of 250 conditions - log2 fold change >  $\pm 0.58$  and log *p.value* > +/- 1.3). Finally, 51% of these 87 mis-regulated 251 proteins were over-expressed compared to controls, while 49% of proteins were repressed. In 252 addition, some of the misregulated proteins were common between the 3 doses (25.6 %). More

253 specifically, 42 (23 up-, 19 down-), 52 (24 up-, 28 down-) and 39 (14 up-, 25 down-regulated) proteins

were mis-regulated compared to controls at 0.5 Gy, 1 Gy, and 3.3 Gy, respectively. These results

- show that proteome modulation between control and irradiated organisms occurs as soon as 0.5 Gy.
- 256

#### [Figure 1]

Figure 1: Chronic irradiation-heat map representing the Z-Scored LFQ intensity for each protein determined as significant after ANOVA analysis over the 3 groups. The top represents the different conditions including biological and analytical replicates. Four protein clusters annotated A, B, C and D are highlighted according to the ANOVA analysis between the 3 doses.

# Protein enrichment analysis makes possible to associate protein expression level and radioinduced reproductive disturbance

263 Biological processes associated to misregulated proteins found in the pairwise analysis were evaluated using gene ontology enrichment to find the possible disturbed pathways. A sum-up was 264 265 done in Figure 2, the full results are in the excel file Suppl-File3 Chronic ttest David Ease 01 GO-266 BP.xls. We found that misregulated proteins are involved in lipid transport (9% in lipid transport, p. 267 value = 2.6x10-5; 12.8% in lipid localization, p. value = 0.01; 3.8% in divalent inorganic cation transport, p. value = 0.04; 3.8% in divalent metal ion transport, p. value = 0.04; 17.9% in single-268 269 organism transport, p. value = 0.05), in cuticle development (7.7% in cuticle development, p. value = 270 0.005; 3.8% in molting cycle process, p. value = 0.007; 11.5% in molting cycle, p. value = 0.01; 12.8% 271 in germ cell development, p. value = 0.03), in DNA-dependent DNA replication (6.4% in DNA-272 dependent DNA replication, p. value = 1.3x10-4; 6.4% in DNA metabolic process, p. value = 0.03), in 273 DNA unwinding (5.1 %, p. value = 0.002) and in cellular divalent inorganic cation homeostasis (3.8%, p. value = 0.002)274 p. value = 0.01). In addition, protein enrichment was performed on ANOVA data (Figure S2) and 275 particularly on clusters A and D to analyze the biological processes distinguishing control and 276 irradiated conditions (Table 1; Suppl-File4 Chronic ANOVA David Ease 01 GO-BP.xls). 277 Table 1: Gene ontology enrichment based analysis of biological process associated to the 4 protein clusters found after

279

280 Cluster A corresponds mainly to biological processes such as cuticle development (9.5% of proteins

and p. value = 1.3x10-3), molting cycle (14% of proteins and p. value = 2x10-3), regulation of growth

[Table 1]

<sup>278</sup> ANOVA analysis between the 3 doses of chronic exposure with Z-scored value of LFQ, and their associated *p. values*.

282 (16%, p. value = 8.4x10-4), defense response (9.5%, p. value= 3.7x10-2) and locomotion (28%, p. value =  $1.5 \times 10^{-2}$ ). The cluster D corresponds to biological process such as embryo development 283 284 ending in birth or hatching (61%, p. value = 5x10-9); DNA replication (15.9%, p. value = 3.8x10-7), nitrogen compound metabolism (41%, p. value = 7.5x10-4) and lipid transport (13.6%, p. value = 285 286 1.8x10-6). For a simplified analysis, we chose to only analyze and describe biological processes that 287 are potentially linked with reprotoxicity or radiotoxicity, *i.e.* biological process such as embryo 288 development ending in birth or hatching, cell cycle processes and DNA replication processes. All of 289 these proteins are overexpressed in at least one dose compared to control.

290

# [Figure 2]

Figure 2 : Independent DAVID gene functional enrichment analysis based on results of all proteins identified as modulated after chronic irradiation (t-test, pairwise comparison). Significant GO-term biological processes (p. value <0.05) were then summarized using REVIGO. The % of proteins involved in the process is written in each case. Tree maps show a two-level hierarchy of GO terms (main clusters and cluster members) ; the size of the rectangles is relative to the log10 (p. value) absolute. With a same color, biological processes belonging to one main head process: lipid transport (purple), cuticle development (blue), DNA-dependent DNA replication (yellow).

297

298 Interestingly, the ones involved in lipid transport but also in germcell development and particularly in 299 oocyte maturation are VIT-1; VIT-2; VIT-3; VIT-4; VIT-5; VIT-6. These proteins are over-expressed

from 0.5 Gy to 3.3 Gy and are yolk protein precursors (Figure 3A).

301

# [Figure 3]

Figure 3: A/ Box plot of Vit-2 protein label free intensity for the three irradiation doses (C0: control, C1: 0.5 Gy, C2: 1 Gy,
 C3: 3.3 Gy). B/ Box plot of MCM-2 protein label free intensity for the three irradiation doses (C0: control, C1: 0.5 Gy, C2: 1
 Gy, C3: 3.3 Gy).

305 In addition, the 2 proteins involved in the "embryo development ending in birth or hatching"

306 biological process excepted vitellogenins are CPG-1 and CPG-2, two chondroitin proteoglycan protein

307 that are over-expressed at 0.5 Gy compared to controls conditions, but there are not mis-regulated

308 at higher doses tested. They are required for polar body extrusion during cytokinesis in embryo

- development and in meiotic chromosome segregation[24]. CPG-1 and CPG-2 are also involved in the
- 310 cellular division process, mainly occurring in germ cells of *C. elegans*[24]. Moreover, the 4 proteins
- 311 belonging to the "DNA replication pathway" process are MCM-2, MCM-3, MCM-6 and MCM-7

- 312 (Figure 3B), helicases involved in DNA replication after DNA repair for example that are
- 313 overexpressed at 0.5 and 1 Gy. The MCM complex is expressed in all dividing cells during embryonic
- and postembryonic development, and is associated with chromatin[25].

# 315 **Proteins involved in reproduction process are mis-regulated as soon as 0.5 Gy.**

- 316 To answer our main question on the radio-induced toxicity mechanisms and determine relevant
- 317 putative biomarkers of chronic exposure, we compared the mis-regulated proteins for the 3 radiation
- doses. The comparison highlighted 21 proteins in common. Results are presented in Figure .
- 319

# [Figure 4]

Figure 4: Comparison of the differential proteins found in the 3 different conditions of chronic irradiation. A) Venn diagram of mis-regulated proteins (up or down-expressed) between 0.5, 1 and 3.3 Gy. The overlaps between conditions represent the amount of shared proteins within the conditions of interest. B) Heatmap of the Z-scored label free intensity of the 21 proteins in common between the three irradiation doses.

- Among the 21 proteins in common between the three tested doses, 13 are annotated in UniProt
- database, and are presented in **Table** . Among them VIT-1, VIT-2, VIT-3, VIT-4, VIT-5 and VIT-6 have
- 326 already been identified in biological processes of interest. As indicated in **Table**, these proteins are
- 327 equivalently modulated between control and the three irradiated groups, *i.e.* at 0.5, 1 and 3.3 Gy.
- 328 Chronic exposure has an effect on expression of proteins involved in reproduction as soon as 0.5 Gy.
- Table 2: List of the common annotated misregulated proteins after chronic exposure to  $\gamma$ -rays at 0.5, 1 and 3.3Gy; modulation of their associated expression for each of the conditions. Differences are given as the log2 of the protein intensity ratio between the control and irradiated worms (negative or positive values, means that the protein is overexpressed or repressed compared to control respectively).
- 333

[Table 2]

334

## 335 Acute exposure to gamma-rays

- 336 Misregulated proteins in response to 3 moderate doses of acute gamma radiation
- 337 In order to compare the global change of *C. elegans* proteome after acute vs. chronic exposure for a
- 338 same cumulated dose and understand our radioinduced reprotoxicity results[4], we also performed a
- global analysis of the proteomic changes induced in *C. elegans* by acute gamma radiation from 0.5 to

340 3.3 Gy. Similarly to chronic exposure, 2D-DIGE methodology was used in the first instance
341 (Supplementary data), refined by a label free LC-MS/MS based proteomic approach.

342 The label free LC-MS/MS based proteomic approach was able to identified 2677 proteins. Similarly to 343 chronic, the most abundant identified proteins with high iBAQ and the less abundant proteins with 344 low iBAQ are presented in supplementary Figure S1. ANOVA analysis was performed on all conditions, 369 proteins were found significant (FDR<0.01) and their z-scored LFQ values were heat-345 346 mapped (Figure 5 - Exhaustive data are given as supplementary excel file: Suppl-File5 ANOVA 347 condition Acute 2 clusters.xls) showing 2 clusters of proteins (Cluster A and Cluster B) within the 348 whole targets. Both clusters show that the condition 0.5 Gy is very close to the control. The cluster A encompassed proteins that were mainly increased in the two higher irradiation conditions group 349 350 versus the controls. Conversely, the cluster B included proteins which decreased in the two higher 351 irradiation conditions versus control. As presented in TableS3 (Exhaustive data are given as supplementary excel file: Suppl-File6\_Acute-fdr001so01 pairwise full data.xls), a further pairwise 352 353 analysis of the protein differential expression, showed that among the 2677 proteins, 338 were 354 significantly mis-regulated following acute exposure (sum of all misregulated proteins after pairwise analysis of conditions - log2 fold change >  $\pm 0.58$  and log p.value >+/- 1.1). Most of these 338 mis-355 356 regulated proteins (70%) were over-expressed compared to controls, while 30% of proteins were 357 repressed. In addition, some of them (2) were common between the 3 doses (0.6 %). More 358 specifically, only 2 proteins (RPS-19 and HAT-1) were repressed at 0.5 Gy compared to controls. Then, 359 at 1 Gy and 3.3 Gy, 32 (20 up-, 12 down-regulated) and 335 proteins (103 up-, 232 down-regulated) 360 were mis-regulated, respectively. These results show a large deregulation of the proteome with 361 increasing dose of radiation. Proteome modulation occurs as soon as 0.5Gy but only a small number 362 of proteins is concerned.

363

# [Figure 5]

Figure 5: Acute irradiation-heat map representing the Z-Scored LFQ intensity for each protein determined as significant after ANOVA analysis over the 3 groups. The top represents the different conditions including biological and analytical

replicates. Two protein clusters annotated A and B are highlighted according to the ANOVA analysis between the 3
 doses.

368

Protein enrichment analysis after acute irradiation makes possible to associate protein expression
 level and radio-induced reproductive disturbance.

371 Based on gene ontology enrichment (GO) and associated p. values, biological processes associated to 372 mis-regulated proteins found in the pairwise analysis of label free LC-MS/MS proteomic approach 373 were evaluated using gene ontology enrichment to find the possible disturbed pathways (Exhaustive data are given as supplementary excel file: Suppl-File7\_Acute ttest David Ease 01\_GO-BP.xls). The 374 375 sum-up of the analysis is showed in Figure 6. In addition, protein enrichment was performed on 376 ANOVA clusters (Figure S3; Table3) to analyze the biological processes distinguishing control and the 377 highest doses of irradiation conditions. Exhaustive list of biological processes found for each set of 378 data are given in supplementary data (Suppl-File8\_Acute ANOVA David Ease 01\_GO-BP.xls). For a 379 simplified analysis, we then chose to analyze and describe biological pathways that are potentially 380 linked with reprotoxicity or radiotoxicity. Results on protein enrichment have been discussed mainly 381 on the proteins found to be modulated after pairwise analysis.

382

#### [Figure 6]

Figure 6: Independent DAVID gene functional enrichment analysis on the basis of results of all proteins identified as modulated after acute irradiation (t-test, pairwise comparison). Significant GO-term of biological processes (*p.value* <0.05) were then summarized using REVIGO. The tree maps show a two-level hierarchy of GO terms (main clusters and cluster members); the size of the rectangles is relative to absolute of log10(p value).

The misregulated proteins were mainly involved in cuticle development process (with involvement in 9 sub-processes: cuticle development, aging, embryo development ending in birth or egg hatching, embryo development, larval development, post-embryonic development, determination of adult lifespan, developmental growth, collagen and cuticulin-based cuticle development), alpha-amino acid metabolism (with involvement in 6 sub-processes: single-organism biosynthesis of organonitrogen compounds, organic substances and glycosyl compounds, metabolism of alpha amino acids and organonitrogen compounds), mitochondrion organization (mitochondrion organization, 4% proteins, *p. value* = 0.03; ribosome biogenesis, 6.1% proteins, *p. value* = 0.04), biosynthesis (26.4% proteins, *p.* 

395 *value* = 0.02) and defense response (5.5% proteins, *p. value* = 0.04).

Similarly to chronic, to have a deeper view on the radioinduced reprotoxicity mechanisms, a particular focus, *i.e.* analysis of misregulated proteins involved in each process of interest, was done on the biological processes linked to reproduction, *i.e.* "embryo development ending in birth or egg hatching", "embryo development", "defense response" and "reproduction". All the proteins concerned are repressed in at least one dose compared to control.

Interestingly, the 5 proteins involved in "embryonic development" are AIR-1, CGH-1, CIF-1, LAP-1 and MAG-1. These 5 proteins are repressed at 3.3 Gy compared to controls and belong more specifically to germ cell development. AIR-1 (aurora lpl1/related kinase) is involved in cytokinesis, CIF-1 (COP9/Signalosome and eIF3 complex-shared subunit 1) and MAG-1 (Protein mago nashi homolog) are involved in oogenesis and LAP-1 (Leucine aminopeptidase 1) is involved in oviposition (**Figure 7A**).

407

## [Figure 7]

417 apoptosis response.

<sup>Figure 7: A/ Box plot of LAP-1 protein label free intensity for the three irradiation doses (A0: control, A1: 0.5 Gy, A2: 1 Gy, A3: 3.3 Gy). B/ Boxplot CGH-1 protein label free intensity for the three irradiation doses (A0: control, A1: 0.5 Gy, A2: 1 Gy, A3: 3.3 Gy).</sup> 

<sup>411</sup> Finally, CGH-1 (ATP-dependent RNA helicase cgh-1) is involved in oocyte and spermatozoid function

<sup>412</sup> and is also known to prevent physiological apoptosis in *C. elegans* germline (**Figure 7B**).

Regarding "defense response" process, the proteins concerned are RPA-0 and SKR-1 and are repressed at 3.3 Gy compared to controls. RPA-0 (60S acidic ribosomal protein P0) is responsible for double strand break recognition and is required for the DNA repair and recombination after damage,

<sup>416</sup> while SKR-1 (skp1 related ubiquitin ligase compound) is involved in the negative modulation of the

<sup>418</sup> Moreover, concerning the process "embryo development ending in birth or egg hatching", 158 419 proteins are involved in. Even if most of them are involved in several different biological processes,

- 420 some proteins have particular functions. Namely, vitellogenins 3, 4 and 5 are repressed at the two
- 421 highest doses, and histones 4, 11, 48, 41 and 39 are repressed at 3.3 Gy compared to controls. The
- 422 role of vitellogenins has already been previously described in the precedent section about chronic
- 423 irradiation. Concerning histones, they are in eukaryotic cells nuclei the leading proteins in interaction
- 424 with DNA which form the chromatin and pack the DNA into nucleosomes.

## 425 Mis-regulation of proteins involved in embryonic development from 1 Gy acute exposure

- 426 To determine relevant putative biomarkers of acute exposure, we compared the mis-regulated
- 427 proteins for the 3 doses as well as for the 2 highest doses. Results of the annotated proteins in
- 428 UniProt proteomic database are presented in **Table**.

Table 4: List of the common annotated misregulated proteins after acute exposure to  $\gamma$ -rays at 0.5, 1 and 3.3Gy; modulation of their associated expression for each of the conditions. Differences are given as the log2 of the protein intensity ratio between the control and irradiated worms (negative or positive values, means that the protein is overexpressed or repressed compared to control respectively).

433

#### [Table 4]

- 434 The two differential proteins found in the 0.5 Gy conditions versus control were also found in the two
- 435 others conditions. So the 3 doses comparison highlighted these 2 proteins repressed at 0.5; 1 and 3.3
- 436 Gy compared to controls ([Figure 8]
- 437 Figure ). These proteins are RPS-19 (40S ribosomal protein S19) and HAT-1 (histone acetyltransferase
- 438 1). In addition, 29 proteins are common between 1 Gy and 3.3 Gy, and are modulated in the same
- 439 way between these conditions compared to controls.
- 440

## [Figure 8]

Figure 8: Comparison of the differential proteins found in the 3 different conditions of acute irradiation. A) Venn diagram of mis-regulated proteins (up or down-expressed) between 0.5, 1 and 3.3 Gy. The overlaps between conditions represent the amount of shared proteins within the conditions of interest. B) Box plot of label free intensity of the 2 proteins in common between the three irradiation doses.

- 445 Among the overexpressed proteins at 1 and 3.3 Gy, it is interesting to note SYM-1, needed for
- 446 axogenesis and embryonic viability, and MUP-4 proteins which are essential for embryonic
- 447 development. In addition, LYS-5 and LYS-6 have a lysozyme activity and ACN-1 is required for molting
- 448 like NOAH-1, NOAH-2 and COL-14. In contrast, among the repressed proteins at 1 and 3.3 Gy, we find

| 449 | again the | vitellogenins | 1, 3, | 4 ar | nd 5, | FAR-1 | which | is | involved | in | lipid | binding | and | CAT-4 | which | is |
|-----|-----------|---------------|-------|------|-------|-------|-------|----|----------|----|-------|---------|-----|-------|-------|----|
|     |           |               |       |      |       |       |       |    |          |    |       |         |     |       |       |    |

- 450 involved in serotonin and dopamine biosynthesis that affects movement, mating behavior, foraging
- 451 behavior, and cell migration.

# 452 Different mode of action between acute *versus* chronic exposure to gamma radiation.

- 453 Finally, to compare the mechanisms involved in the two irradiation modes, *i.e.* acute vs chronic, of
- 454 exposure to gamma rays for the same final equivalent doses, we searched for common mis-regulated
- 455 proteins between the two irradiation modes. We found that acute and chronic exposure share 12
- 456 common mis-regulated proteins. The list of the 10 annotated proteins among the 12 proteins are

# 457 presented in **Table** .

Table 5: List of the 10 shared protein between acute and chronic exposure to  $\gamma$ -rays at 0.5, 1 and 3.3Gy and the modulation of their associated expression for each of the conditions. " $\downarrow \downarrow$ " or " $\uparrow\uparrow$ " means that the log2 of the protein intensity ratio between the exposure conditions and the controls is lower than -1 or higher than 1 respectively. " $\downarrow$ " or " $\uparrow$ " means that the log2 of the protein intensity ratio between the exposure conditions and the controls is lower than -0.58 or higher than 0.58 respectively.

463

# [Table 5]

464 Among them, SYM-1 and vitellogenins, with a specificity of "vitellogenin 2" which was found only

465 differentially repressed under acute 1Gy irradiation.

466

#### 468 General discussion

Environmental risk assessment of ionizing radiations on non-human biota suffers from lack of 469 470 knowledge on chronic exposure and from a lack of sensitivity. Thus, our objectives in this study were 471 to improve the knowledge on (1) the proteome expression modulation after acute or chronic doses 472 of  $\gamma$ -rays and (2) the possible link between proteome expression modification and effects on 473 reproduction to explain our previous results on radio-induced reprotoxicity. We thus focused the 474 analysis on proteins and biological processes i/ making it possible to distinguish irradiated from control conditions, to find putative biomarkers, ii/ enabling the distinction between acute and 475 476 chronic modes of irradiation and also iii/ highlighting biological processes relative to reproduction, 477 the key biological function which acts directly on population dynamics.

# 478 **1- Opposite modulation of some key proteins after acute** *vs.* **chronic exposure to** *γ***-rays**

479 Proteomic analyzes in each condition were able to show differential protein expression variations 480 between control organisms and organisms exposed to acute or chronic irradiation at 3 different 481 cumulated doses, whereas an effect on reproduction function has been shown at higher doses for 482 both acute and chronic exposure (i.e 30 Gy and 3.3 Gy respectively[4]), attesting of the sensitivity of 483 the proteomic approach. We first focus on these mis-regulated targets. Some of the identified proteins are involved in the reproduction of C. elegans i.e. germ line development, embryonic 484 485 development, and these are over-expressed after chronic exposure and repressed after acute 486 exposure. 11 proteins have been found to be oppositely regulated; 5 of them are involved in cuticle development and molting (i.e COL-14, GLF-1, NOAH-1, NOAH-2, ACN-1), not directly linked to 487 488 reproduction. Among the other targets, vitellogenins VIT-1; VIT-2; VIT-3; VIT-4; VIT-5; VIT-6 are overexpressed after chronic exposure whereas VIT-1, VIT-3, VIT-4 and VIT-5 are repressed at 1 and 3.3 Gy 489 490 of acute exposure compared to controls. These proteins are yolk protein precursors; five closely 491 related genes called vit-1 through vit-5 encode two polypeptides yp170A and yp170B, and vit-6 492 encodes two smaller proteins yp115 and yp88[26]. In nematodes, vitellogenins are expressed in the 493 intestine and secreted into the pseudo-coelomic space before being internalized by maturing

494 oocytes[27]. These proteins constitute a stock of nutritive reserves (including lipids) for the oocytes, allowing the transport of cholesterol thus promoting oocyte maturation. Accumulation of cholesterol 495 496 in the gonads is necessary for the nematode's spawning capacity by allowing the cell cycle 497 progression and the exit of cells in maturation from the pachytene phase[28]. Therefore, increasing 498 transporters after chronic exposure could mean an increase need of lipids and cellular energy. 499 However, lipid content was analyzed in our study but no significant decrease has been observed 500 before 6.8 Gy [29], that let us suppose that the excess of yolk protein is not the consequence of lipid 501 catabolism but rather the trigger[30]. Yolk protein excess can also be the result of cellular fight 502 against oxidative stress that has been shown to be partly orchestrated by SKN-1[31], also involved in 503 lipid homeostasis and yolk accumulation[32] in opposite ways[30]. In germline stem cell ablated C. 504 elegans, this phenomenon has already been seen[32] and the role of yolk proteins in response to 505 chronic exposure has been suspected [29]. The link between reproduction, lipids and even lifespan 506 has been evidenced through numerous studies[33] but still requires investigations. At the opposite, 507 the repression of vitellogenins after acute irradiation could possibly yield a lack of oocyte maturation 508 and constitute one explanation for the decline in the egg-laying observed from 30 Gy [4]. 509 Nethertheless, reduced yolk proteins are not always a sign of reproduction defect[34, 35]. In 510 addition, all vitellogenins don't have the same regulation and are not only involved in lipid transport. 511 Indeed, in *C. elegans*, the transcription level of VIT-2 (protein only modulated after chronic exposure) 512 and VIT-5 is controlled through a sperm-dependent signal [33]. Interestingly, a decrease of the sperm-513 cell number has been previously shown by Buisset-Goussen et al. after chronic exposure to gamma 514 rays of three generation of *C. elegans*[3]. Our quantitative proteomic approach performed on whole 515 worms did not enable the identification of proteins involved in spermatogenesis disturbance. This 516 can be due to a lack of sensitivity as only 10% of the C. elegans proteome was identified or because 517 of a whole worm study instead of a specific gonad one which could enable to access to deeper 518 mechanisms. Anyway, even if discordance between vitellogenin transcripts and yolk proteins levels 519 has already been observed[33], these results can constitute a cascade of events due to irradiation exposure, in which the trigger needs to be elucidated. This could have an importance in terms of
environmental risk assessment based on integrated approach at different biological organization
levels.

523 SYM-1 protein involved in embryonic viability by helping the attachment of body muscle to the 524 extracellular cuticle is also differentially modulated after acute or chronic exposure. This possibly 525 suggests a perturbation of the embryo viability for the two irradiation modes but in a different 526 manner and constitutes a specific marker of reproduction failure. The causal link, if any, remains to 527 be investigated in both cases but, in literature, SYM-1 mutant present defects in the brood size but 528 not in hatching success[36] similar to what have been found after chronic exposure.

529 This set of proteins could constitute sensitive markers of interest. Indeed, these molecular markers 530 are modulated at a lower dose than the effects observed at the individual level and tend to confirm 531 the differences observed at the individual scale at 3.3 Gy, notably on the spawning capacity of the 532 nematode[4]. However, except VIT-3 of which the overexpression increases with dose, these 533 proteins, in both conditions, are equivalently modulated throughout all irradiated conditions. That 534 could presume a binary induction with irradiation and not a dose response relationship. This will be 535 necessary to investigate in the perspective of finding markers for environmental risk assessment of 536 ionizing radiations.

# 537 2- Specificity of chronic gamma radiation: disturbance of lipid transport, DNA replication and germ 538 cell development processes.

After chronic exposure, the most significant biological processes found after gene ontology enrichment analysis of the significantly modulated proteins are lipid transport, DNA replication, germ cell development, cellular chemical homeostasis, ion transport, cuticle development and locomotion. And the biological processes found after gene ontology enrichment analysis of the proteins found to be significant over all conditions (ANOVA analysis) are molting cycle, regulation of growth, defense response, embryo development ending in birth or hatching and nitrogen compound metabolism.

545 Likely to be disturbed by chronic exposure, these processes illustrate the possible link between the 546 molecular responses, *i.e.* protein expression, and the individual parameters observed after chronic 547 exposure to  $\gamma$ -rays, notably the reproduction disturbance, *i.e.* decrease of total progeny. The 548 disturbance of defense response and proteolysis have already been observed after chronic exposure 549 with a proteasome analysis that showed activation from 1 Gy of its 20S form, notably corresponding 550 to oxidized protein proteolysis, and differential modulation of 26S and 30S proteasomes, ATP and 551 ubiquitin dependent forms[4]. This general process can constitute part of a response of organisms 552 fighting against oxidative stress.

553 Focus on proteins involved in these processes has been done to go further on mechanisms; particular attention was given on proteins modulated over the three doses, or specifically dedicated to 554 555 reproduction. The role of vitellogenins (lipid transport process) and SYM-1 (embryonic development 556 process) has already been discussed and other proteins modulated over the three doses are more 557 involved in cuticle development and molting cycle than in reproduction. Interesting proteins 558 overexpressed at 0.5 and 1 Gy are helicase proteins from MCM complex (DNA replication process). 559 The overexpression of MCM complex proteins may be linked to the necessity to increase DNA 560 replication after DNA damage[37]. As this action can be concomitant with cell cycle arrest induced at 561 cellular control points in response to DNA damage[38], this result could be linked with the division 562 arrest of C. elegans germcell, i.e. oocyte precursors, already observed after chronic exposure at 563 2.5Gy[3]. This result can also constitute part of oxidative stress fighting response. Finally, CPG-1 and 564 CPG-2, overexpressed at 0.5 Gy, play essential roles in embryonic cell division in C. elegans and are 565 required for polar body extrusion during cytokinesis in embryo development[24].

Then evidence found in this paper, *i.e.* possible disturbance in lipid transport and axogenesis, can argue both in gametogenesis and embryogenesis disturbance and oxidative stress response. This needs to be investigated more deeply to find the cause of the reproduction defect. In addition, it is interesting to see that developmental growth process is highlighted in this study whereas growth has

570 not been studied as endpoint; effect of gamma irradiation on growth has already been predicted and
571 observed in Lecomte et al 2017 after chronic exposure[39].

# 572 **3- Specificity of acute gamma radiation: hatching success, embryo development and apoptotic** 573 **processes.**

574 Two protein clusters have been distinguished from ANOVA analysis of significant proteins and 575 pairwise analysis; mainly, overexpressed proteins (at 1 and 3.3 Gy compared to control) were 576 involved in i) molting cycle, cuticle development, developmental growth and lipoprotein 577 biosynthesis, whereas repressed proteins (at 1 and 3.3 Gy compared to control) were involved in ii) adult lifespan, single organism metabolic process and aging, including embryo development ending in 578 579 birth or egg hatching and embryo development. Indeed, similarly to chronic exposure, a focus was 580 done on proteins found to be modulated by gamma acute exposure and belonging to the 581 reproduction biological process and to other processes that could be correlated to a reproduction 582 failure.

583 Only two proteins are common to the three doses which is less than after chronic exposure. 584 Repressed at 0.5, 1 and 3.3 Gy compared to the controls, they could be putative markers of acute 585 irradiation (RPS-19 and HAT-1). RPS-19 is linked to ribosomal activity and translation that are generic 586 processes. Parallely, histone acetyltransferases allow the decompaction of chromatin, thus 587 promoting the transcription of genes[40], but also enabling DNA repair by increasing the accessibility 588 of the DNA[41]. Histone modification can therefore modify gene transcription by interacting with 589 chromatin structure, allowing more or less the accessibility to the transcription initiating proteins, for 590 example. This result is enhanced by the fact that histones 4, 11, 48, 41 and 39 are also found to be repressed at 3.3 Gy. This repression of histone cluster after acute exposure can also be associated to 591 592 a modification of chromatin compaction and finally to a default of gene transcription. It is also 593 possible that the repression of these proteins from 0.5 Gy leads to a decrease in the DNA repair 594 activity, leading to an increase of apoptosis and therefore to a possible defect in reproduction [18, 595 42].

596 The role of vitellogenins (reproduction process) and SYM-1 (embryonic development process) has 597 already been discussed. Other repressed proteins, such as AIR-1, CGH-1, CIF-1, LAP-1, and MAG-1 598 belong to "hatching success" biological process and to biological processes such as embryonic 599 development. More specifically CGH-1 is a probable RNA helicase required for gametogenesis, but 600 also for embryonic cytokinesis[43, 44]; and CIF-1 is required for initiation of protein translation and 601 therefore has a role in embryogenesis[45]. In addition, these 5 proteins are involved in oogenesis, 602 suggesting that acute irradiation has an impact on gametogenesis. The fact that acute irradiation 603 could first lead to a gametogenesis default prior than an embryogenesis default supports the 604 hypothesis of a cumulative damage after acute exposure that cannot be repaired in developing 605 gametes and transmitted to the developing embryos, leading therefore to a hatching success 606 decline[34].

607 In addition, two proteins, *i.e.* RPA-0 and SKR-1, seen to be repressed at 3.3 Gy compared to controls 608 belong to the biological "apoptotic process". RPA repression could suggest a modification or a 609 disturbance of DNA break recognition. In addition, it has recently been shown that the SKR-1 protein 610 i) has a negative regulation of the pro-apoptotic protein CEP-1 in C. elegans[46], and ii) is involved in 611 the ubiquitinylation of proteins to allow their degradation by the proteasome[47]. About this latter, 612 as previously demonstrated, proteasome activity is drastically inhibited after acute irradiation. More 613 specifically, the two ubiquitin dependent forms of the proteasome are inhibited at 0.5 Gy and 200 Gy 614 and from 50 Gy for the 30S and the 26S proteasomes respectively[4]. Down-regulation of SKR-1 could 615 therefore be a consequence of proteasome activity loss and associated to a repression of CIF-1, 616 already described and part of a complex involved in the regulation of ubiquitin. Finally, SKR-1 617 repression can also suggest an inhibition of the negative regulation of CEP-1 and thus an increased 618 apoptotic response after acute irradiation to eliminate damaged cells which is consistent with the 619 literature [34, 42].

Finally, our results tend to show a disturbance of the gametogenesis but also of embryo development and egg hatching biological pathways. Even if the trigger of the decline in total egg production per individual and in egg hatching has not been fully elucidated, our study highlighted some biological processes involved in this decay.

#### 624 Conclusion

This study provides a first comprehensive analysis of the gamma irradiation proteomic response in a 625 626 model organism, C. elegans. It extends precedent findings on reprotoxicity of gamma irradiation by 627 refining molecular mechanisms of gamma rays action after two different modes of exposure. This 628 global analysis of protein expression has demonstrated the modulation of proteins involved in 629 regulatory biological processes such as lipid transport, DNA replication, germ cell development, 630 apoptosis, ion transport, cuticle development, and aging (including embryo development ending in 631 birth or egg hatching and embryo development) at lower doses than those for which individual 632 effects on reproduction have been previously observed, and these results are validated by the use of 633 2 complementary differential proteomic analysis methodologies. Thus, these proteins could 634 constitute early and sensitive markers of radio-induced reprotoxicity; more specifically HAT-1, RPS-19 635 in acute and VIT-3 in chronic conditions that are expressed in a dose-dependent manner. Other 636 target proteins seem equivalently modulated throughout all irradiated conditions and could 637 constitute exposure markers. To better understand their role in this context, functional validation of 638 these markers should now be done using GFP-transgenes or specific mutants.

Similarly to phenotypic endpoints, our results confirm that the molecular mechanisms induced by chronic irradiation differ from those induced by acute irradiation, thus highlighting limitations of data extrapolation obtained for acute exposure in order to predict the effects of chronic exposure. Indeed, the risk assessment of chronic exposure should be based on specific data from chronic exposures, *i.e* exposure times that are representative of environmental conditions.

To focus on the reproduction process, the proteomic analysis showed either repression or overexpression of 12 proteins, including a vitellogenin cluster, in organisms exposed to acute or chronic irradiation, respectively.

Finally, our results seem showing more disturbance in proteins involved in oogenesis than in spermatogenesis after both acute and chronic exposure (except VIT-2). Further studies will be interesting to conduct on each gonad, *i.e* sperm-cell and oocytes, in order to understand their own sensitivity after acute *vs.* chronic exposure to gamma rays.

Future directions will be necessary to test the relevance of the proteomic markers found in this study at ecologically relevant doses rates such as for example 10  $\mu$ Gy.h<sup>-1</sup> which is considered as the noeffect dose rate for ecosystems[48]. Moreover, it will also be interesting to improve the understanding of the radio-induced molecular mechanisms after chronic exposure by adopting a comparative approach (multi-phylum) including environmental species which are more or less radiosensitive. This could help to define environmental thresholds to protect population in the long term.

658

# 660 Acknowledgements

Authors want to thanks Needs Environment consortium for the PROBIORICA project support. Proteomics analysis was supported by the Institut Paoli-Calmettes and the Centre de Recherche en Cancérologie de Marseille. Proteomic analyses were done using the mass spectrometry facility of Marseille Proteomics (marseille-proteomique.univ-amu.fr) supported by IBISA (Infrastructures Biologie Santé et Agronomie), Plateforme Technologique Aix-Marseille, the Cancéropôle PACA, the Provence-Alpes-Côte d'Azur Région, the Institut Paoli-Calmettes and the Centre de Recherche en Cancérologie de Marseille. 

# 681 References

- Clarke, R., et al., 1990 recommendations of the International Commission on Radiological
   Protection, in Doc. NRPB1993. p. 1-5.
- 6842.Sugier, A., J.-F. Lecomte, and J.-C. Nénot, Les recommandations 2007 de la Commission685internationale de protection radiologique, in Rev. Générale Nucl.2007. p. 90-95.
- 6863.Buisset-Goussen, A., Etude des effets multigénérationnels d'une exposition chronique aux687rayonnements ionisants chez un organisme modèle: le nématode Caenorhabditis elegans,6882014, Aix-Marseille.
- 689 4. Dubois, C., et al., *Precoce and opposite response of proteasome activity after acute or chronic* 690 *exposure of C. elegans to γ-radiation.* Scientific Reports, 2018. 8(1).
- 691 5. Pereira, S., et al., *Genotoxicity of acute and chronic gamma-irradiation on zebrafish cells and*692 *consequences for embryo development.* Environmental Toxicology and Chemistry, 2011.
  693 **30**(12): p. 2831-2837.
- 694 6. Dallas, L.J., et al., *Assessing the impact of ionizing radiation on aquatic invertebrates: A* 695 *critical review.* Radiation Research, 2012. **177**(5): p. 693-716.
- 696 7. Morgan, W.F. and W.J. Bair, *Issues in low dose radiation biology: The controversy continues. a* 697 *perspective.* Radiation Research, 2013. **179**(5): p. 501-510.
- 6988.Fedorenkova, A., et al., *Ecotoxicogenomics: Bridging the gap between genes and populations.*699Environmental Science and Technology, 2010. **44**(11): p. 4328-4333.
- 7009.Chaudhry, M.A., et al., Micro RNA responses to chronic or acute exposures to low dose701ionizing radiation. Molecular Biology Reports, 2012. **39**(7): p. 7549-7558.
- 10. Kryshev, A.I. and T.G. Sazykina, *Modelling the effects of ionizing radiation on survival of animal population: acute versus chronic exposure.* Radiation and Environmental Biophysics,
   2015. 54(1): p. 103-109.
- 70511.Azimzadeh, O., et al., Rapid proteomic remodeling of cardiac tissue caused by total body706ionizing radiation. Proteomics, 2011. **11**(16): p. 3299-3311.
- Nishad, S. and A. Ghosh, *Dynamic changes in the proteome of human peripheral blood mononuclear cells with low dose ionizing radiation.* Mutation Research Genetic Toxicology
   and Environmental Mutagenesis, 2016. **797**: p. 9-20.
- 71013.Sriharshan, A., et al., Proteomic analysis by SILAC and 2D-DIGE reveals radiation-induced711endothelial response: Four key pathways. Journal of Proteomics, 2012. **75**(8): p. 2319-2330.
- 712 14. Maupas, E., Modes et formes de reproduction des nematodes. Arch. Zool. Expérimentale
  713 Générale, 1901. 8: p. 463-624.
- Turner, E., et al., *Proteomic identification of germline proteins in Caenorhabditis elegans.*Worm, 2015(4:1): p. e1008903, DOI:10.1080/21624054.2015.1008903.
- 16. Brenner, S., *The genetics of behaviour*. British Medical Bulletin, 1973. **29**(3): p. 269-271.
- 71717.Buisset-Goussen, A., et al., *Effects of chronic gamma irradiation: A multigenerational study*718using Caenorhabditis elegans. Journal of Environmental Radioactivity, 2014. **137**: p. 190-197.
- 719 18. Gartner, A., et al., *A conserved checkpoint pathway mediates DNA damage-induced apoptosis*720 *and cell cycle arrest in C. elegans.* Molecular Cell, 2000. 5(3): p. 435-443.
- Takanami, T., et al., *Hyper-resistance of meiotic cells to radiation due to a strong expression*of a single recA-like gene in Caenorhabditis elegans. Nucleic Acids Research, 2000. 28(21): p.
  4232-4236.
- 72420.Cox, J., et al., Andromeda: A peptide search engine integrated into the MaxQuant725environment. Journal of Proteome Research, 2011. 10(4): p. 1794-1805.
- Cox, J., et al., Accurate proteome-wide label-free quantification by delayed normalization and
   maximal peptide ratio extraction, termed MaxLFQ. Molecular and Cellular Proteomics, 2014.
   13(9): p. 2513-2526.
- 72922.Huang, D.W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large730gene lists using DAVID bioinformatics resources. Nature Protocols, 2009. 4(1): p. 44-57.

- 731 23. Supek, F., et al., *Revigo summarizes and visualizes long lists of gene ontology terms.* PLoS
  732 ONE, 2011. 6(7).
- 733 24. Olson, S.K., et al., *Identification of novel chondroitin proteoglycans in Caenorhabditis elegans:*734 *Embryonic cell division depends on CPG-1 and CPG-2.* Journal of Cell Biology, 2006. **173**(6): p.
  735 985-994.
- Korzelius, J., et al., *C. elegans MCM-4 is a general DNA replication and checkpoint component with an epidermis-specific requirement for growth and viability.* Developmental Biology, 2011. 350(2): p. 358-369.
- Spieth, J. and T. Blumenthal, *The Caenorhabditis elegans vitellogenin gene family includes a gene encoding a distantly related protein.* Molecular and Cellular Biology, 1985. 5(10): p. 2495-2501.
- Grant, B. and D. Hirsh, *Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte.*Molecular Biology of the Cell, 1999. **10**(12): p. 4311-4326.
- Scheel, J., et al., *Involvement of caveolin-1 in meiotic cell-cycle progression in Caenorhabditis elegans.* Nature Cell Biology, 1999. 1(2): p. 127-129.
- 746 29. Kuzmic, M., et al., *Interplay between ionizing radiation effects and aging in C. elegans.* Free
  747 Radical Biology and Medicine, 2019. **134**: p. 657-665.
- 74830.Tullet, J.M.A., et al., The SKN-1/Nrf2 transcription factor can protect against oxidative stress749and increase lifespan in C. elegans by distinct mechanisms. Aging Cell, 2017. 16(5): p. 1191-7501194.
- 75131.Steinbaugh, M.J., et al., Lipid-mediated regulation of SKN-1/Nrf in response to germ cell752absence. eLife, 2015. 4(JULY2015).
- Lemieux, G.A. and K. Ashrafi, *Investigating Connections between Metabolism, Longevity, and Behavior in Caenorhabditis elegans.* Trends in Endocrinology and Metabolism, 2016. 27(8): p.
  586-596.
- 75633.Depina, A.S., et al., Regulation of Caenorhabditis elegans vitellogenesis by DAF-2/IIS through757separable transcriptional and posttranscriptional mechanisms. BMC Physiology, 2011. 11(1).
- 75834.Bailly, A. and A. Gartner, Germ cell apoptosis and DNA damage responses, in Advances in759Experimental Medicine and Biology, T. Schedl, Editor 2013. p. 249-276.
- Rompay, L.V., et al., New genetic regulators question relevance of abundant yolk protein
   production in C. Elegans. Scientific Reports, 2015. 5.
- 76236.Davies, A.G., et al., Functional overlap between the mec-8 gene and five sym genes in763Caenorhabditis elegans. Genetics, 1999. 153(1): p. 117-134.
- Bailis, J.M. and S.L. Forsburg, *MCM proteins: DNA damage, mutagenesis and repair*. Current
   Opinion in Genetics and Development, 2004. 14(1): p. 17-21.
- 766 38. Elledge, S.J., *Cell cycle checkpoints: Preventing an identity crisis.* Science, 1996. **274**(5293): p.
   767 1664-1672.
- 39. Lecomte-Pradines, C., et al., A dynamic energy-based model to analyze sublethal effects of
  chronic gamma irradiation in the nematode Caenorhabditis elegans. Journal of Toxicology
  and Environmental Health Part A: Current Issues, 2017. 80(16-18): p. 830-844.
- 40. Brown, C.E., et al., *The many HATs of transcription coactivators.* Trends in Biochemical
  Sciences, 2000. **25**(1): p. 15-19.
- 41. Carrozza, M.J., et al., *The diverse functions of histone acetyltransferase complexes*. Trends in
  Genetics, 2003. **19**(6): p. 321-329.
- 42. Bailly, A. and A. Gartner, *Caenorhabditis elegans radiation responses*, in *Current Cancer*776 *Research*, T.L. DeWeese, Editor 2011. p. 101-123.
- 43. Audhya, A., et al., *A complex containing the Sm protein CAR-1 and the RNA helicase CGH-1 is required for embryonic cytokinesis in Caenorhabditis elegans*. Journal of Cell Biology, 2005.
  179 171(2): p. 267-279.
- Navarro, R.E., et al., cgh-1, a conserved predicted RNA helicase required for gametogenesis and protection from physiological germline apoptosis in *C. elegans.* Development, 2001. **128**(17): p. 3221-3232.

- 45. Luke-Glaser, S., et al., *CIF-1*, a shared subunit of the COP9/signalosome and eukaryotic initiation factor 3 complexes, regulates MEL-26 levels in the Caenorhabditis elegans embryo.
  785 Molecular and Cellular Biology, 2007. 27(12): p. 4526-4540.
- 46. Gao, M.X., et al., *The SCFFSN-1 ubiquitin ligase controls germline apoptosis through CEP-*787 1/p53 in C. elegans. Cell Death and Differentiation, 2008. 15(6): p. 1054-1062.
- Papaevgeniou, N. and N. Chondrogianni, *The ubiquitin proteasome system in Caenorhabditis elegans and its regulation.* Redox Biology, 2014. 2(1): p. 333-347.
- 48. Garnier-Laplace, J., et al., A multi-criteria weight of evidence approach for deriving ecological benchmarks for radioactive substances. Journal of Radiological Protection, 2010. 30(2): p.
  792 215-233.

793