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Abstract

This paper extends the analysis of Muni Toke & Yoshida (2020) to the case of marked point

processes. We consider multiple marked point processes with intensities defined by three multi-

plicative components, namely a common baseline intensity, a state-dependent component specific

to each process, and a state-dependent component specific to each mark within each process.

We show that for specific mark distributions, this model is a combination of the ratio models

defined in Muni Toke & Yoshida (2020). We prove convergence results for the quasi-maximum

and quasi-Bayesian likelihood estimators of this model and provide numerical illustrations of

the asymptotic variances. We use these ratio processes in order to model transactions occuring

in a limit order book. Model flexibility allows us to investigate both state-dependency (em-

phasizing the role of imbalance and spread as significant signals) and clustering. Calibration,

model selection and prediction results are reported for high-frequency trading data on multiple

stocks traded on Euronext Paris. We show that the marked ratio model outperforms other

intensity-based methods (such as “pure” Hawkes-based methods) in predicting the sign and

aggressiveness of market orders on financial markets.

Keywords : marked point processes ; quasi-likelihood analysis ; limit order book ; high-frequency

trading data ; trade signature ; trade aggressiveness
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1 Introduction

The limit order book is the central structure that aggregates buy and sell intentions of all the market

participants on a given exchange. This structure typically evolves at a very high-frequency: on the

Paris Euronext stock exchange, the limit order book of a common stock is modified several hundreds

of thousand times per day. Among these changes, thousands or tens of thousand events account

for a transaction between two participants. The rest of the events indicate either the intention to

buy/sell at a limit price lower/higher than available, or the cancellation of such intentions (Abergel

et al. , 2016).

Empirical observation of high-frequency events on a limit order book may reveal irregular inter-

val times (durations), clustering, intraday seasonality, etc. (Chakraborti et al. , 2011). Stochastic

point processes are thus natural candidates for the modeling of such systems and their time series

(Hautsch, 2011). In particular, Hawkes processes have been successfully suggested for the modeling

of limit order book events (Bowsher, 2007; Large, 2007; Bacry et al. , 2012, 2013; Muni Toke &

Pomponio, 2012; Lallouache & Challet, 2016; Lu & Abergel, 2018).

One drawback of such models is the difficulty to account for high intraday variability. Another

drawback of such models is the lack of state-dependency: the observed state of the limit order

book does not influence the dynamics of the events. One may try to include state-dependency by

specifying a fully parametric model (Muni Toke & Yoshida, 2017), which is a cumbersome solution.

Another solution is to extend the Hawkes framework with marks (Rambaldi et al. , 2017) or with

state-dependent kernels (Morariu-Patrichi & Pakkanen, 2018). Muni Toke & Yoshida (2020) has

shown that state-dependency can be efficiently tackled by a multiplicative model with two compo-

nents: a shared baseline intensity and a state-dependent process-specific component. An intensity

ratio model can then allow for efficient estimation of state-dependency. Several microstructure

examples are worked out, including a ratio model for the prediction of the next trade sign1.

In this work, we extend the framework of Muni Toke & Yoshida (2020) to some cases of marked

point processes, by adding a third term to the multiplicative definition of the intensity, which

accounts for some mark distribution. We use this extension to deepen our investigation of limit

order book data. In financial microstructure, one of the characteristics of an order sent to a financial

exchange is its aggressiveness (Biais et al. , 1995; Harris & Hasbrouck, 1996). We will say here that

an order is aggressive if it moves the price. A ratio model with marks can thus be used to analyse

both the side (bid or ask) and aggressiveness of market oders.

The rest of the paper is organized as follows. In Section 2 we show that some marked models

can be viewed as combinations of intensity ratios of non-marked processes. Section 3 defines the

quasi-likelihood maximum and Bayesian estimators and proceeeds to the analysis of the estimation.

Theorem 3.1 states the convergence result and a numerical illustration follows. We then turn to

1When characterizing a market order, we use indistinctly the terms side (bid/ask) or sign (-1,+1) to indicate if a
transaction occurs at the best bid or best ask price of the limit order book.
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the main financial application in Section 4, and show how the two-step ratio model can efficiently

predict (in a theoretical setting) the sign and aggressiveness of the next trade. Finally, the full

proof of Theorem 3.1 is given in Appendix A, and for completeness elements on quasi-likelihood

analysis are recalled in Appendix B.

2 Marked process models as two-step ratio models

Let I = {0, 1, ..., ī}. We consider certain marked point processes N i = (N i
t )t∈R+ , i ∈ I and

R+ = [0,∞). For each i ∈ I, let k̄i be a positive integer, and let Ki = {0, 1, ..., k̄i} be a space of

marks for the process N i. We denote by N i,ki = (N i,ki
t )t∈R+ the process counting events of type

i with mark ki ∈ Ki. We have obviously N i =
∑

ki∈Ki N
i,ki . Let Ǐ = ∪i∈I

(
{i} × Ki

)
. We assume

that the intensity of the process N i with mark ki, i.e., the intensity of N i,ki , is given by

λi,ki(t, ϑi, %i) = λ0(t) exp

(∑
j∈J

ϑijXj(t)

)
pkii (t, %i)

at time t for (i, ki) ∈ Ǐ, where ϑi = (ϑij)j∈J (i ∈ I) and %i (i ∈ I) are unknown parameters.

More precisely, given a probability space (Ω,F , P ) equipped with a right-continuous filtration

F = (Ft)t∈R+ , λ0 = (λ0(t))t∈R+ is a non-negative predictable process, Xj = (Xj(t))t∈R+ is a

predictable process for each j ∈ J = {1, ..., j̄}, and pkii (t, ρi) is a non-negative predictable process

for each (i, ki) ∈ Ǐ. Later we will put a condition so that the mapping t 7→ λi,ki(t, ϑi, %i) is locally

integrable with respect to dt, and we assume that N i,ki
0 = 0, and for each (i, ki) ∈ Ǐ, the process

N i,ki
t −

∫ t

0
λi,ki(s, (ϑi)∗, (%i)∗)ds

is a local martingale for a value
(
(ϑi)∗, (%i)∗

)
of the parameter

(
ϑi, %i

)
.

In what follows, we consider the processes pkii (t, %i) such that∑
ki∈Ki

pkii (t, %i) = 1 (2.1)

for i ∈ I. Then the k̄i-dimensional process (pkii (t, %i))ki∈Ki gives the conditional distribution of the

event ki when the event i occurred. Under (2.1), the intensity process of N i becomes

λi(t, ϑi) =
∑
ki∈Ki

λi,ki(t, ϑi, %i) = λ0(t) exp

(∑
j∈J

ϑijXj(t)

)
. (2.2)

The process λ0 is called a baseline intensity, whose structure will not be specified, in other

words, λ0 will be treated as a nuisance parameter, differently from the use of Cox regression as
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in Muni Toke & Yoshida (2017). The baseline intensity may represent the global market activity

in finance, for example, and its irregular change may limit the reliability of estimation procedures

and predictions for any model fitted to it. Muni Toke & Yoshida (2020) took an approach with an

unstructured baseline intensity process and showed advantages of such modeling. Statistically, the

process X(t) = (Xj(t))j∈J is an observable covariate process. Since the effect of these covariate pro-

cesses to the amplitude of λi(t, ϑi) is contaminated by the unobservable and structurally unknown

baseline intensity, a more interesting measure of dependency of λi(t, ϑi) to X(t) is the ratio

λi(t, ϑi)/
∑
i′∈I

λi
′
(t, ϑi

′
)

for i ∈ I. Thus, we introduce the difference parameters θij = ϑij − ϑ0
j (i ∈ I, j ∈ J), (θ0

j = 0 in

particular) and consider the ratios

ri(t, θ) =

exp

(∑
j∈J ϑ

i
jXj(t)

)
∑

i′∈I exp

(∑
j∈J ϑ

i′
jXj(t)

) =

exp

(∑
j∈J θ

i
jXj(t)

)
1 +

∑
i′∈I0 exp

(∑
j∈J θ

i′
j Xj(t)

) (2.3)

for i ∈ I, where θ = (θij)i∈I0,j∈J with I0 = I \ {0} = {1, ..., ī}.
In this paper, we further assume that the factor pkii (t, %i) is given by

pkii (t, %i) =

exp

(∑
ji∈Ji %

i,ki
ji
Y i
ji

(t)

)
∑

k′i∈Ki
exp

(∑
ji∈Ji %

i,k′i
ji
Y i
ji

(t)

)
for (i, ki) ∈ Ǐ, Ji = {1, ..., j̄i}. Obviously, pkii (t, %i) = qkii (t, ρi) defined by

qkii (t, ρi) =

exp

(∑
ji∈Ji ρ

i,ki
ji
Y i
ji

(t)

)
1 +

∑
k′i∈Ki,0

exp

(∑
ji∈Ji ρ

i,k′i
ji
Y i
ji

(t)

) (2.4)

for (i, ki) ∈ Ǐ, where ρi,kiji
= %i,kiji

− %i,0ji (ki ∈ Ki, j ∈ Ji, i ∈ I), ρi,0ji = 0 in particular, and ρi =

(ρi,kiji
)ki∈Ki,0,ji∈Ji (i ∈ I) with Ki,0 = Ki \ {0} = {1, ..., k̄i}. The predictable processes (Y i

ji
(t))t∈R+

(i ∈ I, ji ∈ Ji) are observable covariate processes, Ji being a finite index set. This is a multinomial

logistic regression model.

Let Θ be a bounded open convex set in Rp with p = ī j̄. For each i ∈ I, Ri denotes a bounded

open convex set in Rpi with pi = j̄i k̄i. Write ρ = (ρi)i∈I. Let R = Πi∈IRi. We will consider Θ×R
as the parameter space of (θ, ρ).
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Remark 1. The marked ratio model

λi,ki(t, ϑi, %i) = λ0(t) exp

(∑
j∈J

ϑijXj(t)

) exp

(∑
ji∈Ji %

i,ki
ji
Y i
ji

(t)

)
∑

k′i∈Ki
exp

(∑
ji∈Ji %

i,k′i
ji
Y i
ji

(t)

)
is in general not equivalent to a non-marked ratio model in larger dimension, in which we would

write the intensity of the counting process of events of type i ∈ I with mark ki ∈ Ki as

λi,ki(t, ϑi,ki) = λ̃0(t) exp

(∑
j∈J̃

ϑi,kij Zj(t)

)
.

for some covariate processes Zj , j ∈ J̃. Equivalence of the models would require these expressions

to coincide for some sets of covariates and parameters. However, if Zj(t) = 0 for all j ∈ J̃, then

necessarily Xj(t) = 0 for all j ∈ J and Y i
ji

(t) = 0 for all i ∈ I and ji ∈ Ji. This in turn implies

1
|Ki| = λ̃0(t)

λ0(t) for all i ∈ I, which is generally not true. In Section 4.5, a non-marked ratio model is used

as a benchmark to assess the performances of the marked ratio model. Prediction performances

are indeed shown to be different.

3 Quasi-likelihood estimation of two-step ratio model

3.1 Quasi-maximum likelihood estimator and quasi-Bayesian estimator

The two step marked ratio model consists of the two kinds of ratio models (2.3) and (2.4). Esti-

mation of this model can be carried out with multiple successive ratio models.

In the first step, we consider the parameter θ = (θij)i∈I0,j∈J and the ratios (2.3) for i ∈ I. The

quasi-log-likelihood based on observations on [0, T ] for this ratio model is

HT (θ) =
∑
i∈I

∫ T

0
log ri(t, θ) dN i

t . (3.1)

A quasi-maximum likelihood estimator (QMLE) for θ is a measurable mapping θ̂MT : Ω → Θ

satisfying

HT (θ̂MT ) = max
θ∈Θ

HT (θ)

for all ω ∈ Ω. 2

2Originally, θ̂MT is defined on a sample space ST expressing all the possible outcomes of (λ0(t), Xj(t), Y
i
ji(t); t ∈

[0, T ], i ∈ I, j ∈ J , ji ∈ Ji). If (Ω,F , P ) is an abstract space used for defining the true probability measure P ∗T on
ST by some random variable VT : Ω → ST (i.e. P ∗T = PV −1

T ), then treating θ̂MT as a function on Ω conflicts with

5



In the second step, we consider the ratios (2.4) and the associated quasi-log-likelihood

H(i)
T (ρi) =

∑
ki∈Ki

∫ T

0
log qkii (t, ρi) dN i,ki

t . (3.2)

for i ∈ I. Then a measurable mapping ρ̂i,MT : Ω → Ri is called a quasi-maximum likelihood

estimator (QMLE) for ρi if

H(i)
T (ρ̂i,MT ) = max

ρi∈Ri
H(i)
T (ρi).

It is possible to pool these estimating functions by the single estimating function

HT (θ, ρ) = HT (θ) +
∑
i∈I

H(i)
T (ρi). (3.3)

In other words,

HT (θ, ρ) =
∑
i∈I

∑
ki∈Ki

∫ T

0
log
(
ri(t, θ)qkii (t, ρi)

)
dN i,ki

t (3.4)

The collection of QMLEs
(
θ̂BT , (ρ̂

i,M
T )i∈I

)
is a QMLE for HT (θ, ρ). Use of HT (θ, ρ) is convenient

when we consider asymptotic distribution of the estimators θ̂MT and ρ̂iT (i ∈ I) jointly.

The quasi-Bayesian estimator (QBE)
(
θ̂BT , (ρ̂

i,B
T )i∈I

)
is defined by

θ̂BT =

[ ∫
Θ×R

exp
(
HT (θ, ρ)

)
$(θ, ρ) dθdρ

]−1 ∫
Θ×R

θ exp
(
HT (θ, ρ)

)
$(θ, ρ) dθdρ (3.5)

and

ρ̂i,BT =

[ ∫
Θ×R

exp
(
HT (θ, ρ)

)
$(θ, ρ) dθdρ

]−1 ∫
Θ×R

ρi exp
(
HT (θ, ρ)

)
$(θ, ρ) dθdρ (3.6)

for a prior probability density $(θ, ρ) on Θ×R. We assume that $ : Θ×R → R+ is continuous

and

0 < inf
(θ,ρ)∈Θ×R

$(θ, ρ) ≤ sup
(θ,ρ)∈Θ×R

$(θ, ρ) <∞. (3.7)

Since HT (θ) and H(i)
T (ρi) have no common parameters, the maximization of HT (θ, ρ) with respect

the definition of θ̂MT . However, what we want to investigate is concerning the distribution of θ̂MT (defined on ST )
under P ∗T , and then we can pull back θ̂MT on ST to Ω by VT if P ∗T = PV −1

T . For this reason, we can identify θ̂MT with

θ̂MT ◦ VT , and may regard θ̂MT as defined on Ω. This remark makes sense especially when one treats a weak solution
of a stochastic differential equation for a covariate.
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to the parameters θ and ρi (i ∈ I) can be carried out separately. However, these components are

not always individually treated for the QBE. If $(θ, ρ) is a product of prior densities as $(θ, ρ) =

$′(θ)Πi∈Iϕ
i(ρi), then the each integral in (3.5) and (3.6) is simplified and we can compute θ̂BT and

ρ̂i,BT (i ∈ I) separately:

θ̂BT =

[ ∫
Θ

exp
(
HT (θ)

)
$′(θ) dθ

]−1 ∫
Θ
θ exp

(
HT (θ)

)
$′(θ) dθ

and

ρ̂i,BT =

[ ∫
Ri

exp
(
H(i)
T (ρi)

)
$i(ρi) dρi

]−1 ∫
Ri
ρi exp

(
H(i)
T (ρi)

)
$i(ρi) dρi

for i ∈ I.

3.2 Quasi-likelihood analysis

Let X(t) = (Xj(t))j∈J and let Yi(t) =
(
Y i
ji

(t)
)
ji∈Ji

for i ∈ I. We consider the following conditions.

[M1] The process
(
λ0(t),X(t),Y(t)) is a stationary process and the random variables λ0(0), exp(|Xj(0)|)

and exp(|Y i
ji

(0)|) are in L∞– = ∩p>1L
p for j ∈ J, ji ∈ Ji and i ∈ I.

The alpha mixing coefficient α(h) is defined by

α(h) = sup
t∈R+

sup
A∈B[0,t]

B∈B[t+h,∞)

∣∣P [A ∩B]− P [A]P [B]
∣∣,

where for I ⊂ R+, BI denotes the σ-field generated by
(
λ0(t), (Xj(t))j∈J, (Y

i,ki
ji

(t))i∈I,ji∈Ji,ki∈Ki
)
.

[M2] The alpha mixing coefficient α(h) is rapidly decreasing in that α(h)hL → 0 as h → ∞ for

every L > 0.

In the two-step ratios model, the category (i, ki) is selected with two-fold multinomial distri-

butions of sample size equal to 1. First the class i ∈ I is selected when ξi = 1 for some random

variable

ξ = (ξ0, ..., ξī) ∼ Multinomial(1;π0, ...., πī).

If ξi = 1 for a class i ∈ I, then the class ki ∈ Ki is chosen as ki = k when ηik = 1 for some

independent random variable

ηi = (ηi0, ..., η
i
k̄i

) ∼ Multinomial(1;π′0, ..., π
′
k̄i

).
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Denote by V(x, θ) the variance matrix of the (1 + i)-dimensional multinomial distribution

M(1;π0, π1, ..., πi) with πi = ṙi(x, θ), i ∈ I, where

ṙi(x, θ) =

exp

(∑
j∈J ϑ

i
jxj

)
∑

i′∈I exp

(∑
j∈J ϑ

i′
j xj

) =

exp

(∑
j∈J θ

i
jxj

)
1 +

∑
i′∈I0 exp

(∑
j∈J θ

i′
j xj

) , x = (xj)j∈J

Denote by Vi(x, ρi) the variance matrix of the (1+ki)-dimensional multinomial distribution M(1;π′0, π
′
1, ..., π

′
ki

)

with π′ki = q̇kii (yi, ρi), ki ∈ Ki, where

q̇kii (yi, ρi) =

exp

(∑
ji∈Ji %

i,ki
ji
yiji

)
∑

k′i∈Ki
exp

(∑
ji∈Ji %

i,k′i
ji
yiji

)

=

exp

(∑
ji∈Ji ρ

i,ki
ji
yiji

)
1 +

∑
k′i∈Ki,0

exp

(∑
ji∈Ji ρ

i,k′i
ji
yiji

) , yi = (yiji) ∈ Rj̄i (i ∈ I).

Let us introduce some notations used in the following analysis. For a tensor T = (Ti1,...,ik)i1,...,ik ,

we write

T[u1, ..., uk] = T[u1 ⊗ · · · ⊗ uk] =
∑
i1,...,ik

Ti1,...,iku
i1
1 · · ·u

ik
k (3.8)

for u1 = (ui11 )i1 ,..., uk = (uikk )ik . Brackets [ , ..., ] stand for a multilinear mapping. We denote by

u⊗r = u⊗ · · · ⊗ u the r times tensor product of u.

Let

ΓT (θ, ρ) = −T−1∂2
(θ,ρ)HT (θ, ρ)

and let ΓT = ΓT (θ∗, ρ∗). Then, as detailed on p. 26,

ΓT (θ, ρ) = diag
[
ΓT (θ),Γ1

T (ρ1), ...,ΓīT (ρī)
]

where

ΓT (θ)[u⊗2] =
1

T

∫ T

0

(
V0(X(t), θ)⊗ X(t)⊗2

)
[u⊗2]

∑
i∈I

dN i
t (u ∈ Rp) (3.9)

8



with V0(x, θ) = (V(x, θ)i,i′)i,i′∈I0 , and

ΓiT (ρi)[(ui)⊗2] =
1

T

∫ T

0

(
Vi0(Yi(t), ρi)⊗ Yi(t)⊗2

)
[(ui)⊗2]dN i

t (ui ∈ Rpi)

with Vi0(yi, ρi) = (Vi(yi, ρi)ki,k′i)ki,k′i∈Ki,0 .

Let

Λ(w, x) = w
∑
i∈I

exp
(
x
[
ϑ∗i
])

(3.10)

for w ∈ R+ and x ∈ Rj .
We have

V(x, θ)i,i′ = 1{i=i′}ṙ
i(x, θ)− ṙi(x, θ)ṙi′(x, θ)

Therefore

V(X(t), θ)i,i′ = 1{i=i′}r
i(t, θ)− ri(t, θ)ri′(t, θ) (3.11)

and V0(X(t), θ)i,i′ = V(X(t), θ)i,i′ for i, i′ ∈ I0. Write V0(x) = V0(x, θ∗).

We have

Vi(yi, ρi)ki,k′i = 1{ki=k′i}q̇
ki(yi, ρi)− q̇ki(yi, ρi)q̇k′i(yi, ρi).

Hence

Vi(Yi(t), ρi)ki,k′i = 1{ki=k′i}q
ki
i (t, ρi)− qkii (t, ρi)q

k′i
i (t, ρi) (3.12)

and Vi0(Yi(t), ρi)ki,k′i = Vi(Yi(t), ρi)ki,k′i for ki, k
′
i ∈ Ki,0. We denote Vi0(yi) = Vi0(yi, (ρi)∗).

Let

Γ(θ)[u⊗2] = E

[(
V0(X(0), θ)⊗ X(0)⊗2

)
[u⊗2]Λ(λ0(0),X(0))

]
for u ∈ Rp, and let

Γi(ρi)[(ui)⊗2] = E

[(
Vi0(Yi(0), ρi)⊗ Yi(0)⊗2

)
[(ui)⊗2]Λ(λ0(0),X(0))ri(0, θ∗)

]
for ui ∈ Rpi , i ∈ I. Let p̌ = p +

∑
i∈I pi = ī j̄ +

∑
i∈I k̄ij̄i. The full information matrix is the p̌× p̌

block diagonal matrix is

Γ(θ, ρ) = diag
[
Γ(θ),Γ0(ρ0),Γ1(ρ1), ...,Γī(ρī)

]
,

9



and in particular set

Γ = Γ(θ∗, ρ∗). (3.13)

An identifiability condition will be imposed.

[M3] inf
θ∈Θ

inf
u∈Rp: |u|=1

Γ(θ)[u⊗2] > 0 and inf
ρi∈Ri

inf
u∈Rpi : |ui|=1

Γi(ρi)[(ui)⊗2] > 0 for every i ∈ I.

For the QMLE ψ̂MT = (θ̂MT , ρ̂
M
T ) and the QBE ψ̂BT = (θ̂BT , ρ̂

B
T ) of ψ = (θ, ρ) = (θ, ρ1, ..., ρī), let

ûAT = T 1/2
(
ψ̂A − ψ∗) (A ∈ {M,B}).

Theorem 3.1. Suppose that Conditions [M1], [M2] and [M3] are satisfied. Then

E[f(ûAT )] → E[f(Γ−1/2ζ)]

as T → ∞ for A ∈ {M,B} and every f ∈ C(Rp̌) at most polynomial growth, where ζ is a p̌-

dimensional standard Gaussian random vector.

Example 1. As an illustration we consider the case with two processes (I = {0, 1}), and two

marks for each process (K0 = K1 = {0, 1}). The first state-dependent term takes into account one

covariate X1 (i.e. J = {1}). The mark distributions both depend on another covariate Y1 (i.e.

J0 = J1 = {1}). In this example, we assume that X1 and Y1 are independent Markov chains with

values in {−1, 1} and constant transition intensities λX and λY . We assume that λ0 is the intensity

of a Hawkes process (Ht)t≥0 with a single exponential kernel, i.e. λ0(t) = µ+
∫ t

0 αe
−β(t−s) dHs , with

(α, β) ∈ (R∗+)2, αβ < 1.

The two-step ratio model estimates the parameters (θ1
1, ρ

0,1
1 , ρ1,1

1 ) defined as θ1
1 = ϑ1

1 − ϑ0
1 and

ρi,11 = %i,11 − %
i,0
1 , i = 0, 1. In this specific case the matrix Γ of Equation (3.13) is a 3 × 3-diagonal

matrix, and a direct computation shows that the diagonal coefficients are

Γ0,0 =
µ

1− α
β

eθ
1
1

1 + eθ
1
1

(
coshϑ0

1 + coshϑ1
1

)
,

Γ1,1 =
µ

1− α
β

eρ
0,1
1

1 + eρ
0,1
1

eθ
1
1/2

1 + eθ
1
1

(
cosh

ϑ0
1 + ϑ1

1

2
+ cosh

3ϑ1
1 − ϑ0

1

2

)
,

Γ2,2 =
µ

1− α
β

eρ
1,1
1

1 + eρ
1,1
1

eθ
1
1/2

1 + eθ
1
1

(
cosh

ϑ0
1 + ϑ1

1

2
+ cosh

3ϑ1
1 − ϑ0

1

2

)
.

We run 1000 simulations of the processes (N0, N1) with their marks for various values of horizon

T . Numerical values used in these simulations are the following: µ = 0.5, α = 1.0, β = 2.0,

λX = λY = 0.5, ϑ0
1 = −0.75, ϑ1

1 = 0.75, %0,0
1 = −0.5, %0,1

1 = 0.5, %1,0
1 = −1.0, %1,1

1 = 1.0.

For each simulation, we compute the quasi-maximum likelihood estimators (θ̂1
1, ρ̂

0,1
1 , ρ̂1,1

1 ) with the

10



two-step ratios described above. Table 1 gives the mean estimators and the true values of the

parameters, as well as the empirical standard deviation, compared to the theoretical values T−
1
2 Γ
− 1

2
i,i ,

i = 0, 1, 2 from Theorem 3.1, for various values of T . For completeness, Figure 1 also plots

θ1
1 ρ0,1

1 ρ1,1
1

T True Value 1.500 1.000 2.000

Estimator mean 1.817 1.576 5.146
10 Estimator sd 1.829 2.875 5.491

T−
1
2 Γ
− 1

2
i,i 0.509 0.627 0.858

Estimator Mean 1.541 1.044 2.402
30 Estimator sd 0.324 0.610 2.096

T−
1
2 Γ
− 1

2
i,i 0.294 0.362 0.495

Estimator Mean 1.508 0.999 2.011
100 Estimator sd 0.164 0.201 0.289

T−
1
2 Γ
− 1

2
i,i 0.161 0.198 0.271

Estimator Mean 1.502 1.005 2.013
300 Estimator sd 0.094 0.114 0.159

T−
1
2 Γ
− 1

2
i,i 0.093 0.114 0.157

Estimator Mean 1.501 1.000 2.009
1000 Estimator sd 0.052 0.065 0.085

T−
1
2 Γ
− 1

2
i,i 0.051 0.063 0.086

Estimator Mean 1.498 1.001 1.999
3000 Estimator sd 0.029 0.038 0.053

T−
1
2 Γ
− 1

2
i,i 0.029 0.036 0.050

Table 1: Numerical results for the estimation of the model of Example 1.

the empirical standard deviations of the three estimators and the theoretical standard deviation

T−
1
2 Γ
− 1

2
i,i , i = 0, 1, 2 of Theorem 3.1, as a function of the horizon T . Asymptotic values predicted

by Theorem 3.1 are indeed empirically retrieved, which ends this numerical illustration.

4 Modeling and predicting sign and aggressiveness of market or-

ders

4.1 Intensities of the processes counting market orders

We consider the market orders submitted to a given limit order book. Let N0 be the process

counting the market orders submitted on the bid side (sell market orders) and N1 the process

counting the market orders submitted on the ask side (buy market orders). On each side, we

further consider whether the order is an aggressive order that moves the price (labeled with mark

1), or a non-aggressive order that does not move the price (labeled with mark 0).

11



●

●

●

●

●

●

10 50 200 10001e
−

03
1e

−
01

1e
+

01

θ1
1

Horizon T

S
ta

nd
ar

d 
de

vi
at

io
n

● Empirical sd
Theoretical sd

●

●

●

●

●

●

10 50 200 10001e
−

03
1e

−
01

1e
+

01

ρ1
0,1

Horizon T

● Empirical sd
Theoretical sd

●

●

●

●

●

●

10 50 200 10001e
−

03
1e

−
01

1e
+

01

ρ1
1,1

Horizon T

● Empirical sd
Theoretical sd

Figure 1: Empirical and theoretical standard deviation of the quasi-maximum likelihood estimators
θ̂1

1 (left), ρ̂0,1
1 (center) and ρ̂1,1

1 ) (right).

We assume that the intensity of an order of type i ∈ I = {0, 1} with mark ki ∈ K = K0 = K1 =

{0, 1} is

λi,ki(t, ϑi, %i) = λ0(t) exp

∑
j∈J

ϑijXj(t)

 exp
(∑

j∈Ji %
i,ki
ji
Y i
j (t)

)
∑

k′i∈Ki
exp

(∑
j∈Ji %

i,k′i
j Y i

j (t)
) . (4.1)

In the following applications, we will consider several possible models defined with various sets

of covariates Xj , j ∈ J and Y i
j , j ∈ Ji, i = 0, 1. The tested sets of covariates Xj , j ∈ J and Y i

j ,

j ∈ Ji, i = 0, 1 will all be subsets of the following list of possible covariates (besides Z0 = 1 common

to all models):

• Z1(t) = qB(t)−qA(t)
qB(t)−qA(t)

where qB(t) (resp. qA(t)) is the quantity available at the best bid (resp.ask)

at time t (i.e. the imbalance);

• Z2(t) = ε(t), where ε(t) is the sign of the last market order at time t (1 for an ask market

order, −1 for a bid market order ;

• Z3(t) = σ(t)ε(t), where σ(t) is equal to 1 if the spread at time t is large (larger than a reference

value, taken here to be the median spread of the stock), −1 otherwise ;

• Z4: H0,1(t) = log
(
µ0,1 +

∫ t
0 α

0,1e−β
0,1(t−s)dN0,1

s

)
(Hawkes covariate for aggressive bid market

orders)

• Z5: H0,0(t) = log
(
µ0,0 +

∫ t
0 α

0,0e−β
0,0(t−s)dN0,0

s

)
(Hawkes covariate for non-aggressive bid

market orders)

• Z6: H1,1(t) = log
(
µ1,1 +

∫ t
0 α

1,1e−β
1,1(t−s)dN1,1

s

)
(Hawkes covariate for aggressive ask market

orders)

• Z7: H1,0(t) = log
(
µ1,0 +

∫ t
0 α

1,0e−β
1,0(t−s)dN1,0

s

)
(Hawkes covariate for non-aggressive ask

market orders)

12



• Z8: H0(t) = log
(
µ0 +

∫ t
0 α

0e−β
0(t−s)dN0

s

)
(Hawkes covariate for bid market orders)

• Z9: H1(t) = log
(
µ1 +

∫ t
0 α

1e−β
1(t−s)dN1

s

)
(Hawkes covariate for ask market orders)

With these Hawkes covariates, the ratio model can actually be seen as a kind of non-linear Hawkes

process.

4.2 Limit order book data

We use tick-by-tick data for 36 stocks traded on Euronext Paris. The sample spans the whole year

2015, i.e. roughly 200 trading days for each stock, although some days are missing for some stocks.

Table 3 in Appendix C lists the stocks investigated and the number of trading days available. Rough

data consists in a TRTH (Thomson-Reuters Tick History) databases: for each trading day and each

stock, one file lists the transactions (quantities and prices) and one file lists the modifications of the

limit order book (level, price and quantities). Timestamps are given with a millisecond precision.

Synchronization of both files and reconstruction of the limit order book is carried out with the

procedure described in Muni Toke (2016). One strong advantage of the ratio model is that it

does not require precise timestamps in itself, since timestamps do not appear explicitly in the

quasi-likelihood of the ratios, while fitting other intensity-based models (e.g. Hawkes processes)

requires unique precise timestamps for log-likelihood computation. Here, if Hawkes fits are used

as covariates (covariates Z4 to Z9 in our application), then we choose to consider only unique

timestamps, i.e. we aggregate orders of the same type occurring at the same timestamp.

4.3 Estimation procedure of the two-step ratio model

Following Sections 2 and 3, estimation of the model defined at Equation (4.1) can be carried out

with multiple successive ratio models. In the first step, we consider the difference parameters

θij = ϑij − ϑ0
j , i ∈ I \ {0}, j ∈ J and the ratios (i ∈ I \ {0}):

ri(t, θ) =
exp

(∑
j∈J ϑ

i
jXj(t)

)
∑

i′∈I exp
(∑

j∈J ϑ
i′
jXj(t)

) =

∑
i′∈I

exp

∑
j∈J

(θi
′
j − θij)Xj(t)

−1

. (4.2)

The quasi-log-likelihood based on the observation on [0, T ] for this ratio model is defined at Equation

(3.1). In the second step, we consider the ratios

pkii (t, %i) =
exp

(∑
j∈Ji %

i,ki
ji
Y i
j (t)

)
∑

k′i∈Ki
exp

(∑
j∈Ji %

i,k′i
ji
Y i
j (t)

) =

∑
k′i∈Ki

exp

∑
j∈Ji

(%
i,k′i
j − %i,kiji

)Xj(t)

−1

, (4.3)

and the associated quasi-log-likelihood of Equation (3.2). Consistency and asymptotic normality

of the quasi-maximum likelihood estimators are guaranteed by Theorem 3.1.
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4.4 In-sample model selection with QAIC

In this first application, we perform in-sample model selection to assess the relevance of the different

possible sets of covariates. For each stock and each trading day, we fix a set of covariates. We use

the indices of the tested covariates to name the models: the model 146 is thus the model with

covariates (Z1, Z4, Z6). If required, we estimate the parameters of all the Hawkes covariates and

then compute the Hawkes covariates using these values. We finally fit three ratio models following

the above procedure : one for the processes (N0, N1) (signature of the marker orders), one for

the processes (N0,0, N0,1) (aggressiveness of the bid market orders) and one for the processes

(N1,0, N1,1) (aggressiveness of the ask market orders).

For each trading day, we then select the model minimizing the QAIC. For the ratio for the side

determination, the criterion is

− 2HT (θ̂MT ) + 2|J|, (4.4)

where |J| is the cardinality of the set of J. For the aggressiveness ratios, the criterion is

− 2H(i)
T (%̂i) + 2|Ji| (i ∈ I). (4.5)

We finally compute for each stock the frequencies of selection of different sets of covariates (i.e. the

number of trading days in which a model is selected by QAIC over the total number of trading days

in the sample for this stock). Figures 2, 3 and 4 plot the results as a model × stock heatmap for

each of these three ratios. For completeness, Tables 4, 5 and 6 in Appendix D list for each stock

and each ratio model (side, bid aggressiveness, ask aggressiveness) the four most selected models

(with frequency of selection).

For side determination, the models 14689, 124689 and 1234689 are the three most often chosen

models: the selected model is among these three models approximately 80% of the time in average

across stocks. Imbalance, Hawkes covariates for bid and ask market orders, and Hawkes covariates

for aggressive bid and ask market orders thus appear to be the most informative covariates.

For aggressiveness determination, the model 146 is often selected. This is in line with intuition:

imbalance is known to be a significant proxy for price change (Lipton et al. , 2013) and Hawkes

covariates for aggressive bid and aggressive are specific to the targeted events. Note also that for

several stocks, models with “symmetric” sets of covariates can also be chosen: for ask aggressiveness,

1679 is often selected, i.e. imbalance and all available ask Hawkes covariates ; symmetrically, 1458

is selected for ask aggressiveness, i.e. imbalance and all available bid Hawkes covariates.

One may in particular observe that these results confirm the primary role of the spread measured

in ticks in the theory of financial microstructure. Stocks for which the observed spread is mostly

equal to one tick are labeled ’large-tick stocks’, implying that market participants are constrained

by the price grid when submitting orders to the limit order book. Other stocks may be labeled

’small-tick stocks’ (Eisler et al. , 2012). Using our sample, we compute the mean observed spread

14



Figure 2: Side of market orders - Frequency of selection of each model by the QAIC criterion, for
each stock.

Figure 3: Aggressiveness of bid market orders - Frequency of selection by the QAIC criterion of
each model, for each stock.
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Figure 4: Aggressiveness of ask market orders - Frequency of selection by the QAIC criterion of
each model, for each stock.

in ticks for each stock and each available trading day, and group these values in bins of equal

sizes. Then inside each bin, we compute the frequency of selection of the covariate X3 (signed

spread) by QAIC for the ratio estimation of Equation (4.2). Bar plot is provided in Figure 5 (left).

We observe an increase of the frequency of the selection of the spread covariate when the mean

observed spread increases from 1 tick (its minimal possible value) to roughly 2 ticks. For larger

spread values, frequency then oscillates at high values. A break point might be searched between

1.5 and 2 ticks. This indicates that the significancy of covariates, especially the spread, is not the

same for large-tick and small-tick stocks, and that even for small tick-stocks, dependency is not

constant/uniform.

This observation is complemented on Figure 5 (right) by a cross-stock view of this phenomenon.

For each stock, we plot the frequency of the most selected model, in blue if the spread is selected,

in red if not. We observe that the spread covariate is nearly always in the most selected model

for stocks with an observed mean spread larger than 2 ticks. Recall that many microstructure

models are developped for large-tick stocks, since assuming a constant spread equal to one tick

often simplifies the analysis of the limit order book dynamics. Our observation advocates for the

definition of specific microstructure models for small-tick stocks, taking into account the spread

dynamics.
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Figure 5: Spread selection in the side ratio model as a function of the mean observed spread in
ticks. Frequency of selection across all stocks and trading days (left) and frequency of selection for
each stock (right).

4.5 Out-of-sample prediction performance

In this section, we use intensity and ratio models to predict the sign and aggressiveness of an

incoming market order. For all tested models, the procedure is the following. On a given trading

day, the model is fitted. Fitted parameters are then used on the following trading day (available

in the database) to compute the intensities (or ratios for ratio models), at all time. The type

of an incoming event is then predicted to be the type of highest intensity or ratio. The exercise

is theoretical in the sense that we assume that these computations are instantaneous, so that

intensities or ratios are available at all times.

Recall the notation N = (N i,ki)i∈{0,1},ki∈{0,1} for the four-dimensional point process counting

bid aggressive market orders, bid non-aggressive market orders, ask aggressive market orders and

ask non-aggressive market orders. We use two benchmark models.

The first benchmark model is the Hawkes model. Here, N is assumed to be a four-dimensional

Hawkes process with a single exponential kernel. In vector notation, the intensity is written
λ0,0
H (t)

λ0,1
H (t)

λ1,0
H (t)

λ1,1
H (t)

 =


µ0,0

µ0,1

µ1,0

µ1,1

+

∫ t

0


. . .

... . .
.

α(i,ki),(j,kj)e
−β(i,ki),(j,kj)(t−s)

. .
. ...

. . .

 ·

dN0,0(s)

dN0,1(s)

dN1,0(s)

dN1,1(s)


Estimation and ratio computation can be found in e.g., Bowsher (2007); Muni Toke & Pomponio

(2012). This model is labeled ’Hawkes’.

The second benchmark model is the four-dimensional ratio model without marks (Muni Toke
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Accuracy Hawkes Ratio-14689
MarkedRatio MarkedRatio

4567-4567-4567 14689-146-146

partial - side 0.781 0.808 0.776 0.877
partial - agg. 0.634 0.658 0.668 0.774

global 0.503 0.533 0.516 0.667

Table 2: Prediction performances of selected models averaged across stocks. Side accuracy gives
the fraction of correctly signed trades. Aggressiveness accuracy gives the proportion of trade with a
correctly predicted accuracy. Global accuracy gives the fraction of orders with correctly predicted
side and aggressiveness.

& Yoshida, 2020). In this model, the intensity of the counting process (i, ki) is

λi,kiR (t) = λ0,R(t) exp

(∑
j∈J

ϑi,kij Xj(t)

)
,

with some unobserved baseline intensity λ0,R(t). Given the previous observations, we choose the

set of covariates (Z1, Z4, Z6, Z8, Z9) for this benchmark. It is natural to choose these covariates

(imbalance, Hawkes for aggressive orders and Hawkes for all orders) given the results on model

selection of Section 4.4. Estimation and ratio computation are detailed in Muni Toke & Yoshida

(2020). This model is labeled ’Ratio-14689’.

These two benchmarks are used to assess the performances of two marked ratio models (or

two-step ratio models) described in this paper. The first marked ratio model uses the covariates

(Z4, Z5, Z6, Z7) for both steps. These covariates are based on the Hawkes processes of the bench-

mark Hawkes model. The second marked ratio model uses the covariates (Z1, Z4, Z6, Z8, Z9) for

the first-step ratio (side determination) and (Z1, Z4, Z6) for both second-step ratios (bid and ask

aggressiveness). Again, these choices are natural given the results on model selection of Section

4.4. These models are labeled ’MarkedRatio-4567-4567-4567’ and ’MarkedRatio-14689-146-146’

respectively.

Figure 6 plots the results for each stock for the two benchmark models and the two marked

ratio models. For completeness, the partial performances for side determination and aggressive-

ness determination of the trades are provided on Figure 7. Finally, Table 2 lists the partial and

global prediction performances of these models averaged across stocks. The benchmark Hawkes

model correctly predicts the sign and aggressiveness of an incoming with an accuracy in the range

[40%, 60%] for all stocks, with a 50% average. The marked ratio model with only Hawkes pa-

rameters (’MarkedRatio-4567-4567-4567’) and no dependency on the state of the limit order book

actually reproduces closely these performances. The non-marked ratio model ’Ratio-14689’ im-

proves slightly the global performances of the two previous models. When looking at the partial

accuracies, we observe that this improvement is mainly due to a better side prediction. Finally, the

’MarkedRatio-14689-146-146’, which appeared to be in average the best model with respect to the
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Figure 6: Out-of-sample prediction performances for the benchmark models and the marked ratio
models. Label explanation is in the text.

Figure 7: Out-of-sample partial prediction performances for the side prediction (left) and aggressive-
ness prediction (right), for the benchmark models and the marked ratio models. Label explanation
is in the text.
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QAIC selection, results strongly outperforms all other models. The global accuracy is in the range

[60%, 80%] for all stocks, with a 67% average, i.e. we are theoretically able to correctly predict

both the sign and aggressiveness of an incoming market order two times out of three.

These results show that the two-step ratio model for marked point processes is a significant

improvement to existing intensity models. As in the standard ratio model of Muni Toke & Yoshida

(2020), this provides an easy way to have both clustering and state-dependency. However, it is

important to note that the two-step ratio strongly improves the performance of the standard ratio

model in multidimensional setting. In this example, flexibility in the choice of covariates allows for

precise model selection for both sign and aggressiveness.
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A Proof of Theorem 3.1

The convergence given in Theorem 3.1 can be obtained by the quasi-likelihood analysis, which we

recall in Section B. We will apply Theorems B.2 and B.4 in Section B to the double ratio model.

In the present situation, the scaling factor is bT = T , the joint parameter (θ, ρ) is for θ in Section

B, and the dimension of the full parameter space is p̌ in place of p of Section B. Fix a set of values

of parameters (α, β1, β2, ρ, ρ1, ρ2) so that Condition [L1] (Section B) is met with ρ = 2.

A.1 Score functions and a central limit theorem

The score function for ρi is given by

F
(i)
T (ρi) = ∂ρiH

(i)
T (ρi) =

∑
ki∈Ki

∫ T

0
∂ρi log qkii (t, ρi)dN i,ki

t .

Then

F
(i)
T (ρi) =

∑
ki∈Ki

∫ T

0

(
1{ki}(·)− q

[
i (t, ρ

i)
)
⊗ Yi(t)dN i,ki

t (A.1)

where q[i (t, ρ
i) = (qkii (t, ρi))ki∈Ki,0 and Yi(t) = (Y i

ji
(t))ji∈Ji . By some calculus, we see

F
(i)
T := F

(i)
T ((ρi)∗) =

∑
ki∈Ki

∫ T

0

(
1{ki}(·)− q

[
i (t, (ρ

i)∗)
)
⊗ Yi(t)dÑ i,ki

t (A.2)

We are assuming that the counting processes N i,ki (i ∈ I; ji ∈ Ki) have no common jumps. Then

the pi × pi′ matrix valued process

〈F (i), F (i′)〉T = 0 (i, i′ ∈ I, i 6= i′) (A.3)

and

〈F (i)〉T =
∑
k∈Ki

∫ T

0

{
1{ki}(·)− q

[
i (t, (ρ

i)∗)
)
⊗ Yi(t)

}⊗2

ri(t, θ∗)Λ(λ0(t),X(t))qkii (t, (ρi)∗)dt

=

∫ T

0
Vi0(Yi(t), (ρi)∗)⊗ (Yi(t))⊗2 Λ(λ0(t),X(t))ri(t, θ∗)dt (i ∈ I)
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Therefore, the mixing property [M2] gives the convergence

T−1〈F (i)〉T →p Γ(i)((ρi)∗) = E

[
Vi0(Yi(0), (ρi)

∗)⊗ (Yi(0))⊗2 Λ(λ0(t),X(0))ri(0, θ∗)

]
(A.4)

as T →∞, with the aid of [M1].

The score function for θ is the p-dimensional process

FT (θ) = ∂θHT (θ) =
∑
i∈I

∫ T

0
∂θ log ri(t, θ)dN i

t

=
∑
i∈I

∫ T

0

(
1{i}(·)− r[(t, θ)

)
⊗ X(t)dN i

t . (A.5)

where r[(t, θ) = (ri(t, θ))i∈I0 . Evaluated at θ∗,

FT = FT (θ∗) =
∑
i∈I

∫ T

0

(
1{i}(·)− r[(t, θ∗)

)
⊗ X(t)dÑ i

t

=
∑
i∈I

∑
ki∈Ki

∫ T

0

(
1{i}(·)− r[(t, θ∗)

)
⊗ X(t)dÑ i,ki

t . (A.6)

Then, the p× p matrix valued process 〈F 〉 has the expression

〈F 〉T =
∑
i∈I

∑
ki∈Ki

∫ T

0

(
1{i}(·)− r[(t, θ∗)

)⊗2 ⊗ X(t)⊗2ri(t, θ∗)Λ(λ0(t),X(t))qkii (t, (ρi)
∗)dt

=
∑
i∈I

∫ T

0

(
1{i}(·)− r[(t, θ∗)

)⊗2 ⊗ X(t)⊗2ri(t, θ∗)Λ(λ0(t),X(t))dt

=

∫ T

0
V0(X(t))⊗ X(t)⊗2Λ(λ0(t),X(t))dt.

Then the mixing property [M2] provides the convergence

T−1〈F 〉T →p Γ(θ∗) = E

[(
V0(X(0))⊗ X(0)⊗2

)
Λ(λ0(0),X(0))

]
(A.7)

as T →∞.

For i ∈ I,

〈F, F (i)〉T =
∑
ki∈Ki

∫ T

0

(
1{i}(·)− r[(t, θ∗)

)
⊗
(
1{ki}(·)− q

[
i (t, (ρ

i)∗)
)
⊗ X(t)⊗ Yi(t)

×ri(t, θ∗)Λ(λ0(t),X(t))qkii (t, (ρi)
∗)dt

= 0 (A.8)
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since ∑
ki∈Ki

(
1{ki}(·)− q

[
i (t, (ρ

i)∗)
)
qkii (t, (ρi)

∗) = 0.

The full information matrix is the p̌× p̌ block diagonal matrix

Γ = Γ(θ∗, ρ∗) = diag
[
Γ(θ∗),Γ0((ρ0)∗),Γ1((ρ1)∗), ...,Γī((ρī)∗)

]
Let ∆T = T−1/2

(
FT , (F

(i)
T )i∈I

)
. Now, by the martingale central limit theorem, it is easy to obtain

the convergence

∆T →d Γ1/2ζ (T →∞)

where ζ is a p̌-dimensional standard Gaussian random vector. The joint convergence (∆T ,Γ) →d

(Γ1/2ζ,Γ) is obvious since Γ is deterministic.

A.2 Condition [L4]

According to (B.2), we define the random field YT : Ω×Θ×R → R by

YT (θ, ρ) = T−1
(
HT (θ, ρ)−HT (θ∗, ρ∗)

)
for HT (θ, ρ) given in (3.3). From the expression (3.4) of HT (θ, ρ), we have

T−1HT (θ, ρ) = T−1
∑
i∈I

∑
ki∈Ki

∫ T

0
log
(
ri(t, θ)qkii (t, ρi)

)
dN i,ki

t

= T−1
∑
i∈I

∑
ki∈Ki

∫ T

0
log
(
ri(t, θ)qkii (t, ρi)

)
dÑ i,ki

t

+T−1
∑
i∈I

∑
ki∈Ki

∫ T

0

{
log
(
ri(t, θ)qkii (t, ρi)

}
λ0(t) exp

(∑
j∈J

(ϑ∗)ijXj(t)

)
pkii (t, (%∗)i,ki)dt.

By definition,

∣∣∂`(θ,ρ) log
(
ri(t, θ)qkii (t, ρi)

)∣∣ ≤ C

(
1 +

∑
j∈J
|Xj(t)|+

∑
i∈I

∑
ji∈Ji

|Y ki
ji

(t)|
)

(` = 0, 1)

where C is a constant depending on the diameters of Θ and R. Therefore, under Condition [M1],

E

[∣∣∣∣∂`(θ,ρ)T
−1/2

∫ T

0
log
(
ri(t, θ)qkii (t, ρi)

)
dÑ i,ki

t

∣∣∣∣2k]
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<∼ E

[(
T−1

∫ T

0

∣∣∂`(θ,ρ) log
(
ri(t, θ)qkii (t, ρi)

)∣∣2dN i,ki
t

)2(k−1)]
<∼ E

[
T−1

∫ T

0

∣∣∂`(θ,ρ) log
(
ri(t, θ)qkii (t, ρi)

)∣∣2kλi,ki(t, (ϑi)∗, (%i,ki)∗)dt]
+T−2k−2

E

[(
T−1/2

∫ T

0

∣∣∂`(θ,ρ) log
(
ri(t, θ)qkii (t, ρi)

)∣∣2dÑ i,ki
t

)2(k−1)]
= O(1) + T−2k−2

E

[(
T−1/2

∫ T

0

∣∣∂`(θ,ρ) log
(
ri(t, θ)qkii (t, ρi)

)∣∣2dÑ i,ki
t

)2(k−1)]
for k ∈ N, where the constant appearing at each <∼ depends only on p̌, k and the constant of the

Burkholder-Davis-Gundy inequality. By induction, we obtain

sup
(θ,ρ)∈Θ×R

sup
T≥1

∥∥∥∥∂`(θ,ρ)T
−1/2

∫ T

0
log
(
ri(t, θ)qkii (t, ρi)

)
dÑ i,ki

t

∥∥∥∥
p

< ∞ (A.9)

for every p > 1 and ` ∈ {0, 1}. Then Sobolev’s inequality gives

sup
T≥1

∥∥∥∥ sup
(θ,ρ)∈Θ×R

∣∣∣∣T−1/2

∫ T

0
log
(
ri(t, θ)qkii (t, ρi)

)
dÑ i,ki

t

∣∣∣∣ ∥∥∥∥
p

< ∞ (A.10)

for every p > 1.

Let

Φ(t, θ, ρ) =
∑
i∈I

∑
ki∈Ki

{
ri(t, θ∗)pkii (t, (%∗)i,ki) log

ri(t, θ)qi(t, ki, ρ
i)

ri(t, θ∗)qkii (t, (ρ∗)i,ki)

}
×λ0(t)

∑
i′∈I

exp

(∑
j∈J

(ϑ∗)i
′
jXj(t)

)
.

Then Conditions [M1] and [M2] imply

sup
(θ,ρ)∈Θ×R

sup
T≥1

∥∥∥∥T−1/2

∫ T

0
∂`(θ,ρ)

(
Φ(t, θ, ρ)− E[Φ(t, θ, ρ)]

)
dt

∥∥∥∥
p

< ∞

for every p > 1 and ` ∈ {0, 1}. This entails

sup
T≥1

∥∥∥∥T 1/2 sup
(θ,ρ)∈Θ×R

∣∣∣∣T−1

∫ T

0
Φ(t, θ, ρ)dt− E[Φ(t, θ, ρ)]

∣∣∣∣∥∥∥∥
p

< ∞ (A.11)

for every p > 1.
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Combining (A.11) with (A.10), we obtain

sup
T≥1

E

[(
T 1/2 sup

(θ,ρ)∈Θ×R

∣∣YT (θ, ρ)− Y(θ, ρ)
∣∣)p] < ∞ (A.12)

for every p > 1, if we set

Y(θ, ρ) = E

[∑
i∈I

∑
ki∈Ki

{
ri(0, θ∗)pkii (0, (%∗)i,ki) log

ri(0, θ)qi(0, ki, ρ
i)

ri(0, θ∗)qkii (0, (ρ∗)i,ki)

}
×λ0(0)

∑
i′∈I

exp

(∑
j∈J

(ϑ∗)i
′
jXj(0)

)]
.

This verifies Condition [L4](ii).

As (B.1), we define ΓT (θ, ρ) by

ΓT (θ, ρ) = −T−1∂2
(θ,ρ)HT (θ, ρ).

From (A.1),

∂2
ρiH

(i)
T (ρi) = −

∑
ki∈Ki

∫ T

0
∂ρiq

[
i (t, ρ

i)⊗ Yi(t)dN i,ki
t .

More precisely,

∂
ρ
i,ki
ji

∂
ρ
i,k′
i

j′
i

H(i)
T (ρi) = −

∑
k′′i ∈Ki

∫ T

0

{
1{ki=k′i}q

ki
i (t, ρi)− qkii (t, ρi)q

k′i
i (t, ρi)

}
Yiji(t)Y

i
j′i

(t)dN
i,k′′i
t

= −
∑
k′′i ∈Ki

∫ T

0

{
1{ki=k′i}q

ki
i (t, ρi)− qkii (t, ρi)q

k′i
i (t, ρi)

}
Yiji(t)Y

i
j′i

(t)dÑ
i,k′′i
t

−
∫ T

0

{
1{ki=k′i}q

ki
i (t, ρi)− qkii (t, ρi)q

k′i
i (t, ρi)

}
Yiji(t)Y

i
j′i

(t)

×ri(t, θ∗)Λ(λ0(t),X(t))dt

= −
∑
k′′i ∈Ki

∫ T

0
Vi0(Yi(t), ρi)ki,k′iY

i
ji(t)Y

i
j′i

(t)dÑ
i,k′′i
t

−
∫ T

0
Vi0(Yi(t), ρi)ki,k′iY

i
ji(t)Y

i
j′i

(t)Λ(λ0(t),X(t))ri(t, θ∗)dt

for ki, k
′
i ∈ Ki,0, ji, j

′
i ∈ Ji and i ∈ I, where (3.12) was used. Similarly, from (A.5),

∂2
θHT (θ) = −

∑
i∈I

∫ T

0
∂θr

[(t, θ)⊗ X(t)dN i
t ,
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equivalently,

∂θij
∂
θi
′
j′
HT (θ) = −

∑
i′′∈I

∫ T

0
V0(X(t), θ)i,i′Xj(t)Xj′(t)dÑ

i′′
t

−
∫ T

0
V0(X(t), θ)i,i′Xj(t)Xj′(t)Λ(λ0(t),X(t))dt

for i, i′ ∈ I0 and j, j′ ∈ J. Obviously,

∂θ∂ρiH
(i)
T (ρi) = 0 and ∂ρi′∂ρiH

(i)
T (ρi) = 0 (i′, i ∈ I : i′ 6= i)

In a way similar to the derivation of (A.12), as a matter of fact it is easier, we can show

sup
T≥1

E
[(
T 1/2|ΓT (θ∗, ρ∗)− Γ|

)p]
< ∞

for every p > 1 under Conditions [M1] and [M2]. Therefore, Condition [L4](iv) for β1 = 1/2 was

verified. It is also possible to show [L4](iii) in a similar fashion by using the mixing property and

Sobolev’s inequality. Condition [L4](i) is already checked in (A.9). Thus, Condition [L4] has been

verified.

A.3 Conditions [L2] and [L3]

We see

∂2
(θ,ρ)Y(θ, ρ) = Γ(θ, ρ),

and by [M3], we conclude Y(θ, ρ) is strictly convex function on Θ × R = Θ × Πi∈IRi. For some

neighborhood U of (θ∗, ρ∗) and some positive number χ1,

Y(θ, ρ) ≤ −χ1|(θ, ρ)− (θ∗, ρ∗)|2
(
(θ, ρ) ∈ U

)
by the non-degeneracy of Γ(θ∗, ρ∗). Moreover, sup(θ,ρ)∈(Θ×R)\U Y(θ, ρ) < 0. In fact, if there was

a point (θ+, ρ+) 6∈ U such that Y(θ+, ρ+) = 0, then at a point on the segment connecting (θ∗, ρ∗)

and (θ+, ρ+), Γ(θ, ρ) would degenerate, and this contradicts [M3]. As a consequence, Condition

[L2] is verified for ρ = 2 and some (deterministic) positive number χ0 since the parameter space is

bounded. Condition [L3] is now obvious.
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A.4 Proof of Theorem 3.1

We have verified Conditions [L1]-[L4] in the present situation. Theorem 3.1 now follows from

Theorems B.2 and B.4.

B Quasi-likelihood analysis

This section recalls the quasi-likelihood analysis. Let Θ be a bounded open set in Rp. Given a

probability space (Ω,F , P ), suppose that HT : Ω × Θ → R is of class C3, that is, the mapping

Θ 3 θ 7→ HT (ω, θ) ∈ Rp is continuously extended to Θ and of class C3 for every ω ∈ Ω, and the

mapping Ω 3 ω 7→ HT (ω, θ) ∈ Rp is measurable for every θ ∈ Θ. Let Γ be a p× p random matrix.

Let θ∗ ∈ Θ. For a sequence aT ∈ GL(p) satisfying limT→∞ |aT | = 0, let

∆T [u] = ∂θHT (θ∗)aT and ΓT (θ) = −a?T∂2
θHT (θ)aT (B.1)

where ? denotes the matrix transpose. We consider a random field

YT (θ) = b−1
T

(
HT (θ)−HT (θ∗)

)
, (B.2)

which will be assumed to converge to a random field Y : Ω × Θ → R. Only for simplifying

presentation, we will assume that aT = b
−1/2
T Ip for diverging sequence (bT )T>0of positive numbers,

where Ip is the identity matrix. In what follows, we fix a positive number L.

We will give a simplified exposition of Yoshida (2011) on the polynomial type large deviation

inequality. Let α, β1, β2, ρ, ρ1 and ρ2 be numbers.

[L1] The numbers α, β1, β2, ρ, ρ1 and ρ2 satisfy the following inequalities:

0 < α < 1, 0 < β1 < 1/2, 0 < ρ1 < min{1, α(1− α)−1, 2β1(1− α)−1},

αρ < ρ2, β2 ≥ 0 and 1− 2β2 − ρ2 > 0.

Let β = α(1− α)−1.

[L2] There is a positive random variable χ0 such that

Y(θ) = Y(θ)− Y(θ∗) ≤ −χ0|θ − θ∗|ρ

for all θ ∈ Θ.
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[L3] There exists a CL such that

P
[
χ0 ≤ r−(ρ2−αρ)

]
≤ CL

rL
(r > 0)

and

P
[
λmin(Γ) < 4r−ρ1

]
≤ CL

rL
(r > 0).

[L4] (i) For M1 = L(1− ρ1)−1, sup
T>0

E
[
|∆T |M1

]
<∞.

(ii) For M2 = L(1− 2β2 − ρ2)−1,

sup
T>0

E

[(
sup

h:|h|≥b−α/2T

b
1
2
−β2

T

∣∣YT (θ∗ + h)− Y(θ∗ + h)
∣∣)M2

]
< ∞.

(iii) For M3 = L(β − ρ1)−1,

sup
T>0

E

[(
b−1
T sup

θ∈Θ

∣∣∂3
θHT (θ)

∣∣)M3
]

< ∞.

(iv) For M4 = L
(
2β1(1− α)−1 − ρ1

)−1
,

sup
T>0

E

[(
bβ1T
∣∣ΓT (θ∗)− Γ

∣∣)M4
]

< ∞.

Let UT = {u ∈ Rp; θ∗ + aTu ∈ Θ} and VT (r) = {u ∈ UT ; |u| ≥ r} for r > 0.

Theorem B.1. (Yoshida (2011)) Suppose that Conditions [L1]-[L4] are satisfied. Then there exists

a constant C such that

P

[
sup

u∈VT (r)
ZT (u) ≥ exp

(
− 2−1r2−(ρ1∨ρ2)

)]
≤ C

rL

for all T > 0 and r > 0. Here the supremum of the empty set should read −∞ by convention.

We comments some points. Parameters satisfying [L1] exist. Nondegeneracy conditions in

[A3] are obvious in ergodic cases. In this paper, we will apply Theorem B.1 under ergodicity of

the stochastic system. Theorem B.1 asserts a polynomial type large deviation inequality can be

obtained once the boundedness of moments of some random variables is verified. Condition [L4] is

easy to obtain because each variable is usually a simple additive functional. The polynomial type

large deviation inequality in Theorem B.1 enables us to easily apply the scheme by Ibragimov &

Has′minskĭı (1981) and Kutoyants (1984, 2012) to various dependence structures.
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Let u ∈ Rp. Define rT (u) (u ∈ UT ) by

ZT (u) = exp

(
∆T [u]− 1

2
Γ[u⊗2] + rT (u)

)
(u ∈ UT ) (B.3)

It is said that ZT is locally asymptotically quadratic (LAQ) at θ∗ if rT (u)→p 0 as T →∞ for every

u ∈ Rp, and hence logZT (u) is asymptotically approximated by a random quadratic function of u.

We will confine our attention to a very standard case where ZT is locally asymptotically mixed

normal, though the general theory of the quasi-likelihood analysis is framed more generally.

Any measurable mapping θ̂MT : Ω→ Θ is called a quasi-maximum likelihood estimator (QMLE)

for HT if

HT (θ̂MT ) = max
θ∈Θ

HT (θ).

When HT is continuous on the compact Θ, such a measurable function always exists, which is

ensured by the measurable selection theorem. Let ûMT = a−1
T (θ̂MT − θ∗) for the QMLE θ̂MT .

Theorem B.2. Let L > p > 0. Suppose that Conditions [L1]-[L4] are satisfied and that (∆T ,Γ)→d

(Γ1/2ζ,Γ) as T →∞, where ζ is a p-dimensional standard Gaussian random vector independent of

Γ. Then

E
[
f(ûMT )

]
→ E

[
f(û)

]
(T →∞)

for û = Γ−1/2ζ and for any f ∈ C(Rp) satisfying lim|u|→∞ |u|−p|f(u)| <∞.

Proof. We will sketch the proof to convey the concepts of the quasi-likelihood analysis to the

reader. See Yoshida (2011) for details. The space Ĉ(Rp) is the linear space of all continuous

functions f : Rp → R satisfying lim|u|→∞ f(u) = 0. The space Ĉ(Rp) becomes a separable Banach

space equipped with the supremum norm ‖f‖∞ = supu∈Rp |f(u)|. Moreover, Ĉ(Rp) is regarded as

a measurable space with the Borel σ-field. Let

Z(u) = exp

(
Γ1/2ζ[u]− 1

2
Γ[u⊗2]

)
(B.4)

for u ∈ Rp.

The term rT (u) admits the expression

rT (u) =

∫ 1

0
(1− s)

{
Γ[u⊗2]− ΓT (θ∗ + saTu)[u⊗2]

}
ds (B.5)

for u such that |u| ≤ b
(1−α)/2
T and T such that B(θ∗, b

−α/2
T ) ⊂ Θ. In this situation, we can apply

Taylor’s formula even though the whole Θ is not convex. Condition [L4] (iii) and the convergence
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of ∆T ensures tightness of the random fields
{
ZT |B(0,R)

}
T>T0

for every R > 0, where B(0, R) =

{u ∈ Rp} and T0 is a sufficiently large number depending on R. Combining this property with

the polynomial type large deviation inequality given by Theorem B.1, we obtain the convergence

ZT → Z in Ĉ(Rp) for the random field ZT extended as an element of Ĉ(Rp) so that supRp\UT ZT (u) ≤
supu∈∂UT ZT (u). Consequently, ûT → û = argmaxu∈RpZ(u). It is known that a measurable version

of extension of ZT exists.

A polynomial type large deviation, even weaker than the one in Theorem B.1, serves to show

Lq-boundedness of {|ûT |q} for L > q > p. Then the family {ûT } is uniformly integrable, and hence

we obtain the convergence of E[f(ûT )].

Remark 2. In Theorem B.2, if ∆T →d Γ1/2ζ F-stably, then (∆T ,Γ) →d (Γ1/2ζ,Γ) and ûMT → û

F-stably.

An advantage of the quasi-likelihood analysis is that the asymptotic behavior of the quasi-

Bayesian estimator can be obtained as well as that of the quasi-maximum likelihood estimator and

its moments convergence. The mapping

θ̂BT =

[ ∫
Θ

exp
(
HT (θ)

)
$(θ)dθ

]−1 ∫
Θ
θ exp

(
HT (θ)

)
$(θ)dθ

is called a quasi-Bayesian estimator (QBE) with respect to the prior density $. The QBE θ̂BT
takes values in the convex-hull of Θ. We will assume $ is continuous and 0 < infθ∈Θ$(θ) ≤
supθ∈Θ$(θ) < ∞. We will give a concise exposition in the following among many possible ways.

The reader is referred to Yoshida (2011) for further information. Recall that p is the dimension

of Θ, and B(R) denotes the open ball of radius R centered at the origin. C(B(R)) is the space

of all continuous functions on B(R), and it is equipped with the supremum norm. Let VT (r) =

{u ∈ UT ; |u| ≥ r}. As before, û = Γ−1/2ζ with a p-dimensional standard Gaussian random vector

ζ independent of Γ. Write ûBT = a−1
T (θ̂BT − θ∗).

Theorem B.3. Let p ≥ 1, L > p+ 1, D > p + p. Suppose that (∆T ,Γ)→d (Γ1/2ζ,Γ) as T →∞,

where ζ is a p-dimensional standard Gaussian random vector independent of Γ. Moreover, suppose

the following conditions are satisfied.

(i) For every R > 0,

ZT |B(R)
→ dZ|

B(R)
in C(B(R)) (B.6)

as T →∞, where Z is given in (B.4).
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(ii) There exist positive constants T0, C1 and C2 such that

P

[
sup
VT (r)

ZT ≥ C1r
−D
]
≤ C2r

−L (B.7)

for all T ≥ T0 and r > 0.

(iii) For some T0 > 0,

sup
T≥T0

E

[(∫
UT

ZT (u)

)−1]
< ∞. (B.8)

Then

E
[
f(ûBT )

]
→ E

[
f(û)

]
(B.9)

as T →∞ for any continuous function f : Rsfp→ R satisfying supu∈Rp

{
(1 + |u|)−p|f(u)|

}
<∞.

Proof. We will give a brief summary of the proof; see Yoshida (2011) for details. The variable ûBT
has the expression

ûBT =

[ ∫
UT

ZT (u)$(θ∗ + aTu)du

]−1 ∫
UT
uZT (u)$(θ∗ + aTu)du

By (B.7) and the properties of $, we can approximate ûBT by

ũT =

[ ∫
B(R)

ZT (u)du

]−1 ∫
B(R)

uZT (u)du

for paying small error when R is large. By (B.6),

ũT →d

[ ∫
B(R)

Z(u)du

]−1 ∫
B(R)

uZ(u)du =: û(R).

The random field Z inherits a tail estimate from (B.7), and hence û(R) is approximated by[ ∫
Rp

Z(u)du

]−1 ∫
Rp

uZ(u)du = Γ−1/2ζ = û.

Combining these estimates, we can conclude ûBT →d û as T →∞. Convergence of the expectation

is a consequence of uniform integrability of |ûBT |p ensured by (B.7).

Remark 3. (a) It is possible to relax the conditions of Theorem B.3 to only ensure the convergence

ûBT → û. (b) In Theorem B.3, if (∆T ,Γ) →d (Γ1/2ζ,Γ) and ûBT → û F-stably. (c) Usually, the
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condition (iii) of Theorem B.3 is easily verified; See Lemma 2 of Yoshida (2011).

The following result follows from Theorem B.3.

Theorem B.4. Let p > p and

L > max

{
p+ 1, p(β − ρ1), p(2β1(1− α)−1 − ρ1)

}
.

Suppose that Conditions [L1]-[L4] are satisfied and that E[|Γ|p] < ∞. (∆T ,Γ) →d (Γ1/2ζ,Γ) as

T →∞, where ζ is a p-dimensional standard Gaussian random vector independent of Γ. Then

E
[
f(ûBT )

]
→ E

[
f(û)

]
(T →∞)

for û = Γ−1/2ζ and for any f ∈ C(Rp) satisfying lim|u|→∞ |u|−p|f(u)| <∞.

Proof. The convergence (B.6) holds, as shown in the proof of Theorem B.2. The polynomial type

large deviation inequality (B.7) is a consequence of Theorem B.1; the number D is arbitrary. Fix

δ > 0. Then there exists T0 > 0 such that B(δ) ⊂ Θ. In particular, rT (u) admits the representation

(B.5) for all u ∈ B(δ). Since M3 = L(β − ρ1)−1 > p, M4 = L(2β1(1− α)−1 − ρ1)−1 > p and p > p,

we have p′ := min{M3,M4, p} > p and

E[|rT (u)|p′ ] ≤ C0|u|p
′

(u ∈ B(δ))

for some constant C0. Then Lemma 2 of Yoshida (2011) gives the estimate

E

[(∫
B(δ)

ZT (u)du

)−1]
≤ C1

by a constant C1 depending on (p′, p, δ, C0) and the supremums appearing in [L4](i),(iii),(iv), but

C1 is independent of T ≥ T0. Therefore (B.8) holds true. Thus, we can apply Theorem B.3 to

conclude the proof.

C List of stocks

Table 3 lists all the stocks investigated in the paper. For each stock, the total number of days

available in the sample is given. Note that for lack of usage time allotment on the computational

resources used for this paper, some trading days for few very liquid stocks were not used for some of

the marked ratio models tested in Section 4.4. In this case, only the trading days where all models

have been computed have been used. This is the last column of the table.
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RIC Company Sector
Number of trading Number of trading

days in sample days used in QAIC

AIRP.PA Air Liquide Healthcare / Energy 238 238
BNPP.PA BNP Paribas Banking 224 62
EDF.PA Electricite de France Energy 236 236

LAGA.PA Lagardère Media 142 142
CARR.PA Carrefour Retail 229 229
BOUY.PA Bouygues Construction / Telecom 228 228
ALSO.PA Alstom Transport 229 229
ACCP.PA Accor Hotels 227 227
ALUA.PA Alcatel Networks / Telecom 234 234
AXAF.PA Axa Insurance 236 131
CAGR.PA Crédit Agricole Banking 235 235
CAPP.PA Cap Gemini Technology Consulting 232 232
DANO.PA Danone Food 229 229
ESSI.PA Essilor Optics 228 228
LOIM.PA Klepierre Finance 221 221
LVMH.PA Louis Vuitton Moët Hennessy Luxury 233 198
MICP.PA Michelin Tires 229 229
OREP.PA L’Oréal Cosmetics 233 233
PERP.PA Pernod Ricard Spirits 224 224
PEUP.PA Peugeot Automotive 151 151
PRTP.PA Kering Luxury 227 227
PUBP.PA Publicis Communication 223 223
RENA.PA Renault Automotive 228 172
SAF.PA Safran Aerospace / Defense 232 232

TECF.PA Technip Energy 225 225
TOTF.PA Total Energy 232 75
VIE.PA Veolia Energy / Environment 234 234
VIV.PA Vivendi Media 234 234

VLLP.PA Vallourec Materials 228 228
VLOF.PA Valeo Automotive 221 212
SASY.PA Sanofi Healthcare 229 97
SCHN.PA Schneider Electric Energy 224 164
SGEF.PA Vinci Construction 229 229
SGOB.PA Saint Gobain Materials 234 180
SOGN.PA Société Générale Banking 229 103
STM.PA ST Microelectronics Semiconductor 227 227

Table 3: List of stocks investigated in this paper. Sample consists of the whole year 2015, repre-
senting roughly 230 trading days for all stocks except LAGA.PA and PEUP.PA which are missing
roughly 70 trading days.
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D In-sample AIC selection - Detailed results
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0 1 2 3

ACCP.PA 1234689 14689 124689 123456789
0.34 0.25 0.23 0.10

AIRP.PA 14689 124689 1234689 1456789
0.28 0.26 0.21 0.11

ALSO.PA 124689 1234689 14689 123456789
0.28 0.25 0.23 0.12

ALUA.PA 1234689 124689 14689 123456789
0.32 0.21 0.18 0.14

AXAF.PA 14689 1234689 124689 1456789
0.28 0.27 0.21 0.12

BNPP.PA 1234689 124689 14689 12456789
0.32 0.27 0.19 0.10

BOUY.PA 1234689 14689 124689 123456789
0.30 0.27 0.22 0.09

CAGR.PA 14689 1234689 124689 1456789
0.34 0.24 0.20 0.10

CAPP.PA 1234689 124689 14689 123456789
0.31 0.25 0.22 0.09

CARR.PA 1234689 14689 124689 1456789
0.32 0.28 0.23 0.07

DANO.PA 14689 1234689 124689 123456789
0.29 0.27 0.23 0.10

EDF.PA 1234689 14689 124689 123456789
0.30 0.30 0.22 0.08

ESSI.PA 14689 1234689 124689 1456789
0.30 0.29 0.20 0.08

LAGA.PA 14689 124689 1234689 1456789
0.46 0.18 0.16 0.08

LOIM.PA 1234689 124689 14689 123456789
0.29 0.27 0.19 0.11

LVMH.PA 14689 124689 1234689 1456789
0.29 0.25 0.21 0.09

MICP.PA 1234689 14689 124689 123456789
0.32 0.27 0.23 0.08

OREP.PA 14689 1234689 124689 1456789
0.31 0.24 0.24 0.11

PERP.PA 14689 1234689 124689 123456789
0.30 0.24 0.22 0.06

PEUP.PA 124689 1234689 14689 1456789
0.30 0.28 0.22 0.07

PRTP.PA 1234689 14689 124689 1456789
0.30 0.27 0.22 0.06

PUBP.PA 1234689 124689 14689 123456789
0.34 0.26 0.23 0.06

RENA.PA 1234689 124689 14689 12456789
0.34 0.25 0.23 0.06

SAF.PA 1234689 14689 124689 1456789
0.32 0.24 0.24 0.09

SASY.PA 14689 124689 1234689 1456789
0.30 0.29 0.27 0.05

SCHN.PA 14689 1234689 124689 1456789
0.29 0.27 0.25 0.09

SGEF.PA 1234689 124689 14689 123456789
0.33 0.27 0.21 0.10

SGOB.PA 1234689 14689 124689 123456789
0.32 0.29 0.22 0.06

SOGN.PA 1234689 14689 124689 1456789
0.36 0.30 0.17 0.08

STM.PA 14689 1234689 124689 12456789
0.32 0.25 0.22 0.07

TECF.PA 1234689 14689 124689 123456789
0.33 0.22 0.22 0.12

TOTF.PA 1234689 124689 14689 123456789
0.33 0.28 0.16 0.12

VIE.PA 14689 1234689 124689 1456789
0.33 0.26 0.22 0.08

VIV.PA 14689 1234689 124689 1456789
0.28 0.25 0.24 0.09

VLLP.PA 1234689 124689 14689 123456789
0.38 0.27 0.13 0.12

VLOF.PA 14689 1234689 124689 1456789
0.32 0.32 0.16 0.09

Table 4: Side determination - AIC most selected models by stock (covariates on the first line,
frequency on the second line)
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0 1 2 3

ACCP.PA 14689 146 189 14567
0.18 0.17 0.09 0.09

AIRP.PA 1458 14689 14567 146
0.32 0.16 0.13 0.11

ALSO.PA 146 189 14689 14567
0.23 0.14 0.10 0.10

ALUA.PA 189 146 14689 14567
0.19 0.16 0.15 0.11

AXAF.PA 1458 14689 14567 1246
0.33 0.21 0.15 0.06

BNPP.PA 14689 14567 124689 1458
0.26 0.21 0.11 0.06

BOUY.PA 146 14689 189 1458
0.19 0.16 0.13 0.11

CAGR.PA 1458 146 14689 14567
0.23 0.18 0.17 0.14

CAPP.PA 146 14689 189 14567
0.25 0.17 0.10 0.10

CARR.PA 14689 146 1458 14567
0.21 0.19 0.17 0.12

DANO.PA 14689 146 1458 14567
0.21 0.17 0.16 0.12

EDF.PA 146 14689 1458 14567
0.24 0.17 0.10 0.09

ESSI.PA 146 14567 1458 14689
0.17 0.17 0.17 0.16

LAGA.PA 146 189 14689 1679
0.33 0.15 0.09 0.09

LOIM.PA 146 189 14689 14567
0.19 0.19 0.13 0.09

LVMH.PA 1458 14567 14689 146
0.27 0.25 0.18 0.08

MICP.PA 146 14689 14567 189
0.27 0.14 0.10 0.09

OREP.PA 1458 14567 14689 146
0.27 0.19 0.18 0.09

PERP.PA 146 1458 14567 189
0.24 0.17 0.12 0.08

PEUP.PA 146 1458 14689 14567
0.27 0.17 0.12 0.11

PRTP.PA 146 1458 14689 14567
0.36 0.14 0.12 0.08

PUBP.PA 146 1458 14689 1246
0.19 0.16 0.15 0.09

RENA.PA 146 14689 14567 1456789
0.22 0.15 0.11 0.10

SAF.PA 146 14689 14567 189
0.22 0.20 0.12 0.11

SASY.PA 1458 14567 14689 12458
0.15 0.14 0.12 0.10

SCHN.PA 14689 1458 146 14567
0.20 0.16 0.15 0.12

SGEF.PA 14689 146 14567 1458
0.21 0.18 0.15 0.12

SGOB.PA 14689 146 189 14567
0.19 0.17 0.14 0.11

SOGN.PA 14689 146 14567 189
0.21 0.18 0.10 0.09

STM.PA 189 146 1458 1679
0.24 0.21 0.12 0.09

TECF.PA 146 14567 14689 1246
0.25 0.17 0.16 0.08

TOTF.PA 14689 14567 146 124689
0.24 0.16 0.15 0.09

VIE.PA 146 189 1458 14689
0.32 0.12 0.12 0.12

VIV.PA 1458 14689 14567 189
0.26 0.18 0.16 0.09

VLLP.PA 146 189 14567 14689
0.21 0.15 0.11 0.11

VLOF.PA 146 14567 14689 189
0.25 0.15 0.12 0.11

Table 5: Bid aggressiveness determination - AIC most selected models by stock (covariates on the
first line, frequency on the second line)
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0 1 2 3

ACCP.PA 146 14689 189 1456789
0.19 0.16 0.10 0.09

AIRP.PA 1679 146 14567 14689
0.31 0.14 0.14 0.12

ALSO.PA 146 189 14567 1246
0.21 0.17 0.12 0.08

ALUA.PA 146 189 14689 14567
0.25 0.14 0.12 0.10

AXAF.PA 1679 14689 14567 146
0.27 0.26 0.14 0.05

BNPP.PA 14689 1679 146 14567
0.31 0.15 0.08 0.08

BOUY.PA 146 14689 14567 189
0.23 0.16 0.12 0.09

CAGR.PA 1679 146 14567 14689
0.31 0.17 0.13 0.12

CAPP.PA 146 14689 189 14567
0.23 0.18 0.13 0.10

CARR.PA 14689 146 1679 14567
0.20 0.20 0.19 0.09

DANO.PA 14689 1679 146 14567
0.21 0.19 0.17 0.10

EDF.PA 146 14689 1679 1246
0.21 0.15 0.14 0.10

ESSI.PA 1679 14567 146 14689
0.21 0.17 0.15 0.11

LAGA.PA 146 189 1289 14567
0.28 0.16 0.08 0.08

LOIM.PA 189 146 14689 14567
0.24 0.18 0.11 0.09

LVMH.PA 1679 14567 14689 146
0.29 0.22 0.16 0.08

MICP.PA 146 14689 14567 1246
0.23 0.16 0.11 0.08

OREP.PA 1679 14567 14689 189
0.21 0.19 0.17 0.12

PERP.PA 1679 146 14689 14567
0.19 0.17 0.14 0.13

PEUP.PA 146 1679 14689 189
0.26 0.19 0.13 0.07

PRTP.PA 146 1679 14689 14567
0.36 0.10 0.10 0.09

PUBP.PA 146 1679 14689 189
0.18 0.15 0.11 0.10

RENA.PA 146 14689 189 1456789
0.16 0.16 0.15 0.08

SAF.PA 146 14689 14567 1246
0.23 0.19 0.12 0.09

SASY.PA 1679 146 14567 14689
0.16 0.14 0.13 0.13

SCHN.PA 14689 146 1679 14567
0.23 0.16 0.15 0.12

SGEF.PA 146 1679 14689 14567
0.16 0.15 0.15 0.14

SGOB.PA 14689 146 189 1246
0.18 0.18 0.10 0.08

SOGN.PA 14689 146 189 1246
0.24 0.19 0.14 0.09

STM.PA 189 146 1679 14689
0.25 0.22 0.11 0.08

TECF.PA 146 14689 14567 1456789
0.21 0.20 0.15 0.09

TOTF.PA 14689 14567 146 1458
0.21 0.16 0.12 0.08

VIE.PA 146 1679 14567 14689
0.21 0.15 0.14 0.13

VIV.PA 1679 14689 14567 124689
0.27 0.25 0.14 0.07

VLLP.PA 146 189 14689 1458
0.24 0.21 0.12 0.10

VLOF.PA 146 1679 189 14567
0.19 0.14 0.12 0.12

Table 6: Ask aggressiveness determination - AIC most selected models by stock (covariates on the
first line, frequency on the second line)
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