
HAL Id: hal-02465317
https://hal.science/hal-02465317v1

Submitted on 3 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Space and time trade-off for the k shortest simple paths
problem

Ali Al Zoobi, David Coudert, Nicolas Nisse

To cite this version:
Ali Al Zoobi, David Coudert, Nicolas Nisse. Space and time trade-off for the k shortest simple paths
problem. [Research Report] Inria & Université Cote d’Azur, CNRS, I3S, Sophia Antipolis, France.
2020. �hal-02465317�

https://hal.science/hal-02465317v1
https://hal.archives-ouvertes.fr

Space and time trade-off for the k shortest simple paths problem∗

Ali Al-Zoobi1, David Coudert1, and Nicolas Nisse1

1Université Côte d’Azur, Inria, CNRS, I3S, France

Abstract

The k shortest simple path problem (KSSP) asks to compute a set of top-k shortest
simple paths from a vertex s to a vertex t in a digraph. Yen (1971) proposed the first
algorithm with the best known theoretical complexity of O(kn(m + n log n)) for a digraph
with n vertices and m arcs. Since then, the problem has been widely studied from an
algorithm engineering perspective, and impressive improvements have been achieved.

In particular, Kurz and Mutzel (2016) proposed a sidetracks-based (SB) algorithm which
is currently the fastest solution. In this work, we propose two improvements of this algo-
rithm.

We first show how to speed up the SB algorithm using dynamic updates of shortest path
trees. We did experiments on some road networks of the 9th DIMAC’S challenge with up to
about half a million nodes and one million arcs. Our computational results show an average
speed up by a factor of 1.5 to 2 with a similar working memory consumption as SB. We then
propose a second algorithm enabling to significantly reduce the working memory at the cost
of an increase of the running time (up to two times slower). Our experiments on the same
data set show, on average, a reduction by a factor of 1.5 to 2 of the working memory.

1 Introduction

The classical k shortest paths problem (KSP) returns the top-k shortest paths between a pair
of source and destination nodes in a graph. This problem has numerous applications in var-
ious kinds of networks (road and transportation networks, communications networks, social
networks, etc.) and is also used as a building block for solving optimization problems. Let
D = (V,A) be a digraph, an s-t path is a sequence (s = v0, v1, · · · , vl = t) of vertices starting
with s and ending with t, such that (vi, vi+1) ∈ A for all 1 ≤ i < l. It is called simple if it has
no repeated vertices, i.e., vi 6= vj for all 0 ≤ i < j ≤ l. The length of a path is the sum of the
weights of its arcs and the top-k shortest paths is therefore the set containing a shortest s-t
path, a second shortest s-t paths, etc. until the kth shortest s-t path.

Several algorithms for solving KSP have been proposed. In particular, Eppstein [5] proposed
an exact algorithm that computes k shortest paths (not necessarily simple) with time complexity
in O(m+ n+ k), where m is the number of arcs and n the number of vertices of the graph. An
important variant of this problem is the k shortest simple paths problem (KSSP) introduced
in 1963 by Clarke et al. [3] which adds the constraint that reported paths must be simple.
This variant of the problem has various applications in transportation network when paths with

∗This work has been supported by the French government, through the UCAjedi Investments in the Future
project managed by the National Research Agency (ANR) with the reference number ANR-15-IDEX-01, the ANR
project MULTIMOD with the reference number ANR-17-CE22-0016, the ANR project Digraphs with reference
number ANR-19-CE48-0013-01, and by Région Sud PACA.

1

repeated vertices are not desired by the user. It is also a subproblem of other important problems
like constrained shortest path problem, vehicle and transportation routing [10,12,18]. It can be
applied successfully in bio-informatics [1], especially in biological sequence alignment [16] and
in natural language processing [2]. For more applications, see Eppstein’s recent comprehensive
survey on k-best enumeration [6].

The algorithm with the best known time complexity for solving the (KSSP) problem has
been proposed by Yen [19], with time complexity in O(kn(m + n log n)). Since, several works
have been proposed to improve the efficiency of the algorithm in practice [7, 10,11,13,15].

Recently, Kurz and Mutzel [14, 15] obtained a tremendous running time improvement, de-
signing an algorithm with the same flavor as Eppstein’s algorithm. The key idea was to postpone
as much as possible the computation of shortest path trees. To do so, they define a path using
a sequence of shortest path trees and deviations. With this new algorithm, they were able to
compute hundreds of paths in graphs with million nodes in about one second, while previous
algorithms required an order of tens of seconds on the same instances. For instance, Kurz and
Mutzel’s algorithm computed k = 300 hundred shortest paths in 1.15 seconds for the COL
network [4] while it required about 80 seconds for the Yen’s algorithm and about 30 seconds by
its improvement by Feng [7].

Our contribution. We propose two variations of the algorithm proposed by Kurz and Mutzel.
We first show how to speed up their algorithm using dynamic updates of shortest path trees
resulting with an average speed up by a factor of 1.5 to 2 and with a similar working memory
consumption. We then propose a second algorithm enabling to significantly reduce the working
memory at the cost of a small increase of the running time.

This paper is organized as follows. First, in Section 2.2, we describe Yen’s algorithm and
then show in Section 2.3, how Kurz and Mutzel’s algorithm improves upon it. In Section 3, we
present our algorithms by precisely describing how they differ from Kurz and Mutzel’s algorithm.
Finally, Section 4 presents our simulation settings and results.

2 Preliminaries

2.1 Definition and Notation

Let D = (V,A) be a directed graph (digraph for short) with vertex set V and arc set A. Let
n = |V | be the number of vertices and m = |A| be the number of arcs of D. Given a vertex
v ∈ V , N+(v) = {w ∈ V | vw ∈ A} denotes the out-neighbors of v in D. Let wD : A→ R+ be
a length function over the arcs. For every u, v ∈ V , a (directed) path from u to v in D is a
sequence P = (v0 = u, v1, · · · , vr = v) of vertices with (vi, vi+1) ∈ A for all 0 ≤ i < r. Note that
vertices may be repeated, i.e., paths are not necessarily simple. A path is simple if, moreover,
vi 6= vj for all 0 ≤ i < j ≤ r. The length of the path P equals wD(P) =

∑
06i<r wD(vi, vi+1)

(we will omit D when there is no ambiguity). The distance dD(u, v) between two vertices
u, v ∈ V is the shortest length of a u-v path in D (if any). Given two paths (v1, · · · , vr) and
Q = (w1, · · · , wp) and vrw1 ∈ A, let us denote the v1-wp path obtained by the concatenation of
the two paths by (v1, · · · , vr, Q).

Given s, t ∈ V , a top-k set of shortest s-t paths is any set S of (pairwise distinct) simple s-t
paths such that |S| = k and w(P) ≤ w(P ′) for every s-t path P ∈ S and s-t path P ′ /∈ S. The
k shortest simple paths problem takes as input a weighted digraph D = (V,A), wD : A → R+

and a pair of vertices (s, t) ∈ V 2 and asks to find a top-k set of shortest s-t paths (if they exist).
Let t ∈ V . An in-branching T rooted at t is any sub-digraph of D that induces a tree

containing t and such that every u ∈ V (T) \ {t} has exactly one out-neighbor (that is, all paths
go toward t). An in-branching T is called a shortest path (SP) in-branching rooted at t if, for

2

every u ∈ V (T), the length of the (unique) u-t path P T
ut in T equals dD(u, t). Note that a SP

in-branching is sometimes called reversed shortest path tree.
In the forthcoming algorithms, the following procedure will often be used (and the key point

when designing the algorithms is to limit the number of such calls and to optimize each of
them). Given a sub-digraph H of D and u, t ∈ V (H), we use Dijkstra algorithm for computing
a SP in-branching rooted in t that contains a shortest u-t path in H. Note that, the execution
of the Dijkstra’s algorithm may be stopped as soon as a shortest u-t path has been computed
(when u is reached), i.e., the in-branching may only be partial (i.e., not spanning D). The key
point will be that this way to proceed not only returns a shortest u-t path in H (if any) but
an SP in-branching rooted in t and containing u. Note that any such call has worst-case time
complexity O(m + n log n).

Let P = (v0, v1, · · · , vr) be any path in D and i < r. Any arc a = viw 6= vivi+1 is called
a deviation of P at vi. Moreover, any path Q = (v0, · · · , vi, w, w1, · · · , w` = vR) is called an
extension of P at a (or at vi). Note that neither P nor Q is required to be simple. However, if
Q is simple, it will be called a simple extension of P at a (or at vi).

2.2 General framework: Yen’s algorithm and Feng’s improvements

We start by describing the general framework used by the KSSP algorithms in [7,10,11,13,15].
Precisely, let us describe Yen’s algorithm [19] trying to give its main properties and drawbacks.
Then, we explain how Kurtz and Mutzel’s algorithm improves upon it (Section 2.3). Finally,
we will detail our adaptation of the latter method in Section 3.

All of the algorithms described below start by computing a shortest s-t path P0 = (s =
v0, v1, · · · , vr = t) (in what follows we always assume that there is at least one such path).
This is done by applying Dijkstra’s algorithm from t (as described in previous section) and so
also computes an SP in-branching T0 rooted at t and containing s. Note that P0 is simple since
weights are non-negative. Obviously, a second shortest s-t simple path must be a shortest simple
extension of P0 at one of its vertices. Yen’s algorithm computes a shortest simple extension
of P0 at vi for every vertex vi in P0 as follows. For every 0 ≤ i < r, let Di(P0) be the graph
obtained from D by removing the vertices v0, · · · , vi−1 (this is to avoid non simple extension)
and the arc vivi+1 (to ensure that the computed path is a new one, i.e., different from P0). For
every 0 ≤ i < r, a SP in-branching rooted at t is computed using Dijkstra’s algorithm until
it reaches vi and therefore returns a shortest path Qi from vi to t in Di(P0). Note that Yen’s
algorithm does not use further the SP in-branchings and this will be one key of the improvements
described further. For every 0 ≤ i < r, the extension (v0, · · · , vi, Qi) of P0 at vi is added to a
set Candidate (initially empty). Note that the index i (called below deviation-index) where the
path (v0, · · · , vi, Qi) deviates from P0 is kept explicit1. Once (v0, · · · , vi, Qi) has been added to
Candidate for all 0 ≤ i < r, by remark above, a shortest path in Candidate is a second shortest
s-t simple path.

More generally, by induction on 0 < k′ < k, let us assume that a top-k′ set S of shortest s-t
paths has been computed and the set Candidate contains a set of simple s-t paths such that
there exists a shortest path Q ∈ Candidate such that S∪{Q} is a top-(k′+1) set of shortest s-t
paths. Yen’s algorithm pursues as follows. Let Q = (v0 = s, · · · , vr = t) be any shortest path
in Candidate2 and let 0 ≤ j < r be its deviation-index. First, Q is extracted from Candidate
and it is added to S (as the (k′ + 1)th shortest s-t path). Then, every shortest extension of Q
is added to Candidate (since they are potentially a next shortest s-t path). For this purpose,

1The deviation-index is not kept explicitly in Yen’s algorithm but, since it is a trivial improvement already
existing in the literature, we mention it right now.

2Actually Candidate is implemented, using a pairing heap, in such a way that extracting a shortest path in
it takes logarithmic time and insertions are done in constant time.

3

for every j ≤ i < r, let Di(Q) be the digraph obtained from D by first removing the vertices
v0, · · · , vi−1 (this is to avoid non simple extension). Then, here is one important bottleneck of
Yen’s algorithm, for every arc viw such that Candidate already contains some path with prefix
(v0, · · · , vi, w), then viw is removed from Di(Q). This therefore ensures to compute only new
paths. Indeed, the computed extensions are distinct from every path previously computed as
they have different prefixes (this is the reason to keep explicitly the deviation-index). For every
j ≤ i < r, a SP in-branching rooted at t is computed using Dijkstra’s algorithm until it reaches
vi and therefore returns a shortest path Qi from vi to t in Di(Q). For every 0 ≤ i < r, the
extension (v0, · · · , vi, Qi) of Q at vi (together with its deviation index i) is added to the set
Candidate. This process is repeated until k paths have been found (when k′ = k).

Therefore, for each path Q that is extracted from Candidate, O(|V (Q)|) applications of
Dijkstra’s algorithm are done. This gives an overall time-complexity of O(kn(m + n log n))
which is the best theoretical (worst-case) time-complexity currently known (and of all algorithms
described in this paper) to solve the k-shortest paths problem.

One expensive part in the pre-described framework of Yen’s algorithm is the multiple calls of
Dijkstra’s algorithm. Feng [7] proposed a practical improvement by trying to avoid some calls.
Essentially, when a path Q = (v0, · · · , vr) with deviation-index j is extracted, its extensions are
computed from i = j to r − 1. Roughly, for every j < i ≤ r, the computation of the extension
at vi is actually done with the help of the initial SP in-branching T0. In practice, this process
accelerates significantly the executions of Dijkstra’s algorithm. At the price of a larger memory
consumption, Kurz and Mutzel improved Yen’s framework which leads to the current fastest
algorithm (Section 2.3) for the k shortest simple paths problem.

2.3 Kurz and Mutzel’s algorithm

All of Yen’s improvements aim at minimizing the time consumed by Dijktra’s algorithm calls.
Instead, Kurz and Mutzel [15] chose to use a smaller number of such calls. This can be done
by memorizing the SP in-branchings previously computed by the algorithm. More precisely,
instead of keeping the paths in the set Candidate, the algorithm keeps only a representation
of it using a sequence of SP in-branchings and deviations. These representations will allow to
extract any shortest path P in time O(|P |) and the length of P in constant time. As a result,
for each shortest s-t path P , the memorized SP in-branching can be used to extract a shortest
extension of P at a vertex vi in a pivot step. Unfortunately, there is no guarantee that the
extracted shortest extension will be simple. If it is not simple, a new Dijsktra’s algorithm call
has to be done. However, in many cases the extracted extension is simple and a Dijsktra’s
algorithm call can be avoided.

Precisely, Kurz and Mutzel’s algorithm mainly relies on two keys improvements. First,
following a principle of Eppstein’s algorithm [5], it explicitly keeps the SP in-branchings com-
puted during the execution of the algorithm (this is at some non-negligible cost of working
memory consumption, but leads to an improvement of the practical running-time). Moreover,
instead of computing the extensions of the extracted path at each iteration, the algorithm adds
to Candidate a representation of each extension (together with a lower bound of its length).
Then, only when such a representation is extracted from Candidate, the corresponding ex-
tension is explicitly computed. This way of postponing the computations allows to avoid the
actual computation of many extensions (whose never be used further), which leads to a drastic
improvement of the running time.

Let us describe the Kurz and Mutzel’s algorithm whose pseudo code is given in Algorithm 1.
As usual, the algorithm starts with the computation of a shortest s-t (simple) path P0 =
(v0 = s, v1, · · · , vr = t) together with a SP in-branching tree T0 rooted at t and containing

4

Algorithm 1 Kurz-Mutzel Sidetrack Based (SB) algorithm for the KSSP [15]

Require: A digraph D = (V,A), a source s ∈ V , a sink t ∈ V , and an integer k
Ensure: k shortest simple s-t paths

1: Let Candidatesimple ← ∅, Candidatenot−simple ← ∅, ← ∅ and Output← ∅
2: T0 ← a SP in-branching of D rooted at t containing s
3: Add ((T0), w(Pst(T0))) to Candidatesimple

4: while Candidatesimple ∪ Candidatenot−simple 6= ∅ and |Output| < k do
5: ε = ((T0, e0, · · · , Th, eh = (uh, vh), Th+1), lb) ← a shortest element in Candidatesimple

and Candidatenot−simple // with priority to Candidatesimple

6: if ε ∈ Candidatesimple then
7: Extract ε from Candidatesimple and add it to the Output
8: for every deviation e = (vj , v

′) with vj ∈ Pvht(Th+1) do
9: ext← (T0, e0, · · · , Th, eh, Th+1, e, Th+1)

10: lb′ ← lb− w(Pvjt(Th+1)) + w(e) + w(Pv′t(Th+1))
11: if ext represents a simple path then
12: Add (ext, lb′) to Candidatesimple

13: else
14: T ′ ← the name of a SP in-branching of Dh(P) // T ′ is not computed yet
15: Add T ′ to
16: Add ((T0, e0, · · · , Th, eh, Th+1, e, T

′), lb′) to Candidatenot−simple

17: else
18: if Th+1 has not been computed yet then
19: Compute Th+1, a SP in-branching of Dh(P) and add it to

20: ε′ = ((T0, e0, · · · , Th, eh, Th+1), lb + w(Pv′t(Th+1))− w(Pv′t(Th)))
21: Add ε′ to Candidatesimple

22: return Output

s. T0 is added to a set initially empty (this set will contain all computed SP in-branchings).
Then, for every 0 ≤ i < r, and for every deviation e at vi (i.e., arcs e = viw are considered
for every w ∈ N+(vi) \ {v0, · · · , vi+1}), let Pwt(T0) be the shortest path from w to t in T0.
Note that the path Q(i, e) = (v0, · · · , vi, w, Pwt(T0)) is a shortest extension of P0 at e, but it
is not necessarily simple (it is not simple if Pwt(T0) intersects {v0, · · · , vi}). Hence, lb(e) =
w((v0, · · · , vi)) + w(viw) + w(Pwt(T0)) is a lower bound on the length of any shortest simple
extension of P0 at e (and it is its actual length if the path Q(i, e) is simple). The algorithm
proceeds as follows. First, by categorizing the vertices of T0 (using a trick due to Feng [7] that
we do not detail here), it is possible to decide in constant time, for each i < r and each deviation
e at vi, whether Q(e, i) is simple or not. Then, for every 0 ≤ i < r, and for every deviation e at
vi, the algorithm adds ((T0, e, T0), lb(e)) in a heap (ordered using lb) Candidatesimple if Q(e, i)
is simple, and it adds ((T0, e, Ti), lb(e)) in a heap Candidatenot−simple otherwise, where Ti is
the name of a new SP in-branching rooted at t in D \ {v0, · · · , vi} whose actual computation
is postponed. Hence, T0 is the only SP in-branching that has been computed (using Dijkstra’s
algorithm) so far.

More generally, by induction on 0 < k′ < k, let us assume that a top-k′ set S of shortest s-t
paths and two heaps Candidatesimple and Candidatenot−simple have been computed. Following
Eppstein’s idea, each element of these heaps is of the form ((T0, e0, · · · , Th, eh, Th+1), lb) (describ-
ing a path explained below) such that, for every 0 ≤ i ≤ h, Ti is a SP in-branching that has al-
ready been computed and stored in , while (only if the element comes from Candidatenot−simple)

5

Th+1 may not have already been computed but has a pointer associated to it stored in . That
is, even if Th+1 has not yet been computed, it is defined and can be referred to. Observe that
we may have Tj = Tj+1 for some 0 ≤ j ≤ h + 1.

Let P1 be the simple path that starts in s and, for every 0 ≤ j ≤ h, follows the (already
computed) tree Tj from the current vertex till the tail of deviation ej and then follows deviation
ej to its head. Hence, P1 ends in the head z of eh. Now, if the element is in Candidatesimple,
we know by induction that the SP in-branching Th+1 has already been computed and that
the path P obtained by concatenating P1 and the shortest z-t path Pzt(Th+1) is guaranteed
to be simple and has length w(P) = w(P1) + w(Pzt(Th+1)) = lb(eh). If the element is in
Candidatenot−simple (the shortest z-t path Pzt(Th) intersects P1) the algorithm actually com-
putes the SP in-branching Th+1 rooted at t (if not already done). Observe that the digraph in
which Th+1 is computed is a subdigraph of the digraph in which Th has been computed, and so
w(Pzt(Th+1)) ≥ w(Pzt(Th)) (by setting w(Pzt(Th+1)) = +∞ if there is no z-t path in Th+1) and
z is the only common vertex of P1 and Pzt(Th+1). Hence, the path P obtained by concatenating
P1 and the shortest z-t path Pzt(Th+1) (if it exists) is guaranteed to be simple and has length
w(P) = w(P1) + w(Pzt(Th+1)) ≥ w(P1) + w(Pzt(Th)) = lb(eh).

An iteration of Kurz and Mutzel’s algorithm proceeds as follows. First an element ε =
((T0, e0, T1, e1, · · · , Th, eh, Th+1), lb) with smallest lb is extracted from Candidatesimple and
Candidatenot−simple (with priority for Candidatesimple in case of equal lb). If ε was in
Candidatesimple, the path P as defined above is the next shortest simple s-t path and it is added
to the output. Then, all possible deviations of P along the path Pzt(Th+1) are determined and
added to Candidatesimple or Candidatenot−simple depending on whether they are simple or not
(note that only a representation of them is build and not the actual path). Otherwise, the
algorithm actually computes the SP in-branching Th+1 (if not already done) to determine the
shortest z-t path in Th+1 (if it exists), and adds Th+1 to . If such path exists, the algorithm
adds to Candidatesimple a new element ((T0, e0, T1, e1, · · · , Th, eh, Th+1), lb

′) describing a simple
s-t path with length lb′ = w(P1) + w(Pzt(Th+1)) = lb− w(Pzt(Th)) + w(Pzt(Th+1)).

Actually, the same SP in-branching can be used for all deviations at the same vertex vi of
a given path P . So, for each vertex vi in P , a single call of Dijkstra’s algorithm is needed.
As a result, finding all of the extensions of a given path P can be done in O(|P |(m + n log n))
time. Therefore, the time complexity of Kurz and Mutzel’s algorithm (in the worst case) is
bounded by O(kn(m+n log n)) as the algorithm extends no more than k paths and the number
of vertices of each path is bounded by n.

Overall, Kurz and Mutzel’s algorithm computes k shortest simple s-t paths with a much fewer
number of applications of Dijkstra’s algorithm and so its running time is in general much better
than the algorithms proposed by Yen or Feng. On the other hand, it requires to store many SP
in-branchings previously computed which implies a larger working memory consumption.

3 Our contributions

We propose two independent variants of SB algorithm (Algorithm 1). The first algorithm,
called SB*, gives, with respect to our experimental results, an average speed up by a factor of
1.5 to 2 compared with SB algorithm. Our second algorithm, called PSB (Parsimonious SB),
is based on a different manner to handle non simple candidates in order to reduce the number
of computed and stored SP in-branchings. This leads to a significant reduction of the working
memory at the price of a slight increase of the running time compared with SB algorithm.

6

3.1 The SB* algorithm

Here, we propose a variant of the SB algorithm, strongly based on Kurz and Mutzel’s framework,
that is a tiny modification of SB algorithm allowing to speed it up.

More precisely, each time a representation (T0, e0, T1 · · · , eh−1 = (uh−1, vh−1), Th, eh =
(uh, vh), Th+1) is extracted from Candidatenot−simple and that Th+1 has not been computed
yet (i.e., it is only a pointer), our algorithm does not compute Th+1 from scratch as SB algo-
rithm does. Instead, SB* algorithm creates a copy T of Th, discards vertices of the path from
vh−1 to uh in Th, and updates the SP in-branching T using standard methods for updating a
shortest path tree [9]. Then, the pointer Th+1 is associated to the new in-branching T .

It is clear that the SB* algorithm computes (and store) exactly the same number of in-
branchings as SB algorithm. The computational results presented in Section 4.2 show that this
update procedure gives an average speed up by a factor of 1.5 to 2.

3.2 The PSB algorithm

Our main contribution is the Parsimonious SB algorithm (PSB) presented in this section whose
main goal is to solve the k shortest simple paths problem with a good tradeoff between the
running time and the working memory consumption. Indeed, a weak point of the SB algorithm
comes from the fact that it keeps in the memory all the SP in-branchings that it computes
throughout its execution. In order to reduce the working memory consumption, the main
difference between the SB algorithm and the one presented here consists of the types of the
elements that PSB algorithm stores in the heap Candidatenot−simple and the way they are used.
We now describe PSB algorithm by detailing how its differs from SB algorithm. Let us mention
that PSB algorithm uses a heap Candidatesimple similar (i.e., containing exactly the same type
of elements) to the one used by SB algorithm.

Let us start considering a step of PSB algorithm when an element ε = ((T0, e0, T1, e1, · · · ,
Th, eh = (uh, vh), Th+1), lb) is extracted from Candidatesimple. The first difference between the
SB algorithm is that Th+1 may have not yet been computed, in which case it must be computed
at that step and stored in . Next, as the SB algorithm, the PSB algorithm first adds the
(simple) path P corresponding to ε to the output. Then, it considers all deviations of P at
the vertices between vh and t, i.e., all arcs (not in P) with tail in Pvht(Th+1). For every such
deviation e = (u, v) with u ∈ V (Pvht(Th+1)), by using the Feng’s “trick” (already mentioned
without details), it can be decided in constant time whether it admits a simple extension, i.e.,
whether the path Pe that “follows” the path P1 corresponding to ε from s to vh, then follows
the path Pvhu(Th+1), the arc e and finally the path Pvt(Th+1) is simple or not. In the case
when Pe is simple, then the element ((T0, e0, T1, e1, · · · , Th, eh, Th+1, e, Th+1), lbe) is added to
Candidatesimple, where lbe = w(P1) + w(Pvhu(Th+1)) + w(e) + w(Pvt(Th+1)) (exactly as it is
done by the SB algorithm). The second difference with the SB algorithm relies on the set
X = {f1, · · · , fr} of deviations for which the extension using Th+1 is not simple. The key
point is that we create a single element for all deviations in X. This ensures that the size of
Candidatenot−simple is at most k, as at most one element is added to Candidatenot−simple per
path added to the output. More precisely, let X = {f1, · · · , fr} be the set of “non simple”
deviations ordered in such a way that, for every 1 ≤ i < j < l ≤ r, the tail of fj is between (or
equal to) the tails of fi and fl on the path Pvht(Th+1). For every 1 ≤ i ≤ r and fi = uivi, let
lbi = lbfi = w(P1) + w(Pvh,ui(Th+1)) + w(fi) + w(Pvi,t(Th+1)). The PSB algorithm then adds
the element ε′ = ((T0, e0, T1, e1, · · · , Th, eh, Th+1, X, Th+1),min1≤i≤r lbi) to Candidatenot−simple,
and so the weight of ε′ in the heap Candidatenot−simple is the smallest lower bound among all
lower bounds related to the “non simple” deviations in X.

Let us now consider a step of the PSB algorithm when an element is extracted from

7

Candidatenot−simple. This happens, as in the SB algorithm, when the smallest key (lower
bound) of the elements in Candidatesimple ∪ Candidatenot−simple corresponds only to an el-
ement of Candidatenot−simple. Let ε = ((T0, e0, T1, e1, · · · , Th, eh, Th+1, X, Th+1), lb) be this
element and let X = {f1, · · · , fr}. Let also eh = uhwh, let P1 = (s = x1, · · · , xo = wh) be the
prefix (from s to wh) of the path represented by ε, let Pwht(Th+1) = (wh, wh+1, · · · , wp = t) and
let fj = wijvj for every 1 ≤ j ≤ r (by the way the fj ’s are ordered, h ≤ ij ≤ ij′ ≤ p for all
1 ≤ j ≤ j′ ≤ r). The fact that the type of the elements in Candidatenot−simple is more involved
(so, allowing to decrease a lot the working memory) requires more involved (and potentially
more costly in term of running time) way to treat them. To limit the increase of the running
time, the PSB algorithm proceeds in such a way that several deviations in {f1, · · · , fr} are
somehow considered “simultaneously”. More precisely, it proceeds as follows.

Let 1 ≤ i∗ ≤ r be the smallest integer i such that lbi = lb. The PSB algorithm pro-
ceeds as follows to deal with the deviations fr, fr−1, · · · , fi∗ in this order. First, it applies
Dijkstra’s algorithm to compute a SP in-branching T ′r rooted at t in Dr = D − {x1, · · · , xo =
wh, · · · , wir} until it reaches vr. If vr is reached, then the path Qr = P1Pwhwir

(Th+1)Pvrt(T
′
r)

is a simple s-t path and the element ((T0, e0, T1, e1, · · · , Th, eh, Th+1, fr, T
′
r), w(Qr)) is added

to Candidatesimple. However, the in-branching T ′r is not saved into but only its name is kept
(this allows to reduce the working memory size while it may require to recompute the tree
T ′r later. The bet here is that it will not be necessary to actually redo this computation).
Then, for j = r − 1 down to i∗, the SP in-branching T ′r is updated to become the SP in-
branching T ′j rooted in t in Dj = D − {x1, · · · , xo = wh, · · · , wij}, possibly reaching vj and so
providing a simple path Qj . To speed up the computation of T ′j , it is actually computed by
updating T ′j+1 which is done using standard methods for updating a shortest path tree [9]. Fi-
nally, the element ((T0, e0, T1, e1, · · · , Th, eh, Th+1, fj , T

′
j), w(Qj)) is added to Candidatesimple.

In the current implementation of our PSB algorithm (the one used in the experiments de-
scribed in next section), the in-branching T ′j is saved in only if j = i∗3. Finally, the element
((T0, e0, T1, e1, · · · , Th, eh, Th+1, X

′, Th+1),min1≤j<i∗ lbj), with X ′ = {f1, · · · , fi∗−1}, is added
into Candidatenot−simple.

The correctness of the PSB algorithm follows from the one of the SB algorithm by notic-
ing that the elements extracted from Candidatesimple ∪ Candidatenot−simple are the ones with
smallest lower bound and the fact that, each time that a path is extracted, a shortest extension
of each of its deviations is considered.

Finally, as already mentioned, the number of elements in the heap Candidatenot−simple is
bounded by k as each of its elements correspond to a path that has been added to the output,
while with the SB algorithm, this heap may contain O(km) elements. Furthermore, as for the
SB algorithm, we may keep only the k elements with smallest lower bound in Candidatesimple.
Hence, the working memory used by the PSB algorithm for the heaps is significantly smaller
than for the SB algorithm. However, the largest part of the working memory is due to the
number of SP in-branchings that are computed and stored in . Although this number seems
difficult to evaluate, we observe experimentally (see Section 4) that it is significantly smaller
with the PSB algorithm.

3A better way to establish an even better tradeoff between space and time would be to determine a good
threshold τ such that an in-branching T ′j is stored in if and only if w(Qj) ≥ τ . Due to lack of time we have not
been able to establish such a parameter τ but it will be one of the objectives of our future works.

8

Area ROME DC DE NY BAY COL

Number of vertices 3 353 9 559 49 109 264 346 321 270 435 666

Number of edges 8 870 29 682 119 520 733 846 800 172 1 057 066

Table 1: Characteristics of the TIGER graphs used in KSSP experiments.

4 Experimental evaluation

4.1 Experimental settings

We have implemented4 the algorithms NC (improvement of Yen’s algorithm by Feng [7]), SB [15],
SB* and PSB in C++14 and our code is publicly available at https://gitlab.inria.fr/

dcoudert/k-shortest-simple-paths.
Following [15], we have implemented a pairing heap data structure [8] supporting decrease

key operation, and we use it for the Dijkstra shortest path algorithm. Our implementation of
the Dijkstra shortest path algorithm is lazy, that is it stops computation as soon as the distance
from query node v to t is proved to be the shortest one. Further computations might be
performed later for another node w at larger distance from t. Our implementation of Dijkstra’s
algorithm supports update operation when a node or an arc is added to the graph. In addition,
we have implemented a special copy operation that enables to update the in-branching when a
set of nodes are removed from the graph. This corresponds to the operations performed when
creating an in-branching Th+1 from Th. Observe that in our implementations of NC, SB, SB*
and PSB, the parameter k is not part of the input, and so the sets of candidates are simply
implemented using pairing heaps. This choice enables to use these methods as iterators able to
return the next shortest path as long as one exists. We have evaluated the performances of our
algorithms on some road networks from the 9th DIMACS implementation challenge [4]. The
characteristics of these graphs are reported in Table 1. In the following, we refer to the graphs
ROME, DC and DE as the small networks, and to the graphs NY, BAY and COL as the large
networks. We also generated random networks using method RandomGNM of SageMath [17] with
n ∈ {5000, 10000, 20000} and for each n, we let m = 10n, 50n and 100n. For each network (both
the random and the road networks), we have measured the execution time and the number of
SP in-branching computed (as it can be used to measure the memory consumption). For each
network we run the algorithms on a thousand pairs of vertices randomly chosen. In the tables
below we report the average and the median of their time consumption / number of stores SP
in-branching.

All reported computations have been performed on computers equipped with 2 quad-core
3.20GHz Intel Xeon W5580 processors and 64GB of RAM.

4.2 Experimental results

The simulations show that our tiny improvement SB* of SB algorithm allows to decrease the
running-time by a factor between 1,5 (on ROME) and 2 (on COL) in average (Tables 2 and 3).
In particular, in all the networks considered, SB* algorithm is, for most of the queries, faster
than SB algorithm (Figures 1a and 2a). By design, the number of in-branchings that are stored
is the same in both algorithms. It is interesting to note that the gain increase with the size
of the networks. It seems that the differences of performances depends on the structure of the
queries and of the networks. It will be an interesting further work to better understand the
relationship between the kinds of queries and/or networks and the gain in running time.

4Despite several queries, we have not been granted access to the code used for experiments in [7, 15].

9

https://gitlab.inria.fr/dcoudert/k-shortest-simple-paths
https://gitlab.inria.fr/dcoudert/k-shortest-simple-paths

The simulations comparing PSB algorithm and SB algorithm show a significant reduction of
the working memory when using PSB (Tables 4 and 5 and Figures 1c and 2c). Again, the gain
increases when considering larger networks. In term of running time, SB algorithm is slightly
faster in average but Figures 1b and 2b indicate that globally, they are quite comparable. It
would be interesting to understand the impact of the length of the queries on the performances
of both algorithms.

Finally, following some simulations in [15], we have also compared all the algorithms on
random graphs (Edös-Rényi). Due to lack of time, we considered only one graph per setting
(number of vertices, of edges and k) and the average is done on 1000 requests (note that this
setting is similar to the one in [15]). The performances (Table 6) are similar than in the ones
obtained for road networks. That is, SB* algorithm is faster than all other algorithms (more
than twice faster in the case of large graphs when k = 1000). Surprisingly, the NC algorithm is
sometimes (for dense graphs) faster than SB and PSB. Moreover, PSB algorithm always uses
less memory than SB algorithm (Table 7), with a more significant difference in the case of sparse
large graphs.

In the future work, we will continue our experiments in order to discover which conditions
(structure of graphs and queries...) make one of the prescribed algorithms faster or / and less
memory consuming than the others.

(a) Running time of SB and SB* (b) Running time of SB and PSB
(c) Number of trees of SB and
PSB

Figure 1: Comparison of the running time of SB versus SB* (fig. 1a) and SB versus PSB (fig. 1b)
on ROME, and comparison of the number of stored tree for SB versus PSB (fig. 1c). Each dot
corresponds to one pair source/destination.

(a) Running time of SB and SB* (b) Running time of SB and PSB
(c) Number of trees of SB and
PSB

Figure 2: Comparison of the running time of SB versus SB* (fig. 2a) and SB versus PSB (fig. 2b)
on COL, and comparison of the number of stored tree for SB versus PSB (fig. 2c). Each dot
corresponds to one pair source/destination.

10

Area ROME DC DE

k 100 1000 10,000 100 1000 10,000 100 1000 10,000

Avg
SB 43 440 4,502 15 175 2,051 773 7,867 82,916
SB* 24 272 2,939 11 118 1,388 532 5,721 61,294
PSB 42 427 4,380 21 248 2,859 865 8,762 90,226

Med
SB 33 347 3,663 8 74 893 403 5,382 42,613
SB* 15 185 2,105 6 45 538 196 2,184 28,294
PSB 30 314 3,252 9 101 1,185 654 6,517 73,046

Table 2: Time consuming (average and median in ms) of SB, SB* and PSB on small networks

Area NY BAY COL

k 100 500 1000 100 500 1000 100 500 1000

Avg
SB 904 4,334 8,741 3,270 18,464 38,346 5,216 28,262 59,717
SB* 581 2,787 5,707 2,395 13,669 28,545 3,723 20,313 43,373
PSB 1,822 9,417 19,166 5,083 27,438 55,711 7,371 39,078 80,696

Med
SB 156 600 1,230 695 4,073 9,443 1,412 8,737 19,664
SB* 148 356 676 340 2,075 4,934 722 5,051 11,620
PSB 336 2,324 5,278 1,934 12,000 25,760 3,072 19,219 42,114

Table 3: Time consuming (average and median in ms) of SB,SB* and PSB on big networks

Area ROME DC DE

k 100 1000 10,000 100 1000 10,000 100 1000 10,000

Avg
SB 106 1,108 11,446 14.9 209 2,594 88 928 9,945

PSB 53 667 6,956 10.6 140 1,716 36 390 4,212

Med
SB 87 961 10,164 6 105 1,555 48 557 6,551

PSB 56 615 6,570 5 80 1,106 25 287 3,154

Table 4: Number of SP in-branching genereted and stored by SB and PSB on small networks

Area NY BAY COL

k 100 500 1000 100 500 1000 100 500 1000

Avg
SB 14.9 81 171 44.6 266 562 47 266 570

PSB 9.8 51 106 22 124 259 22 123 259

Med
SB 3 21 45 13 90 209 13 101 234

PSB 2 16 35 9 57 124 9 63 142

Table 5: Number of SP in-branching genereted and stored by SB and PSB on big networks

11

Digraph n = 5, 000 n = 10, 000 n = 20, 000

m 10n 50n 100n 10n 50n 100n 10n 50n 100n

k = 100

NC 40 64 88 37 114 158 191 304 388
SB 12 39 53 23 47 79 805 412 363
SB* 35 30 48 17 41 70 132 153 204
PSB 30 40 51 24 46 78 554 435 389

k = 500

NC 159 275 354 311 470 652 789 1211 1498
SB 49 182 250 74 180 332 3869 1924 1637
SB* 54 121 213 40 139 271 690 573 787
PSB 66 175 229 74 166 314 3692 2005 1727

k = 1000

NC 313 546 697 617 924 1285 1545 2368 2920
SB 98 370 512 144 356 669 7709 3890 3264
SB* 79 239 430 71 267 533 1010 1100 1528
PSB 112 349 463 145 322 620 5209 3978 3412

Table 6: Average time consuming (in ms) of NC,SB, SB* and PSB on random digraph with
different densities

Digraph n = 5, 000 n = 10, 000 n = 20, 000

m 10n 50n 100n 10n 50n 100n 10n 50n 100n

k = 100
SB 2.332 3.726 2.08 1.992 1.566 1.753 33.142 9.149 5.09

PSB 2.275 3.657 2.04 1.952 1.538 1.724 25.95 8.529 4.882

k = 500
SB 8.88 16.07 7.477 6.287 4.615 5.493 161.844 42.866 22.094

PSB 8.434 15.57 7.175 6.041 4.465 5.269 126.23 39.603 21.018

k = 1000
SB 17.477 32.207 14.98 12.023 8.623 10.532 323.231 85.178 43.193

PSB 16.538 31.132 14.34 11.471 8.307 10.059 252.151 78.28 40.948

Table 7: Average of number of SP in-branching computed and stored using SB and SB* on
random digraph with different densities

12

References

[1] Arita, M. Metabolic reconstruction using shortest paths. Simulation Practice and Theory
8, 1-2 (2000), 109–125.

[2] Betz, M., and Hild, H. Language models for a spelled letter recognizer. In 1995
International Conference on Acoustics, Speech, and Signal Processing (1995), vol. 1, IEEE,
pp. 856–859.

[3] Clarke, S., Krikorian, A., and Rausen, J. Computing the n best loopless paths in
a network. Journal of the Society for Industrial and Applied Mathematics 11, 4 (1963),
1096–1102.

[4] Demetrescu, C., Goldberg, A., and Johnson, D. 9th dimacs implementation chal-
lenge - shortest paths, 2006.

[5] Eppstein, D. Finding the k shortest paths. SIAM Journal on Computing 28, 2 (1998),
652–673.

[6] Eppstein, D. k-best enumeration. arXiv preprint arXiv:1412.5075 (2014).

[7] Feng, G. Finding k shortest simple paths in directed graphs: A node classification algo-
rithm. Networks 64, 1 (2014), 6–17.

[8] Fredman, M. L., Sedgewick, R., Sleator, D. D., and Tarjan, R. E. The pairing
heap: A new form of self-adjusting heap. Algorithmica 1, 1 (1986), 111–129.

[9] Frigioni, D., Marchetti-Spaccamela, A., and Nanni, U. Fully dynamic algorithms
for maintaining shortest paths trees. J. of Algorithms 34, 2 (2000), 251 – 281.

[10] Hadjiconstantinou, E., and Christofides, N. An efficient implementation of an
algorithm for finding k shortest simple paths. Networks: An International Journal 34, 2
(1999), 88–101.

[11] Hershberger, J., Maxel, M., and Suri, S. Finding the k shortest simple paths: A
new algorithm and its implementation. ACM Transactions on Algorithms (TALG) 3, 4
(2007), 45.

[12] Jin, W., Chen, S., and Jiang, H. Finding the k shortest paths in a time-schedule
network with constraints on arcs. Computers & operations research 40, 12 (2013), 2975–
2982.

[13] Katoh, N., Ibaraki, T., and Mine, H. An efficient algorithm for k shortest simple
paths. Networks 12, 4 (1982), 411–427.

[14] Kurz, D. k-best enumeration - theory and application. Theses, Technischen Universität
Dortmund, Mar. 2018.

[15] Kurz, D., and Mutzel, P. A sidetrack-based algorithm for finding the k shortest simple
paths in a directed graph. In Int. Symp. on Algorithms and Computation (ISAAC) (2016),
vol. 64 of LIPIcs, Schloss Dagstuhl, pp. 49:1–49:13.

[16] Shibuya, T., and Imai, H. New flexible approaches for multiple sequence alignment.
Journal of Computational Biology 4, 3 (1997), 385–413.

13

[17] The Sage Developers. SageMath, the Sage Mathematics Software System (Version
8.9), 2019. https://www.sagemath.org.

[18] Xu, W., He, S., Song, R., and Chaudhry, S. S. Finding the k shortest paths in a
schedule-based transit network. Computers & Operations Research 39, 8 (2012), 1812–1826.

[19] Yen, J. Y. Finding the k shortest loopless paths in a network. Management Science 17,
11 (1971), 712–716.

14

	Introduction
	Preliminaries
	 Definition and Notation
	General framework: Yen's algorithm and Feng's improvements
	Kurz and Mutzel's algorithm

	Our contributions
	The SB* algorithm
	The PSB algorithm

	Experimental evaluation
	Experimental settings
	Experimental results

