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Abstract

We initiate a quantitative study of measure equivalence (and orbit equivalence) between finitely
generated groups that extends the classical setting of Lp measure equivalence. In particular we
investigate quantitative versions of Orstein Weiss’ theorem. Our first main result is a very general
monotonicity property satisfied by the isoperimetric profile, which provides a “lower bound” on how
integrable a measure coupling between Z and an amenable group Γ can be. As another application
we get that the isoperimetric profile is invariant under L1 measure equivalence and monotonous
under coarse embedding among amenable groups. On the other hand, we introduce a notion
of Følner tiling, which we use to construct explicit orbit equivalences between amenable groups
satisfying certain integrability conditions. We show in a number of instances that the bound given
by the isoperimetric profile are sharp up to a logarithmic error. In the context of non-amenable
groups, we study the stability of hyperbolicity: Shalom proved that Gromov hyperbolicity is not
invariant under Lp measure equivalence. Actually his proof yields a stronger statement, which
we prove to be optimal in some sense. As a by-product, we show that if Γ and Λ admit an orbit
equivalence coupling satisfying a certain integrability condition, and if Γ is hyperbolic, then so is Λ.
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1 Introduction

Gromov introduced measure equivalence between countable groups as a measured analogue of quasi-
isometry. A classical instance of a pair of measure equivalent groups is given by lattices in a common
locally compact group. Another source of examples is given by orbit equivalent groups, i.e. groups
which admit free measure-preserving actions on a standard probability space which share the same
orbits.

The notion of measure equivalence has been extensively studied over the past 20 years, and we refer
the reader to [Gab05, Sec. 2] for an overview of its main properties as well as its tight connections with
invariants such as cost or `2 Betti numbers. Various rigidity phenomenons have also been uncovered. A
famous example is Furman’s superrigidity results for lattices in higher rank semi-simple Lie groups
[Fur99], which implies for instance that any countable group which is measure-equivalent to a lattice
in PSL3(R) is commensurable up to finite kernel to another lattice in PSL3(R). Another very nice
example is provided by Kida’s work on mapping class groups of surfaces: he showed that most surfaces
can be reconstructed from the measure equivalence class of their mapping class group [Kid08], and that
every group which is measure equivalent to a mapping class group must actually be commensurable up
to finite kernel to it [Kid10].

In the opposite direction of flexibility, a celebrated result of Ornstein and Weiss implies that all
infinite countable amenable groups are orbit equivalent and hence measure equivalent [OW80]. So
most coarse geometric invariants (such as volume growth) are not preserved under orbit equivalence.
Also, it is known that the class of groups measure equivalent to lattices in PSL2(R) is very diverse and
contains groups that are not virtually isomorphic to lattices of the latter (for instance, all free products
of infinite amenable groups belong to this class). But as we will now see, measure equivalence admits
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natural refinements which capture meaningful coarse geometric invariants and for which similar rigidity
phenomenons hold.

Assume for simplicity that we are given an orbit equivalence coupling of two finitely generated
groups Γ = 〈SΓ〉 and Λ = 〈SΛ〉 over a probability space (X,µ), i.e. two measure-preserving free actions
of Γ and Λ on (X,µ) which share the same orbits. Then we can equip the space (X,µ) with the Schreier
graph metrics dSΓ

and dSΛ
, and consider for each γ ∈ Γ and each λ ∈ Λ the following distance maps

x 7→ dSΛ(x, γ · x) and x 7→ dSΓ(x, λ · x).

The fact that the two actions share the same orbits means that these functions do not take the value
+∞, in other words they belong to L0(X,µ,R). We then say that Γ and Λ are Lp orbit equivalent
when all these functions are in Lp(X,µ;R). A similar definition can be given for measure equivalence,
yielding the notion of Lp measure equivalence (see Section 2.3).

In the past ten years, L1 measure equivalence has been intensely investigated. In the context of
non-amenable groups, Bader, Furman and Sauer showed that any group that is L1 measure equivalent
to a lattice in SO(n, 1) for a given n > 2 must be virtually isomorphic to another such lattice [BFS13].
In particular, there is a L1-measure equivalence rigidity phenomenon for lattices in PSL2(R), as opposed
to the pure measure equivalence case. Somewhat more surprising is a result of Austin in the context of
amenable groups: he showed that L1 measure equivalent virtually nilpotent groups have bi-Lipschitz
asymptotic cones [Aus16]. Another important result is due to Bowen, who showed in the appendix of
Austin’s aforementioned paper that volume growth is invariant under L1 measure equivalence.

This paper is in the direct continuation of such results, but we also aim at a deeper understanding by
going in two new directions: finer integrability notions and asymmetric versions of measure equivalence.
For this introduction, let us however only give the definitions in the context of orbit equivalence (see
Sec. 2.3 for the measure equivalence versions and its asymmetric counterparts).

Assume again that we are given two orbit equivalent actions of two finitely generated groups
Γ = 〈SΓ〉 and Λ = 〈SΛ〉. Given an two unbounded increasing positive function ϕ,ψ : (0,∞)→ (0,∞),
we say that that we have a (ϕ,ψ) integrable orbit equivalence coupling if for each γ ∈ Γ and each
λ ∈ Λ, there are constants cγ , cλ > 0 such that the associated distance functions satisfy the following
conditions: ∫

X

ϕ

(
dSΛ

(x, γ · x)

cγ

)
dµ(x) <∞ and

∫
X

ψ

(
dSΓ

(x, λ · x)

cλ

)
dµ(x) <∞.

Two remarks are in order: since the fundamental domains have finite measures, the ϕ-integrability
of the distance functions is only sensitive to the speed at which ϕ tends to infinity. On the other hand,
the constants cγ > 0 are partly motivated by the fact that we want our notion of ϕ-integrability to be
independent of the choice of generating subset. We address these technical points in Section 2.3.

For consistency with the literature, we write Lp to replace the map t 7→ tp for p ∈ (0,∞) and L∞ if
the distance maps are essentially bounded. If no assumption is made on the distance maps we shall
write L0. Also we won’t always use the adjective integrable for the sake of brevity.

Saying that two groups are Lp orbit equivalent for some p > 1 means in our terminology that
there exists an (Lp,Lp) orbit equivalence coupling between them, and the same is true for measure
equivalence. Note that for p < 1, what one would like to call Lp orbit equivalence fails to be a transitive
relation, so we will refrain from using such a terminology. Nevertheless, such a notion actually defines
a very natural pseudo-distance on the space of all finitely generated groups (see Sec. 1.4), and we will
see for instance that the Heisenberg group and Z4 are at distance zero, while the distance between Zn
and Zm is equal to |log(n)− log(m)|.

The rest of this introduction contains a summarized description of our main results, and is organized
in four subsections. The first two ones are about amenable groups: §1.1 contains a general rigidity
result related to the isoperimetric profile, while §1.2 has a flexibility flavor as it deals with constructions
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of concrete orbit equivalences. In §1.3, we state a rigidity result for hyperbolic groups. Finally, in 1.4
we briefly discuss a point of view that emerges from the notion of (ϕ,ψ)-integrable coupling (this can
be seen as an introduction to the results of Section 2).

1.1 Isoperimetric profile

Since finitely generated solvable groups that are not virtually nilpotent are amenable of exponential
growth, it turns out that none of the known results distinguishes them up to L1 measure equivalence. By
contrast the isoperimetric profile and the probability of return of random walks have been thoroughly
investigated and their asymptotic behaviors are known for a wide class of solvable groups. Let Γ be
a finitely generated group, and let SΓ be a finite generating subset. Given a function f : Γ→ R and
p > 0 we define the Lp-norm of its left gradient by the equation∥∥∇lSΓ

f
∥∥p
p

=
∑

g∈Γ,s∈S
|f(sg)− f(g)|p.

Given a non-empty finite subset A ⊂ Γ, we define

jp(A) = inf
f

‖∇lSΓ
f‖p

‖f‖p
,

where the infimum is taken over non-zero functions supported on A. When there is no ambiguity, we
shall simply denote ∇lSΓ

f = ∇f . For every 0 < p 6∞, the `p-isoperimetric profile is the non-increasing
function

Ip,Γ(n) = inf
|A|6n

jp(A).

Of course this quantity depends on a choice of generating subset, but we will be interested in the
asymptotic behavior of Ip,Γ which does not.

Given two monotonous real-valued functions f and g we say that f is asymptotically less than g and
write f 4 g if there exists a positive constant C such that f(n) = O(g(Cn)) as n→∞. We say that f
and g are asymptotically equivalent and write f � g if f 4 g and g 4 f . The asymptotic behavior of f
is its equivalence class modulo �.

Recall that for p = 1, the isoperimetric profile has the following geometric interpretation [CS93]:

I1,Γ(n) � inf
|A|6n

|∂A|
|A|

,

where ∂A = SΓA4A.
For p = 2, the asymptotic behavior of I2,Γ is intimately related to the probability of return of the

simple random walks on the Cayley graph (Γ, SΓ) as described in[CS93].
Our first main contribution is to prove the following theorem.

Theorem 1. Assume that the finitely generated groups Γ and Λ admit a (ϕ,L0) measure equivalence
coupling. Then

• if ϕ(t) = tp for some p > 1, then
Ip,Γ 4 Ip,Λ;

• if ϕ and t 7→ t/ϕ(t) are increasing then

I1,Γ 4
1

ϕ(1/I1,Λ)
.
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In particular, the `p-isoperimetric profile is stable under Lp measure equivalence for all p > 1.
We deduce for instance that Z o Z is not L1 measure equivalence to the lamplighter groups, nor to
any polycyclic group. In a recent groundbreaking work, Brieussel and Zheng managed to construct
amenable groups with a prescribed isoperimetric profile [BZ15]. In particular, they show that for
every increasing unbounded function ϕ, there exists an amenable group whose isoperimetric profile
does not dominate ϕ. In combination with the previous theorem, we deduce that Orstein-Weiss’ orbit
equivalence coupling between amenable groups can be as poorly integrable as possible. More precisely,
we obtain the following corollary.

Corollary 2. For every amenable finitely generated group Γ and every increasing unbounded function
ϕ, there exists an amenable finitely generated group Λ such that there are no (ϕ,L0) measure equivalence
coupling between them.

This corollary triggers the question whether for all amenable finitely generated groups Γ there
always exists a (ϕ,L0) integrable orbit equivalence coupling from Γ to Z such that ϕ(I1,Γ(1/n)) 4 1/n.
We shall see in the next subsection that this holds up to a logarithmic error in various examples.

The following result turns out to be a special case of a more general monotonicity property of
the `p-isoperimetric profile (Theorems 4.1 and 4.2) which encompasses its well-known monotonicity
under subgroups and quotients. Writing down this statement motivated us to introduce and study
natural “measured generalizations” of the notions of subgroup, quotient, subgroup of a quotient. Let us
only mention here a striking application of this monotonicity result. Recall that a regular embedding
f : Γ→ Λ is a Lipschitz map whose pre-images have cardinality bounded by some m ∈ N. Particular
cases of regular embeddings are Lipchitz injective embeddings and coarse embeddings. Combining
Theorem 4.1 with a trick essentially due to Shalom, we obtain the following rather unexpected fact.

Theorem 3 (see Cor. 5.6). For every 1 6 p 6∞, the `p-isoperimetric profile is monotonous under
regular embedding between amenable groups.

The mere monotonicity under coarse embedding is already very surprising and actually false if the
embedded group is not assumed to be amenable: for instance the lamplighter group Z/2Z o Z admits a
quasi-isometrically embedded 4-regular tree. Hence, the free group on 2 generators quasi-isometrically
(and hence coarsely) embeds into the lamplighter group. But the free group is non-amenable and
therefore its isoperimetric profile is bounded below, while the isoperimetric profile of the lamplighter,
which is amenable, tends to zero.

Very few geometric invariants are known to be monotonous under coarse embedding: the only
known examples being the volume growth, the asymptotic dimension, the separation profile [BST12],
and more recently the Poincaré profiles [HMT19]. All of these turn out to be monotonous under
regular embedding as well (see [BST12] for the case of asymptotic dimension). For solvable groups
of exponential growth, the asymptotic dimension is generally infinite, and the Poincaré profiles have
only been computed in very specific examples. By contrast, our theorem provides us with a powerful
obstruction. As a concrete application, it prevents the existence of a regular embedding from Z o Za to
Z oZb as soon as a > b (note that these groups have infinite asymptotic dimension). On the other hand,
combining it with a construction of Erschler and Zheng [EZ17, Cor. 3.3] (see also [BZ15, Thm. 1.1])
we obtain the following result.

Theorem 4 (see Cor. 5.8). There exists an uncountable family of 3-step solvable groups Γi that do not
pairwise regularly embed into one another, and that are pairwise non L1 measure equivalent. Moreover,
one can assume that these groups all have asymptotic dimension one.

Using a monotonicity property of the volume growth essentially due to Bowen (see Theorem 3.2),
one can similarly produce uncountable families of groups (of intermediate growth) that do not pairwise
coarsely embed into one another, and that are pairwise non L1 measure equivalent. Other examples of
uncountable families of groups that pairwise do not coarsely embed into one another are due to Hume
[Hum17, Thm. 1.2]: they involve (non-amenable) groups that contain isometrically embedded families
of expanders.
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1.2 Construction of measure couplings between amenable groups

Most of the known examples of Lp measure equivalence couplings come from lattices in semi-simple
Lie groups. Here we introduce a general method for constructing orbit equivalent couplings with
prescribed integrability conditions between amenable groups. Our main tool is a notion of Følner tiling,
developed in §6.1. A Følner tiling sequence in a group Γ is a sequence of finite subsets Tn satisfying
three conditions:

(i) (Tn) is a left Følner sequence for Γ,

(ii) each Tn is obtained as a union of right translates of Tn−1.

We note that Følner sequences Tn such that Γ can be obtained as a disjoint union of right translates of
Tn do exist in all elementary amenable groups and all residually finite amenable groups thanks to the
work of Weiss [Wei01]. Our second condition appears to be new, and is crucial in our construction. An
easy example of a Følner tiling sequence is provided by Tn = {1, ..., 2n} in Z.

Starting from a Følner tiling sequence for a group Γ, we construct a p.m.p. action of Γ on a
certain infinite product space such that the equivalence relation generated by the action is the co-finite
equivalence relation (in the above example the action is given by the dyadic odometer). It follows
from our construction that if another group Λ admits a Følner tiling sequence whose basic tiles T ′n
satisfy |Tn| = |T ′n|, then the corresponding action of Λ is orbit equivalent to that of Γ, and the degree
of integrability of this orbit equivalence is controlled by the properties of the two Følner sequences
(Tn) and (T ′n). In all cases considered in this paper, the actions constructed by means of Følner tiling
sequences are profinite actions but it seems likely that non profinite actions can be built in this manner
as well. To the best of our knowledge, this way to produce orbit equivalences between amenable groups
is new, and quite different from the quasi-tiling machinery of Ornstein and Weiss [OW87]. Indeed, the
latter allows one to prove that all measure-preserving ergodic actions of all amenable groups are orbit
equivalent.

Theorem 3 provided us with an obstruction for finding ϕ-integrable couplings with certain functions
ϕ between two amenable groups. We will now show that in many cases of interest (and especially in
the case of couplings from certain amenable groups to Z) this obstruction is close to being optimal.

Let us start with the case of groups with polynomial growth. We deduce from a straightforward
extension of Bowen’s theorem on volume growth (see Corollary 3.4), or alternatively from the monotonic-
ity of the isoperimetric profile (Corollary 4.4), that Zm and Zn do not admit Lp measure equivalence
couplings for p > m/n if n < m. We show that this threshold is sharp:

Theorem 5 (see Thm. 6.9). For every positive integers n < m, there exists an orbit equivalence
coupling between Zm and Zn that is Lp for every p < n/m.

To be more precise the proof gives an orbit equivalence from Zm to Zn which is (Lp,L1/p) for all
p < n/m. This asymmetry is not surprising given that Bowen’s obstruction only concerns the cocycle
from the large group to the smaller one. Note that this leaves open the following question (see also
Question 6.11).

Question 1.1. Let n < m, do Zm and Zn admit an (Ln/m,L0) measure equivalence coupling?

Regarding groups with same degree of growth, Austin has proved that L1 measure equivalent groups
of polynomial growth have bi-Lipschitz asymptotic cones [Aus16]. Combined with a famous theorem of
Pansu [Pan89, Thm. 3], this implies for instance that a non-virtually abelian nilpotent group cannot
be L1 measure equivalent to an abelian group. By contrast we show the following surprising converse
for the Heisenberg group (see Theorem 6.13).

Theorem 6. There exists an orbit equivalent coupling between Z4 and H(Z) that is Lp for every p < 1.

Let us now turn to groups with exponential growth. First, by a straightforward application of
Corollary 7.4, we obtain the following theorem.
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Theorem 7. For every n < m, and every non-trivial finite group F there exists an (Lp,L1/p) orbit
equivalence coupling from F o Zm to F o Zn for every p < n/m.

On the other hand, we deduce from the monotocity of the isoperimetric profile that there exists no
(Lp,L0) measure equivalence coupling from F o Zm to F o Zn for p > 1− 1/n+ 1/m. Note that this is
sharp for n = 1.

We now focus on the existence of couplings with Z. We first consider coupling between Z with the
lamplighter group. Since the isoperimetric profile of the lamplighter group decays like 1/ log n, we know
that a (ϕ,L0) coupling from the latter to Z must satisfy ϕ(t) 4 log t. This turns out to be sharp up to
a logarithmic error.

Theorem 8. For every finite group F , there exits an orbit equivalence coupling from F o Z to Z which

is (ϕε, exp)-integrable for every ε > 0, where ϕε(x) = log(x)
log(log(x))1+ε .

Once again, we observe that this rather asymmetric condition is coherent with the fact that the
main restriction should lie on the cocycle from the large group to the smaller one.

More generally, one can consider iterated wreath products as follows. Let G0 = Z, and for all n > 1,
Gn = F oGn−1. By [Ers03], we know that the isoperimetric profile of Gk is asymptotically equivalent
to log?n, namely the n-times iteration of log with itself. Similarly we show that this is almost sharp:
see Corollary 7.6.

We end this subsection considering groups that have very similar geometric properties. The
lamplighter group (Z/kZ) oZ and the Baumslag-Solitar group BS(1, k) have isometric asymptotic cones,
and same isoperimetric profile. We therefore expect to be able to produce a “good” coupling between
them.

Theorem 9. For every k > 2, there exists an (L∞, exp)-integrable orbit equivalence coupling from
(Z/kZ) o Z to BS(1, k).

The asymmetry is not an artifact of the proof: indeed we could not have an (L∞, exp)-orbit
equivalence coupling from BS(1, k) to (Z/kZ) o Z as the asymptotic dimension is monotonous under
(L∞,L0) orbit equivalence (Corollary 5.5), and BS(1, k) has asymptotic dimension 2, while (Z/kZ) o Z
has asymptotic dimension 1. Moreover, this shows that the asymptotic dimension is not preserved under
Lp orbit equivalence for all p <∞. Considering slightly more sophisticated examples, we similarly show
that the finiteness of the asymptotic dimension is not preserved either. Finally, observe that BS(1, k) is
finitely presented while (Z/kZ) o Z is not, hence finite presentability is also unstable.

1.3 Rigidity of hyperbolicity

Shalom proved that any two lattices in SO(n, 1) are Lp measure equivalent for all p < n − 1. More
precisely, let n > 2, and let Γ (resp. Λ) be a uniform (resp. non-uniform) lattice in SO(n, 1). We
consider the coupling associated to the action of Λ and Γ respectively by left and right-translations
on the measure space SO(n, 1) equipped with an invariant Haar measure. Shalom showed that for
a suitable fundamental domain XΛ for Λ and any relatively compact fundamental domain XΓ for Γ,
the resulting coupling is an (Lp,L∞) measure equivalence coupling from Γ to Λ for all p < n− 1. An
additional property of this coupling is what we call coboundedness1: there is a finite subset F ⊂ Λ such
that XΓ ⊂ FXΛ. Here we show that this strong formulation of Shalom’s result is in some sense sharp.

Theorem 10. Let Γ be a finitely generated δ-hyperbolic group. There exists p only depending2 on δ
and Ent(Γ) such that if there exists a cobounded (Lp,L∞) measure equivalence coupling from Γ to a
finitely generated group Λ, then Λ is also hyperbolic.

We immediately deduce the following corollary.

1Observe that every orbit equivalence coupling is cobounded.
2More precisely p > 75δEnt(Γ) suffices although we did not try to get the best possible bound.
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Corollary 11. Assume that Γ is a uniform lattice in center-free, real rank 1 simple Lie group G and
Λ is another lattice of G. There exists p only depending on G such that if there exists a cobounded
(Lp,L∞) coupling from Γ to Λ, then Λ must be uniform as well.

Actually, Theorem 10 is a special case of a more general statement where the two integrability
conditions are linked via a complicated condition that we shall not state here. Let us only mention
another application of this result.

Theorem 12. Let Γ be a finitely generated hyperbolic group. For every p > q > 0 such that if there is
a cobounded (ϕ,ψ) integrable measure equivalence coupling from Γ to any finitely generated group Λ
where ϕ(t) = exp(tp) and ψ(t) = t1+1/q, then Λ is also hyperbolic.

Note that this implies in particular that hyperbolicity is preserved under exponential orbit equiva-
lence couplings (as the exponential integrability is much stronger than the one in Theorem 10, and
coboundedness is implied by orbit equivalence). Both theorems should be compared with of a theorem
of Bowen saying that if there exists an (L1,L0) measure equivalence coupling from a finitely generated
accessible group Λ to a virtually free group such that the cocycle from Λ to Γ is at most m-to-one3 for
some integer m, then Λ is virtually free.

Once again we deduce the following corollary for Lattices in rank 1 simple Lie groups.

Corollary 13. Assume that Γ is a uniform lattice in a center-free, real rank 1 simple Lie group G and
Λ is another lattice of G. For every η > 0 such that if there is a cobounded (ϕ,ψ) coupling from Γ to Λ,
where ϕ(t) = exp(tη) and ψ(t) = t1−1/η, then Γ is uniform as well.

In Corollaries 11 and 13, the case of SL(2,R) was already known and actually a much stronger
conclusion holds in that case: Bader, Furman and Sauer have proved that non-uniform lattices and
uniform ones are not L1 measure equivalent.

As observed by Mikael de la Salle, Corollaries 11 and 13 are in sharp contrast with what happens
for lattices in higher rank simple Lie groups: indeed if Γ and Λ are lattices in a simple Lie group Γ of
rank > 2, then if XΛ and XΓ are Dirichlet fundamental domains for Λ and Γ, the resulting cocycles are
exponentially integrable [dlS19, Lemme 5.6]. Hence if Γ is assumed to be uniform, this provides us
with a (ϕ,L∞) measure equivalence coupling from Γ to Λ, where ϕ(t) = exp(ct) for some c > 0.

Question 1.2. Assume n > 3, and let Γ (resp. Λ) be a uniform (resp. non-uniform) lattice in SO(n, 1).
Are Γ and Λ Lp measure equivalent for all p < ∞? Or at the opposite are they not Lp-measure
equivalent as soon as p > n− 1 (or maybe even p = n− 1)?

The coboundedness condition seems to plays a crucial role in the proof of Theorem 10 as it enables
us to combine the two cocycles together.

Remark 1.3. We pause here to mention that coboundedness was considered by Sauer in his PhD
thesis [Sau02]. He proved that two amenable finitely generated groups are quasi-isometric if and only
if they admit an L∞ coupling such which is cobounded in both directions: namely there exist finite
subsets FΛ ⊂ Λ and FΓ ⊂ Γ such that XΓ ⊂ FΛXΛ and XΛ ⊂ FΓXΓ. While the L∞ condition implies
that both associated cocycle α(·, x) and β(·, x) are almost surely C-Lipschitz (with C independent of
x), this additional conditions implies that both cocycle α(·, x) and β(·, x) are a.e. quasi-isometries (with
constants that are uniform with respect to x).

This leads us to the following maybe surprising question.

Question 1.4. Is hyperbolicity invariant under L∞ measure equivalence?

3This condition turns out to be weaker than coboundedness.
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1.4 Remarks on the “space” of finitely generated groups

We may view the functions ϕ and ψ for which there exists a (ϕ,ψ) measurable coupling from a group Γ
to a group Λ as an asymmetric way of quantifying how geometrically close these groups are from one
another. This is of course only interesting within a class of groups that are measure equivalent, such as
lattices (uniform and non-uniform ones) in a given locally compact group, or among amenable groups.

Let us illustrate this point of view in the following special case: given two finitely generated groups Γ
and Λ, let α(Γ,Λ) be the infimum of − log p over all p 6 1 such that there exists an (Lp,Lp) integrable
measure equivalence coupling between Γ and Λ. It follows from Proposition 2.27 that α satisfies the
triangle inequality. Therefore, this can be viewed as a pseudo-distance between finitely generated
groups. Note that Theorem 6 yields α(Z4,Heis(Z)) = 0, while Theorem 5 and the remark that precedes
it yield α(Zn,Zm) = |log n− logm|.

It is interesting to note that for p > 1 (and more generally for convex functions ϕ), things behave
differently, as admitting an (Lp,Lp) integrable measure equivalence coupling becomes an equivalence
relation. This means that balls of radius 0 for α can be equipped with an ultrametric distance β(Γ,Λ)
defined for instance by the infimum of 1/p over all p > 1 such that the groups are Lp measure equivalent.
In other words, we can distinguish two scales: a “large” scale measured by the pseudo distance α, and
a finer scale, measured the ultrametric pseudo-distance β.

More generally, we will see in §2.3.2 that if the functions ϕ and ψ are concave, then (ϕ,ψ)-integrable
measurable equivalence couplings satisfy a natural composition rule, which we may view as analogous
to a “triangular inequality”. Moreover, as for the case of Lp integrability, we shall see that for functions
that grow faster than linear, e.g. t→ tp for p > 1, or t→ exp(ta) for a > 0, one has to adopt a different
point of view. Indeed, a stronger version of the integrability condition is required (which is automatic
for Lp) in order for them to be well-behaved under composition. Actually under this stronger condition,
we also get a stronger conclusion, which is analogous to an ultrametric property.

As a matter of fact, these composition rules are better stated in an even more asymmetric situation,
where the measure coupling is no longer a measure equivalence coupling. If we drop on one side
the finiteness of the measure of the fundamental domain, we obtain a natural notion of measured
subgroup, while if we drop the freeness for one of the actions, we obtain a measurable notion of quotient.
Combining them, we get a measurable notion of subquotient. In these situations, an integrability
condition only makes sense in one direction, so that we obtain notions of ϕ-integrable measurable
subgroups, quotients or subquotients, which we develop in the next section. To see how these notions
can be useful, note that Theorem 3 is a corollary of the monotonicity of the isoperimetric profile under
L1 measure subquotient.

Acknowledgments. We thank Matthieu Joseph for many helpful conversations around this project,
and Yves Cornulier for his remarks on a preliminary version of this work.

2 Variations on measure equivalence

Convention. Throughout the paper, we allow metrics and pseudo-metrics to take the value +∞.

2.1 Smooth actions and fundamental domains

A standard Borel measure space (Ω, µ) is a Borel space (Ω,B(Ω)), frequently also known as a
measurable space, equipped with a σ-finite measure µ on the σ-algebra B(Ω) consisting of the the Borel
subsets of some Polish (separable and completely metrizable) topology on Ω. The elements of B(Ω) are
called Borel. A Borel subset Ω0 ⊆ Ω is said to be conull or of full measure if µ(Ω \ Ω0) = 0 and a
property that holds for all ω ∈ Ω0 is said to hold almost surely or for almost every ω ∈ Ω. The
space (Ω, µ) is said to be a standard Borel probability space if µ(Ω) = 1.

A measure-preserving action of a discrete countable group Γ on (Ω, µ), for short Γ y (Ω, µ), is
a Γ-action on Ω such that the action map (γ, x) 7→ γ · x is Borel and that µ(γ ·E) = µ(E) for all γ ∈ Γ
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and all Borel E ⊆ Ω. A measure-preserving action on a standard Borel probability space is said to be
probability measure-preserving.

Since the groups that we are dealing with are countable, if we are given Γ y (Ω, µ), then every full
measure Borel subset A ⊆ Ω contains a Γ-invariant full measure Borel subset, namely the set

⋂
γ∈Γ γ ·A.

Moreover, since any full measure Borel subset of a standard Borel measure space is a standard Borel
measure space, there will be no harm in considering that some properties that hold almost everywhere
actually hold everywhere, so we will often do so without explicitly restricting to a full measure Borel
subset. For instance, one says that a measure-preserving Γ-action on (Ω, µ) is free if for almost every
x ∈ Ω, we have γ · x = x if and only if γ = eΓ, but we may as well assume that the latter implication
holds for every x ∈ Ω since this becomes true once we restrict the action to a full measure Γ-invariant
Borel set.

Finally, given Γ y (Ω, µ), the full pseudo-group of the action Γ y Ω is the set of all partially
defined Borel bijections ϕ : A→ B, where A and B are Borel subsets of Ω, such that for all x ∈ A, we
have ϕ(x) ∈ Γ · x. Every such element is measure-preserving, see [KM04, Prop. 2.1].

Definition 2.1. A fundamental domain for Γ y (Ω, µ) is a Borel set XΓ ⊆ Ω which intersects
almost every Γ-orbit at exactly one point: there is a full measure Γ-invariant Borel set Ω0 ⊆ Ω such
that for all x ∈ Ω0 we have that the intersection of the Γ-orbit of x with XΓ is a singleton

Equivalently, a Borel set XΓ ⊆ Ω is a fundamental domain if and only if the quotient map
π : XΓ → Ω/Γ is a bijection. Note that since a fundamental domain intersects almost every orbit, the
union of its translates has full measure, so every fundamental domain must have positive measure. Also
note that since a fundamental domain for Γ y (Ω, µ) intersects almost every orbit, the union of its
translates has full measure, so every fundamental domain must have strictly positive measure whenever
this is the case with Ω.

Moreover, after possibly passing to a Γ-invariant Borel subset of full measure, the existence of a
Borel set XΓ ⊆ Ω that intersects every Γ-orbit exactly once is equivalent with the fact that Ω/Γ is
standard Borel, or in other words that the quotient map π : XΓ → Ω/Γ is a Borel bijection between
standard Borel spaces. In this case, the orbit equivalence relation is said to be smooth, and we make
the following definition.

Definition 2.2. A measure-preserving action of a countable group Γ on a standard measured space
(Ω, µ) is smooth if it admits a fundamental domain.

Given a smooth action Γ y (Ω, µ), if X is a fundamental domain for the Γ-action, we denote by πX
the map which takes (almost) every ω ∈ Ω to the unique element of the Γ-orbit of ω which belongs to X.
Observe that by definition, if X1 and X2 are two measure-fundamental domains, then the restriction of
πX1 to X2 is an element of the full pseudo-group of the Γ-action whose inverse is the restriction of πX2

to X1.
In particular, X1 and X2 have the same measure, and so given any smooth action Γ y (Ω, µ), we

can unambiguously endow the quotient space Ω/Γ with the measure obtained by identifying it with
one of the fundamental domains. We will still denote this measure by µ.

Finally, given a fundamental domain X, we denote by ιX the inverse of the projection map X → Ω/Γ.

Convention. We shall use the notation “γ ∗x” instead of “γ ·x” for smooth Γ-actions. This distinction
will prove useful later on since we will also have induced actions on fundamental domains, which we
will denote by ·.

2.2 Asymmetric couplings

We begin by introducing an asymmetric variation of what has been called a coupling by various authors.

Definition 2.3. Let Γ and Λ be countable groups, a measure subquotient coupling from Γ to
Λ is a triple (Ω, XΛ, µ), where (Ω, µ) is a standard Borel measure space equipped with commuting
measure-preserving smooth Γ and Λ actions such that
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(i) the Γ action is free;

(ii) XΛ is a fixed fundamental domain for the Λ-action;

(iii) XΛ has finite measure.

We say that Γ is a measure subquotient of Λ when there exists a subquotient coupling from Γ to Λ.

Note that the definition is asymmetric since we only specify the Λ fundamental domain and only
require Γ to be acting freely. This definition is motivated by the following situation: if N is a normal
subgroup of Λ and Γ is a a subgroup of Λ/N , then (Λ/N, {N}, c) is a measure subquotient coupling
from Γ to Λ, where c is the counting measure, Λ acts by right-translation and Γ by left translation.

Given a measure subquotient coupling (Ω, XΛ, µ) from Γ to Λ, we denote their two commuting
actions by ∗, and then we have a natural action of Γ on Ω/Λ which we call the induced action and
denote by ·. Through the natural identification of Ω/Λ to XΛ, this induced action is given by: for all
x ∈ XΛ, γ ∈ Γ,

{γ · x} = Λ ∗ γ ∗ x ∩XΛ.

Note that the induced Γ-action defines elements of the pseudo full group of the Λ-action on Ω, so it is a
measure-preserving action. We can now present measure equivalence as follows.

Definition 2.4. Let Γ and Λ be countable groups, a measure equivalence coupling from Γ to Λ is
a quadruple (Ω, XΓ, XΛ, µ), where (Ω, µ) is a standard Borel measure space equipped with commuting
measure-preserving smooth Γ and Λ actions such that (Ω, XΛ, µ) is a measure subquotient coupling
from Γ to Λ and (Ω, XΓ, µ) is a measure subquotient coupling from Λ to Γ. When there exists such a
coupling, we say that Γ and Λ are measure equivalent.

Remark 2.5. Although the above definition is symmetric, we still talk about measure equivalence
coupling from a group to another one because we will soon put some asymmetric restrictions on the
two corresponding measure subquotient couplings.

We finally introduce two natural intermediate notions.

Definition 2.6. A group Γ is a measure subgroup of Λ if there is a measure subquotient coupling
(Ω, XΛ, µ) from Γ to Λ such that the Λ-actions is also free. Such a coupling is called a measure
subgroup coupling from Γ to Λ.

Note that every measure equivalence coupling is actually a measure subgroup coupling in both
directions.

Definition 2.7. A group Γ is a measure quotient of Λ if there is a measure subquotient coupling
(Ω, XΛ, µ) from Γ to Λ such that the Γ-action also admits a fundamental domain of finite measure.
Such a coupling is called a measure quotient coupling.

We now recall how to compose couplings; for this to work, we need the middle group to act freely
in both couplings. Let us first give the definition and then check that it actually makes sense.

Definition 2.8. Let Γ, Λ and Σ be three countable groups let (Ω1, X1,Λ, µ1) be a subgroup coupling
from Γ to Λ and let (Ω2, X2,Σ, µ2) be a measure subquotient coupling from Λ to Σ. The composition
of these two couplings (Ω3, X3,Σ, µ3) is the measure subquotient coupling from Γ to Σ obtained as
follows: we consider the diagonal action Λ y (Ω1 × Ω2, µ1 ⊗ µ2) which is smooth and commutes with
the Γ-action on the first coordinate and the Λ-action on the second coordinate. Then the measured
space of our new coupling is Ω3 := (Ω1 × Ω2)/Λ equipped with the measure µ3 obtained by identifying
it with a Λ-fundamental domain, and equipped with the induced Γ and Λ actions, which are both
smooth, and we let X3,Σ = πΩ3(X1,Λ ×X2,Σ).
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Similarly, when we are given two measure equivalence or measure quotient couplings (Ω1, X1,Γ, X1,Λ, µ1)
and (Ω2, X2,Λ, X2,Σ, µ2), their composition (Ω3, X3,Γ, X3,Σ, µ3) is obtained by the same construction
as above, letting furthermore X3,Γ = πΩ3

(X1,Γ ×X2,Λ).

Proposition 2.9. Let Γ, Λ and Σ be three countable groups, let (Ω1, X1,Λ, µ1) be a measure subgroup
coupling from Γ to Λ and let (Ω2, X2,Σ, µ2) be a measure subquotient coupling from Λ to Σ. The
composition of these two couplings is a measure subquotient coupling from Γ to Σ.

If both couplings are measure subgroup (resp. measure equivalence) couplings, then their composition
is also a measure subgroup (resp. measure equivalence) coupling.

Finally if the coupling from Γ to Λ is a measure equivalence coupling and the coupling from Λ to Σ
is a measure quotient coupling, then their composition is a measure quotient coupling.

Proof. We first check that the diagonal Λ-action on Ω1×Ω2 is smooth: indeed X1,Λ×Ω2 is a fundamental
domains for it. In particular, it induces the measure µ3 on Ω3. We denote by ? the induced Γ-actions on
Ω3 := (Ω1 × Ω2)/Λ. at most m-to-one Through the identification of Ω3 with the fundamental domain
X1,Λ × Ω2 we see that the induced Σ-action is given by : for all (x, ω) ∈ X1,Λ × Ω2 and all σ ∈ Σ,
σ ? (x, ω) = (x, σ ∗ ω). In particular, we see that X3,Σ := πΩ3(X1,Λ ×X2,Σ) is a measured fundamental
domain for it, that the Σ-action on Ω2 is free then so is the Σ-action on Ω3, and that X3,Σ has finite
measure because X2,Σ does. Finally, if we fix a fundamental domain X2,Λ for the Λ-action on Ω2, then
we also have a natural identification of Ω3 with Ω1 ×X2,Λ through which we see that the Γ-action on
Ω3 is free.

Now all the properties stated in the proposition can directly be inferred from the two previous
paragraphs.

Remark 2.10. Keeping the notation of the proof, we can also describe the Γ-action on Ω3 when
the latter is identified with X1,Λ × Ω2 using the cocycle α : Γ × X1,Λ → Λ given by the equation
α(γ, x) ∗ γ ∗ x = γ · x as follows

γ ? (x, ω) = (γ · x, α(γ, x) ∗ ω),

where · denotes the induced Γ-action on X1,Λ. Note that the induced Γ-action (denoted by •) on the
fundamental domain X3,Σ, identified to X1,Λ ×X2,Σ, is then given by:

γ • (x, y) = (γ · x, α(γ, x) · y)

This point of view will be useful when we explore how composition of couplings behaves when we put
integrability conditions.

Definition 2.11. Given m ∈ N, we say that a measure subquotient coupling (Ω, XΛ, µ) from Γ to Λ is
at most m-to-one if for every x ∈ XΛ the map γ 7→ γ−1 ∗ (γ · x) ∈ Λ ∗ x has pre-images of size at
most m.

When m = 1, we also say that we have an injective measure subquotient coupling. Such couplings
can also be characterized as follows.

Proposition 2.12. A measure subquotient coupling (Ω, XΛ, µ) from Γ to Λ is injective if and only if
XΛ intersects every Γ-orbit at most once.

Proof. Suppose first that XΛ intersects each Γ-orbit at most once. Let x ∈ XΛ, suppose that γ−1
1 ∗γ1 ·x =

γ−1
2 ∗ γ2 · x. Then γ1 · x and γ2 · x are two elements of the same Γ-orbit which belong to XΛ so by our

assumption they are equal. Since the Γ-action on Ω is free, we conclude that γ1 = γ1 as wanted.
Conversely, suppose that the coupling is injective. Let x ∈ XΛ, suppose that γ ∗ x ∈ XΛ for some

γ ∈ Γ. Then γ · x = γ ∗ x, so γ−1 ∗ γ · x = x, and so by injectivity γ = eΓ. We conclude that γ ∗ x = x,
so XΛ intersects each Γ-orbit at most once as announced.
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An important example of injective coupling will be provided by the notion of orbit subquotient
couplings (see Section 2.4). In fact, we will see that every injective measure subquotient coupling can
be turned into such a coupling after making the induced action free (see Prop. 2.42).

Remark 2.13. When the Λ-action is free, the map γ 7→ γ−1 ∗ (γ · x) ∈ Λ ∗ x is at most m-to-one if
and only if the cocycle α : Γ×XΛ → Λ defined by α(γ, x) ∗ (γ ∗ x) ∈ XΛ satisfies that for all x ∈ XΛ,
the map γ 7→ α(γ, x) is at most m-to-one.

Definition 2.14. A measure equivalence coupling (Ω, XΓ, XΛ, µ) from Γ to Λ is called cobounded
when there is a finite subset F ⊆ Λ such that XΓ ⊆ FXΛ.

Example 2.15. We will see in Section 2.4 that every orbit equivalence coupling is cobounded.

2.3 Integrability conditions

In all that follows, we only deal with finitely generated groups, and if Λ is such a group, we will
systematically denote by SΛ one of its finite symmetric generating sets.

2.3.1 ϕ-equivalence between fundamental domains

Let us introduce a family of natural equivalence relations on fundamental domains of measure-preserving
actions of a finitely generated group.

Definition 2.16. Given a finitely generated group Λ acting smoothly on a standard measured space
(Ω, µ) and a finite symmetric generating set SΛ for Λ, we denote by dSΛ the Schreier graph metric
on the Λ-orbits, namely for y ∈ Λ ∗ x, we let

dSΛ
(x, y) = min{n ∈ N : ∃s1, ..., sn ∈ SΛ, y = s1 · · · sn ∗ x}.

Observe that if we are given Λ y (Ω, µ) and two finite generating sets S1 and S2 for Λ, then there
is C > 0 such that for all x ∈ Ω and all y ∈ Λ ∗ x,

1

C
dS1

(x, y) 6 dS2
(x, y) 6 CdS1

(x, y). (1)

In the following definition, we recall that given a smooth action Λ y (Ω, µ) and a measure
fundamental domain X, the map ιX is the inverse of the (bijective) projection πΩ/Λ : X → Ω/Λ.

Definition 2.17. Given any non-decreasing map ϕ : R+ → R+ and two fundamental domains X1 and
X2 of a smooth Λ-action on (Ω, µ), we say that they are ϕ-equivalent if there is c > 0 such that∫

Ω/Λ

ϕ

(
dSΛ(ιX1(x), ιX2(x))

c

)
dµ(x) < +∞.

Note that this does not depend on the choice of the symmetric generating set SΛ by virtue of
inequation (1).

Remark 2.18. If ϕ satisfies that for every c > 0, there is a constant C > 0 such that for all x > 0,
ϕ(cx) 6 Cϕ(x), then X1 and X2 are ϕ-equivalent if and only if∫

Ω/Λ

ϕ (dSΛ(ιX1(x), ιX2(x))) dµ(x) < +∞,

which is then also equivalent to: for every c > 0 we have∫
Ω/Λ

ϕ

(
dSΛ(ιX1(x), ιX2(x))

c

)
dµ(x) < +∞.

This is the case if ϕ(x) = xp for some p > 0, or if ϕ is concave, or more generally subadditive. A
motivating example where this is not true is when ϕ is the exponential map.
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In order to show that ϕ-equivalence is indeed an equivalence relation, we introduce the following
quantity: given a smooth Λ action and two fundamental domains X1 and X2, we let

cϕ,SΛ
(X1, X2) = inf

{
c > 0:

∫
Ω/Λ

ϕ

(
dSΛ

(ιX1
(x), ιX2

(x))

c

)
dµ(x) < +∞

}
.

Proposition 2.19. The map cϕ,SΛ
is a pseudo-metric on the set of fundamental domains up to measure

zero, except of course it can take the value +∞.

The proof relies on the following elementary observation.

Lemma 2.20. Let ϕ : R+ → R+ be a non-decreasing function, let a, b > 0 and c, d > 0. Then

ϕ

(
a+ b

c+ d

)
6 ϕ

(a
c

)
+ ϕ

(
b

d

)
.

Proof. By symmetry, we may as well assume that a
c >

b
d , in which case a

c >
a+b
c+d , so we have

ϕ
(
a+b
c+d

)
6 ϕ

(
a
c

)
6 ϕ

(
a
c

)
+ ϕ

(
b
d

)
.

Proof of Proposition 2.19. The map cϕ,SΛ
is clearly symmetric and satisfies cϕ,SΛ

(X,X) = 0 for every
fundamental domain X, so we only need to check that it satisfies the triangle inequality.

To this end, let X1, X2 and X3 be fundamental domains, let c1 > cϕ,SΛ
(X1, X2) and c2 >

cϕ,SΛ(X2, X3). We have for every x ∈ Ω/Λ that

dSΛ(ιX1(x), ιX3(x))

c1 + c2
6
dSΛ(ιX1(x), ιX2(x)) + dSΛ(ιX2(x), ιX3(x))

c1 + c2
.

By the previous lemma, we thus have

ϕ

(
dSΛ

(ιX1
(x), ιX3

(x))

c1 + c2

)
6 ϕ

(
dSΛ

(ιX1
(x), ιX2

(x))

c1

)
+ ϕ

(
dSΛ

(ιX2
(x), ιX3

(x))

c2

)
.

By integrating and using our assumptions on c1 and c2, we then deduce that the integral
∫

Ω/Λ
ϕ
(
dSΛ

(ιX1
(x),ιX3

(x))

c1+c2

)
dµ(x)

is finite, and so cϕ,SΛ
(X1, X3) 6 cϕ,SΛ

(X1, X2) + cϕ,SΛ
(X2, X3) as wanted.

Corollary 2.21. The notion of ϕ-equivalence is an equivalence relation between fundamental domains.

Proof. Observe that two fundamental domainsX1 andX2 are ϕ-equivalent if and only if cϕ,SΛ(X1, X2) <
+∞, so the fact that ϕ-equivalence is an equivalence relation is a direct consequence of the previous
result.

Definition 2.22. Let ϕ,ψ : R+ → R+ be non-decreasing maps.
A measure subquotient coupling (Ω, XΛ, µ) from Γ to Λ is a called ϕ-integrable if for every γ ∈ Γ

we have that XΛ and γ ∗XΛ are ϕ-equivalent as fundamental domains of the Λ-action.
A measure equivalence coupling (Ω, XΓ, XΛ, µ) from Γ to Λ is called (ϕ,ψ)-integrable when the

coupling (Ω, XΛ, µ) from Γ to Λ is ϕ-integrable and the coupling (Ω, XΓ, µ) from Λ to Γ is ψ-integrable.

Proposition 2.23. A measure subquotient coupling (Ω, XΛ, µ) from Γ = 〈SΓ〉 to Λ is ϕ-integrable if
and only if for every s ∈ SΓ we have that XΛ and s ∗XΛ are ϕ-equivalent.

Proof. Since the Γ action commutes with the Λ action, it must preserve the equivalence relation of
ϕ-equivalence, so for every γ ∈ Γ and every s ∈ SΓ we have that γ ∗XΛ and γs ∗XΛ are ϕ-equivalent.
From there, using the assumption of the proposition, an easy recurrence yields that (Ω, XΓ, XΛ, µ) is
indeed a ϕ-coupling from Γ to Λ.
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We then say that Γ is a ϕ- (resp. (ϕ,ψ)-) measure subquotient, subgroup or quotient of Λ
if the corresponding coupling is ϕ-integrable (resp. (ϕ,ψ)-integrable). When dealing with measure
equivalence, since our definition is asymmetric in nature and often non transitive, we will always talk
about ϕ-integrable (resp. (ϕ,ψ)-integrable) measure equivalence couplings from Γ to Λ.

It is not hard to see that being a ϕ-integrable measure subquotient coupling only depends on the
asymptotic behavior of ϕ. More precisely, if ϕ 4 ψ, then every ψ-integrable measure subquotient
coupling is also a ϕ-integrable.

Remark 2.24. By spelling out what ϕ-equivalence means, we see that a measure subquotient coupling
(Ω, XΓ, XΛ, µ) from Γ to Λ is ϕ-integrable if and only if for every γ ∈ Γ, there is cγ > 0 such that∫

XΛ

ϕ

(
dSΛ

(γ · x, γ ∗ x)

cγ

)
dµ(x) < +∞,

where ∗ denotes the Γ-action on Ω and · denotes the induced Γ-action on XΛ.

We deduce from the above remark that a measure subgroup coupling from Γ to Λ is a ϕ-coupling if
and only if the cocycle α : Γ×XΛ → Λ defined by the equation α(γ, x) ∗ γ ∗ x = γ · x satisfies that for
all γ ∈ Γ, there exists a cγ > 0 such that the map XΛ → R : x 7→ ϕ(|α(γ, x)|SΛ

/cγ) is integrable.
For easy notation and consistency with the literature, for p ∈ (0,∞) we talk about Lp couplings

instead of x 7→ xp-integrable couplings. We also say that we have an L∞ measure subquotient cou-
pling from Γ to Λ when the Γ-action satisfies for every γ ∈ Γ that the map Ω/Λ→ Λ: x 7→ dSΛ(γ ·x, γ∗x)
is essentially bounded. Note that every L∞ measure subquotient coupling is ϕ-integrable for any in-
creasing map ϕ : R+ → R+.

Let us now explain how various established notions fit into our asymmetric framework.

• Two finitely generated groups Γ and Λ are Lp measure equivalent in the sense of [BFS13] when
there is an (Lp,Lp) measure equivalence coupling from Γ to Λ.

• Two finitely generated groups Γ and Λ are uniform measure equivalent in the sense of [Sha04]
when there is an (L∞,L∞) measure equivalence coupling between Γ and Λ.

• Two finitely generated groups Γ and Λ are bounded measure equivalent in the sense of [Sau02]
when there is an (L∞,L∞) measure equivalence coupling from Γ to Λ which is cobounded in both
directions.

2.3.2 Composition of ϕ-integrable couplings

Next we look at the integrability of the composition of coupling as presented in Definition 2.8. First
we consider the case where ϕ : R+ → R+ is subadditive, e.g. when ϕ is concave. Our arguments will
follow closely those from [BFS13, Sec. A.2].

Lemma 2.25. Let Γ and Λ be two finitely generated groups, let ϕ : R+ → R+ be a non-decreasing
subadditive maps and let (Ω, XΓ, XΛ, µ) be a ϕ-measure subquotient coupling from Γ to Λ. Then there
is a constant C > 0 such that for every γ ∈ Γ∫

XΛ

ϕ (dSΓ
(γ · x, γ ∗ x)) dµ(x) 6 C |γ|SΓ

.

Proof. Assume (Ω, XΓ, XΛ, µ) is a ϕ-measure subquotient coupling from Γ to Λ. Given two fundamental
domains X1 and X2 two fundamental domains for the Λ-action, we define their ϕ-distance dϕ,SΓ(X1, X2)
by

dϕ,SΛ(X1, X2) =

∫
Ω/Γ

ϕ (dSΓ(ιX1(x), ιX2(x))) dµ(x)
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Note that this distance is symmetric and satisfies the triangle inequality, so it is a pseudometric as
soon as ϕ(0) = 0. Moreover, using Remark 2.18, we have for every γ ∈ Γ that

dϕ,SΛ
(XΛ, γ ∗XΛ) < +∞,

while by Remark 2.24 we have dϕ,SΛ(XΛ, γ ∗XΛ) =
∫
XΛ

ϕ (dSΓ(γ · x, γ ∗ x)) dµ(x).

Let C = maxγ∈SΓ dϕ,SΛ(XΛ, γ ∗XΛ). The Γ-action on the set of Λ-fundamental domains preserves
dϕ,SΛ because it commutes with the Λ-action, so for every s1, ..., sn ∈ SΓ we have by the triangle
inequality

dϕ,SΛ
(s1 · · · sn ∗XΛ, XΛ) 6

n∑
i=1

dϕ,SΛ
(s1 · · · si ∗XΛ, s1 · · · si−1 ∗XΛ)

6
n∑
i=1

dϕ,SΛ
(si ∗XΛ, XΛ)

6 Cn,

which yields the desired result.

Remark 2.26. Note that when ϕ is subadditive and non-decreasing, we always have ϕ(x) 6 xϕ(1) +
ϕ(1), in particular every L1 measure subquotient coupling is ϕ-integrable.

Let us now study how couplings compose in the subadditive regime.

Proposition 2.27. Let ϕ,ψ : R+ → R+ be a non-decreasing subadditive maps with ϕ moreover concave
and let Γ, Λ and Σ be three finitely generated groups. Let (Ω1, X1,Γ, X1,Λ, µ1) be a ϕ-integrable measure
subgroup coupling from Γ to Λ and let (Ω2, X2,Λ, X2,Σ, µ2) be a ψ-integrable measure subquotient coupling
from Λ to Σ. Then the composition of these two couplings is a ϕ ◦ ψ-integrable measure subquotient
coupling from Γ to Σ.

Proof. Thanks to Lemma 2.25 we find C > 0 such that∫
X2,Σ

ψ (dSΣ
(λ · x, λ ∗ x))) dµ(x) 6 C|λ|SΛ

for every λ ∈ Λ. (2)

By scaling the measure µ2 we may assume that µ2(X2,Σ) = 1. Denote by α : Γ×X1,Λ → Λ the cocycle
defined by the equation α(γ, x) ∗ γ ∗ x = γ · x. By Remark 2.10 and the definition of the composition of
our two couplings, we need to show that the following quantity is finite:∫

X1,Λ

∫
X2,Σ

ϕ ◦ ψ (dSΣ(α(γ, x) · y, α(γ, x) ∗ y)) dµ2(y)dµ1(x).

Now by Jensen’s inequality, this is at most∫
X1,Λ

ϕ

(∫
X2,Σ

ψ (dSΣ
(α(γ, x) · y, α(γ, x) ∗ y)) dµ2(y)

)
dµ1(x),

which by inequation (2) is bounded above by
∫
X1,Λ

ϕ(C |α(γ, x)|SΛ
). The latter is indeed finite by our

assumption on the first coupling and Remark 2.18.

The above result can be combined with Proposition 2.9 to obtain a ϕ ◦ ψ-measure subgroup,
ϕ ◦ ψ-measure quotient or (ϕ,ψ)-measure equivalence coupling by composition.
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Remark 2.28. Given two finitely generated groups Γ and Λ, one could define

α(Γ,Λ) = − log (sup{p 6 1 : Γ and Λ are Lp measure equivalent})

The previous proposition implies that this is a pseudo-metric on the space of isomorphism classes
of finitely generated groups. It would be interesting to understand this pseudo-metric further. For
instance, Theorem 6.9 implies that d(Zn,Zm) = |log n− logm|.

For non subadditive maps ϕ, we need a stronger notion of ϕ-integrability so that it behaves well
with respect to composition.

Definition 2.29. Let ϕ : R+ → R+ be an increasing map. We say that a coupling (Ω, XΓ, XΛ, µ) from
Γ to Λ is strongly ϕ-integrable or ϕ�-integrable if for every ε > 0 there are δ > 0 and C > 0 such
that for every γ ∈ Γ, ∫

XΛ

ϕ (δ dSΛ(γ · x, γ ∗ x)) dµ(x) 6 Cϕ (ε|γ|SΓ)

Note again that thanks to inequation (1) strong integrability does not depend on the choice of the
finite generating set SΓ. However, the above condition has to be checked on every element of Γ.

Proposition 2.30. Let ϕ : R+ → R+ be an increasing map and let Γ, Λ and Σ be three finitely
generated groups. Let (Ω1, X1,Γ, X1,Λ, µ1) be an strongly ϕ-integrable measure subgroup coupling from Γ
to Λ and let (Ω2, X2,Λ, X2,Σ, µ2) be a strongly ϕ-integrable measure subquotient coupling from Λ to Σ.
Then the composition of these two couplings is a strongly ϕ-integrable measure subquotient coupling
from Γ to Σ.

Proof. Let ε > 0. As (Ω1, X1,Γ, X1,Λ, µ1) is strongly ϕ-integrable, there are δΛ > 0 and CΓ > 0 such
that ∫

X1,Λ

ϕ (δΛdSΛ(γ · x, γ ∗ x)) dµ1(x) 6 CΓ ϕ
(
ε |γ|SΓ

)
for every γ ∈ Γ. (3)

and as (Ω2, X2,Λ, X2,Σ, µ) is strongly ϕ-integrable, there exist δΣ > 0 and CΛ > 0 such that∫
X2,Σ

ϕ (δΣdSΣ
(λ · x, λ ∗ x)) dµ2(x) 6 CΛ ϕ (δΛ|λ|) for every λ ∈ Λ. (4)

By Remark 2.10 and the definition of the composition of our two couplings, we need to estimate the
following quantity: ∫

X1,Λ

∫
X2,Σ

ϕ (δΣdSΣ
(α(γ, x) · y, α(γ, x) ∗ y)) dµ2(y)dµ1(x).

By inequation (4), this is bounded above by∫
X1,Λ

CΛϕ(δΛ |α(γ, x)|SΛ
) 6 CΛCΓ ϕ (ε|γ|SΓ

)

as wanted, where the last inequation is a consequence of inequation (3), and the fact that by definition
|α(γ, x)|SΛ

= dSΛ
(γ · x, γ ∗ x).

For some maps ϕ we can weaken the strong integrability condition. Most notably for  Lp couplings,
where p > 1.

Proposition 2.31. Let p > 1. Every Lp measure subquotient coupling from Γ to Λ is actually a
strongly Lp measure subquotient coupling.
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Proof. We follow an approach similar to that of Lemma 2.25. For two fundamental domains X1 and
X2 for the Λ-action, we define their Lp distance by

dLp,SΛ
(X1, X2) =

(∫
Ω/Γ

ϕ (dSΓ
(ιX1

(x), ιX2
(x))) dµ(x)

)1/p

It is not hard to check that dLp,SΛ
is a metric, and since the Γ-action commutes with the Λ-action,

the group Γ acts on the set of Λ-fundamental domains by isometries. In particular, as in the proof
of Lemma 2.25 we find CΓ > 0 such that for every γ ∈ Γ and every Λ-fundamental domain XΛ,
dLp,SΛ(XΛ, γ ∗XΛ) 6 CΓ |γ|SΓ

. This means that for all γ ∈ Γ, we have∫
XΛ

dSΛ
(γ · x, γ ∗ x)pdµ(x) 6 CpΓ|γ|

p
SΓ
,

from which the result easily follows: given ε > 0 we take δ = ε, C = CpΓ and note that
∫
XΛ

(δdSΛ
(γ · x, γ ∗ x))

p
dµ(x) =

δp
∫
XΛ

dSΛ
(γ · x, γ ∗ x)pdµ(x) 6 CpΓ(ε|γ|SΓ

)p as wanted.

Say for p > 1 that two finitely generated groups are Lp measure equivalent when there is an
(Lp,Lp) measure equivalence coupling from Γ to Λ. The we deduce from the two previous results that
Lp measure equivalence is an equivalence relation between finitely generated groups, as proven by Bader,
Furman and Sauer in [BFS13]. Note however that this is not true anymore for p < 1; counter-examples
are provided by Theorem 6.9.

We can also weaken the condition for strongly exponential-integrable couplings.

Proposition 2.32. Let Γ and Λ be two finitely generated groups and let (Ω, XΛ, µ) be a measure
subquotient coupling from Γ to Λ. If there are ε′ > 0, δ′ > 0 and C ′ > 0 such that∫

γ∗XΛ

exp (δ′ dSΛ
(x, πXΛ

(x))) dµ(x) 6 C ′ exp (ε′|γ|SΓ
) for every γ ∈ Γ,

then the coupling is strongly exp-integrable.

Proof. Let ε > 0. If ε > ε′, then take C = C ′ and δ = δ′. Then we have that∫
γ∗XΛ

exp (δ dSΛ(x, πXΛ(x))) dµ(x) 6 C ′ exp (ε′|γ|) 6 C exp (ε|γ|) for every γ ∈ Γ.

If ε < ε′, then take C = C ′
ε
ε′ and δ = δ′ε

ε′ . Then we have for every γ ∈ Γ that∫
γ∗XΛ

exp (δ dSΛ
(x, πXΛ

(x))) dµ(x) =

∫
γ∗XΛ

exp (δ′ dSΛ
(x, πXΛ

(x)))
ε
ε′ dµ(x)

6

(∫
γ∗XΛ

exp (δ′ dSΛ(x, πXΛ(x))) dµ(x)

) ε
ε′

6 (C ′ exp(ε′|γ|))
ε
ε′

= C exp(ε|γ|).

Thus, the coupling is strongly exp-integrable as wanted

Interesting examples of strongly (exp, exp)-integrable measure equivalence couplings will be provided
in Section 8.
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2.4 Variations on orbit equivalence

We now turn our attention to orbit equivalence of groups, which implies measure equivalence. To make
the connection, we need to introduce measure-preserving equivalence relations.

Definition 2.33. Given a measure-preserving action of a countable group Λ on a standard probability
space (X,µ), we associate to it a measure-preserving equivalence relation RΛ defined by

RΛ := {(x, λ · x) : x ∈ X,λ ∈ Λ}.

A key property of measure-preserving equivalence relations is that they can be endowed with a
natural σ-finite measure M . Namely, for R a measure-preserving equivalence relation, and A a Borel
subset of R, we let

M(A) =

∫
X

|Ax| dµ(x),

where Ax = {y ∈ X : (x, y) ∈ A}. Such a measure is invariant under the flip map (x, y) 7→ (y, x) (see
[KM04, p. 34]), which means that we also have M(A) =

∫
X
|Ax| dµ(x), where Ax = {y ∈ X : (x, y) ∈

A}.

Definition 2.34. Let Γ and Λ be two finitely generated groups. An orbit subquotient coupling
from Γ to Λ is a triple (X,Y, µ) where (Y, µ) is a standard σ-finite space equipped with a measure-
preserving Λ-action, X is a Borel subset of Y of measure 1 equipped with a free measure-preserving
Γ-action and finally for almost every x ∈ X we have that Γ · x ⊆ Λ · x.

Every orbit subquotient coupling is a measure subquotient coupling as follows: given a subquotient
coupling (X,Y, µ) from Γ to Λ, our coupling space is Ω := RΛ ∩ (X × Y ) equipped with the measure
induced by M , acted upon as follows: for every Γ ∈ Γ, every λ ∈ Λ and every (x, y) ∈ RΛ,

γ ∗ (x, y) = (γ · x, y) and λ ∗ (x, y) = (x, λ · y).

Note that the Γ-action is measure-preserving as a direct consequence of the definition of M and of the
fact that its action on (X,µ) is measure-preserving, while the Λ-action is also measure-preserving because
M is flip-invariant. Finally, the chosen Λ-fundamental domain is the diagonal: XΛ = {(x, x) : x ∈ X},
and the fact that the Γ-action is smooth follows from the fact that a Borel fundamental domain can be
obtained as the intersection with X × Y of a disjoint reunion of graphs of Borel choice functions for
the subequivalence relation (RΓ ∪∆Y ) 6 RΛ (see [IKT09, Sec. 2.(A)]).

Note furthermore that (XΛ,M) is naturally isomorphic to (X,µ) via x 7→ (x, x), and that the
induced action on XΛ is conjugate via the inverse of this map to the original action on (X,µ).

Definition 2.35. An orbit subquotient coupling from Γ to Λ is ϕ-integrable when it is ϕ-integrable as
a measure subquotient coupling.

Note that ϕ-integrability for an orbit subquotient coupling as above means that for all γ ∈ Γ, there
is cγ > 0 such that ∫

X

ϕ

(
dSΛ(x, γ · x)

cγ

)
< +∞.

Remark 2.36. When ϕ(x) = xp for some p > 1, this means that Γ is contained in the Lp full group of
the Λ-action, as defined in [LM18].

Definition 2.37. Let (X,Y, µ) be an orbit subquotient coupling from Γ to Λ.

• If the Λ-action is also free, we say that (X,Y, µ) is an orbit subgroup coupling of Γ with Λ.

• If X = Y and for almost every x ∈ X we have that Γ · x = Λ · x, we say that (X,Y, µ) is an orbit
quotient coupling, which we then simply write as (X,µ).
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• Finally, (X,µ) is an orbit equivalence coupling of Γ with Λ if it is both an orbit quotient and
an orbit subgroup coupling.

Remark 2.38. When (X,Y, µ) is an orbit subquotient coupling from Γ to Λ such that for almost
every x ∈ X we have that Γ · x = Λ · x, the set X is also Λ-invariant and so (X,µ) is an orbit quotient
coupling.

We note that admitting an orbit equivalence coupling agrees with the definitions of orbit equivalence
between countable groups in the literature, and that every orbit equivalence (resp. quotient) coupling
is a measure equivalence (resp. quotient) coupling. Also, every orbit subgroup coupling is a measure
subgroup coupling. We can thus define (ϕ,ψ)-integrable orbit equivalence/quotient couplings as well as
ϕ-integrable subgroup couplings. Finally, we can also define strong ϕ-integrability conditions for orbit
couplings.

It is well known that orbit equivalence couplings are exactly those of the form (Ω, XΓ, XΛ, µ) with
XΓ = XΛ := X of measure 1 and both induced actions on X are free. The freeness hypothesis is not a
restriction, as we will see now.

Proposition 2.39. Let (Ω, XΛ, µ) be a measure subquotient coupling from Γ to Λ, let (Y, ν) be a
standard probability space equipped with a free Γ-action. Then (Ω × Y,XΛ × Y, µ ⊗ λ) is a measure
subquotient coupling from Γ to Λ, where Γ acts diagonally and Λ acts on the first coordinate. Moreover,
the induced Γ-action on XΛ × Y is free, the coupling (Ω× Y,XΛ × Y, µ⊗ λ) is ϕ-integrable if and only
if (Ω, XΛ, µ) was, and if XΓ was a fundamental domain for Γ y Ω, then XΓ × Y is a fundamental
domain for Γ y Ω× Y .

Proof. It is clear that XΛ × Y is a fundamental domain for the Λ-action, and since the Γ-action on
Ω was free, if XΓ was a fundamental domain for it, then XΓ × Y is a fundamental domain for the
new diagonal action. Moreover, the induced Γ-action on XΛ × Y is the diagonal action obtained from
its induced action on XΛ and its action on Y , in particular it is free. Finally, the statement about
ϕ-integrability follows directly from the fact that for every y ∈ Y and every ω, ω′ ∈ Ω, we have by
construction dSΛ

((ω, y), (ω′, y)) = dSΛ
(ω, ω′).

Remark 2.40. Note that the above lemma can be applied to any countable group Γ: if Γ is infinite,
one can take (Y, ν) as a Bernoulli shift of Γ, and if Γ is finite, one can take Y = Γ acted upon by left
translation, equipped with the normalized counting measure.

Proposition 2.41. Let Γ and Λ be countable groups. If there is a (ϕ,ψ) measure equivalence (resp.
measure quotient) coupling from Γ to Λ where the two fundamental domains coincide, then there is a
(ϕ,ψ) orbit equivalence (resp. orbit quotient) coupling from Γ to Λ.

Proof. Let (Ω, XΓ, XΛ, µ) be a (ϕ,ψ)-integrable measure equivalence coupling from Γ to Λ, and denote
by X = XΓ = XΛ the common fundamental domain. Up to rescaling the measure (which does not
impact the integrability conditions), we may as well assume that X has measure 1. Using the previous
remark, we can apply the above proposition twice and see that without loss of generality, we can also
assume that the induced Γ- and Λ-actions on X are free. We denote them by ·.

Now observe that for every γ ∈ Γ and every x ∈ X, we have γ · x ∈ Λ ∗ γ ∗ x so there is λ ∈ Λ such
that γ · x = λ ∗ γ ∗ x = γ ∗ λ ∗ x. In particular λ · x = γ · x, so we conclude that Γ · x ⊆ Λ · x. By
the symmetry, we also have Λ · x ⊆ Γ · x, so we conclude that (X,µ) is an orbit equivalence coupling.
Finally, the map (γ · x, x) 7→ γ ∗ x is a Γ× Λ-equivariant bijection from RΓ = RΛ to Ω which takes
{(x, x) : x ∈ X} to X, and thus the (ϕ,ψ)-integrability of the orbit coupling (X,µ) follows from that of
(Ω, XΓ, XΛ, µ).

The statement for orbit quotient couplings follows from the same argument, except we apply the
above proposition only once so as to make the induced Γ-action free.

Similar comparisons can be made for orbit subgroup and subquotient couplings. Observe that in
this situation there is no canonical choice for a Γ fundamental domain XΓ, but XΛ intersects every
Γ-orbit at most once.
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Proposition 2.42. Let Γ and Λ be two finitely generated groups. If there is a ϕ-integrable measure
subquotient (resp. measure subgroup) coupling (Ω, XΛ, µ) from Γ to Λ such that XΛ intersects every
Γ-orbit at most once, then there is a ϕ-integrable orbit subquotient (resp. orbit subgroup) coupling from
Γ to Λ.

Proof. We first assume that (Ω, XΛ, µ) is a ϕ-integrable measure subquotient coupling from Γ to Λ
such that XΛ intersects every Γ-orbit at most once. Up to scaling the measure and using Proposition
2.39, we may as well assume that µ(XΛ) = 1 and that the induced Γ-action on XΛ is free.

By assumption the restriction of πΩ/Γ to XΛ is injective, so we may as well view XΛ as a subset
of Ω/Γ. Consider the induced Λ-action on Y := Ω/Γ, the induced Γ-action on X := XΛ ⊆ Y and
denote them by ·. For every γ ∈ Γ and x ∈ XΛ there is λ ∈ Λ such that γ · x = λ ∗ γ ∗ x ∈ XΛ. Then
γ ∗ (λ ∗ x) ∈ XΛ, so λ · x = γ ∗ (λ ∗ x) = γ · x. Thus, Γ · x ⊆ Λ · x, and (X,Y, µ) is indeed an orbit
subquotient coupling.

We now check that the map λ ∗ x 7→ (x, λ · x) from Ω to RΛ ∩X × Y is well-defined and bijective.
First, if λ ∗ x = λ′ ∗ x′ for some x, x′ ∈ XΛ and λ, λ′ ∈ Λ, we have x = x′ since XΛ is a fundamental
domain, and then by definition of the induced action we must have λ ·x = λ′ ·x′: our map is well-defined.
In order to show it is injective, assume that λ · x = λ′ · x, then λ−1λ′ · x = x, so there is γ ∈ Γ such
that λ−1λ′ ∗ x = γ ∗ x, so γ · x = x. By freeness of the induced Γ-action, we deduce that γ = eΓ, and
so λ ∗ x = λ′ ∗ x as wanted. Finally, surjectivity is clear from the definition, and since this map is
Γ× Λ-equivariant, we conclude that the orbit subquotient coupling that we obtained is ϕ-integrable if
and only if our original coupling was.

For the orbit subgroup case we proceed as before, except we first make sure that both induced
actions are free by using Proposition 2.39 twice.

Remark 2.43. The two previous propositions show that orbit couplings can be composed as in
Proposition 2.9. This is shown by combining Proposition 2.9 with Proposition 2.41 and Proposition 2.42.
The integrability of this composition coupling satisfies the same result as in Proposition 2.27 and
Proposition 2.30.

3 Revisiting Bowen’s monotonicity theorem of the volume growth

Following the original proof of Bowen in [Aus16, Theorem B2], we can deduce a stronger conclusion.
Towards this, we recall the following lemma [Aus16, Lemma B.11] by Bowen:

Lemma 3.1 (Bowen). Let Γ be a finitely generated group. Let Γ y (X,µ) be an measure-preserving
action, and X0 ⊆ X a set with positive measure, and RX0(x) : = {g ∈ Γ: g.x ∈ X0} its associated
return time set. Then, for every n ∈ N we have∫

X0

|RX0
(x) ∩BΓ(eΓ, n)|
|BΓ(eΓ, n)|

dµ(x) > 2µ(X0)− µ(X).

In what follows, we denote by VΓ the growth function of a finitely generated group Γ, more precisely
the asymptotic equivalence class of the volume growth given by VΓ(n) = |B(eΓ, n)| with respect to
some (any) finite generating set and its associated word metric.

Theorem 3.2. Let ϕ be a positive, increasing, concave function such that ϕ(0) = 0 and let Γ and Λ be
finitely generated groups. If Γ is an Lp measured subquotient of Λ, then

VΓ(n) 4 VΛ(ϕ−1(n)),

where ϕ−1 denotes the generalized inverse of ϕ.
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Proof. Let (Ω, XΓ, XΛ, µ) be a coupling of Γ and Λ such that XΛ has finite measure, the Γ-action is
free and such that for all s ∈ SΓ, ∫

XΛ

ϕ(dSΛ(s ∗ x, x)))dµ(x) <∞

As µ(XΛ) is finite and Γ ∗XΓ = Ω we can take R > 0 and X0 = XΛ ∩ BΓ(eΓ, R) ∗XΓ such that
µ(X0) > 9

10µ(XΛ).

Claim 3.3. Given λ ∈ Λ and x ∈ XΛ, the cardinality of the set of g ∈ RX0
(x) such that λ(g ∗ x) ∈ XΛ

is at most C = |BΓ(eΓ, R)|.

Proof of the claim. Let g and g′ be in that set. We deduce from the fact that g′g−1 ∗ (g · x) ∈ XΛ and
the freeness of the Γ-action that |g′g| 6 R. So we are done. �claim

We deduce from the triangular inequality and the properties of ϕ that there exists κ > 0 such that∫
XH

ϕ(dSΓ
(g ∗ x, x)))dµ(x) < κ|g|SΛ

for every g ∈ G. Next fix n ∈ N and define

X1 =

x ∈ XΛ :
∑

g∈BΓ(eΓ,n)

ϕ(dSΛ
(g ∗ x, x)))

|g|
<

10κ|BΓ(eΓ, n)|
µ(XΛ)

 .

Note that

µ(Xc
1) 6

µ(XΛ)

10κ|BΓ(eΓ, n)|

∫
XH

∑
g∈BΓ(eΓ,n)

ϕ(dSΛ(g ∗ x, x)))

|g|
dµ(x) 6

1

10
µ(XΛ).

Next for every x ∈ XΛ take Γx = {g ∈ BΓ(eΓ, n) : ϕ(dSΛ(g ∗ x, x))) 6 60κ|g|}. Note that if x ∈ X1,
then |Γx| > 5

6 |BΓ(eG, n)|. Finally take X2 = X1 ∩X0. Then µ(X2) > 8
10µ(XΛ) and by Lemma 3.1 we

have that ∫
X2

|RX2
(x) ∩BΓ(eΓ, n)|
|BΓ(eΓ, n)|

> 2µ(X2)− µ(XH) >
6

10
µ(XH).

As Γx ⊆ BΓ(eΓ, n) we have that∫
X2

|RX2
(x) ∩ Γx|dµ(x) >

∫
X2

(
|RX2

(x) ∩BΓ(eΓ, n)|+ |Γx| − |BΓ(eΓ, n)|
)
dµ(x)

>
6

10
µ(XΛ)|BΓ(eΓ, n)|+ 5

6
|BΓ(eΓ, n)|µ(X2)− |BΓ(eΓ, n)|µ(X2)

>
6

10
µ(XΛ)|BΓ(eΓ, n)|+ 5

10
|BΓ(eΓ, n)|µ(XΛ)− |BΓ(eΓ, n)|µ(XΛ)

>
1

10
µ(XΛ)|BΓ(eΓ, n)|.

On the other hand∫
X2

|RX2
(x) ∩ Γx|dµ(x) 6

∫
X2

|{g ∈ RX2
(x) : ϕ(dSΛ

(g ∗ x, x))) 6 60κn}|dµ(x)

6
∑

λ∈BΛ(eΛ,ϕ−1(60κn))

∫
X2

|{g ∈ RX2
(x) : λ(g ∗ x) ∈ XΛ}|dµ(x).

Since X2 ⊂ X0, we deduce from Claim 3.3 that

1

10
µ(XΛ)|BΓ(eΓ, n)| 6

∣∣BΛ

(
eΛ, ϕ

−1(60κn)
)∣∣Cµ(X2)

which concludes the proof of the theorem.

22



Corollary 3.4. Assume that two groups Γ and Λ have polynomial growth with respective growth
exponents m and n satisfying m > n. Then Γ is not an Lp measured subquotient of Λ if p > n/m.

4 Monotonicity of the isoperimetric profile

In this section we state and prove a general monotonicity result satisfied by the isoperimetric profile.
We obtain two different conclusions depending on whether the coupling is Lp for some p > 1, or if it is
ϕ-integrable for a sublinear function ϕ. However the first statement for p = 1 and the second one for
ϕ(t) = t have the same content.

Theorem 4.1. Let p > 1, and assume that we are in one of the following situations.

(i) Γ is an Lp measure quotient of Λ;

(ii) Γ is a at most m-to-one Lp measure subquotient of Λ.

Then
Ip,Γ 4 Ip,Λ.

Theorem 4.2. Let ϕ : (0,∞)→ (0,∞) be a function such that ϕ and t 7→ t/ϕ(t) are non-decreasing.
Assume that we are in one of the following situations.

(i) Γ is a ϕ-integrable measure quotient of Λ;

(ii) Γ is an at most m-to-one ϕ-integrable measure subquotient of Λ

Then

I1,Γ 4
1

ϕ(1/I1,Λ)
.

Corollary 4.3. If p 6 1 and Γ is an L1 orbit subgroup of Λ, or p > 1 and Γ is an Lp orbit subquotient
of Λ, then Ip,Γ 4 Ip,Λ.

We illustrate this by the following corollary.

Corollary 4.4. Assume that Γ and Λ have polynomial growth of growth exponents m and n respectively,
with m > n, and let F and K be non-trivial finite groups.

• then Γ is not an Lp measured quotient (nor an finite-to-one Lp measured subquotient) of Λ if
p > n/m.

• F o Γ is not an Lp measured quotient (nor an finite-to-one Lp measured subquotient) of F o Λ if
p > 1− 1/n+ 1/m.

Remark 4.5. The first item is slightly weaker than the conclusion of Corollary 3.4 obtained by
comparing the volume growths (as the latter does not require the finite-to-one assumption).

4.1 Γ-gradients on Γ-spaces

It will be convenient to define a notion of gradient on functions defined on measure spaces equipped
with a measure-preserving group action.

Definition 4.6. Let Γ be a finitely generated group equipped with a finite symmetric generating set
SΓ. Given any standard measured Γ-space (Ω, µ) and any function f ∈ Lp(Ω, µ), define the Lp norm of
its SΓ-gradient by the formula

‖∇SΓf‖
p
p =

∑
s∈SΓ

‖f − s ∗ f‖pp ,

where s ∗ f(x) = f(s−1 ∗ x).
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Remark 4.7. Note that by the linearity of the integral and the symmetry of SΓ, we have

‖∇SΓf‖
p
p =

∫
Ω

∑
s∈SΓ

|f(ω)− f(s ∗ ω)|p dµ(ω)

There are two natural ways to view Γ as a Γ-space (action by left or right multiplication), so we
define the Lp-norm of the left SΓ-gradient f on Γ by∥∥∇lSΓ

f
∥∥p
p

=
∑
s∈SΓ

∑
γ∈Γ

|f(γ)− f(sγ)|p =
∑
s∈SΓ

∑
γ∈Γ

∣∣f(γ)− f(s−1γ)
∣∣p

and the Lp-norm of the right SΓ-gradient f on Γ by∥∥∇rSΓ
f
∥∥p
p

=
∑
s∈SΓ

∑
γ∈Γ

|f(γ)− f(γs)|p =
∑
s∈SΓ

∑
γ∈Γ

∣∣f(γ)− f(γs−1)
∣∣p .

The following lemma shows how the right-gradient can be used to control what happens when we
push forward functions on Γ to a Γ-space using different basepoints. It is reminiscent of the fact that
right Reiter functions on a group Γ can be pushed to Reiter functions on any equivalence relation
induced by a Γ-action (see e.g. [KM04, Prop. 9.2]).

Lemma 4.8. Let X be a transitive Γ-set and let x0 ∈ X. Let p > 1. The map RΓ → RX which
associates to every f ∈ RΓ the function fx0

given by

fx0
(y) =

( ∑
γ:γ·x0=y

|f(g)|p
)1/p

satisfies ‖fx0‖p = ‖f‖p. Moreover, if SΓ is a finite generating set for Γ and if f ∈ `p(Γ) then for all
k ∈ Γ,and x1 = k · x0,

‖fx0
− fx1

‖p 6 dSΓ
(x0, x1)

∥∥∇rSΓ
f
∥∥
p
. (5)

Proof. Now assume that p > 1. The verification that ‖fx‖p = ‖f‖p is immediate. To obtain the
inequality (5), note that for each s ∈ SΓ and x0 ∈ X, we have by the triangle difference inequality

‖fx0 − fs·x0‖
p
p =

∑
y∈X

∣∣∣∣∣∣
( ∑
γ:γ·x0=y

|f(γ)|p
)1/p

−

( ∑
γ:γs·x0=y

|f(γ)|p
)1/p

∣∣∣∣∣∣
p

=
∑
y∈X

∣∣∣∣∣∣
( ∑
γ:γ·x0=y

|f(γ)|p
)1/p

−

( ∑
γ:γ·x0=y

|f(γs−1)|p
)1/p

∣∣∣∣∣∣
p

6
∑
y∈X

∑
γ:γ·x0=y

|f(γ)− f(γs−1)|p

6
∑
γ∈Γ

∣∣f(γ)− f(γs−1)
∣∣p ,

so by the definition of the gradient we have ‖fx0
− fs·x0

‖p 6 ‖∇SΓ
f‖p. The conclusion now follows

using the triangle inequality for the Lp-norm and the fact that Γ is acting by isometries on `p(X).

We now state a variant of that lemma that will serve in the proof of Theorem 4.2.

Lemma 4.9. Let ϕ : (0,∞)→ (0,∞) be a function such that both ϕ and t 7→ t/ϕ(t) are non-decreasing.
Given a transitive Γ-set X and a point x0 ∈ X, the map RΓ → RX which associates to every f ∈ RΓ

the function fx given by

fx0(y) =
∑

γ:γ·x=y

|f(γ)|
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satisfies ‖fx0
‖1 = ‖f‖1. Moreover, if SΓ a a finite generating set for Γ, if x0, x1 ∈ X and if f is a

finitely supported function on Γ such that
∥∥∇rSΓ

∥∥
1

= 1, then

‖fx0
− fx1

‖1
‖f‖1

6
2ϕ(dSΓ(x0, x1))

ϕ(‖f‖1)
. (6)

Proof. The main observation is that by triangular inequality

‖fx0
− fx1

‖1 6 2 max
i=0,1

‖fxi‖1 = 2 ‖f‖1 .

Using the monotonicity of t/ϕ(t) we obtain

‖fx0
− fx1

‖1 = ϕ(‖fx0
− fx1

‖1)
‖fx0

− fx1
‖1

ϕ(‖fx0 − fx1‖1)
6 ϕ(‖fx0

− fx1
‖1)

2 ‖f‖1
ϕ(2 ‖f‖1)

.

Now, since ‖∇f‖1 = 1, by applying Lemma 4.8 for p = 1 and using the monotonicity of ϕ we get

‖fx0
− fx1

‖1 6 2ϕ(dSΓ
(x0, x1))

‖f‖1
ϕ(‖f‖1)

So the lemma follows.

4.2 The induction technique

In this section, we shall prove that if p > 1 and Γ is an Lp measure subquotient of Λ, then every `p

function on Λ induces a function on Ω whose SΓ-gradient is well behaved (and a similar statement for
ϕ measure subquotient). To deal with subquotients, we need a non-free analogue of the fact that if Λ is
acting freely on Ω and XΛ is a fundamental domain, the map (x, λ) 7→ λ ∗ x is a measure-preserving
bijection between XΛ × Λ and Ω.

Lemma 4.10. Suppose XΛ is a fundamental domain for a measure-preserving Λ-action on a standard
measured space (Ω, µ). Then for every Borel A ⊆ Ω, we have

µ(A) =

∫
XΛ

|(Λ ∗ x) ∩A| dµ(x).

In particular, for every measurable function f : Ω→ R, we have∫
Ω

f dµ =

∫
XΛ

∑
y∈Λ∗x

f(y) dµ(x).

Proof. Since every subset of Ω can be written as a disjoint union of Λ-translates of Borel subsets of XΛ,
it suffices to show that the right term defines a Borel measure on Ω which is Λ-invariant and coincides
with µ when restricted to XΛ. The fact that the formula

m(A) =

∫
XΛ

|(Λ ∗ x) ∩A| dµ(x).

defines a Borel measure follows from the fact that the map x 7→ |(Λ ∗ x) ∩A| is Borel. Λ-invariance is
clear, and the fact that the two measures coincide when restricted on XΛ is also straightforward to
check.

Proposition 4.11. (Monotonicity of the `p-gradient under Lp measured subquotient) Let p > 1. If Γ
is an Lp measure subquotient of Λ via a coupling (Ω, XΓ, XΛ, µ), and if f ∈ `p(Λ), then the induced

function f̃ on Ω defined by f̃(ω) =
(∑

λ:λ−1∗ω∈XΛ
|f(λ)|p

)1/p
satisfies ‖f̃‖pp = ‖f‖pp µ(XΛ) and∥∥∥∇SΓ

f̃
∥∥∥p
p
6 C

∥∥∇rSΛ
f
∥∥p
p
,

where C = |SΓ|max
s∈SΓ

∫
XΛ

dSΛ
(s · x, s ∗ x)pdµ(x).
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Proof. As in the previous lemma, we think of Ω as a fibered space over XΛ whose fibers are Λ-orbits.
We may then view f̃ as a function of two variables F (x, y) where x ∈ XΛ and y ∈ Λ ∗ x given by

F (x, y) =
∑

λ:λ∗x=y

f(λ).

For each s ∈ SΓ, the function s−1 ∗ f̃ : ω 7→ f̃(s ∗ ω) then corresponds to the function

(x, y) 7→ F (s · x, s ∗ y),

by the definitions of our identifications. Now note that s induces an Λ-equivariant bijection between
h ∗ x and h ∗ (s ∗ x) which takes x to s ∗ x, the latter being at distance dSΛ

(s · x, s ∗ x) from s · x ∈ XΛ,
so by Lemma 4.8(i) and our definition of F we have

‖F (s · x, s ∗ ·)− F (x, ·)‖pp 6 dSΛ
(s · x, s ∗ x)

∥∥∇rSΓ
f
∥∥p
p

We can now use Lemma 4.10 to compute for all s ∈ SΓ∥∥∥f̃ − s−1 ∗ f̃
∥∥∥p
p

=

∫
XΛ

∑
y∈Λ·x

|F (x, y)− F (s · x, s ∗ y)|p

6
∫
XΛ

dSΛ
(s · x, s ∗ x)

∥∥∇rSΓ
f
∥∥p
p

The desired inequality now follows by the definition of
∥∥∥∇SΓ

f̃
∥∥∥p
p

and the symmetry of SΓ.

Proposition 4.12. (Monotonicity of the `1-gradient under ϕ measured subquotient) Let ϕ : (0,∞)→
(0,∞) be a function such that ϕ and t/ϕ(t) are non-decreasing. If Γ is an ϕ measure subquotient of Λ
via a coupling (Ω, XΓ, XΛ, µ), and if f is a finitely supported function on Λ such that

∥∥∇rSΛ
f
∥∥

1
= 1,

then the induced function f̃ on Ω defined by f̃(ω) =
∑
h:h−1∗ω∈XΛ

f(h) satisfies

‖∇SΓ f̃‖1
‖f̃‖1

6
2C

ϕ(‖f‖1)
,

where C =
|SΓ|
µ(XΛ)

max
s∈SΓ

∫
XΛ

ϕ(dSΛ
(s · x, s ∗ x))dµ(x).

Proof. We view f̃ as a function of two variables F (x, y) where x ∈ XΛ and y ∈ Λ ∗ x given by

F (x, y) =
∑

λ:λ∗x=y

|f(λ)|.

The proof is then similar to the previous case: using Lemma 4.9, we obtain

‖F (s · x, s ∗ ·)− F (x, ·)‖1
‖f‖1

6
2ϕ(dSΛ

(s · x, s ∗ x))

ϕ(‖f‖1)
,

which together with Lemma 4.10 and the fact that ‖f̃‖1 = µ(XΛ) ‖f‖1 yields the desired inequality.

Remark 4.13. Using Fubini’s theorem and the natural identification of XΓ × Γ with Ω given by

(x, g) 7→ g ∗ x, we may rewrite
∥∥∥∇SΓ

f̃
∥∥∥p
p

as

∥∥∥∇SΓ
f̃
∥∥∥p
p

=

∫
XΓ

∑
s∈SΓ

∑
γ∈Γ

∣∣∣f̃(γ ∗ x)− f̃(sγ ∗ x)
∣∣∣p dµ(x)
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Now for each x ∈ XΓ, the function f̃ defines a function fx on Γ given by fx(γ) = f̃(γ ∗ x), and the
previous equality may thus be rewritten as∥∥∥∇SΓ

f̃
∥∥∥p
p

=

∫
XΓ

∥∥∇lSΓ
fx
∥∥p
p
dµ(x).

So the conclusion of the two previous propositions is that under the right assumption, any function
f on Λ of small right `p-gradient induces functions fx on Γ which have on average a small left `p

gradient. From there on, as we will see in the next section, it is not hard to conclude the proof that the
isoperimetric profile goes down for p > 1 under the assumption that the coupling is finite-to-one.

But without the finite-to-one assumption, we lose the uniform control on the size of the support.
We will circumvent this by simultaneously controlling the size of the support of fx and bounding its
norm from below on a large portion of the fundamental domain of Γ. This will be done in Section 4.4.

A similar comment holds for p < 1 except that the behavior under quotient (even group quotient)
of the Lp-isoperimetric profile is unclear. Besides, we need an L1-integrability condition to induce it
(see Proposition 4.2).

4.3 Monotonicity under at most m-to-one measure subquotients

In this section we shall prove the second items of Theorem 4.1 and Theorem 4.2.
The common feature between these statements is that the coupling is supposed to be at most

m-to-one. This has the following consequence.

Lemma 4.14. Let (Ω, XΓ, XΛ, µ) be an at most m-to-one measure subquotient coupling between Γ and
Λ. Let f be a function on Λ whose support has cardinality at most K, and let (fx)x∈XΓ

be the family
of functions on Γ defined by

fx(γ) =

 ∑
λ:λ∗(γ∗x)∈XΛ

|f(λ)|p
1/p

,

for some p > 0. Then for each x ∈ XΓ, the function fx has support of cardinality at most mK.

Proof. Let x ∈ XΓ, let λ0 ∈ Λ such that λ0 ∗ x ∈ XΛ. By definition for every γ ∈ Γ and λ ∈ Λ we have
λ ∗ (γ ∗ x) ∈ XΛ if and only if λ ∗ (γ ∗ x) = γ · (λ0 ∗ x), which since the Γ and Λ-actions on Ω commute
is in turn equivalent to λ ∗ x = γ−1 ∗ (γ · (λ0 ∗ x)). So we have

fx(γ) =
∑

λ:λ∗x=γ−1∗(γ·(λ0∗x))

f(h).

The conclusion now follows from our assumption that the map γ 7→ γ−1 ∗ (γ · (λ0 ∗ x)) is at most
m-to-one.

Proof of Theorem 4.1(ii). We start with a function f that realize the Lp-isoperimetric profile of Λ, and
we consider the function f̃ on Ω defined in Proposition 4.2. By Proposition 4.2, there exists C ′ only
depending on the coupling such that

‖∇SΓ
f̃‖pp

‖f̃‖pp
6 C ′

∥∥∇rSΛ
f
∥∥p
p

‖f‖pp
.

This implies that on a set of positive measure, the function fx on Γ satisfies

‖∇lSΓ
fx‖pp

‖fx‖pp
6 2C ′

∥∥∇rSΛ
f
∥∥p
p

‖f‖pp
.

On the other hand, by Lemma 4.14, the support of fx is almost surely less than m| supp(f)|. Hence we
deduce that Ip,Γ(mn) 6 2C ′Ip,Λ(n), so we are done.

27



Proof of Theorem 4.2(ii). As before we start with a function f that realize the L1-isoperimetric profile
of Λ. We then normalize f such that

∥∥∇rSΛ
f
∥∥

1
= 1 and consider the function f̃ on Ω defined in

Proposition 4.2. We deduce from Proposition 4.2 that

‖∇SΓ
f̃‖1

‖f̃‖1
6

C ′

ϕ(‖f‖1)
,

and the rest of the proof is identical.

4.4 Monotonicity under measure quotients

In this section we prove the first items of Theorem 4.1 and Theorem 4.2. We start by fixing a symmetric
generating subset W of Λ so that Z := W.XΛ ∩XΓ has measure at least 3/4.

We are then given a function f1 which realizes the isoperimetric profile of Λ which we first change
as follows. We define a function f2 on Λ by f2(h) = maxw∈W |f1(wh)|. The important fact is that f2

“almost” realizes the isoperimetric profile of Λ: the support of f2 has size at most |W | times the support
of f1, ‖f2‖p > ‖f1‖p, and

‖∇f2‖pp 6 K‖∇f1‖pp, (7)

where K = |W |2(2 maxw∈W |w|SΛ + 1)p. Indeed,

‖∇f2‖pp 6
∑

w,w′∈W,λ∈Λ,s∈SΛ

|f1(sw′λ)− f1(wλ)|p

=
∑

w,w′∈W,λ∈Λ,s∈SΛ

|f1(w−1sw′λ)− f1(λ)|p

6
∑

w,w′∈W
(|w−1|SΛ

+ |w′|SΛ
+ 1)p

∑
λ∈Λ,s′∈SΛ

|f1(s′λ)− f1(λ)|p

6 |W |2(2 max
w∈W

|w|SΛ
+ 1)p

∑
λ∈Λ,s′∈SΛ

|f1(s′λ)− f1(λ)|p,

where the third inequality follows by triangular inequality, after writing w−1sw′ as a word in SΛ.
For all p > 0, we set

F2(ω) =

( ∑
λ:h∗ω∈XΛ

f2(λ)p

)1/p

.

As in the previous section, this provides a random function f̃2(x, ·) on Γ for x ∈ XΓ given by

f̃2(x, γ) = F2(γ ∗ x) =

 ∑
λ:λ∗γ∗x∈XΛ

f2(λ)p

1/p

.

If the Λ-action is assumed to be free, then

F2(ω) =
∑

λ:λ∗ω∈XΛ

f2(λ).

Therefore, under the assumption that p > 1 (item (i)) or that the Λ action is free (item (iii)), Proposition
4.2 implies that we find V and V ′ of XΓ of measure 9/10, such that for all x ∈ V ,∥∥∥∇SΓ

f̃2(x, ·)
∥∥∥p
p
6 10C ‖∇SΓ

f2‖pp ,

and for all x ∈ V ′
| supp(f̃2(x, ·)| 6 10µ(XΛ)| supp(f2)|.
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For the proof of Theorem 4.2, we normalize f2 such that ‖∇SΓ
f2‖1 = 1. Using Proposition 4.2 instead

of Proposition 4.2, we find V and V ′ of XΓ of measure 9/10, such that for all x ∈ V ,∥∥∥∇SΓ
f̃2(x, ·)

∥∥∥
1

‖f2‖1
6

10C

ϕ(‖f2‖1)
,

and for all x ∈ V ′
| supp(f̃2(x, ·)| 6 10µ(XΛ)| supp(f2)|.

We now need to find a subset of large measure on which the `p-norm of f̃2(x, ·) satisfies a uniform
lower bound. This is where we use that W is a symmetric generating subset so that Z := W ∗XΛ ∩XΓ

has measure at least 3/4. Items (i) of Theorem 4.1 and Theorem 4.2 result from the following lemma,
whose proof occupies the rest of the section.

Lemma 4.15. There exists a measurable subset Y ⊂ XΓ of measure > 1/2 such that for all y ∈ Y ,∑
γ∈Γ

∣∣∣f̃2(y, γ)
∣∣∣p > 1

4|W |
‖f1‖pp .

Proof. We start with the following observation.

Claim 4.16. For all x ∈ XΓ and λ ∈ Λ such that λ ·x ∈ Z, there is γ ∈ Γ such that λ ∗ γ ∗x ∈W ∗XΛ.

Proof of the claim. This follows by inspection of the definitions: λ · x ∈ Z means that there exists
γ ∈ Γ such that λ ∗ γ ∗ x ∈ Z, and therefore that λ ∗ γ ∗ x ∈W ∗XΛ. �claim

We now have the following crude inequality from the claim, which we then rewrite by exchanging
orders of summation: ∑

λ:λ·x∈Z

|f1(λ)|p 6
∑
λ

∑
γ:h∗g∗x∈W∗XΛ

|f1(λ)|p

6
∑
γ

∑
λ:λ∗γ∗x∈W∗XΛ

|f1(λ)|p .

We can rewrite the above sum as∑
γ

∑
w∈W

∑
λ:wλ∗γ∗x∈XΛ

|f1(λ)|p =
∑
γ

∑
w∈W

∑
λ:λ∗γ∗x∈XΛ

∣∣f1(w−1λ)
∣∣p

6
∑
γ

∑
w∈W

∑
λ:λ∗γ∗x∈XΛ

f2(λ)p

6 |W |
∥∥∥f̃2(x, ·)

∥∥∥p
p
,

where we used that f2(λ) = maxw∈W |f1(wλ)| to go from the first to the second line. Putting this
together with the previous inequation, we obtain that∑

λ,λ·x∈Z

|f1(λ)|p 6 |W |
∥∥∥f̃2(x, ·)

∥∥∥p
p
,

which we finally rewrite as ∑
γ∈Γ

∣∣∣f̃2(x, γ)
∣∣∣p > 1

|W |
∑

λ,λ·x∈Z

|f1(λ)|p . (8)
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On the other hand, we have∫
XΓ

∑
λ,λ·x∈Z

|f1(λ)|p dµ(x) >
∫
XΓ

∑
λ∈Λ

|f1(λ)|p 1λ−1·Z(x)dµ(x)

>
∑
λ∈Λ

|f1(λ)|p
∫
XΓ

1λ−1·Z(x)dµ(x)

= ‖f1‖pp µ(Z)

>
3

4
‖f1‖pp .

We will now use this towards the following claim from which the result easily follows.

Claim 4.17. There is a subset Y ⊂ XΓ of measure at least 1/2 such that for all x ∈ Y ,∑
λ:λ·x∈Z

|f1(λ)|p > 1

4
‖f1‖pp .

Proof. Indeed, assume by contradiction that∑
λ:λ·x∈Z

|f1(λ)|p < 1

4
‖f1‖pp

for all x in a set V ⊂ XΓ of measure > 1/2. Then by the inequation just before this claim, we have

3

4
‖f1‖pp 6

∫
V

∑
λ:λ·x∈Z

|f1(λ)|p dµ(x) +

∫
V c

∑
λ:λ·x∈Z

|f1(λ)|p dµ(x)

<
1

4
‖f1‖pp +

1

2
‖f1‖pp

<
3

4
‖f1‖pp ,

which is a contradiction.

Putting the above claim together with inequation (8) we deduce that for all x ∈ Y ,∑
γ∈Γ

∣∣∣f̃2(x, γ)
∣∣∣p > 1

|W |
∑

λ:λ·x∈Z

|f1(λ)|p > 1

4 |W |
‖f1‖pp

as wanted.

4.5 A quantitative version of the Ornstein-Weiss theorem

In this section, we first observe that any two amenable groups admit a (ϕ,ϕ)-integrable orbit equivalence
coupling for some ϕ which grows slower than the logarithm, and then that there cannot be a universal
such ϕ, thus proving Corollary 2 from the introduction.

Proposition 4.18. For every orbit equivalence coupling between two finitely generated groups Γ and
Λ, there exists a concave increasing unbounded function ϕ with ϕ(0) = 0 and a (ϕ,ϕ) orbit equivalence
coupling between them. Moreover one can assume that ϕ(t)/ log t is non-increasing on [1,∞).
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Proof. Let

k(t) = µ

({
x ∈ X; max

s∈SΓ

|α(s, x)|SΛ
> t

})
+ µ

({
x ∈ X; max

s∈SΛ

|β(s, x)|SΓ
> t

})
.

Since k tends to zero at infinity, there exists an increasing sequence of positive integers (an) such that
a0 = 0, and k(an) 6 2−n. Up to taking a subsequence, that we can assume that an+1 − an and log an

n
are non-decreasing. Let ϕ be the continuous piecewise linear function with breakpoints an satisfying
ϕ(an) = n. Note that ϕ is increasing, concave and such that ϕ(t)/ log t is non-increasing on [1,∞).
Moreover we have for all s ∈ SΓ,∫

ϕ(|α(s, x)|SΛdµ(x) 6
∑
n>0

ϕ(an)µ ({x ∈ X; |α(s, x)|SΛ > an})

6
∑
n>0

nk(an)

6
∑
n>0

2−nn <∞,

The same computation shows that for all s ∈ SΛ,∫
ϕ(|β(s, x)|SΓ)dµ(x) <∞.

So we are done.

We deduce the following quantitative version of Ornstein and Weiss’s theorem.

Corollary 4.19. Let Γ and Λ be infinite finitely generated amenable groups. There exists a concave
increasing unbounded function ϕ with ϕ(0) = 0 and ϕ(t)/ log t non-increasing on [1,∞) such that there
is a (ϕ,ϕ) orbit equivalence coupling between them.

Recall the following theorem from [BZ15].

Theorem 4.20. Let F be a decreasing function such that F (t) log t is non-decreasing on [1,∞). Then
there exists a finitely generated group Γ whose isoperimetric profile satisfies I1,Γ � F .

We deduce the following corollary, which is in sharp contrast with the previous corollary.

Corollary 4.21. For every concave increasing unbounded function ψ such that ψ(t)/ log t is non-
increasing on [1,∞) there exists a finitely generated amenable group Γ with the following property: for
every concave function ϕ such that ϕ(0) = 0, if Γ is a ϕ-integrable measure subquotient of Z, then
ϕ 4 ψ.

Proof. Consider the function F (t) = 1
ψ(t) , then F (t) log t = log(t)/ψ(t), so it is non-decreasing on

[1,+∞). We can then apply Theorem 4.20 and find a finitely generated group Γ whose isoperimetric
profile satisfies I1,Γ � F .

Now let ϕ be a concave non-decreasing function such that ϕ(0) = 0, then by concavity we have that
t/ϕ(t) is non-decreasing. If there is a ϕ-integrable measure subquotient coupling from Γ to Z, then we
can apply Theorem 4.2, and since I1,Z(n) � 1/n and I1,Γ � 1

ψ we get that 1
ψ 4

1
ϕ , hence ϕ 4 ψ as

wanted.

It is now easy to deduce Corollary 2 from Corollary 4.21 using the composition rule for couplings
(see Proposition 2.27).

31



5 L∞-measure subgroups

In this section we discuss the notion of at most m-to-one L∞-measure subgroups. We shall see that for
amenable groups this notion is equivalent to that of regular embedding, which will allow us to deduce
various results stated in the introduction.

5.1 L∞-measure subgroups and regular embeddings

The following proposition can be extracted from the proof of [Sha04, Thm. 2.1.2], and provides a useful
way of building measured subgroup couplings from Borel subquotient couplings.

Proposition 5.1. Let Ω be a standard Borel space, suppose that we have a Γ× Λ-action on Ω which
has a Borel Λ fundamental domain XΛ, that Λ is acting freely and that we have a Γ-invariant probability
measure µ for the induced action on XΛ. Then µ has a unique Λ-invariant extension to a σ-finite
invariant measure m on Ω which is Γ-invariant as well.

In particular, if the Γ-action on Ω was free and had a Borel fundamental domain, then Γ is a
measure subgroup of Λ.

Proof. Since every Borel subset of Ω is a countable disjoint union of Λ-translates of Borel subsets of
XΛ, the Λ-invariant extension of µ is unique. We build it by letting

m(A) =
∑
λ∈Λ

µ((λ ∗A) ∩XΛ).

By definition, the measure m is Λ-invariant, let us show that it is Γ-invariant as well. Let γ ∈ Γ, if A is
a Borel subset of XΛ, by the definition of the induced action on XΛ we have

γ ·A =
⊔
λ∈Λ

(λ ∗ γ ∗A) ∩XΛ

and so m(γ ∗A) = µ(γ ·A) = µ(A) = m(A). Now for an arbitrary λ ∈ Λ and a Borel subset A ⊆ XΛ,
we have

m(γ ∗ (λ ∗A)) = m(λ ∗ (γ ∗A)) = m(γ ∗A) = m(A) = m(λ ∗A),

and since every Borel subset of Ω is a countable disjoint union of Λ-translates of Borel subsets of XΛ,
we conclude that the Γ-action on Ω preserves m.

Recall the following definition from [BST12].

Definition 5.2. Let Γ and Λ be two countable finitely generated groups, a map f : Γ→ Λ is a regular
embedding if it is Lipschitz and there exists m ∈ N such that the preimages of f have size at most m
for some m ∈ N. When there exists such a map, we say that Γ regularly embeds in Λ.

Remark 5.3. Coarse embeddings are special cases of regular embeddings.

The second part of the following theorem is a slightly generalized version of [Sha04, Thm. 2.1.2]
(which was proved for coarse embeddings).

Theorem 5.4. Let Γ and Λ be finitely generated groups.

• Assume that Γ is an L∞-subgroup of Λ. Then Γ regularly embeds into Λ.

• Conversely, if Γ regularly embeds into Λ and Γ is amenable, then Γ is an at most m-to-one L∞

measure subgroup of Λ.

We deduce from the first statement of Theorem 5.4 and the fact that asymptotic dimension is
monotonous under regular embedding (see [BST12]) the following corollary.
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Corollary 5.5. The asymptotic dimension is monotonous under taking at most m-to-one L∞ measure
subgroup.

And from the second part of the theorem, we deduce the following result that we announced in the
introduction.

Corollary 5.6. For every 1 6 p 6∞, the isoperimetric profile is monotonous under regular embedding
between amenable groups.

Proof. Let Γ and Λ be finitely generated amenable groups. By the previous theorem, the existence of a
regular embedding from Γ to Λ implies that of an at most m-to-one L∞ measure subgroup coupling
from Γ to Λ. Such a coupling is in particular L1, so the result follows from the second item in Theorem
4.1.

The rest of this subsection is dedicated to the proof of the theorem.

Proof of Theorem 5.4. The first statement is clear as the assumptions imply the cocycle is almost surely
Lipschitz and at most m-to-one. We now prove the second statement of the theorem. We fix K such
that there is an m-to one K-Lipschitz maps Γ→ Λ. We then let F be a finite set of cardinality m, and
denote by πΛ : Λ× F → Λ the projection on the first coordinate. Our coupling space is

Ω := {f : Γ→ Λ× F : f is injective and πΛ ◦ f is K-Lipschitz}

Note that since F has cardinality m, every at most m-to-one map Γ → Λ can be lifted to an
injective map Γ → Λ × F , so Ω is not empty. The Lipschitz condition and the fact that balls in Λ
are finite ensures that Ω is locally compact for the product topology. As before we have a Γ × Λ-
action given by (γ, λ) · f(g) = λf(γ−1g), and a compact fundamental for the Λ-action is given by
XΛ = {f ∈ Ω : πΛ(f(1Γ)) = 1Λ}. We also have a Borel fundamental domain for the Γ-action obtained
as follows: we fix a well-order < on Λ, and then the set of functions f which attain their <-minimum
at 1Γ is the desired Borel fundamental domain.

The cocycle c : Γ×XΛ → Λ is given by c(γ, f) = πΛ(f(γ−1))−1, and the injectivity condition yields
that Γ acts freely. Finally for each γ ∈ Γ, the Lipschitz condition implies that c(γ, ·) is bounded, and
since Γ is amenable we may find a Γ-invariant measure on XΛ which we extend via Proposition 5.1 in
order to get the desired L∞ measure subgroup coupling.

5.2 A continuum of 3-solvable groups

In this section we prove the following result, announced in the introduction.

Theorem 5.7. There exists a uncountable family of groups Γi, such that

(i) Γi = Ni o Z, where Ni is locally finite, and 2-step nilpotent;

(ii) for any i 6= j and any m > 1, Γi is not an at most m-to-one L1-measure subquotient (nor an
L1-measure quotient) of Γj.

Note that (i) implies in that Γi is 3-step solvable and has asymptotic dimension 1. We deduce the
result announced in the introduction.

Corollary 5.8. There exists a uncountable family of groups Γi, such that

(i) Γi = Ni o Z, where Ni is locally finite, and 2-step nilpotent;

(ii) for any i 6= j and any m > 1, Γi does not regularly embed into Γj.
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Proof of Theorem 5.7. To prove the theorem, we shall use [EZ17, Corollary 3.3] which is phrased in
terms of Følner function. Since the Følner function is asymptotically equivalent to the generalized
inverse of the L1-isoperimetric profile (see for instance [BZ15, §4.1]), Corollary 5.6 implies that it is
monotonous under regular embedding.

Now by [EZ17, Corollary 3.3], for any non-decreasing function τ : [1,∞) → [1,∞) such that
τ(n+ 1)− τ(n) 6 n and τ(n) > n, there exists a group as in (i) whose Følner function is asymptotically
equivalent to exp(τ(n)). Let us now explain how to get uncountably many asymptotically incomparable
such functions.

Claim 5.9. For every 1 < a < b < 2, there is a non-decreasing function τa,b : N→ N such that for all
n ∈ N we have

τa,b(n) > n and τa,b(n+ 1)− τa,b(n) 6 n, (*)

and the following three conditions are met:

(1) for all but finitely many n ∈ N we have na 6 τa,b(n) 6 nb;

(2) there are infinitely many n ∈ N such that τa,b(n) = nb;

(3) the set of n ∈ N such that τa,b(n) = na contains arbitrarily large intervals.

Moreover, for every 1 < a′ < a < b < b′ < 2, the functions exp(τa,b) and exp(τa′,b′) are asymptotically
incomparable.

Proof of the claim. Let us start by proving the existence of τa,b as above for 1 < a < b < 2. First, we
fix N ∈ N such that for all n > N , we have (n+ 1)b − nb 6 n, so in particular (n+ 1)a − na 6 n. Since
b < 2, we may and do fix N0 > N such that

N0−1∑
n=0

n > N b
0 .

We then define τa,b by induction on the interval [0, N0] by τa,b(0) = 0 and for all n < N0,

τa,b(n+ 1) = min(τa,b(n) + n,N b
0).

Observe that by the previous inequation τa,b(N0) = N b
0 .

Suppose now by induction τa,b has been defined on an interval [0, Nk], satisfies (*) and satisfies
τa,b(Nk) = N b

k , then it suffices to explain how to extend its definition to a bigger interval [0, Nk+1] so
that it still satisfies (*) and

(1’) for all n ∈ (Nk, Nk+1] we have na 6 τa,b(n) 6 nb;

(2’) τa,b(Nk+1) = N b
k+1;

(3’) there is an interval Ik of size k such that for all n ∈ Ik, τa,b(n) = na.

In order to do so, let Mk be the first integer such that (Mk)a > N b
k . We then let τa,b(n) = N b

k for all
n ∈ (Nk,Mk), and then for all n ∈ [Mk,Mk + k] we let τa,b(n) = na, which takes care of condition (2’).

Then, since b < 2, we may and do define Nk+1 as the least integer such that

τa,b(Nk + k) +

Nk+1−1∑
n=Nk+k

n > N b
k+1.

We now define by induction on n ∈ [Nk + k,Nk+1)

τa,b(n+ 1) = min(n+ τa,b(n), nb),
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which by the previous inequation guarantees that τa,b(Nk+1) = N b
k+1, so (3’) is satisfied. Finally, since

for all n > Nk, we have (n+ 1)a − na 6 n, an inspection of the definition shows that condition (*) is
still satisfied, and (1’) is clearly satisfied. This finishes the construction of the desired τa,b.

We now prove the incomparability statement. First note that we cannot have exp(τa′,b′) asymptoti-

cally bounded by exp(τa,b) since we have τa′,b′(n) = nb
′

for infinitely many n ∈ N but τa,b(n) 6 nb for
all but finitely many n ∈ N and b < b′.

Conversely, suppose that there is C ∈ N such that for all n ∈ N, we have exp(τa,b(n)) 6
C exp(τa′,b′(Cn)). Note that the set {Cn : n ∈ N} has to intersect infinitely many times any set
which contains arbitrarily large intervals. Since τa′,b′ satisfies condition (3) we thus find infinitely may

n ∈ N such that τa′,b′(Cn) = (Cn)a
′
. On the other hand for all but finitely many n ∈ N we have

τa,b(n) > na. We conclude that there are infinitely many n ∈ N such that

exp(na) 6 C exp((Cn)a
′
),

a contradiction. �claim

We now fix for every 1 < a < b a function τa,b as above. Then it satisfies the assumption of [EZ17,
Corollary 3.3], so there is a group Γa,b satisfying (i) whose Følner function is asymptotically equivalent
to exp(τa,b).

Now, as explained right before the previous claim, the Følner function is monotonous under coarse
embeddings. So by the claim for all 1 < a′ < a < b < b′ < 2, the groups Γa,b and Γa′,b′ are not
coarsely embeddable one another. Therefore the family (Γ1+ε,2−ε)0<ε<1/2 is the uncountable family we
seeked.

6 Følner tilings

6.1 Følner tiling sequences and orbit equivalence

Definition 6.1. Let Γ be an amenable group, given a sequence (Fk) of finite subsets of Γ, we say that
(Fk) is a (left) Følner tiling sequence if when we define by induction the sequence of finite subsets
(Tk) (the associated sequence of tiles) by T0 = F0 and Tk+1 = TkFk+1, then

(i) we actually can write this as a disjoint union;

Tk+1 =
⊔

γ∈Fk+1

Tkγ;

(ii) (Tk) is a left Følner sequence: for all γ ∈ Γ, lim
k→+∞

|γFk \ Fk|
|Fk|

= 0.

If in addition there exists a decreasing sequence of finite index subgroups Γk such that the Fk’s are
left coset representatives of Γk−1 modulo Γk, then we call (Fk) a profinite Følner tiling sequence
associated to (Γk).

Remark 6.2. In some examples it will be more convenient to consider right Følner tiling sequences
(Fk), i.e. sequences such that (F−1

k ) is a left Følner tiling sequence. Equivalently, these are right Følner
sequences (Fk) such that if we define Tk = Fk · · ·F0 then every element of Tk can uniquely be written
as fk · · · f0 where each fi belongs to Fi. Nevertheless, every Følner tiling sequence will be a left Følner
tiling sequence unless specified otherwise.

To every Følner tiling sequence (Fk), we associate a measure-preserving Γ-action constructed as
follows. We consider the standard Borel probability space (X =

∏
k Fk, µ), where each factor is equipped
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with the normalized counting measure, and µ is the product measure. Each element x = (xk)k∈N of X
defines a sequence (gk(x))k∈N of elements of Γ given by

gk(x) = x0 · · ·xk ∈ Tk

Observe that by condition (i), each gk is an equidistributed random element of Tk. Since (Tk) is a
left Følner sequence, we deduce that for every γ ∈ Γ and almost every x ∈ X, there is n such that
γgn(x) ∈ Tn. We can then write uniquely γgn(x) = x′0 · · ·x′n where x′i ∈ Fi, and we then define

γ · (xk)k∈N = (x′0, ..., x
′
n, xn+1, xn+2, ...).

Observe that this does not depend on the choice of n because we have γgn+1(x) = γgn(x)xn+1 ∈ Tn+1.
It is then not hard to check that this defines a measure-preserving free action on (a full measure subset
of) X.

Up to measure zero, this group action induces the equivalence relation of equality up to a finite set of
indices, also called the cofinite equivalence relation Ecof . Indeed, we have just seen that for almost
every x ∈ X and all γ ∈ Γ, x and γ · x are equal up to a finite set of indices. Conversely, if x and x′ are
such that xj = x′j for all j > k + 1, the element γ = gk(x)gk(x′)−1 ∈ G satisfies γgk(x) = gk(x′) ∈ Tk,
and hence γ · x = x′.

For instance, if Γ = Z, Fk = {0, 2k}, the tiles are Tk = {0, ..., 2k+1 − 1} and for this example we get
the usual odometer, up to renaming each Fk as {0, 1}. More generally, when the tiles Tk are left coset
representatives for finite index subgroups Γk of Γ, and if Fk ⊂ Γk−1, then we get the profinite action
Γ y proj lim Γ/Γk. We deduce from this discussion the following proposition.

Proposition 6.3. Assume that (Fk) is a Følner tiling sequence for Γ. Then Γ has a measure-preserving
action on the infinite product probability space (X =

∏
k Fk, µ), which almost surely generates the

co-finite equivalence relation on this product. Moreover if (Fk) is a profinite Følner tiling sequence
associated to (Γk), then this action is isomorphic to the profinite action of Γ on lim←−Γ/Γk.

Consider the following (possibly infinite) measurable distance on X given by

ρ(x, x′) = inf{n ∈ N : ∀k > n, xk = x′k}

Observe that x and x′ are equal up to a finite set of indices if and only if ρ(x, x′) < +∞. Also, by the
definition of our action, for every γ ∈ Γ and almost every x ∈ X we have that ρ(γ · x, x) > k if and
only if γgk(x) 6∈ Tk. In particular,

µ ({x, ρ(γ · x, x) > k}) =
|Tk \ γ−1Tk|
|Tk|

=
|γTk M Tk|

2|Tk|
. (9)

In order to obtain quantitative statements, we introduce the following parameters.

Definition 6.4. Let (εk) be a sequence of strictly positive numbers tending to 0, and (Rk) be a sequence
of positive reals. Say that a Følner tiling sequence (Fk) of a finitely generated group Γ equipped with a
finite generating set SΓ is an (εk, Rk)-Følner tiling sequence when each tile Tk has dSΓ -diameter at
most Rk and every s ∈ SΓ satisfies |Tk \ sTk| 6 εk|Tk| (or equivalently |sTk \ Tk| 6 εk|Tk|).

Lemma 6.5. Let (Fk) be (εk, Rk)-Følner tiling sequence of a finitely generated group Γ equipped with
a finite generating set SΓ. Then

(i) for all s ∈ SΓ, we have for all k > 0 that µ ({x ∈ X : ρ(s · x, x) > k}) 6 εk;

(ii) for almost every x ∈ X, if |γ|SΓ
> 2Rk, then ρ(γ · x, x) > k.

Proof. The first item follows from equation (9), and the second item by its first part since if |γ|SΓ
> 2Rk,

then γTk ∩ Tk = ∅ as diam(Tk) 6 Rk.
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Observe that if two amenable groups Γ and Γ′ admit respective Følner tiling sequences (Fk) and (F ′k)
such that |Fk| = |F ′k|, then there is a natural measure-preserving bijection Ψ between the corresponding
product spaces (X,µ) and (X ′, µ′) that preserves the cofinite equivalence relation, and Proposition 6.3
now provides us with an explicit orbit equivalence between them. In what follows, we identify X and
X ′ via Ψ. The following proposition relates the parameters of the Følner tiling sequences with the
integrability of the cocycles.

Proposition 6.6. Suppose that (Fk) is an (εk, Rk) Følner tiling sequences for Γ and (F ′k) is an (ε′k, R
′
k)

Følner tiling sequence for Γ′. Then for all s ∈ SΓ and all k > 0,

µ
(
{x ∈ X : dSΓ′ (x, s · x) > 2R′k}

)
6 εk

In particular, the groups are orbit equivalent, and if ϕ : [0,∞)→ [0,∞) is a non-decreasing function
such that the sequence (ϕ(2R′k)(εk−1 − εk))k∈N is summable, then for all s ∈ SΓ∫

X

ϕ(dSΓ′ (x, s · x))dµ(x) <∞.

Proof. The first part follows from Lemma 6.5 as |Fk| = |F ′k| for all k ∈ N and

µ
(
{x ∈ X : dSΓ′ (x, s · x) > 2R′k}

)
6 µ ({x ∈ X : ρ(s · x, x) > k}) 6 εk.

The second part follows by noting that for s ∈ SΓ we have that∫
X

ϕ(dSΓ′ (x, s · x))dµ(x) 6 ϕ(2R′0) +

∞∑
k=1

ϕ(2R′k)µ
(
{x ∈ X : 2R′k−1 < dSΓ′ (x, s · x) 6 2R′k}

)
6 ϕ(R′0) +

∞∑
k=1

ϕ(2R′k)(εk−1 − εk),

which is finite by assumption.

6.2 Applications to groups with polynomial growth

We start applying Proposition 6.6 to torsion-free abelian groups.

Proposition 6.7. Let n be a positive integer. The group Zn (equipped with its standard generating set)
admits a profinite (εk, Rk)-Følner tiling sequence (Fk), with |Fk| = 2nk, Rk = n2k+1 and εk = 2−k−1

for any k > 0.

Proof. We let Fk = {0, 2k}n for any k > 0. One can check that Tk = {0, 1, . . . , 2k+1 − 1}n, which is a
coset representative for the finite index subgroup Γk = (2k+1Z)n. The diameter of Tk is bounded by
n2k+1 and its size equals 2n(k+1). Finally take s a generator of Zn. Without loss of generality, we can
assume that s is the first basis vector in Zn. Then, we have

Tk \ ((1, 0, . . . , 0) + Tk) = {0} × {0, 1, . . . , 2k+1 − 1}n−1,

whose cardinality is 2k+1 smaller than that of Tk, so we are done.

Corollary 6.8. Let n and m be positive integers. The group Zn (equipped with its standard generating
set) admits a (εk, Rk)-Følner tiling sequence (F ′k), with |F ′k| = 2nmk, Rk = n2m(k+1) and εk = 2−m(k+1)

for any k > 0.

Proof. Let (Fk)k be the Følner tilling sequence given in Proposition 6.7 and for any k > 0 let F ′k =
FmkFmk+1 . . . Fmk+m−1. Note that F ′k = {0, 2mk, 2·2mk, . . . , (2m−1)2mk}n and T ′k = {0, 1, . . . , 2mk+m−
1}n.

As T ′k is the set Tmk+m−1 from Proposition 6.7 we have that the diameter of T ′k is at most n2mk+m

and the set T ′k \ (s+ T ′k) has cardinality at most 2−mk−m|T ′k| for any standard generator s of Zn.
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The following theorem is almost sharp since by our extensions of Bowen’s theorem (Theorem 3.2),
if n < m and p > n

m , then there cannot be an Lp measure subquotient coupling from Zm to Zn.

Theorem 6.9. For every n and m, there exists an orbit equivalence coupling from Zm to Zn which is
for every ε > 0 a (ϕε, ψε)-integrable coupling, where

ϕε(x) =
xn/m

log(x)1+ε
and ψε(x) =

xm/n

log(x)1+ε
.

In particular if n < m,then then there is an (Lp,L1/p) orbit equivalence coupling from Zm to Zn for all
p < n

m .

Proof. Due to Corollary 6.8, we can take a (εk, Rk)-Følner tiling sequence (Fk)k for Zm with |Fk| = 2nm,
Rk = m2n(k+1) and εk = 2−n(k+1)+1 for any k > 0. Similarly, due to Corollary 6.8, we can take a
(ε′k, R

′
k)-Følner tiling sequence (F ′k)k for Zn with |F ′k| = 2nm , R′k = n2m(k+1) and ε′k = 2−m(k+1)+1 for

any k > 0. By Proposition 6.6 the groups are orbit equivalent. Moreover our orbit equivalence coupling
is ϕε-integrable as

∞∑
k=1

ϕε(R
′
k)εk−1 =

∞∑
k=1

(2n2m(k+1))n/m

(log(2n) +m(k + 1))1+ε
2−nk+1,

so we are summing over k > 1 a term which is asymptotically equivalent to k−1−ε, hence the sum is
finite. By exchanging the roles of n and m, we then see that our orbit equivalence coupling is actually
(ϕε, ψε)-integrable. Finally if n < m then for all p < n/m we both have that xp = o(ϕε(x)) and
x1/p = o(ψε(x)) as x→ +∞ so our coupling is also (Lp,Lp).

Remark 6.10. The expert reader will recognize in the above proof an explicit orbit equivalence
between the dyadic Zn and Zm odometers. Moreover, using this point of view it can be shown that
this coupling is not ψ0-integrable, so we ask the following refinements of question 1.1.

Question 6.11. Let n < m, is there a (ϕ,L∞) measure equivalence coupling from Zm to Zn, where

ϕ(x) = xn/m

log(x) ? What about a (ϕ,L0) measure equivalence coupling ?

Next we prove a similar result for the Heisenberg group, recall that the Heisenberg group is the
2-step torsion-free nilpotent group that can be defined as the group of triples (x, y, z) ∈ Z3 equipped
with the group operation

(x, y, z) · (x′, y′, z′) = (x+ x′, y + y′, z + z′ + yx′),

which comes from its identification with the group of matrices of the form

1 0 0
x 1 0
z y 1

.

Proposition 6.12. The Heisenberg group admits a profinite (εk, Rk)-Følner tiling (Fk) such that
|Fk| = 16, Rk = 14 · 2k+2 , and εk = 2−k for any k > 0.

Proof. For every k > 0 let

Fk =
{

(2kx, 2ky, 4kz) : x, y ∈ {0, 1}, z ∈ {0, 1, 2, 3}
}
.

We claim that (Fk) is a profinite Følner tiling. First note that it is profinite because for each k, the
set Fk is a right coset representative of Γk−1 modulo Γk, where Γk−1 is the (non normal) finite index
subgroup

Γk−1 =
{

(x, y, z) : x ≡ y ≡ 0 mod 2k, z ≡ 0 mod 4k
}
.

Towards proving that (Fk) is a left Følner tiling, let E1 = (1, 0, 0) and E2 = (0, 1, 0) be the standard
generators of the Heisenberg group, and A = (xA, yA, zA) ∈ Tk. By our definition, we can write A as

A = (x0, y0, z0)(2x1, 2y1, 4z1) · · · (2kxk, 2kyk, 4kzk)
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with xi, yi,∈ {0, 1}, and zi ∈ {0, 1, 2, 3}, which yields

xA =

k∑
i=0

2ixi, yA =

k∑
i=0

2iyi, and zA =

k∑
i=0

4izi +

k∑
i=1

2ixi

i−1∑
j=0

2jyj (10)

We thus see that we can recover the finite sequences (xi)
k
i=0 and (yi)

k
i=0 from the coefficients (xA, yA, zA)

of A as the binary expansions of xA and yA respectively, and then similarly ((zi)
k
i=0) is also completely

determined by (xA, yA, zA). Therefore the above decomposition of A as an element of F0 · · ·Fk is
unique for every element in Tk. Next note that diam(Fk) 6 2 · 2k + 4 · 2k+1, so diam(Tk) 6 10 · 2k+1.
Let us now estimate the cardinality of the set E1Tk \ Tk.

Towards this, we will estimate how many elements A ∈ Tk decomposed as above satisfy E1A ∈ Tk.
Fix m ∈ {0, ..., k}, let x0 = · · · = xm−1 = 1, xm = 0, and then fix arbitrary xm+1, ..., xk ∈ {0, 1},
y0, ..., yk ∈ {0, 1}. We will bound from below the number of possible parameters z0, ..., zk ∈ {0, 1, 2, 3}
such that the element

A = (x0, y0, z0)(2x1, 2y1, 4z1) · · · (2kxk, 2kyk, 4kzk) = (xA, yA, zA)

satisfies E1A ∈ Tk. We have E1A = (xA + 1, yA, xA + zA), so if the latter belongs to Tk, then by
equation (10) its decomposition

E1A = (x′0, y
′
0, z
′
0)(2x′1, 2y

′
1, 4z

′
1) · · · (2kx′k, 2ky′k, 4kz′k)

is given by x′i = 0 for i < m, x′m = 1 and x′i = xi for i > m, y′i = yi for all i ∈ {0, ..., k}, and finally the
z′i’s are subject to the equation

k∑
i=0

4iz′i +

k∑
i=1

2ix′i

i−1∑
j=0

2jyj =

k∑
i=0

4izi +

k∑
i=1

2ixi

i−1∑
j=0

2jyj .

We thus have:

k∑
i=0

4iz′i =

k∑
i=0

4izi +

k∑
i=1

2i(xi − x′i)
i−1∑
j=0

2jyj ,

Now recall that x′i = 0 for i < m, x′m = 1 and x′i = xi for i > m, so we can rewrite the last term as

k∑
i=1

2i(xi − x′i)
i−1∑
j=0

2jyj =

m∑
i=1

2i
i−1∑
j=0

2jyj − 2m
m−1∑
j=0

2jyj

We deduce that
∑k
i=1 2i(xi − x′i)

∑i−1
j=0 2jyj is negative, and its absolute value is strictly less than 4m.

Since
k∑
i=0

4iz′i =

k∑
i=0

4izi +

k∑
i=1

2i(xi − x′i)
i−1∑
j=0

2jyj ,

we see that as soon as
∑m
i=0 4izi > 4m, the above equation has a solution, so that E1A ∈ Tk. Taking

complements, this yields at most 4m possibilities for the sequence (zi)
k
i=0 so that E1A 6∈ Tk.

Now for a fixed m, we have 2k−m possible xA’s, 2k+1 possible yA’s and at most 4m+1 possible zA’s
such that E1A /∈ Tk, which yields a total of 2k−m2k+14m = 22k+22m possibilities. When xi = 1 for
every i, we never have E1A ∈ Tk, and then this adds 2k+14k+1 = 23k+3 possibilities.

We conclude that there are at most 23k+3 +

k∑
m=0

22k+22m < 23k+4 choices of A such that E1A /∈ Tk,

which means that |E1Tk \ Tk| < 23k+4.
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Now we estimate the cardinality of E2Tk \ Tk. This time we fix m and assume that y0 = · · · =
ym−1 = 1, ym = 0, and need to bound from below the number of A’s of the form

A = (x0, y0, z0)(2x1, 2y1, 4z1) · · · (2kxk, 2kyk, 4kzk) = (xA, yA, zA)

such that E2A ∈ Tk. Similarly as before, if AE2 ∈ Tk we may write it as

E2A = (xA, yA + 1, xA + zA) = (x′0, y
′
0, z
′
0)(2x′1, 2y

′
1, 4z

′
1) · · · (2kx′k, 2ky′k, 4kz′k),

so by equation (10) for all i ∈ {0, ..., k} we have x′i = xi, y
′
0 = · · · = y′m−1 = 0, y′m = 1 and y′i = yi for

all i > m. Finally the z′i’s satisfy

k∑
i=0

4iz′i +

k∑
i=1

2ixi

i−1∑
j=0

2jy′j =

k∑
i=0

2ixi +

k∑
i=0

4izi +

k∑
i=1

2ixi

i−1∑
j=0

2jyj .

We may rewrite our previous equation as

k∑
i=0

4iz′i −
k∑
i=0

4izi =

k∑
i=1

2ixi

i−1∑
j=0

2j(yj − y′j) +

k∑
i=0

2ixi

We then decompose the first sum in the right term, noting that by construction of the y′i’s, for all

i > m, we have
∑i−1
j=0 2j(yj − y′j) = −1 :

k∑
i=0

4iz′i −
k∑
i=0

4izi =

m∑
i=1

2ixi

i−1∑
j=0

2j −
k∑

i=m+1

2ixi +

k∑
i=0

2ixi

=

m∑
i=1

2ixi(2
i − 1) +

m∑
i=0

2ixi

=

m∑
i=1

4ixi + x0

< 22m+1

So for these xA and yA there exists at most 22m+1 values of zA such that E1A /∈ Tk (namely those such

that
∑k
i=0 4izi + 22m+1 > 4k+1) and as before we conclude that there exists at most

2k+14k+1 +

k∑
m=0

2k+12k−m22m+1 < 23k+4

choices of A such that E1A /∈ Tk. Thus, altogether we have that |EiTk \ Tk| 6 23k+4 for i ∈ {1, 2}, and
since |Tk| = 24k+4 we conclude that

|EiTk \ Tk| 6 2−k|Tk|,

so that we can pick εk = 2−k.

Theorem 6.13. There exists an orbit equivalence coupling between Z4 and Heis(Z) which is Lp in both
directions for all p < 1.

Proof. This follows from a straightforward computation, using the Følner tilings provided by Proposition
6.7 and Proposition 6.12.
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Remark 6.14. As explained in the introduction, there cannot be an L1 measure equivalence coupling
between Z4 and Heis(Z). A finer analysis reveals that our coupling is actually ϕε-integrable for all
ε > 0, where

ϕε(x) =
x

log(x)1+ε
.

We thus ask the following question.

Question 6.15. Is there a ϕ0-integrable measure equivalence coupling between Z4 and Heis(Z) ?

6.3 A coupling between Z and the lamplighter groups

In what follows, recall that given two countable groups Λ, Γ and a function f : Γ→ Λ, we defined the
support of f by supp f = {γ ∈ Γ: f(γ) 6= eΛ}. Note that ΛΓ is a group for pointwise multiplication.
We then define

⊕
γ∈Γ Λ as the subgroup of ΛΓ consisting of all functions which have finite support.

Finally, we define the wreath product Λ o Γ as the semi-direct product

Λ o Γ :=
⊕
γ∈Γ

Λ o Γ,

where the group multiplication is given by (f, γ) · (f ′, γ′) = (fγ · f ′, γγ′) and γ · f(g) = f(γ−1g). Such
groups are also referred to as lamplighter groups, especially when the acting group Γ is Z and the
lamp group Λ is a cyclic group. In the latter case, a standard generating set is provided by the pair

{(0, 1), (δ0, 0)} where δ0(n) =

{
1 if n = 0
0 otherwise.

Proposition 6.16. Let m > 2 be a positive integer. The group Z/mZoZ (equipped with the generating set

S = {(0, 1), (δ0, 0)}) admits a (εk, Rk)-Følner tiling sequence (Fk)k, with |F0| = 2m2, and |Fk| = 2 ·m2k ,
Rk = (m+ 1)2k+1 and εk = 2−(k+1) for k > 1.

Proof. In this proof we construct a right Følner tiling sequence (Fk) (recall that (F−1
k ) is then a left

Følner tiling sequence). We take F0 = {(f, n) ∈ Z/mZ o Z : supp(f) ⊆ [0, 1], n ∈ [0, 1]} and

Fk =
{

(f, 0) ∈ Z/mZ o Z : supp(f) ⊆ [2k, 2k+1 − 1]
}

∪
{

(f, 2k) ∈ Z/mZ o Z : supp(f) ⊆ [0, 2k − 1]
}
.

By induction, we show that Tk = {(f, n) ∈ Z/mZ oZ : supp(f) ⊆ [0, 2k+1−1], n ∈ [0, 2k+1−1]}. Indeed,
we have that

Tk+1 = Fk+1Tk

= {(f, n) ∈ Z/mZ o Z : supp(f) ⊆ [0, 2k+2 − 1], n ∈ [0, 2k+1 − 1]}
∪ {(f, n) ∈ Z/mZ o Z : supp(f) ⊆ [0, 2k+2 − 1], n ∈ [2k+1, 2k+2 − 1]}

= {(f, n) ∈ Z/mZ o Z : supp(f) ⊆ [0, 2k+2 − 1], k ∈ [0, 2k+2 − 1]}.

Next note that the diameter of Tk is equal to bm2 c2
k+1 + 2(2k+1− 1), which is less than (m+ 1)2k+1.

Finally, it suffices to show that |Tks \ Tk| 6 2−(k+1) |Tk| for all s ∈ S. If s = (δ0, 0), then Tks \ Tk = ∅.
If s = (0, 1), then

Tks \ Tk = {(f, 2k+1) ∈ Z/mZ o Z : supp(f) ⊆ [0, 2k+1 − 1]}.

So either way, |Tks \ Tk| 6 m2k+1

= 2−(k+1)|Tk|, which concludes the proposition.

Proposition 6.17. For any integer k > 2, there exists an orbit equivalence coupling from Z to Z/mZ oZ
which is (exp, ϕε)-integrable for all ε > 0, where ϕε(x) = log(x)

log(log(x))1+ε .
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Proof. Let (Fk)k be the Følner tiling sequence of Z/mZ o Z constructed in Proposition 6.16. And let
(F ′k)k the Følner tiling sequence of Z defined by F0 = [0, 2m2 − 1] and

F ′k = |Tk−1|
[
0, |Fk| − 1

]
= {0,m2k2k, 2m2k2k, . . . , (2m2k − 1)m2k2k}.

Note that T ′k = [0, |Tk|−1]. So (F ′k)k is a (ε′k, R
′
k)-Følner tiling sequence with R′k = |T ′k|−1 6 m2k+1

2k+1

and ε′k = 2
|T ′k|

= 1

m2k+12k
. Proposition 6.6 provides us an explicit orbit equivalence coupling (X,µ)

between the groups Γ′ = Z and Γ = Z/mZ oZ. Moreover, defining z > 1 as the solution of the equation

z23(m+1)/m = 1, we have

z2Rkε′k−1 6
z2(m+1)2k+2

m2k2k−1
= (z23(m+1)/m)2k 1

2k−1
=

1

2k−1
,

so we deduce from Proposition 6.6 that for every s ∈ SΓ,∫
X

zdSΓ′
(x,s·x)dµ(x) <∞.

On the other hand, we have

ϕε(2R
′
k)εk−1 6

2k+1 logm+ (k + 2) log 2

log(2k+1 logm+ (k + 2) log 2)1+ε

1

2k
4

1

k1+ε
.

Hence we deduce from Proposition 6.6 that that for every s ∈ SΓ′ ,∫
X

ϕ(dSΓ′ (x, s · x))dµ(x) <∞.

This concludes the proof of the proposition.

7 Almost optimal couplings between Z and iterated wreath
products

In this section, we show that taking wreath products is well-behaved with respect to ϕ-integrable orbit
equivalence, and use this to find almost optimal orbit equivalence couplings between Z and iterated
wreath products. The main construction can be understood purely in terms of measure-preserving
equivalence relations, and provides in particular a proof that if Γ1, Γ2 are orbit equivalent, and Λ1, Λ2

are orbit equivalent, then Λ1 o Γ1 is orbit equivalent to Λ2 o Γ2.

7.1 Wreath products of measure-preserving equivalence relations

Let R be a measure-preserving equivalence relation on (X,µ), let S be a measure-preserving equivalence
relation on (L, ν). Consider the space LR which consists of couples (x, (ly)y∈[x]R) where ly ∈ L for
every y ∈ [x]R. This space can be equipped with a natural standard Borel space structure which we
don’t make explicit for now since in our concrete case it will be easy to describe. Moreover, one can
endow it with the following probability measure η given by

η =

∫
X

ν⊗[x]R dµ(x).

We then equip the space (LR, η) with the wreath product S o R of S by R defined by saying two
couples (x, (ly)y∈[x]R) and (x′, (l′y)y∈[x]R) are S o R-equivalent as soon as (x, x′) ∈ R and the following
two conditions are satisfied:
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• for all but finitely many y ∈ [x]R, we have ly = l′y;

• for all y ∈ [x]R, we have (ly, l
′
y) ∈ S.

One can check that S o R is indeed a measure-preserving equivalence relation.
Let us make all this completely explicit in the case of interest to us: we now suppose that R comes

from a fixed free Γ-action. We then have a cocycle map c : R → Γ which takes (x, y) ∈ R to the unique
γ ∈ Γ satisfying γ · x = y. The standard Borel space structure on LR then comes from its natural
identification to the standard Borel space X × LΓ given by the bijection Φ : X × LΓ → LR defined by

Φ(x, (lγ)γ∈Γ) = (x, (lc(x,y))y∈[x]R).

The inverse map is given by Φ−1(x, (ly)y∈[x]R) = (x, (lγ·x)γ∈Γ). Note that Φ∗(µ⊗ ν⊗Γ) = η. We have a
natural Γ-action on LR given by γ · (x, l) = (γ · x, l). The corresponding action on X × LΓ is given by

γ · (x, (lg)g∈Γ) = (γ · x, (lgγ)g∈Γ).

Finally, suppose that the equivalence relation S comes from a free Λ-action on L. We then also
have a natural

⊕
γ∈Γ Λ-action on X × LΓ given by: for all f ∈

⊕
γ∈Γ Λ,

f · (x, (lγ)γ∈Γ) = (x, (f(g−1) · lg)g∈Γ),

or from the LR viewpoint, f · (x, (ly)y∈[x]R) = (x, (f(c(y, x)) · ly)y∈[x]R).
One can check that the Γ and

⊕
γ∈Γ Λ-actions actually extend to a free action of Λ o Γ on LR given

by

(f, γ) ·
(
x, (ly)y∈[x]R

)
=
(
γ · x, (f (c (y, γ · x)) · ly)y∈[x]R

)
.

The equivalence relation induced by this action is clearly SoR. Since the action is measure-preserving,
this proves that S o R is measure-preserving. We have shown the following result.

Proposition 7.1. Let Γ y (X,µ) freely, let Λ y (L, ν) freely, where (X,µ) and (L, ν) are two
standard probability spaces and the actions are measure-preserving. Denote by R and S the respective
associated equivalence relations, and by c : R → Γ the cocycle defined by c(x, γ · x) = γ. Then the
measure-preserving free Γ o Λ-action on LR given by

(f, γ) ·
(
x, (ly)y∈[x]R

)
=
(
γ · x, (f (c (y, γ · x)) · ly)y∈[x]R

)
induces the equivalence relation S o R.

Remark 7.2. One could remove the freeness assumption on the Γ-action by replacing R by the action
groupoid ΓnX. When X is a single point, we would then recover the well-known action of Λ o Γ on LΓ,
which will be a crucial tool in Section 8.

7.2 Wreath products and quantitative orbit equivalence

It follows directly from the previous proposition that when Γ1, Γ2 are orbit equivalent, and Λ1, Λ2 are
orbit equivalent, then Λ1 o Γ1 is orbit equivalent to Λ2 o Γ2. We now give a quantitative version of this
fact.

For this, it is useful to identify Γ and Λ to subgroups of Γ oΛ as follows: first we embed Λ in
⊕

γ∈Γ Λ
by associating to every λ ∈ Λ the function

ι(λ) : γ 7→
{
λ if γ = eΓ

eΛ otherwise.

Then we embed Λ in Λ o Γ via λ 7→ (eΓ, ι(λ)), and we embed Γ into Λ o Γ via γ 7→ (γ, ι(eΛ)). It is well
known that if SΓ is a generating set for Γ and SΛ is a generating set for Λ, then through the above
identification SΛ ∪ SΓ is a generating set for the wreath product Λ o Γ.
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Proposition 7.3. Let (X,µ) be an orbit equivalence coupling between finitely generated groups Γ1 =
〈SΓ1
〉 and Γ2 = 〈SΓ2

〉, and let (L, ν) be an orbit equivalence coupling between Λ1 = 〈SΛ1
〉 and Λ2 = 〈SΛ2

〉.
Denote by R the equivalence relation generated by the Γi-action.

Then the orbit coupling LR satisfies that for every (x, l) ∈ LR, every γ1 ∈ Γ1 and every λ1 ∈ Λ1,

dSΛ2∪SΓ2
((x, l), γ1 · (x, l)) = dSΓ2

(x, γ · x)

dSΛ2
∪SΓ2

((x, l), λ1 · (x, l)) = dSΛ2
(leΓ , λ · leΓ)

Proof. By definition for all i ∈ {1, 2}, all γi ∈ Γi, and all (x, l) ∈ LR, we have γi · (x, l) = (γi · x, l), so
the first equation is clear. The second equation follows similarly by noting that if λi ∈ Λi, then their
action on (x, l) only changes the value at eΓ of l according to the λi-action on L.

Corollary 7.4. If Γ1 and Γ2 admit a (ϕ,ψ)-integrable orbit equivalence coupling, and if Λ1 and Λ2

admit a (ϕ,ψ)-integrable orbit equivalence coupling, then the wreath products Λ1 o Γ2 and Λ2 o Γ2 also
admit a (ϕ,ψ)-integrable orbit equivalence couplings.

In combination with Theorem 6.9 we find the following:

Corollary 7.5. Let n,m ∈ N with n < m and let ∆ be any finitely generated group, then there is an
(Lp,L1/p)-orbit equivalence coupling from ∆ o Zm to ∆ o Zn for every p < n

m .

We also obtain the following corollary by using compositions of couplings. Recall that we denote
by log?n the function log composed with itself n times. We denote L<∞ the intersection of Lp for all
1 6 p <∞.

Corollary 7.6. Let m > 0, and let Gn be defined inductively by G0 = Z, and Gn+1 = Z/mZ oGn. For
any integer n > 1, there exists an orbit equivalence coupling from Z to Gn which is (L<∞, ϕn,ε)-integrable

for every ε > 0, where ϕn,ε = log?n /(log?(n+1))1+ε.

Proof. We first claim that for all n > 2, there exists an orbit equivalence coupling from Gn−1 to Gn
which is (L<∞, ϕ1,ε)-integrable for all ε > 0: this follows by induction using Proposition 7.3, the case
n = 2 resulting from Proposition 6.17.

We now pass to the proof of the corollary, which we also do by induction on n. The base case n = 1
follows from the claim, so we take n > 2 and assume that we have a orbit equivalence coupling from Z to
Gn−1 which is (L<∞, ϕn−1,ε)-integrable for all ε > 0. Using Proposition 2.27, we compose this coupling
with the coupling from the claim between Gn−1 and Gn, and obtain a (ϕ1,ε ◦ ϕn−1,ε,L

<∞)-coupling
from Z to Gn. Finally one easily shows that ϕ1,ε ◦ ϕn−1,ε < ϕn,ε, so we are done.

8 Unstable properties under exponential couplings

8.1 Finite presentability is unstable

In this section we prove that being finitely presented is not preserved by strongly exponentially
integrable orbit equivalence couplings (see Definition 2.29). We do this by constructing an explicit
strongly exponentially integrable orbit coupling between the wreath product Z/kZ o Z (also known as a
lamplighter group) and the Baumslag-Solitar group BS(1, k), for every k > 2.

Recall from the previous section that Z/kZ oZ =
⊕

Z Z/kZoZ where Z acts by a shift on
⊕

Z Z/kZ,
that is

((xi)i∈Z,mx)((yi)i∈Z,my) = ((xi + yi−mx)i∈Z,mx +my).

Also recall that BS(1, k) = Z[1/k] o Z, where Z[1/k] = { x
km : x,m ∈ Z} and Z acts on Z[1/k] by

multiplication by 1/k, that is( x

kmx
, nx

)( y

kmy
, ny

)
=
( x

kmx
+

y

kmy+nx
, nx + ny

)
.
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It is well known that the second group is finitely presented, while the first one is not by a result of
Baumslag [Bau61]. In particular these groups are not quasi-isometric.

We will consider actions of these two groups on the standard Borel space X =
∏

Z Z/kZ equipped
with the measure µ defined as the infinite product of the normalized counting measure. The action of
the lamplighter group Z/kZ o Z is the standard one, that is

((xi)i∈Z,m) · (yi)i∈Z = ((xi + yi−m)i∈Z,m).

For the Baumslag-Solitar group BS(1, k) we first define the action of the subgroup Z[1/k] =
〈(km, 0) : m ∈ Z〉 as follows: for all m ∈ Z, we decompose the space X as

X =
∏
i<m

Z/kZ×
∏
i>m

Z/kZ,

and then (km, 0) acts trivially on the first factor, and as the k-adic odometer on the second factor. To
be completely explicit, (km, 0) · (xi)i∈Z = (yi)i∈Z, where xi = yi for every i < m, yN = xN + 1 where
N > m the smallest such that xN 6= k − 1, yi = 0 for m > i < N and yi = xi for i > N . If xi = k − 1
for every i > m, then we take yi = 0 for every i > m. Note that this action is realized by letting Z[1/k]
act on Qk by addition and extending this action to the bi-infinite product X =

∏
Z Z/kZ. Also note

that the equivalence relation generated by the action of Z[1/k] is the cofinite relation up to measure
zero.

As with the lamplighter group we then let Z act by (0, 1) · (xi)i∈Z = (xi−1)i∈Z. This defines a
free pmp action of the group Z[1/k] o Z on X. Since the natural action of ⊕ZZ/kZ is the cofinite
one, we deduce that the two actions we have build yield an orbit equivalence coupling (X,µ) from the
lamplighter group Z/kZ o Z to the Baumslag-Solitar group BS(1, k).

Theorem 8.1. The orbit equivalence coupling (X,µ) we just constructed is an (L∞, exp�) orbit
equivalence coupling from Z/kZ o Z to BS(1, k).

Proof. We equip Z/kZ o Z with the generating subset S = {δ0, 1Z} and BS(1, k) with the generating
subset T = {1Z[1/k], 1Z}. We denote by S± = S ∪S−1 and T± = T ∪ T−1 the corresponding symmetric
generating sets.

Note that the generator of the Z copy in the two groups acts exactly the same. Moreover, the two
subgroups

⊕
Z Z/kZ and Z[1/k] have the same orbits.

Let us start by showing that our orbit equivalence coupling is L∞ as a coupling from the lamplighter
group to the Baumslag-Solitar group. For this, we only need to check that dT±(s · x, x) is uniformly
bounded for all s ∈ S. Note that the generator of the Z copy in the two groups acts exactly the
same. So for s = 1Z, we have dT±(s · x, x) = 1. Then observe that the generator δ0 changes only x0,
which is achieved by the action of sm for some m ∈ {−k + 1, · · · , k − 1}, where s = 1Z[1/k]. Hence
dT±(δ0 · x, x) 6 k − 1, which proves that our coupling is L∞ in one direction.

To prove that the coupling is strongly exponential in the other direction, we need to obtain estimates
for every g ∈ BS(1, k). So let g ∈ BS(1, k) , we will show that g satisfies the following estimate: for all
M > 0,

µ
(
{x ∈ X : dS±(g · x, x) > (k + 1) (2 |g|T + 2M + 3)}

)
6 k−M+1 (11)

Let n = |g|T± , write g = (z, j), with |j| 6 n and z ∈ Z[1/k]. First note that by the triangle inequality
and the fact that dS±((0, j) · x, x) = j for all x ∈ X, it suffices to show that

µ
(
{x ∈ X : dS±(z · x, x) > k(2|g|T + 2M + 3)}

)
6 k−M+1 (12)

By symmetry we may assume that z > 0. A straightforward induction on n then shows that we can
always write z as z =

∑n
i=−n aik

i, where ai ∈ {0, ..., k − 1}.
Let x ∈ X. Observe that the coefficients of z · x that differ from those of x are contained in the

interval [−n,∞). Moreover, consider the event (z · x)n+m+2 6= xn+m+2 for some m >M , and observe
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that its occurrence forces the coefficients of xn+i for i = 1, 2, . . . ,m+ 1 to be equal to k − 1. Therefore
this event has probability at most

∑
m>M k−m 6 k−M+1.

Now note that |f |S± 6 k(2n+M + 2) for every f ∈
⊕

Z Z/kZ with supp(f) ⊆ [−n, n+M + 1], so
the estimate (12) holds, and hence so does (11).

Let us finally check that this estimate yields the desired result. For a given δ > 0 and g ∈ BS(1, k),
by the integration by slices inequality and (11) we have∫

X

exp(δdS±(x, g · x)dµ(x) 6
∑
M>0

k−M+1 exp
(
δk(2 |g|T + 2M + 3)

)
=
∑
M>0

k exp
(
δk(2 |g|T +M(2− log k/δ) + 3)

)
So given ε > 0, we take δ such that 2δk < ε and 2 − log k/δ < 0, and then we will have a positive
constant C > 0 such that for every g ∈ BS(1, k),∫

X

exp(δdS±(x, g · x))dµ(x) < C exp(ε |g|T ),

which finishes the proof that the coupling is strongly exp-integrable from BS(1, k) to Z/kZ o Z.

Corollary 8.2. Finite presentability is unstable under the equivalence relation of strongly exponential
orbit equivalence. In particular, it is unstable under L<∞ orbit equivalence.

8.2 Finite asymptotic dimension is unstable

We now consider the following group:

Γ1 =
⊕
Z

Z[1/k] o Z2,

where the first coordinate of Z2 acts by shift on the direct sum ⊕ZZ[1/k], and the second coordinate
multiplies each factor by the corresponding power of k. Recall the action of Z[1/k] on X =

∏
Z Z/kZ as

defined in section 8.1 induces the cofinite equivalence relation up to measure zero. For every n ∈ Z, we let
Xn be a copy of X. We deduce an action of the direct sum ⊕n∈ZZ[1/k] on Y =

∏
n∈ZXn =

∏
Z2 Z/kZ

which induces the cofinite equivalence relation up to measure zero. The cofinite equivalence relation is
also induced by the natural action of the group ⊕Z2Z/kZ on Y .

Combining these actions with the Bernoulli action of Z2 produces an orbit equivalence coupling
between Γ1 and the wreath product

Γ2 = Z/kZ o Z2.

We equip Γ1 with the generating subset S1 = {±1Z[1/k]0}∪SZ2 , and Γ2 with S2 = {δ0}∪SZ2 , where
SZ2 is the canonical generating set of Z2.

Theorem 8.3. The coupling we just defined is an (L∞, exp)-integrable orbit equivalence coupling from
Γ2 to Γ1. Actually the exponential integrability from Γ1 to Γ2 is uniform in the following sense: there
exists a constant c > 0 such that for all g ∈ Γ1∫

X

exp(cdS2
(x, g · x))dµ(x) <∞.

Proof. The proof that the coupling is L∞ from Γ2 to Γ1 is exactly the same as in the proof of
Theorem 8.1, so we don’t write it down. Also similar to the proof of Theorem 8.1, we observe that the
two respective copies of Z2 act the same. As a warm up, let us prove the exponential integrability from
Γ1 to Γ2. Thanks to Proposition 2.23 only needs to consider the action of the generators ±1Z[1/k]0 .
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Observe that the coupling induces on every Xn an orbit-equivalence coupling between Z[1/k]0 and
⊕Z×{0}Z/kZ that coincides with that of section 8.1. Hence the result follows from Theorem 8.1.

The uniform exponential integrability requires a bit more work. It will result from the following
statement: given g ∈ Γ1 and M > 0 we have that

µ ({y ∈ Y : dS2
(y, g · y) > (k + 1)(2M + (2|g|+ 5)(2|g|+ 1)) + |g|}) 6

∫
t>M

t2|g|+1k−tdt, (13)

where we write |g| instead of |g|S1 in order to simplify notation. Indeed, this implies that

µ
(
{y ∈ Y : dS2

(y, g · y) > (k + 1)(2M + (2|g|+ 5)(2|g|+ 1)) + 3|g|+ 1}
)
6
k−M

log k
.

and therefore ∫
X

exp(cdS2
(x, g · x))dµ(x) <∞

for all c < log k.
We will use the fact that the nth copy Z[1/k] and ⊕{n}×ZZ/kZ have the same orbits. Moreover

they only act non-trivially on the nth factor Xn, and their actions are those defined in section 8.1. Let
y = (yi,j) and g = ((xi), (m,n)). Note that |n|+ |m| 6 |g|. Hence

dS2
(y, g · y) 6 |g|+

|g|∑
i=−|g|

dT ((yi−n,j−m)j∈Z, xi · (yi−n,j−m)j∈Z),

where T is the generating subset of Z/kZ oZ from section 8.1. Now for every −|g| 6 i 6 |g|, let Mi ∈ R
be such that

dT ((yi−n,j−m)j∈Z, xi · (yi−n,j−m)j∈Z) = (k + 1)(2|g|+ 2Mi + 5).

We deduce that
∑|g|
i=−|g|Mi > M . Note that |g| > |(xi)i∈Z|S , where S is the generating subset of

BS(1, k) from section 8.1. On the other hand, by (11) we have that for all (ti) ∈ R2|g|+1
+ ,

µ ({y ∈ Y : dT ((yi−n,j−m)j∈Z, xi · (yi−n,j−m)j∈Z) > (k + 1)(2|g|S + 2ti + 5)}) 6 k−ti .

For every t > 0 and m ∈ N, denote by vm(t) = Vol{(ti) ∈ Rm+ ,
∑
i ti = t}, and observe that vm(t) 6 tm.

Finally, integrating over all values for ti = max{Mi, 0} for which t =
∑
i ti >M , we obtain

µ ({y ∈ Y : dS2
(y, g · y) > (k + 1)(2M + (2|g|+ 5)(2|g|+ 1)) + |g|}) 6

∫
t>M

k−tv2|g|+1(t)dt

6
∫
t>M

t2|g|+1k−tdt

which ends the proof of (13) and therefore of the theorem.

Observing that Γ1 has infinite asymptotic dimension, while Γ2 has asymptotic dimension 2 (e.g. as
a consequence of the results from [DS06, Sec. 3]), we deduce the following corollary.

Corollary 8.4. There exist a group with asymptotic dimension 2, and a group of infinite asymptotic
dimension that admit an exponential-integrable orbit equivalence measure coupling.
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9 Hyperbolicity

In this section we prove the results of §1.3. Our main tool will be to characterize Gromov hyperbolicity
in terms of distortion of embedded cycles. More precisely we shall confront the facts that an n-cycle in
a hyperbolic graph must have distortion in Θ(n/ log n) (see Proposition 9.2), while any non-hyperbolic
graph admits arbitrary large cycles with universally bounded distortion (see Proposition 9.8). A version
of the first statement for real hyperbolic spaces is proved in [VS14, Lemma 3.3] and a weaker version of
our second statement is obtained in [VS14, Theorem 4.1].

9.1 Geometric preliminaries

Let X be a graph, a discrete path in X of length l > 1 is a map α : {0, ..., l} → X such that for all
i ∈ {0, ..., l − 1}, we have that α(i) and α(i+ 1) are connected by an edge. We will also say that α is a
path from α(0) to α(l), and we will often identify a path to its range.

Every connected graph X is viewed as a metric space (X, d) equipped with the discrete path
metric, defined by setting d(x, y) as the minimum length of a path from x to y. Any discrete path
which realizes the discrete path metric between two points is called a discrete geodesic, and it is
then an isometric embedding from {0, ..., d(x, y)} to (X, d).

Another important metric space that we can get out of a connected graph X is given by the
(continuous) path metric which we define as in [Gro07, 1.15+]. We first identify each edge to the
interval [0, 1] isometrically, thus obtaining a length structure on our graph. The metric associated to
this length structure is denoted by dl, and it is by definition the continuous path metric on X. It agrees
with the discrete path metric on the vertices of X, and it is geodesic. Every geodesic between vertices
defines a discrete geodesic, and every discrete geodesic can be lifted to a geodesic between vertices.

A (geodesic) triangle in a metric space (X, d) with vertices a1, a2, a3 ∈ X is the set [a1, a2, a3] ⊆ X
obtained by taking the union of a choice of geodesics [a1, a2], [a2, a3], and [a3, a1] between it vertices. In
the same way, we define a (geodesic) n-gon with vertices a1, . . . , an ∈ X, and denote it by [a1, . . . , an].
Given an n-gon where n > 3, we will frequently call any of its defining geodesics a side.

Now, recall that a geodesic space (X, d) is δ-hyperbolic in the sense of Rips if there exists a δ > 0
such that for every geodesic triangle [a1, a2, a3] and for every x ∈ [a1, a2], there exists an element y in
either [a1, a3] or [a2, a3] such that d(x, y) 6 δ; or equivalently, that the side [a1, a2] is contained in the
δ-neighborhood of [a1, a3] ∪ [a2, a3]. Moreover, we say that a geodesic space (X, d) is hyperbolic if it
is δ-hyperbolic for some δ, and that a finitely generated group Γ with generating set S is hyperbolic
whenever its Cayley graph is hyperbolic when equipped with the continuous path metric.

We shall need the following well-known lemma.

Lemma 9.1. Let X be a δ-hyperbolic geodesic space, let α be a path of length ` > 1 between two points
x1 and x2, and let y be a vertex belonging to a geodesic from x1 to x2. Then

d(y, α) 6 δ log2(`) + 1.

Proof. Let us prove it by induction on b`c. The case b`c = 1 is clear. So assume n > 2 and suppose
that the lemma is true for all paths of length < n. Let α be a path of length ` ∈ [n, n + 1[ from x1

to x2, represented as a gray path in the following figure. Let [x1, y] be a geodesic from x1 to y. Let
x3 ∈ α be such that d(y, α) = d(y, x3) and let [y, x3] be a geodesic from y to x3. By exchanging x1 and
x2 if necessary, we can assume that the portion α1 of α from x1 to x3 has length `1 6 `/2.
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x1 x2

x3

y

y′

α1

Let [x1, x3] be a geodesic from x1 to x3. In the geodesic triangle [x1, y, x3], there is a point
y′ ∈ [x1, x3] such that d(y, y′) 6 δ. Now applying the induction hypothesis to the path α1 and the
point y′ ∈ [x1, x3], we obtain

d(y′, α1) 6 δ log2(`1) 6 δ log2 `+ 1− δ.

We deduce by the triangular inequality

d(y, α) 6 d(y, y′) + d(y′, α1) 6 δ log2(`) + 1.

So we are done.

First we need an alternative definition of hyperbolicity in terms of embedded cycles. In what follows,
the cycle Cn of length n > 2 is the Cayley graph of Z/nZ with respect to the generating set containing
just the element 1 mod n which we view as a discrete metric space denoted by (Cn, dCn).

Proposition 9.2. Let (X, d) be a δ-hyperbolic geodesic space, let n be a positive integer. Then for
every a > 0 and every b > 1, if there is a map ϕ : C2n → X such that for every x, y ∈ C2n,

adC2n
(x, y) 6 d(ϕ(x), ϕ(y)) 6 bdC2n

(x, y)

then we have

a 6
4δ log2(bn) + 4 + 2b

n

Before proving the above proposition, let us note the following straightforward corollary, using the
estimate 1

log 2 < 3/2.

Corollary 9.3. Let a > 0, b > 1, and δ > 1. There is an integer n0 = n0(a, b) > 2 such that the
following holds. For all δ-hyperbolic geodesic space X, for all n > n0, if there is a map ϕ : Cn → X
such that for all x, y ∈ Cn

adCn(x, y) 6 d(ϕ(x), ϕ(y)) 6 bdCn(x, y)

then we have

a < 12δ · log n

n
. (14)

In order to prove the proposition, we need the following additional notion. Given a discrete path β
in a graph Y and a map ϕ : Y → (X, d) where (X, d) is geodesic, we say that a continuous path α in X
is a ϕ-direct image of β if it is obtained by concatenating geodesics between ϕ(β(i)) and ϕ(β(i+ 1))
where i ranges from 0 to `(β)− 1.

Proof of Proposition 9.2. Let a1, a2 ∈ C2n be such that dC2n
(a1, a2) = n and define x1 = ϕ(a1),

x2 = ϕ(a2). Consider a geodesic [x1, x2] from x1 to x2. In C2n there are two discrete geodesic paths
from a1 to a2, and they have length n. Denote by α and α′ some respective ϕ-direct images of those
paths in X, which by assumption have length at most bn. Let y ∈ [x1, x2], we deduce from Lemma 9.1
that

d(y, α) 6 δ log2(`(α)) + 1 6 δ log2 (b`) + 1,
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where `(α) is the length of α, and by the same argument d(y, α′) 6 δ log2(b`) + 1. If we then pick zy
and z′y points in C2n such that their ϕ-images are in α and α′ respectively and minimize the distance
to y, we have

max
(
d(y, ϕ(zy)), d(y, ϕ(z′y)

)
6 δ log2(b`) + 1 +

b

2
. (15)

Note that for any y ∈ [x1, x2], any geodesic from zy to z′y must pass through x1 or through x2.
Moreover there are some y ∈ [x1, x2] for which the first case occurs, and some for which the second
case occurs. For all ε > 0, we may thus find y1, y2 ∈ [x1, x2] such that d(y1, y2) 6 ε, the geodesic from
zy1 to z′y1

passes through x1 and the geodesic from zy2 to z′y2
passes through x2.

ϕ

a1 a2 x1

x2

α

α′

y1 y2

zy1 zy2

z′y1 z′y2

ϕ(zy1)
ϕ(zy2)

ϕ(z′y1
) ϕ(z′y2

)

Then we have that
d(zy1

, zy2
) + d(zy2

, z′y2
) + d(z′y2

, z′y1
) + d(z′y1

, zy1
) > 2n.

Hence one of these four distances is at least n
2 . However, a straightforward case analysis using the

bound (15) on the lengths of the dotted geodesics, the triangle inequality and the fact that d(y1, y2) 6 ε
shows that the distance between the corresponding images of the points in the previous inequation
is always at most 2(δ log2 (bn) + 1 + b

2 ) + ε. Using our assumption on ϕ, we thus have the following
inequality: for all ε > 0,

an

2
6 2δ log2 (bn) + 2 + b+ ε.

So the proposition follows.

In what follows, given a constant a > 1, we will say that a function f : (X, dX)→ (Y, dY ) between
two metric spaces contracts distances by at most the factor a if for every x1, x2 ∈ X we have
dX(x1, x2) 6 adY (f(x1), f(x2)).

Lemma 9.4. Let n > 4 and D > 1, let (X, d) be a geodesic metric space containing an n-gon
[a1, . . . , an] such that the distance between points on non-adjacent sides is at least D. Let R > D be
the length of its longest side. Then there is a cycle C of integer length at least Dn

2 and a 1-Lipschitz

embedding ϕ : (C, dC)→ (X, d) which contracts distances by at most the factor 3nR
D .

Proof. Our cycle will be obtained via the following claim.

Claim 9.5. There is a 2n-gon C = [b1, c1, b2, . . . , bn, cn] such that for every i ∈ {1, . . . , n},

• bi ∈ [ai−1, ai] and ci ∈ [ai, ai+1], where we let a0 = an;

• d(bi, ci) = D
8R (d(bi, ai) + d(ai, ci));

• for each pair of points x ∈ [ci−1, bi] and y ∈ [ci, bi+1], we have d(x, y) > D
8R (d(x, ai) + d(ai, y)).
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Proof of the claim. We start with the existence of b1 and c1. Note that for all points u ∈ [an, a1] and
v ∈ [a1, a2], we have d(u, a1) + d(a1, v) 6 2R and so we have D

8R (d(u, a1) + d(a1, v)) 6 D
4 .

Taking u = a1 = v, we see that there are u ∈ [an, a1] and v ∈ [a1, a2] such that d(u, v) = D
8R (d(u, a1)+

d(a1, v)). Also, for u = an and v = a2, we have d(u, v) > D and so d(u, v) > D
8R (d(u, a1) + d(a1, v)).

Now by continuity we can take u ∈ [an, a1] and v ∈ [a1, a2] such that d(u, v) = D
8R (d(u, a1)+d(a1, v)),

but with d(u, a1)+d(a1, v) maximal. Then for all (u′, v′) ∈ [an, u]× [v, a2] such that (u, v) 6= (u′, v′), we
have d(u′, v′) > D

8R (d(u′, a1) + d(a1, v
′)). Indeed if not, by continuity since d(an, a2) > D

8R (d(an, a1) +

d(a1, a2)) we could find (u′′, v′′) ∈ [an, u
′] × [v′, a2] such that d(u′′, v′′) = D

8R (d(u′′, a1) + d(a1, v
′′)),

contradicting the maximality of d(u, a1) + d(a1, v). Taking b1 = u and c1 = v, we do have the desired
properties for i = 1.

Similarly, for every i ∈ {2, . . . , n − 1} one can find bi ∈ [ci−1, ai] and ci ∈ [ai, ai+1] such that
d(bi, ci) = D

8R (d(bi, ai) + d(ai, ci)), and such that d(bi, ai) + d(ai, ci) is maximal in the sense that for

every x ∈ [ai−1, bi] and y ∈ [ci, ai+1] we have that d(x, y) > D
8R (d(x, ai) + d(ai, y)). This can be done

repeating the previous argument, and based on the fact that

d(ci−1, ai+1) > d(bi−1, ai+1)− d(bi−1, ci−1) >
3D

4
.

Finally, we take bn ∈ [cn−1, an] and cn ∈ [an, b1] as previously, completing the trip around [a1, . . . , an]
(this time, this relies on the fact that d(cn−1, b1) > D/2). �claim

Now note that the length ` of C, which is the sum of its edge lengths, lies between Dn
2 > 2 and

nR since each side [ci, bi+1] is of length at least D
2 and the sides of [a1, . . . , an] have length at most

R. Denote the path metric on C by dC . Then (C, dC) is isometric to the cycle of real length `, i.e. to
R/`Z equipped with the quotient metric (for ` ∈ N, this is isometric the continuous path metric on the
graph C`). So we can find a 1-Lipschitz map (Cd`e, dCdle)→ (C, dC) which contracts distances by at

most the factor d`e` 6
3
2 . In order to prove the theorem, we will now show that the inclusion (C, dC) in

(X, d) contracts distances by at most the factor 2nR
D , since by composing this will yield a 1-Lipschitz

map Cdle → (X, d) which contracts distances by at most the factor 3nR
D and the length of the cycle is

at least Dn
2 .

For each pair of points x ∈ [ci−1, bi] and y ∈ [ci, bi+1], we have d(x, y) > D
8R (d(x, ai) + d(ai, y)),

which implies

dC(x, y) 6
8R

D
d(x, y). (16)

We now give a similar bound for two points on adjacent sides of C. Towards this, let x ∈ [bi, ci] and
y ∈ [ci, bi+1]. Then,

d(x, y) > d(y, bi)− d(x, bi)

>
D

8R
d(y, ai) +

D

8R
d(bi, ai)− d(bi, ci) + d(x, ci)

=
D

8R
d(y, ci) +

D

8R
d(ai, ci) +

D

8R
d(bi, ai)− d(bi, ci) + d(x, ci)

=
D

8R
d(y, ci) + d(x, ci)

>
D

8R
(d(y, ci) + d(x, ci))

=
D

8R
dC(x, y),

so (16) is also valid for such pairs (x, y). The case where x ∈ [bi, ci] and y ∈ [ci, bi+1] is analogous.
Finally, for x, y ∈ C not in any of the previous cases, there exist two different sides Sx and Sy in the
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n-gon [a1, . . . , an] such that d(x, Sx) 6 D
4 and d(y, Sy) 6 D

4 , and hence d(x, y) > D
2 . As the perimeter

of C is at most nR, it follows that

dC(x, y) 6
2nR

D
d(x, y). (17)

The lemma now results from the combination of (16) and (17).

Lemma 9.6. Let (X, d) be a geodesic space and let r > 0. Assume that X contains a quadrilateral
[a1, a2, a3, a4] with the following properties:

• d(x, y) > r
2 for every x ∈ [a2, a3] and y ∈ [a1, a4];

• d(a1, a2) 6 r;

• d(a2, a3) > 4r;

• d(a3, a4) 6 2r.

Then there exist a cycle C of length at least d2re and a 1-Lipschitz embedding ϕ : (C, dC)→ (X, d) that
contracts distances by at most a factor of 480 in X.

Proof. First note that by the triangular inequality, d(x, y) > r for all x ∈ [a1, a2] and y ∈ [a3, a4].
Let us first assume that d(a2, a3) 6 12r. We deduce that the distance between pairs of opposite

sides are at least r/2. Assume first that d(a2, a3) 6 12r, in which case we deduce that the longest side
has length at most 15r. By Lemma 9.4, it now follows that there exist a cycle C of length at least
d2re and a 1-Lipschitz embedding ϕ : (C, dC)→ (X, d) that contracts distances at most by a factor of
(4 · 4 · 15r)/(r/2) = 480 in X.

Let us now suppose d(a2, a3) > 12r and let m ∈ N be such that 2mr 6 d(a2, a3) < 2(m+ 1)r and
m > 6. We will prove the claim by induction with respect to m > 6. The initial step m = 6 is taken
care of by the first part of the proof. Assume that the lemma is true for d(a2, a3) < 2mr. We claim that
it is then also true for d(a2, a3) < 2(m+ 1)r which concludes the proof by induction. Note there are
two possibilities: either there exists b ∈ [a2, a3] such that d(a2, b) > 2r and d(a3, b) > 2r that satisfies
d(b, [a1, a4]) < r; or such a b does not exist. If such a b exists, fix c ∈ [a1, a4] such that d(b, c) < r.
Now, we have that d(a2, b) 6 2mr and d(b, a3) 6 2mr, and at least of them must be more that 4r
since d(a2, a3) > 12r. From this it follows that either [a1, a2, b, c] or [c, b, a3, a4] satisfies the induction
hypothesis, which concludes the proof by induction under the assumption that b exists.

If b does not exists, let b1, b2 ∈ [a2, a3] be such that d(a2, b1) 6 2r and d(a3, b2) 6 2r where
d(b1, [a1, a4]) 6 2r and d(b2, [a1, a4]) 6 2r, and d(x, [a1, a4]) > r for every x ∈ [b1, b2]. Now, take
c1, c2 ∈ [a1, a4] such that d(b1, c1) 6 2r and d(b2, c2) 6 2r. Finally, we can apply the induction
hypothesis to the quadrilateral [c1, b1, b2, c2], since d(b1, c1) 6 2r, d(b1, b2) > 8r as d(a2, a3) > 12r,
d(b2, c2) 6 2r, and d(x, [c1, c2]) > r for every x ∈ [b1, b2]. So, there exist a cycle C of length at least
d4re and a 1-Lipschitz embedding ϕ : (C, dC)→ (X, d) that contracts distances at most by a factor of
480 in X, which concludes the proof by induction.

Corollary 9.7. Let (X, d) be a geodesic space and let R > r > 0. Assume that X contains a
quadrilateral [a1, a2, a3, a4] with the following properties:

• d(x, y) > r
2 for every x ∈ [a2, a3] and y ∈ [a1, a4];

• d(a1, a2) 6 r;

• d(a2, a3) > max{12(R− r), 4r};

• d(a3, a4) 6 R.

Then there exist a cycle C of length at least d2re and a 1-Lipschitz-embedding ϕ : (C, dC)→ (X, d) that
contracts distances by at most a factor of 480 in X.
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Proof. By Lemma 9.6, the corollary is true for R 6 2r, so suppose that R > 2r and let m ∈ N be such
that 2mr < R 6 2m+1r. We now prove the claim by induction with respect to m. If m = 0, then
R 6 2r and the corollary is true. Next, suppose the corollary is true for R 6 2mr. We claim that it is
then also true for R 6 2m+1r, which concludes the proof by induction.

Now we take b ∈ [a2, a3] such that d(b, [a1, a4]) = r and d(a2, b) is maximal. Also take c ∈ [a1, a4]
such that d(b, c) = r. If d(a2, b) > 4r, then by Lemma 9.6 the quadrilateral [a1, a2, b, c] satisfies the
claim, which concludes the proof by induction. On the other hand, if d(a2, b) < 4r, then d(b, a3) >
d(a2, a3)− d(b, a2) > 12(R− r)− 4r = 12(R− 2r) + 8r > max{12(R− 2r), 8r}, and we can apply the
induction hypothesis to the quadrilateral [c, b, a3, a4] as d(c, b) 6 2r, d(a3, a4) 6 R and d(x, [a1, a4]) > r
for every x ∈ [a2, a3], from which it follows that there exist a cycle C of length at least d4re and a
1-Lipschitz embedding ϕ : (C, dC) → (X, d) that contracts distances at most by a factor 480 in X,
which concludes the proof by induction.

Proposition 9.8. Let (X, d) be a geodesic space that is not δ-hyperbolic. Then, there exist a cycle C
of length at least d 2δ

15e and a 1-Lipschitz embedding ϕ : (C, dC)→ (X, d) that contracts distances by at
most a factor of 23760 in X.

Proof. As (X, d) is not δ-hyperbolic, there exists a geodesic triangle [a, b, c] such that the minimum
D > 0 such that [a, b] is contained in the D-neighborhood of the the union of [a, c] and [b, c] is > δ. Let
x ∈ [a, b] be such that d(x, [a, c] ∩ [b, c]) = D.

As the map y 7→ d(y, [a, c]∪[b, c]) is continuous, there exists xa ∈ [a, x] such that d(xa, [a, c]∪[b, c]) =
D
15 . Now, take ya ∈ [a, c] ∪ [b, c] such that d(xa, ya) = D

15 . Similarly, let xb ∈ [x, b] and yb ∈ [a, c] ∪ [b, c]

such that d(xb, [a, c] ∪ [b, c]) = d(xb, yb) = D
15 . Moreover, take xa and xb above such that d(xa, x) and

d(xb, x) are minimal.

Case 1 Suppose first that ya and yb are on the same side [a, c] or [b, c]. To begin, note that d(xa, xb) =
d(xa, x) + d(x, xb) > 28D

15 since D 6 d(x, ya) 6 d(x, xa) + D
15 and D 6 d(x, yb) 6 d(x, xb) + D

15 . Thus,

we have for [ya, xa, xb, yb] that d(ya, xa) = D
15 6

2D
15 , d(xa, xb) > 28D

15 , d(xb, yb) = D
15 6

2D
15 , and

d(x′, [ya, yb]) > 1
2

2D
15 for all x′ ∈ [xa, xb]. Now, by Corollary 9.7 it follows by taking r = 2D

15 and R = r

that there exist a cycle C of length at least d 4D
15 e and a 1-Lipschitz embedding of C into X that

contracts distances by at most a factor of 480 in X.

Case 2 Next, suppose that ya and yb are not on the same geodesic [a, c] or [b, c], but that d(ya, [yb, c]) 6
3D
15 . Let u ∈ [yb, c] be such that d(ya, u) 6 3D

15 . Thus, we have for [yb, xb, xa, u] that d(yb, xb) = D
15 6

2D
15 ,

d(xb, xa) > 28D
15 > max

{
12( 4D

15 −
2D
15 ), 4 2D

15

}
, d(xa, u) 6 d(xa, ya) + d(ya, u) 6 4D

15 , and d(x′, [yb, u]) >
1
2

2D
15 for every x′ ∈ [xb, xa]. Thus, by Corollary 9.7 it follows by taking r = 2D

15 and R = 2r that there

exist a cycle C of length at least d 4D
15 e and a 1-Lipschitz embedding of C into X that contracts distances

by at most by a factor of 480 in X.

Case 3 Finally, suppose that ya and yb are not on the same geodesic [a, c] or [b, c], and that d(ya, [yb, c]) >
3D
15 and d(yb, [ya, c]) >

3D
15 . Take za ∈ [ya, c] and zb ∈ [yb, c] such that d(za, zb) = D

15 and d(za, ya) is
minimal. Now consider the hexagon [xa, xb, yb, zb, za, ya]. Recall that the sides [xa, xb], [ya, za] and
[yb, zb] are D

15 -disjoint and have length of at least 2D
15 , and that the length of the other sides is D

15 .

Claim 9.9. We claim that all non-adjacent sides are D
45 -disjoint.

Proof of the claim. Suppose w and w′ are on non-adjacent sides. Recalling that the sides [xa, xb], [ya, za]
and [yb, zb] are D

15 -disjoint, we may assume without loss of generality that w is not on one of these sides,

say w ∈ [za, zb]. If w′ ∈ [xa, xb], then either d(w,w′) > d(w′, [ya, za]) − d(w, [ya, za]) > D
15 −

D
30 = D

30

or d(w,w′) > d(w′, [yb, zb])− d(w, [yb, zb]) > D
15 −

D
30 = D

30 as it can not be that both d(w, [ya, za]) and

d(w, [yb, zb]) are strictly greater than D
30 because d(za, zb) = D

15 . So, suppose w′ is either in [xa, ya] or in

[xb, yb]. Without loss of generality, we can assume that w′ ∈ [xa, ya]. Now, if d(xa, w
′) + d(zb, w) 6 2D

45 ,
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then d(w,w′) > d(zb, xa)− d(xa, w
′)− d(w, zb) > d(zb, xa)− 2D

45 >
D
45 since d(zb, xa) > 2D

15 , and we are

done. On the other hand, if d(xa, w
′)+d(zb, w) > 2D

45 then d(ya, w
′)+d(za, w) 6 4D

45 since the side length

of [xa, ya] and [za, zb] is D
15 , and thus d(w,w′) > d(w, ya)−d(ya, w

′) > d(za, ya)−(d(w, za)+d(ya, w
′)) >

d(za, ya)− 2D
45 = 2D

15 −
2D
45 = 2D

45 , and we are done. In other words, all non-adjacent sides are D
45 -disjoint,

which completes the proof. �claim

We can now finish the proof of the third case. By Lemma 9.4 there exist a cycle C of length at
least d 6D

45 e = d 2D
15 e and a 1-Lipschitz embedding of C into X that contracts distances by at most a

factor of (4 · 6 · 22D)/(D/45) = 23760 in X. On the other hand, if at least one of the sides has length
more than 22D, take u as the midpoint of that side, and v ∈ [a, b, c] such that d(u, v) 6 D where u
and v are not on the same side of the triangle. Then, we find two adjacent corners wu and wv in
[xa, xb, yb, zb, za, ya] such that [u, v] splits this hexagon into the quadrilateral [wv, wu, u, v] and a new
hexagon, where d(wv, wu) 6 2D

15 , d(wu, u) > 22D
2 = 11D > max

{
12(D − 2D

15 ), 4 2D
15

}
, d(u, v) 6 D and

d(x′, [wv, v]) > 1
2

2D
15 for each x′ ∈ [wu, u]. Thus, once again by Corollary 9.7 it follows by taking r = 2D

15

and R = D that there exist a cycle C of length at least d 4D
15 e and a 1-Lipschitz embedding of C into X

that contracts distances by at most by a factor of 480 in X.

Corollary 9.10. Let (X, d) be a geodesic space that is not hyperbolic. Then, there exist arbitrarily
large integers n and embeddings ϕn : (Cn, dCn)→ (X, d) such that

1

23760
dCn(x, y) 6 d(ϕn(x), ϕn(y)) 6 dCn(x, y),

for every x, y ∈ Cn.

9.2 Rigidity of hyperbolicity

We now prove a general rigidity result, that says that hyperbolicity is preserved under cobounded measure
equivalence couplings satisfying certain integrability conditions. The following general statements are
technical, so for that reason, we immediately provide striking corollaries.

However first we fix some notation: Given a group Γ equipped with a finitely generated subset SΓ,

we denote the growth function VolSΓ
(n) = |SnΓ | and its entropy Ent(SΓ) = lim supr→∞

log(VolSΓ
(r))

r .

Theorem 9.11. Let Γ and Λ be two finitely generated groups such that Γ is δ-hyperbolic. We let L > 1
and ϕ, ψ and r be increasing unbounded functions. Assume that the following conditions are satisfied:

lim
n→∞

n2r(n) VolSΓ(r(n))

ϕ(n/r(n))
→ 0; (18)

and for all large enough n,

r(n) > M log(nψ−1(3Ln)) + 8ψ−1(3Ln), (19)

with M = 48(δ+1)
log 2 . Assume that (Ω, µ) is a cobounded measure equivalence coupling from Γ to Λ,

normalized so that µ(XΓ) = 1, and such that α : Γ×XΛ → Λ and β : Λ×XΓ → Γ satisfy the following
properties.

(i) for all s ∈ SΓ, ∫
XΛ

ϕ(|α(s, x)|SΛ)dµ(x) <∞;

(ii) for all t ∈ SΛ ∫
XΓ

ψ(|β(t, x)|SΓ)dµ(x) 6 L.
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Then Λ is hyperbolic.

Assuming that β is bounded, we have the following variant.

Theorem 9.12. Let Γ and Λ be two finitely generated groups such that Γ is δ-hyperbolic. We let L > 1
and ϕ, ψ and r be increasing unbounded functions. Assume that the following conditions are satisfied:

lim
n→∞

n2r(n) VolSΓ
(r(n))

ϕ(n/r(n))
→ 0; (20)

and for all large enough n,
r(n) > 75δ log n. (21)

Assume that (Ω, µ) is a cobounded measure equivalence coupling from Γ to Λ, normalized so that
µ(XΓ) = 1, and such that α : Γ×XΛ → Λ and β : Λ×XΓ → Γ satisfy the following properties.

(i) for all s ∈ SΓ, ∫
XΛ

ϕ(|α(s, x)|SΛ
)dµ(x) <∞;

(ii) for all t ∈ SΛ

|β(t, ·)|SΓ
∈ L∞(XΓ).

Then Λ is hyperbolic.

Theorem 10 is an immediate consequence of the following corollary of Theorem 9.12.

Corollary 9.13. Let Γ be a finitely generated δ-hyperbolic group and let p > 75δ Ent(SΓ) + 2. Assume
that there exists a cobounded (Lp,L∞)-integrable measure equivalence coupling from Γ to any finitely
generated group Λ. Then Λ is hyperbolic.

Proof. We apply Theorem 9.12 with p = 75δ(Ent(SΓ) + ε) + 2 for some ε > 0. We let r(n) = 75δ log n.
By definition of Ent(SΓ), there exists have VolSΓ

(r(n)) = o(e(Ent(SΓ)+ε/2)r(n)). Hence we deduce that

VolSΓ
(r(n)) = o(n75δ(Ent(SΓ)+ε/2),

which combined with the fact that φ(t) = t75δ(Ent(SΓ)+ε)+2 implies that (20) is satisfied. Thus, Λ is
hyperbolic.

Corollary 9.14. Let Γ be a finitely generated hyperbolic group. For every p > q > 0 such that if there
is a cobounded (ϕ,ψ)-integrable measure equivalence coupling from Γ to any finitely generated group Λ
where ϕ(t) = exp(tp) and ψ(t) = t1+1/q, then Λ is also hyperbolic.

Proof. First we take the cobounded (ϕ,ψ)-integrable measure equivalence coupling (Ω, XΓ, XΛ, µ) and

normalize such that µ(XΓ) = 1. We pick η strictly between q and p, take r(n) = n
η

1+η , and we let L be
such that ∫

XΓ

ψ(|β(t, x)|SΓ)|dµ(x) 6 L.

The latter is possible because ψ(t) is a power of t, as noted in Remark 2.18. Note that ψ−1(t) = t
q
q+1 .

So (19) follows from the fact that η > q. Finally, take ε > 0 and ϕε such that ϕε(t) = ϕ(εt) and∫
XΛ

ϕε(|α(s, x)|)dµ(x) <∞

for every s ∈ SΓ. One has ϕε(r(n)) > exp(εn
p

1+η ), while

VolSΓ
(r(n)) 6 |SΓ|n

η
1+η

Hence since η < p, we have
VolSΓ(r(n))/ϕε(r(n)) = O(n−k)

for any k > 0. So (18) is satisfied and we conclude by Theorem 9.11 that Λ is hyperbolic.
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Proof of Theorems 9.11 and 9.12. Let us start by strengthening the coboundedness condition.

Claim 9.15. On replacing M by M/2 and δ + 1 by δ in Theorems 9.11 and 9.12, we may assume that
XΓ ⊆ XΛ.

Proof of the claim. Since this coupling is cobounded, we can take F be a finite subset of Λ such that
XΓ ⊆ F ∗XΛ. Consider the new coupling space Ω̃ := Ω× F , let K be a finite group which acts simply
transitively on F , and let Γ̃ = Γ×K act on Ω̃ by (γ, k) ∗ (ω, f) = (γ ∗ ω, k · f). This action is smooth,
and we take as a fundamental domain the set

X̃Γ̃ :=
⊔
f∈F

(XΓ ∩ f ∗XΛ)× {f}

The Λ-action on Ω̃ is the action on the first coordinate; a fundamental domain is provided by

X̃Λ =
⊔
f∈F

(f ∗XΛ)× {f}.

Viewing both Γ and K as subgroups of Γ̃, the latter has SΓ̃ = SΓ ∪K as a finite generating set. In fact,

with this generating set Γ̃ is (δ + 1)-hyperbolic. Observe that the volume growth of Γ̃ is at least |K|
times that of Γ.
Next note that condition (i) is still met by this new generating set. Indeed X̃Λ is L∞-equivalent to the
fundamental domain XΛ × F , and for all γ ∈ Γ, x ∈ XΛ and f ∈ F we have dSΛ

(γ ∗ (x, f), γ · (x, f)) =
dSΛ

(γ ∗ x, γ · x), so for all γ̃ ∈ SΓ̃ we have that γ̃ ∗XΛ × F is ϕ-equivalent to XΛ × F , so the same is

true of X̃Λ.
For condition (ii), we have, by construction, for all x ∈ XΓ and all f, f ′ ∈ F that the distance

dSΓ̃
((x, f), (x, f ′)) 6 1, so for every λ ∈ Λ we have

dSΓ̃
(λ · (x, f), λ ∗ (x, f)) 6 1 + dSΓ

(λ · x, λ ∗ x) = 1 + |β(λ, x)|,

hence the new coupling satisfies the same conditions on replacing ψ(t) by ψ′(t) = ψ(max{t− 1, 0}) in
Theorem 9.11. Note that for n large enough, ψ−1(3Ln) > 1 and ψ′(t) = ψ(t− 1) for t > 1, from which
we easily deduce that for large enough n,

r(n) >
M log

(
ψ′−1(3Ln)n

)
2

+ 8ψ′−1(3Ln).

Therefore it is enough to prove Theorem 9.11 with M/2 instead of M for Γ′. So the claim is
proved. �claim

Suppose that Λ is not hyperbolic. By Corollary 9.10 we can take a cycle Cn of arbitrary large length
n, and a bi-Lipschitz embedding : Cn → Λ that are 1-Lipschitz and contracts distances at most by a
factor 23760. In what follows we consider Cn as a subset of Λ.

Let M be such that
∫
XΛ

ϕ(|α(s, x)|SΛ
)dµ(x) 6 K for all s ∈ SΓ.

For every x ∈ XΓ we denote by bx : Λ→ Γ the map defined by bx(λ) = β(λ−1, x)−1 for every λ ∈ Λ.

Upper estimates for the restriction of bx to Cn. In the case of Theorem 9.12, we trivially have
that bx is a.e. L-Lipschitz. Under the assumption of Theorem 9.11, we claim that with probability at
least 2/3, the restriction of bx to Cn is ψ−1 (3Ln)-Lipschitz. Here we use the integrability condition
for β. For every u and v adjacent in Cn there exists an su,v ∈ SΛ such that v = usu,v. Hence,
dSΛ(bx(v), bx(u)) = |bx(v)−1bx(u)|SΛ = |β(su,v, u

−1 · x)|. Next consider for any u ∈ Cn the set of all
x ∈ XΓ such that ψ(|β(su,v, u

−1 · x)|SΓ) > 3Ln. Recall that we assumed µ(XΓ) = 1. Hence, these sets
have measure at most 1

3n and therefore the set A of all x ∈ XΓ such that bx is ψ−1 (3Ln)-Lipschitz in
restriction to Cn has measure at least 2

3 . So our claim follows.
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Lower estimates for the restriction of bx to Cn. Providing lower estimates on the quasi-isometric
embedding constants is more involved as this requires to apply the cocycle α to Cn. We shall use the
inverse relation between α and β: for all x ∈ XΓ and λ ∈ Λ

α(β(λ, x), x) = λ (22)

We claim that we have the following key inequality.

Claim 9.16. For every R > 0, n ∈ N, and u and v in Cn , we have

µ
(
{x ∈ XΓ : |bx(v)−1bx(u)|SΓ

6 R}
)
6 KR

VolSΓ(R)

ϕ
(
|v−1u|SΛ

R

) ,
where K =

∫
XΛ

ϕ(|α(s, x)|SΛ
)dµ(x).

Proof of the claim. For any n ∈ N, a and b in Cn and γ ∈ Γ, we define the set

Aγ = {x ∈ XΓ : bx(v)−1bx(u) = γ}.

Using (22), we have for every x ∈ Aγ that
∣∣α (γ, u−1 · x)

)∣∣
SΛ

= |v−1u|SΛ . Let us start giving an upper

bound of µ(Aγ) as a function of |γ|. Write γ = s1 . . . s|γ|SΓ
with si ∈ SΓ. Then there exists an i such

that the set {
x ∈ Aγ :

∣∣∣α(si, si+1 . . . s|γ|SΓ
· (u−1 · x)

)∣∣∣
SΛ

>
|v−1u|SΛ

|γ|SΓ

}
has measure at least

µ(Aγ)
|γ|SΓ

. Therefore, for s = si, we have that

µ

({
y ∈ XΛ : |α(s, y)|SΛ

>
|v−1u|SΛ

|γ|SΓ

})
>
µ(Aγ)

|γ|SΓ

,

from which we deduce the following upper bound on the measure of Aγ :

µ(Aγ) 6 |γ|SΓ
µ

({
y ∈ XΛ : |α(s, y)|SΛ

>
|v−1u|SΛ

|γ|SΓ

})
6

M |γ|SΓ

ϕ
(
|v−1u|SΛ

|γ|SΓ

) .
Therefore we can conclude that for every R > 0,

µ
(
{x ∈ XΓ : |bx(v)−1bx(u)|SΓ

6 R}
)

=
∑

γ∈BΓ(eΓ,R)

µ(Aγ)

6
∑

γ∈BΓ(eΓ,R)

K|γ|SΓ

ϕ
(
|v−1u|SΛ

R

)
6 KR

VolSΓ
(R)

ϕ
(
|v−1u|SΛ

R

) .
So the claim is proved. �claim

Applying Claim 9.16 with R = r(n)
n |v

−1u|SΛ , we obtain

µ

(
{x ∈ XΓ : |bx(v)−1bx(u)|SΓ

6
r(n)

n
|v−1u|SΛ

}
)
6
Kr(n) VolSΓ

(r(n))

ϕ(n/r(n))
,
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since |v
−1u|
n 6 1. As there are at most n2 pairs (a, b) in Cn, we deduce that

µ

((
{x ∈ XΓ : ∃u, v ∈ Cn : |bx(v)−1bx(u)|SΓ

6
r(n)

n
|v−1u|SΛ

})
6
Kn2r(n) VolSΓ(r(n))

ϕ(n/r(n))
.

Hence there exists n0 such that for n > n0, there exists a subset B of XΓ of measure at least 2/3 on
which for all u, v ∈ Cn,

|bx(v)−1bx(u)|SΓ
>
r(n)

n
|v−1u|SΛ

.

Finally, for all x in the subset A ∩B which has positive measure, we deduce for every u, v ∈ Cn that

a|v−1u|SΛ 6 |bx(v)−1bx(u)|SΓ 6 b|v−1u|SΛ ,

where in the case of Theorem 9.11, a = r(n)
n and b = ψ−1 (3Ln); and in the case of 9.12, a = r(n)

n and
b = L. In both cases we have

a >
log(bn)

εn
+

8b

n
,

which contradicts Proposition 9.2 for some ε that only depends on δ.
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