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We examine the relation between the absolute equilibrium state of the spectrally trun-
cated Euler equations (TEE) predicted by Kraichnan (1973) to the forced and dissipated
flows of the spectrally truncated Navier-Stokes (TNS) equations. In both of these ide-
alized systems a finite number of Fourier modes is kept contained inside a sphere of
radius kmax but while the first conserves energy in the second energy is injected by a
body-force f and dissipated by the viscosity ν. For the TNS system stochastically forced
with energy injection rate IE we show, using an asymptotic expansion of the Fokker-
Planck equation, that in the limit of small kmaxη (where η = (ν3/IE)1/4 the Kolmogorov
lengthscale) the flow approaches the absolute equilibrium solution of Kraichnan with
such an effective “temperature” so that there is a balance between the energy injection
and the energy dissipation rate. We further investigate the TNS system using direct
numerical simulations in periodic cubic boxes of size 2π/k0. The simulations verify the
predictions of the model for small values of kmaxη. For intermediate values of kmaxη
a transition from the quasi-equilibrium “thermal” state to Kolmogorov turbulence is
observed. In particular we demonstrate that, at steady state, the TNS reproduce the
Kolmogorov energy spectrum if kmaxη � 1. As kmaxη becomes smaller then a bottleneck
effect appears taking the form of the equipartition spectrum E(k) ∝ k2 at small scales.
As kmaxη is decreased even further so that kmaxη � (k0/kmax)11/4 the equipartition
spectrum occupies all scales approaching the asymptotic equilibrium solutions found
before. If the forcing is applied at small scales and the dissipation acts only at large
scales then the equipartition spectrum appears at all scales for all values of ν. In both
cases a finite forward or inverse flux is present even for the cases where the flow is close to
the equilibrium state solutions. However, unlike the classical turbulence where an energy
cascade develops with a mean energy flux that is large compared to its fluctuations, the
quasi-equilibrium state has a mean flux of energy that is subdominant to the large flux
fluctuations observed.

1. Introduction

Turbulence is a classical example of an out of equilibrium system. In steady state,
energy is constantly injected at some scale `in while it is dissipated at smaller scales `ν
by viscous forces. This process requires a finite flux of energy from the former scale `in to
the latter `ν that is provided by the well known Kolmogorov-Richardson cascade. Despite
the out of equilibrium nature of turbulence there are circumstances where equilibrium
dynamics become relevant. This has been claimed to be the case for the scales larger than
than the injection scale ` > `in. At these scales the energy flux is zero and can possibly be
modeled using equilibrium dynamics (Dallas et al. 2015; Cameron et al. 2017; Alexakis
& Brachet 2018). Furthermore, at the smallest scales of the inertial range a so-called
‘bottleneck’ manifests where the power-law slope of the energy spectrum becomes less
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steep (Donzis & Sreenivasan 2010; Falkovich 1994; Martinez et al. 1997; Lohse & Müller-
Groeling 1995). This has been interpreted by Frisch et al. (2008) as an ‘incomplete
thermalization’ that becomes asymptotically at equilibrium for hyper-viscous flows when
the order of the hyper-viscosity tends to infinity. Equilibrium dynamics become also
relevant in the presence of inverse cascades in finite domains where large scale condensates
form (Kraichnan 1967; Robert & Sommeria 1991; Naso et al. 2010; Bouchet & Venaille
2012; Shukla et al. 2016). Finally understanding equilibrium dynamics is important for
systems that display a transition of from forward to an inverse cascade (Alexakis &
Biferale 2018; Sahoo et al. 2017; Benavides & Alexakis 2017; Sozza et al. 2015; Deusebio
et al. 2014; Seshasayanan et al. 2014) since the large scale flows in these systems transition
from an equilibrium state to an out of equilibrium state. Besides the possible applications,
understanding the equilibrium dynamics in turbulence is also a much needed step required
before understanding its much harder out-of-equilibrium counterpart. This has led many
researchers (Lee 1952; Hopf 1952; Kraichnan 1967, 1973; Orszag 1977) to investigate the
equilibrium state of the truncated Euler equations (TEE) where only a finite number of
Fourier modes is kept and are given by:

∂tu + PK [u · ∇u +∇p] = 0, ∇ · u = 0. (1.1)

Here u is the incompressible velocity field, p is the pressure and PK is a projection
operator that sets to zero all Fourier modes except those that belong to a particular set
‘K’ (here chosen to be all wavenumbers inside a sphere centered at the origin with radius
kmax). These equations conserve exactly two quadratic invariants

the Energy E =
1

2

∫
|u|2dx3 and the Helicity H =

1

2

∫
u · ∇ × udx3. (1.2)

In Fourier space these invariants are distributed among the different modes which are
quantified by the energy and helicity spherically averaged spectra E(k), H(k) respectively
defined as

E(k) =
1

2k0

∑
k6|k|<k+k0

|ũk|2 and H(k) =
1

2k0

∑
k6|k|<k+k0

ũ−k · (ik× ũk). (1.3)

Here ũ is the Fourier transform of u and we have assumed a triple periodic cubic domain
of size 2π/k0. The spectra have been divided by the smallest non-zero wavenumber k0
so that they have units of energy and helicity density respectively.

At late times this system reaches a statistically steady state whose properties are fully
determined by these two invariants. Using Liouville’s theorem and assuming ergodicity
Lee (1952) predicted that at absolute equilibrium this system will be such that every
state u of a given energy E is equally probable. This is equivalent to the micro-canonical
ensemble in statistical physics and it leads to equipartition of energy among all the
degrees of freedom (ie among all Fourier amplitudes) and an energy spectrum given by
E(k) ∝ k2. Kraichnan (1973) generalized these results including helicity and assuming a
Gaussian equipartition ensemble

P(u) = Z−1 exp [−αE − βH] (1.4)

where P(u) is the probability distribution for the system to be found in the state u,
E is the energy and H the helicity given in 1.2 and Z a normalization constant. The
parameters α and β are the equivalent of an inverse temperature and inverse chemical
potential in analogy with statistical physics. We note that for the TEE system eq.1.4 is
not exact! This is because eq. 1.4 allows for fluctuations of the energy E which are not
allowed for the TEE system. However it becomes closer to the true distribution as the
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number N of fourier modes becomes larger. For no helicity β = 0 this leads to the energy
spectrum E(k) ∝ k2 predicted by Lee. In the presence of helicity one obtains

E(k) =
4παk2

α2 − β2k2
, H(k) =

4πβk4

α2 − β2k2
. (1.5)

The coefficients α and β are determined by imposing the conditions

E = k0
∑
k

E(k) and H = k0
∑
k

H(k) (1.6)

and E and H are the initial energy and helicity respectively. The predictions above
have been verified for the truncated Euler system in numerous numerical simulations
(Orszag & Patterson 1977; Cichowlas et al. 2005; Krstulovic et al. 2009; Dallas et al.
2015; Cameron et al. 2017; Alexakis & Brachet 2018).

In the TEE however there is no exchange of energy with external sources or sinks and it
is thus harder to make contact with the more realistic systems mentioned in the beginning
of the introduction such as the scales larger than the forcing scale in a turbulent flow. It
was shown recently in Alexakis & Brachet (2018) that, in some cases, although the large
scales are close to an equilibrium state there is still exchange of energy with the smaller
turbulent and forcing scales generating energy fluxes (from the forced scales to the large
scales and from the large scales to the turbulent scales). It appears thus that, even in the
presence of sources and sinks, equilibrium dynamics can still be relevant. In this work
we examine further this possibility by looking at the truncated Navier-Stokes (TNS)
equations where there is constant energy injection and dissipation like in the regular
Navier-Stokes Equation but the system is limited to a finite number of Fourier modes
as in TEE. We show analytically in the next section that for weak energy injection and
weak viscosity so the kmaxη � (k0/kmax)11/4 (where η the kolmogorov lengthscale) the
system indeed reaches a quasi-equilibrium state whose probability distribution P(u) can
be calculated. We verify and extend these results using direct numerical simulations in
section 3. Our conclusions are presented in the last section.

2. Asymptotic expansion

We consider the truncated Navier-Stokes (TNS) equations

∂tu + PK [u · ∇u +∇P ] = f + ν∆u. (2.1)

where u is the incompressible velocity field, P is the pressure, ν is the viscosity and f
is a forcing function. The domain is a 2π periodic cube so that the smallest non-zero
wavenumber is k0 = 1. The projection operator PK sets to zero all Fourier modes with
wavenumbers outside the sphere of radius kmax. In total there are N ' 4π

3 (kmax/k0)3

Fourier wavenumbers inside this sphere. In order to proceed it helps to write the truncated
Navier Stokes equation in Fourier space using the Craya-Lesieur-Herring decomposition
(Craya (1958); Lesieur (1972); Herring (1974)) where every Fourier mode is written as
the sum of two modes one with positive helicity and one with negative helicity ũk =
ũ+kh

+
k + ũ−k h

−
k . The two vectors h±k are given by:

hsk =
k× (ê× k)√
2|k× (ê× k)|

+ i s
ê× k√
2|ê× k|

(2.2)

where ê is an arbitrary unit vector. The sign index s = ±1 indicates the sign of the
helicity of hsk. The basis vectors hsk are eigenfunctions of the curl operator in Fourier
space such that ik× hsk = s|k|hsk. They satisfy hsk · hsk = 0 and (hsk)∗ · hsk = 1, where
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the complex conjugate of hsk is given by (hsk)∗ = h−sk = hs−k. They form a complete base
for incompressible zero-mean vector fields. This decomposition has been extensively used
and discussed in the literature (Cambon & Jacquin 1989; Waleffe 1992; Chen et al. 2003;
Biferale et al. 2012; Moffatt 2014; Alexakis 2017; Sahoo et al. 2017). Note that since
every ũk is described by two complex amplitudes ũ±k that satisfy (ũ±k )∗ = ũ±−k there
are in total 2N independent degrees of freedom. The truncated Navier-Stokes using the
helical decomposition can then be written as

∂tũ
s
k = Vsk − νk2ũsk + f̃sk (2.3)

where the nonlinear term Vsk is written as the convolution

Vsk =
∑

p+q=k

∑
sp,sq

C
s,sq,sp
k,q,p ũ

sp
p ũ

sq
q (2.4)

and the tensor C
sk,sq,sp
k,q,p is given by C

sk,sq,sp
k,q,p = 1

2 (sqq − spp)(h
sk
−k · h

sq
q × h

sp
p ). The

nonlinearity Vsk satisfies the following relations∑
s,k

ũs−kVsk = 0,
∑
s,k

s k ũs−kVsk = 0 (2.5)

that correspond to the energy and helicity conservation respectively and∑
s,k

∂

∂ũsk
Vsk = 0. (2.6)

This last relation indicates that phase space volume is conserved by the nonlinearity (ie
it satisfies a Liouville condition). We will assume that the forcing is written as f̃sk = εskξ

s
k

where ξsk are random complex amplitudes that are statistically independent, normally

distributed and delta-correlated in time such that 〈ξsk(t)ξs
′

−q(t′)〉 = 2δs,s′ δq,k δ(t − t′).
With this choice each forcing mode injects energy to the system on average at rate εsk.
Then the Fokker-Plank equation for the probability density P(u) in the 2N-dimensional
space of all complex amplitudes ũ±k is given by

∂

∂t
P +

∑
s,k

∂

∂ũsk
(VskP) = ν

∑
s,k

∂

∂ũsk
(k2ũskP) +

∑
s,k

εsk
∂

∂ũsk

∂

∂ũs−k
P, (2.7)

where the sum is over all 2N modes ũsk. Multiplying by E = 1
2

∑
s,q |ũsq|2, integrating

over the phase-space volume and using integration by parts we obtain the energy balance
equation

∂

∂t
〈E〉 = −〈DE〉+ 〈IE〉 (2.8)

where DE = ν
∑
s,k k

2〈|ũsk|2〉 is the energy dissipation, IE =
∑
s,k ε

s
k is the injection rate

and the brackets stand for the average 〈f〉 ≡
∫
fPdU where dU stands for the phase

space volume element dU =
∏
s,k dũ

s
k.

We are interested in the limit that the energy injection and dissipation rate are a small
perturbation to the thermalized fluctuations. We thus set νk = δν′k, εsk = δε′sk where
δ � 1 is a small parameter. We then expand P in power series of δ as P = P0 +δP1 + . . .
. We are going to also consider the long time limit so we can neglect the time derivative.
To zeroth order we then have ∑

s,k

∂

∂ũsk
(VskP0) = 0. (2.9)
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The equation above implies that P0 is constant along the trajectories in the phase space
followed by solutions of the truncated Euler equations. These trajectories are expected
to be chaotic for large N and since this is such a high dimensional space we can also
conjecture that these trajectories are space filling (ie ergodic) in the subspace constrained
by the invariants of the system. In other words we assume that the trajectory will
pass arbitrarily close to any point that has the same energy and helicity as the initial
conditions. In this case P0 is determined by the energy and helicity of the system
P(u) = f(E ,H). For the present work however we are going to neglect the second
invariant the helicity and assume dependence only on the energy. We then write the
solution of eq. (2.9) as

P0 = f(E) = f

1

2

∑
s,k

|ũsk|2
 . (2.10)

To next order we then get∑
s,k

∂

∂ũsk
(VskP1) = ν′

∑
s,k

∂

∂ũsk
(k2ũskP0) +

∑
s,k

ε′sk
∂

∂ũsk

∂

∂ũs−k
P0 (2.11)

Substituting eq. (2.10) and using the chain rule for the derivatives

∂

∂ũsk
f(E) =

∂E
∂ũsk

∂f

∂E
=

(
∂

∂ũsk

1

2

∑
ss,q

ũ
sq
−qũ

sq
q

)
∂f

∂E
= ũs−k

∂f

∂E
(2.12)

we obtain for the function f(E)

∑
s,k

∂

∂ũsk
(VskP1) = ν′

∑
s,k

(
f + |ũsk|2

∂f

∂E

)
k2 +

∑
s,k

ε′sk

 ∂f
∂E

+

[∑
k

ε′sk |ũsk|2
]
∂2f

∂E2

 .

(2.13)
To obtain a closed equation for f(E) we average eq. (2.13) over the volume dUE of all
points in phase space of energy between E and E + dE . This consists of a spherical shell
in the 2N-dimensional phase space of radius

√
2E . Averaging over this volume leads the

sum in the left hand side to drop out because it is a divergence and the trajectories
determined by Vsk stay inside the shell. The volume integrals of terms independent of ũsk
are proportional to the shell volume dUE = S2N (2E)N−1dE where S2N is the surface of an
unit radius 2N-dimensional sphere. Terms proportional to |ũsk|2 result due to symmetry∫
dUE
|ũsk|2dU = (2N)−1

∫
dUE

∑
s,k |ũsk|2dU = (2N)−1S2N (2E)N . This leads to

ν′

(∑
k

|k|2
)(

f +
E
N

∂f

∂E

)
+

∑
s,k

ε′sk

(∂f
∂E

+
E
N

∂2f

∂E2

)
= 0. (2.14)

If we set K2 =
∑
s,k |k|2 ' 8πk5max/(5k

3
0) and I ′E =

[∑
s,k ε

′s
k

]
then by multiplying by

EN−1 the equation simplifies to

∂

∂E

(
ν′K2ENf + I ′EEN

∂f

∂E

)
= 0 (2.15)

that has the bounded solution:

f(E) = Z−1 exp

(
−νK

2

IE
E
)

(2.16)
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where Z is a normalization constant that imposes
∫
P(u)du = 1 and is given by:

Z = S2N2N−1
(
IE
νK2

)N
Γ (N) (2.17)

with Γ being the Gamma function. We have thus recovered the Kraichnan distribution
of eq. (1.4) with β = 0 and inverse temperature given by α = νK2/IE . Note that α
depends only on the ratio of ν′ and I ′E and thus is independent of δ and we have thus
dropped the primes.

It worth restating that P(u) = f
(

1
2

∑
s,k |ũsk|2

)
given in eq.2.16 expresses the proba-

bility that the system finds itself in the particular state u with energy E = 1
2

∑
s,k |ũsk|2.

If we would like to find the probability P (E) of finding the system in any state u of
energy E we need to average over all states u that have energy E . This leads to the
chi-distribution for the energy

P (E) =
S2N (2E)N−1

Z
exp

(
−νK

2

IE
E
)
. (2.18)

For large N the distribution P (E) in 2.18 is highly peaked at the mean energy

〈E〉 =
NIE
νK2

. (2.19)

As N tends to infinity P (E) becomes asymptotically a delta function centered at 〈E〉.
The mean energy of any mode ũsk is given by 1

2 〈|ũ
s
k|2〉 = 〈E〉/2N Averaging over spherical

shells then leads to the thermal equipartition spectrum

E(k) =
4πIE
νK2k30

k2 (2.20)

Finally using eq. (2.16) one can calculate the energy dissipation

〈DE〉 = νZ−1
∑
s,q

q2
∫
|ũsq|2 exp

−1

2
α
∑
s,k

|ũsk|2
 dU

=
ν

2NZ

(∑
s,q

q2

)∫
(2E) exp (−αE) dU

=
νK2

N
〈E〉 = IE (2.21)

and verify that the energy balance relation in eq. (2.8) is satisfied. The results indicate
therefore that for small viscosity the truncated system will converge to the absolute
equilibrium solutions of such “temperature” 1/α so that the viscous dissipation balances
the energy injection rate!

3. Numerical simulations

In this section we test the results of the previous section and extend our investigation
beyond the asymptotic limit using direct numerical simulations of the TNS system of eq.
(2.1). The simulations were performed using the ghost code (Mininni et al. 2011) that is
a pseudospectral code with 2/3 de-alliasing and a second order Runge-Kutta. For all runs
the energy injection rate was fixed to unity and the integration times were sufficiently
long so that steady states were reached. The forcing used is random and white in time as



Energy fluxes in quasi-equilibrium flows 7

Figure 1: Left panel: The probability distribution functions P (E) from the results of the
323-grid numerical simulations compared with the theoretical prediction. Right panel:
The probability distribution functions for the amplitudes of usk (real and imaginary part)
for k = (0, 2, 0), (0, 4, 0), (0, 8, 0), and for s = ±1.

the one discussed in the previous section. It is limited to a spherical shell of wavenumbers
satisfying (k

F
6 |k| 6 k′

F
).

Three cases were examined. In the first case small resolution runs were performed on
a cubic domain with NG = 32 grid points in each direction. These runs due to their
small size allow to some extend a direct investigation of probability distribution function
P(u). In the second case the simulations were performed on a larger grid NG = 256
numerical grid that, after de-aliasing, leads to kmax = 85 and was forced at large scales
(k

F
= 1, k′

F
= 2). These simulations demonstrate the transition from a forward cascade to

a quasi-equilibrium state predicted in the section before. In the third case the simulations
were designed to demonstrate the presence of an inverse flux in the thermalized state.
A smaller grid was used NG = 128 with kmax = 42. The energy injection was at large
wavenumbers (k

F
= 31, k′

F
= 35) while we replaced ν∇2u by the modified viscous term

ν∇2PQ
D

[u] that acts only a particular spherical set of small wavenumbers Q
D

satisfying
(1 6 |k| 6 4). With this setup energy is forced to be transported inversely from the
forced wavenumbers to the dissipation wave numbers.

3.1. Small resolution runs

For these small resolution runs the energy injection rate was fixed to unity and the
viscosity was set to ν = 10−4. The maximum wavenumber for the grid NG = 32 that
was used was kmax = 10. Despite the small value of kmax the total number of Fourier
modes in this system is still quite high N = 5040. It is thus still impossible to verify the
predictions for P(u) in full detain for such a high dimensional space. Nonetheless in the
left panel of figure 1 we plot the probability distribution function for the energy P (E)
based on the direct numerical simulations plotted with solid brown line and based on
the analytic predictions of 2.18. The two curves overlap indicating that both the mean
value and fluctuations around it are correctly captured. Note that for this large value of
N the distribution is highly peaked however there is still a finite variance of E indicating
that E is a fluctuating quantity at difference with the TEE where E is fixed by the initial
conditions.

To further explore the validity of the result 2.16 on the right panel of figure 1 we
plot the pdfs of the real and imaginary part of the modes ũsk for the three wavenumbers
k = (0, 2, 0), (0, 4, 0), (0, 8, 0), and for s = ±1. The results of the previous section predict
that these amplitudes follow a Gaussian distribution with the same variance. There
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Figure 2: Left panel: Energy spectra for six different runs of the TNS equations with
kmax = 85, IE = 1 and from dark to bright ν = 10−1, ν = 10−2, ν = 10−3, ν = 10−4, ν =
10−5, ν = 10−6, ν = 10−7, ν = 10−8, ν = 10−9, ν = 10−10, The forcing was restricted in
the small wavenumbers and the dissipation in the large wavenumbers as indicated. Right
panel: The wavenumber ktran where the Kolmogorov spectrum k−5/3 transitions to the
thermal spectrum k2 as a function of the Kolmogorov lengthscale η = (ν3/IE)1/4. Here
ktran for the simulations (diamonds) is estimated as the wavenumber that E(k) obtains
its minimum. The dashed line gives the prediction in eq. (3.1).

are 16 curves in total in the left panel of 1 that have the same variance and perfectly
overlap with the Gaussian shown by the dashed line in agreement the prediction of eq.
2.16. Further more we calculated the elements of the co-variance matrix for these modes
Σi, j = 〈XiXj〉 (where Xi stand for the mode amplitudes <(ũsk) and =(ũsk)). The off-
diagonal elements i 6= j are two orders of magnitude smaller than the diagonal elements
i = j. This indicates that the Fourier amplitudes ũsk are independent variables with
Gaussian distribution further verifying the predictions of the previous section.

3.2. Quasi-equilibrium state and forward flux

In the previous case although it was possible to verify some of the predictions of the
previous section on P(u). However the limited range of wavenumbers did not allow to test
the predictions on the energy spectrum. To that end we used a series of simulations on
a larger grid (NG = 256) with IE = 1 varying the viscous coefficient ν from ν = 2 · 10−1

to ν = 10−10. We must note here that the time to reach saturation from zero initial
conditions is proportional to T ∝ E/IE and can be very large for small values of ν. For
this reason the runs with small ν started with random initial conditions with energy close
to the one predicted. The same runs were repeated with slightly smaller or large energy
to make sure all runs converged to the same point.

The resulting energy spectra are shown in the left panel of figure 2 for ten values of
ν. Dark colors indicate large values of ν while bright values indicate small values of ν.
For the large values of ν the simulations are ‘well resolved’ in the sense that one can
observe clearly the dissipation range where there is an exponential decrease of the energy
spectrum. For ν = 0.01 and ν = 0.001 (second and third dark line from the bottom) one
can also see the formation of an inertial range that displays a negative power-law close

to the Kolmogorov prediction E(k) = CKI2/3E k−5/3 (where CK ' 1.6 is the Kolmogorov
constant Sreenivasan (1995); Donzis & Sreenivasan (2010)). As the value of ν is decreased
a bottleneck at large wave numbers appears and energy starts to pile up at the smallest
scales of the system. As the value of ν is decreased further this bottleneck appears to take
the form of a positive power-law close to the thermal equilibrium prediction E(k) ∝ A k2.
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Figure 3: Turbulence behavior as a function of kmaxη.

This thermal spectrum occupies more wavenumbers as the viscosity is decreased until all
wavenumbers follow this scaling. At the smallest value of ν the result is compared with
the asymptotic result obtained in the previous section. The proportionality coefficient A
can be estimated from eq. 2.20 to be A = 5IE/(2νk5max) that guaranties that the energy

balance condition 2ν
∫ kmax

0
k2E(k)dk = IE is satisfied. Matching the thermal with the

Kolmogorov spectrum we obtain that the transition occurs at the wavenumber

ktran = kmax

(
2CK

5

)3/11

(kmaxη)4/11 (3.1)

where η = (ν3/IE)1/4 is the Kolmogorov length-scale. The right panel of fig. 2 shows a
comparison of this estimate with ktran measured from the spectra as the wavenumber at
which E(k) obtains its minimum. The scaling agrees very well with the results from the
simulations.

In summary for values of kmaxη larger than k0/kmax (ie k0η � 1) the flow is laminar
displaying an exponential spectrum. For 1� kmaxη � k0/kmax there is the formation of
an inertial range where the Kolmogorov spectrum dominates followed by the dissipation
range. If (k0/kmax)11/4 � kmaxη � 1 (so that ktran � k0) then the dissipative range
no longer exist and there is coexistence of the Kolmogorov spectrum followed by a
thermalized spectrum at large wavenumbers. Finally for kmaxη � (k0/kmax)11/4 the
system is in the quasi-equilibrium thermal state predicted in the previous section. These
result are summarized in the sketch in fig. 3.

The transition from a Kolmogorov spectrum to a thermal one resembles a lot the
time evolution of the TEE studied in Cichowlas et al. (2005). For the TEE at early
times a k−5/3 energy spectrum develops as energy is transferred to larger and larger
wavenumbers. When the maximum wavenumber kmax is reached, the thermalized energy
spectrum starts to develop displaying at intermediate times both spectral slopes k−5/3

and k2. The difference with the present runs is that in the Euler case the transition
occurs as time is increased while in the present case we only consider the steady state,
and vary the value of kmaxη.

Similarities can also be found with the recent work on a time-reversible version of
the Navier-Stokes (Gallavotti 1996). Using shell models Biferale et al. (2018) and three
dimensional simulations Shukla et al. (2019). of the time-reversible Navier-Stokes these
authors found similar transitions from a Kolmogorov to a thermal quasi-equilibrium
with the formation of both spectra depending on the parameter regime. The results were
interpreted in terms of a phase transition, a possibility that could further explored for
the present work as well.

We note that the time averaged flux from large scales to small scales is constant in
the inertial range. What varies as we change the value of kmaxη is the amplitude of
the fluctuations of the flux around this mean value of the flux. This is displayed in
figure 4 where the mean flux is shown with dark line together with the instantaneous
fluxes at different times with bright colors for four different values of ν. For ν in the
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Figure 4: Time average energy fluxes (dark line) and instantaneous energy fluxes (bright
lines) for three different values of the viscosity ν = 10−3 (top left panel), ν = 10−5 (top
right panel), ν = 3 · 10−5 (bottom left panel), ν = 3 · 10−6 (bottom right panel). The
dashed line shows the variation amplitude of the flux. (Note the change in the scale of
the y-axis in the bottom figures)

Kolmogorov turbulence regime the fluctuations of the flux are concentrated around the
mean value without large deviations from it. As the value of the viscosity is decreased
the fluctuations at large wavenumbers are increased until finally the fluctuations of the
mean flux are orders of magnitude larger than the averaged flux for all wave numbers.
The pdfs of the energy flux for different wavenumbers and values of viscosity are shown
in fig. 5. Note that for a flow in equilibrium all third order quantities like the flux have
zero value. In this case the mean value of the flux remains fixed but the variance of the
fluctuations as ν is decreased (right panel of fig. 5) or k is increased (left panel of fig.
5) increase. Thus compared to the variance of the fluctuations the mean flux becomes
negligible and thus the flow is in quasi-equilibrium.

3.3. Quasi-equilibrium state and inverse flux

In most three dimensional turbulent flows the scales larger than the forcing scale are
close to an equilibrium state (Alexakis & Brachet 2018). In many instances however
there is a change of dynamics at large enough scales and the flow is constrained to two
dimensional dynamics (like for example turbulence in thin layers or in rotating flows)
where energy tends to cascade inversely (Alexakis & Biferale 2018). There is thus a
transition from a thermal state with zero energy flux, to a state that has a finite inverse
flux of energy. Close to such transition (unless the transition is discontinuous) the system
has to be close to the equilibrium state with an inverse energy flux. With this motivation
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Figure 5: Left panel: probability distribution function of the energy flux for ν = 10−5 at
four different wavenumbers. Right panel: probability distribution function of the energy
flux at k = 20 and different values of viscosity. The dashed line shows the variation
amplitude of the flux.

Figure 6: Left panel: Energy spectra from simulation forced at small scales and dissipated
at large scales as indicated. For all runs IE = 1 and from dark to bright ν = 10, ν =
1, ν = 0.1, ν = 0.01. Right panel: Time average energy flux (dark line) and instantaneous
energy fluxes (bright lines) for ν = 1.

we examine the case where the forcing is located at small scales while the dissipation is
limited in the large scales so that there is an net inverse transfer of energy.

We have thus performed simulations on a NG = 128 numerical grid that leads to a
kmax = 48 forcing at wavenumbers in the range (k

F
= 31, k′

F
= 45) with unit energy

injection rate. At difference with the previous simulations the dissipation limited only to
small wavenumbers that satisfy 1 6 |k| 6 k′ = 4. The energy is thus injected at small
scales and dissipated at large scales forcing that way an inverse transfer of energy.

The spectra for four different values of ν are shown in the left panel of fig. 6. The forcing
and dissipation shells are indicated in the graph. In this case a spectrum E(k) = Ak2
forms for all values of ν with small changes at the dissipation wave numbers for large
values of ν. For small values o ν the amplitude of the spectrum A is such so that the
energy balance is satisfied that leads to A ' 5IE/(2νk′5) where k′ is the maximum
wavenumber where the dissipation acts. The dashed line shows this prediction for the
smallest value of ν. The flux fluctuations shown in the right panel of the same figure (fig.
6) are always dominant. We note however that their averaged value leads to a constant
negative flux in the k2 inertial range where no forcing or dissipation are present. It is
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Figure 7: Left panel: Energy spectra from simulation forced at small scales and dissipated
by regular viscosity. For all runs IE = 1 and from dark to bright ν = 0.01, ν = 0.003, ν =
0.001, ν = 0.0003, ν = 0.00001. Right panel: Time average energy flux (dark line) and
instantaneous energy fluxes (bright lines) for ν = 0.00001.

worth noting that in these quasi-equilibrium states the direction of the transfer of energy
is not determined by the nonlinear term as in Kolmogorov turbulence but only by the
location of the energy source and sink. If regular viscosity is used, although a thermalized
state is still reached as predicted by the previous section, there is no net inverse flux of
energy. This is demonstrated in fig. 7 where the energy spectra and the energy flux is
shown from simulations with regular viscosity forced at small scales.

4. Conclusions

In this work we examined the spectrally truncated Navier-Stokes equations flows that
are close to equilibrium. We showed analytically that in the limit of small viscosity
the statistically steady state of these flows converge to the Kraichnan (1973) solutions.
We note that our prediction is not just for the spectrum in eq. (2.20) but for the full
probability distribution P(u) for the system to find itself in a state u given in eq. (2.16).

The derivation was based on two major assumptions. First we assumed ergodicity
for the solutions of the TEE. This assumption appears in most calculations of classical
statistical physics that although it can only be proved in very few systems it appears to
be a plausible one for many systems with large numbers of degrees of freedom. For the
TEE it appears at least to be in agreement with the results of numerical simulations.
The second assumption we made was to neglect the effect of the second invariant: the
helicity. This assumption was made in order to simplify the (rather involved) calculation.
Had we kept the effect of helicity then the zeroth order solution P0(u) would have been
reduced to a function of two variables f(E ,H) and we would have ended up with an
elliptic partial differential equation to solve for f . However the presence of helicity would
break the spherical symmetry in phase space that allowed us to calculate the involved
integrals. The calculation is still feasible but much more lengthier and we leave it for
future work.

The numerical investigation verified our analytical results and demonstrated that the
Fourier amplitudes ũsk indeed become independent Gaussian variables, and that the
energy distribution and energy spectrum approach that of the analytic predictions as
the asymptotic limit is reached. Furthermore, the numerical investigation also shed light
on how the TNS system transitions from the classical Kolmogorov turbulence state to
the thermalized solutions of Kraichnan (1973) as the kmaxη is varied and led to precise
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predictions on when the transition takes place. The transitions are compactly summarized
in fig. 3 where the three different states “laminar”, “turbulent” and “thermal” as well
as the transitions from one state to the other are clearly marked. Finally it was also
demonstrated that these quasi equilibrium states are present when the dissipation is
localized in the small wave numbers and the forcing at large wavenumbers forming an
inverse flux of energy.

It is worth noting that a fixed amplitude flux (positive or negative) was always
present in our simulations and that it was determined by the injection rate. However,
as the quasi-equilibrium state is approached, the amplitude of the velocity fluctuations
increases. These velocity fluctuations then lead to fluctuations of the energy flux to have
variance that is much larger then the mean value making this mean flux a sub-dominant.
Furthermore, the mean energy in the quasi-equilibrium state scales like 〈E〉 ∝ 1/ν (see
eq. 2.19) and therefore in the small viscosity limit the energy dissipation normalized by
u3rmsk0

lim
ν→0

〈IE〉
〈2E〉2/3k0

= 0

becomes zero. Thus, opposed to Kolmogorov turbulence, there is no finite (normalized)
energy dissipation rate in the zero viscosity limit. We have thus to distinguish the
processes of energy transfer in these quasi-equilibrium states (sometimes referred as
“warm cascades”) from the energy cascade that is met classical turbulent flows. These
states are dominated by fluctuations and the direction of the energy transfer is not
determined by the properties of the non-linearity but only the location of the sources
and sinks of energy and in general is a non-local process (see fig. 14 in Alexakis & Brachet
(2018)).

There are many directions in which the present results can be pursued further. First
of all including the effect of helicity is crucial to have a complete description of the
system. Moreover carrying out the calculation at the next order so that statistics of
the fluxes can also be calculated would be equally desirable. Finally, extending these
results to two-dimensional flows, where the equilibrium states can take the form of large
scale condensates, is another possible direction. Such calculations, although considerably
longer than the ones presented here, should still be feasible and we hope to address them
in our future work.
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