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Abstract. In this study we are concerned with the general problem of choosing from a set of 

endangered species T a subset S of k species to protect as a priority. Here, the interest to 

protect the species of S is assessed by the resulting expected phylogenetic diversity (ePD) of 

the set T, a widely used criterion for measuring the expected amount of evolutionary history 

associated with T. We consider that the survival of the protected species is assured and, on the 

contrary, that there is a risk of extinction for the unprotected species. The problem is easy to 

solve by a greedy type method if the extinction probabilities of the unprotected species are 

known but these probabilities are generally not easy to quantify. We show in this note that the 

choice of the precise values attributed to the extinction probabilities – provided it respects the 

rank of imperilment of each species – is not as decisive as might be feared for the considered 

problem. The values of these probabilities have a clear impact on the selection of the species 

to be protected but a little impact on the resulting ePD. More precisely, if T1 and T2 are the 

two optimal subsets of species corresponding to two scenarios (two different sets of 

probabilities) the ePDs of T1 and T2, calculated with the probabilities of the first scenario – or 

with the probabilities of the second scenario – are not very different. 

 

Keywords: Biodiversity conservation, phylogenetic diversity, protected species, extinction 

risk, optimization, greedy algorithm. 

 

1. Introduction 

 

An increasing number of species are threatened with extinction (Stork 2010). The 

causes for this growing threat include habitat loss, degradation, and fragmentation, 

agriculture, human over-population, deforestation, poaching and hunting, invasive species, 

and climate change (Collen et al. 2013). The loss of biodiversity that would result from a 

massive extinction would have disastrous consequences (Cardinale et al. 2012). The 

international community agrees that the protection of threatened and endangered species is a 

priority issue but the resources available to implement these protections are limited 
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(Convention on Biological Diversity 2011). It is therefore crucial to carefully select the 

species on which the protection efforts will be concentrated in order to preserve biodiversity 

as much as possible. There are many ways to assess biodiversity (see, for example, (Moreno 

et al. 2017) and also the very extensive book by MacLaurin and Sterelny (2008) on this 

subject). In this paper, the measurement of biodiversity is based on the notion of phylogenetic 

diversity. We consider that the survival of a protected species is assured - which is not the 

case for an unprotected species - and we consider the classic conservation problem which 

consists in determining, among a set of species T, the “best” subset of species to protect 

within a limited budget. More precisely, we consider the problem of determining, among a set 

of species T, k species to be protected so as to maximize the resulting expected phylogenetic 

diversity of T, k being a fixed value. The phylogenetic diversity is a widely used criterion for 

expressing the amount of biodiversity (evolutionary history) of a set of species captured by a 

phylogeny. The reader can refer to (Maclaurin & Sterelny 2008, Chap.7 and Pellens & 

Grandcolas 2016) for a very comprehensive presentation of the role of phylogenetic diversity, 

in large sense, in the field of biological conservation. The expected phylogenetic diversity 

requires the precise knowledge of the extinction probabilities of the species concerned and 

these probabilities are generally not easy to quantify (Mace et al. 2008 ; Mooers et al. 2008). 

In this note, we use the measure of phylogenetic diversity created by Faith (Faith 1992a, 

1992b) and we study the influence, on the solutions of the considered conservation problem, 

of the values attributed to the extinction probabilities. 

 

2. The expected phylogenetic diversity 

 

A rooted phylogenetic tree can be considered as a directed tree, ),,,( TANH  , where 

N is the set of nodes, A, the set of arcs – or directed edges or branches –,T, the set of leaves 

representing the species, and  , the vector of the length of each branch. The branches of A 

are directed from the root of H to its leaves. The nodes of the phylogenetic tree that are 

neither root nor leaves are called internal nodes. The internal nodes have one predecessor and 

at least two successors. For all Aa , we denote by aL  the set of species for which there is a 

path from the terminal node of a to these species. As mentioned in Section 1, we use the 

measure of phylogenetic diversity created by Faith: The phylogenetic diversity of the set T of 

species associated with the tree H is equal, by definition, to  Aa a . Intuitively, it 

represents the total amount of evolutionary history embodied in a set of species, since the time 
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of the most recent common ancestor of the set (Chao et al. 2010). In this paper, we refer to PD 

to indicate this measure. The reader is referred to (Faith 2013, 2016) and also (Collen 2015; 

Isaac et al. 2007) for a comprehensive discussion about the use of PD in measuring 

biodiversity. Mimouni et al. (2016) point out that PD is an established index with a large 

enough body of literature regarding its computational and combinatorial aspects. For example, 

Hartmann & Steel (2007) review algorithmic, mathematical, and stochastic results concerning 

PD. As mentioned in the introduction, the book of Maclaurin and Sterelny (2008) and the 

book edited by Pellens and Grandcolas (2016) deal in detail with the importance of 

phylogenetic diversity, and especially Faith’s phylogenetic diversity, for biodiversity 

conservation.  

Suppose that an extinction probability, ip , is associated with each species, i, of T. The 

probability that the information associated with an arc a of the tree is retained is equal to the 

probability that at least one of the species “reachable” from a – i.e. belonging to aL – 

survives. This way, we can define (from the Faith’s PD) the expected phylogenetic diversity 

(ePD) of T. It is equal to the sum on all arcs of T of the probability that the information 

associated with this arc is conserved, multiplied by the length of this arc (Witting & 

Loeshchke 1995). More precisely, the ePD of T is equal to  


Aa aa P )1(  where 




aLi ia pP . We suppose here that the extinction probabilities of the species are 

independent. The ePD is recognized as a relevant criterion for evaluating the biodiversity 

associated with a set of species. It accounts for complementarity among species (Faith 2015). 
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Figure 1. A hypothetical ultrametric phylogenetic tree 

associated with 7 species; it has 10 branches. The length 

of each branch is indicated next to the branch. 

 

As an example, consider the hypothetical ultrametric phylogenetic tree of Figure 1 and 

assume that the 7 species considered all have the same extinction probability. Let us examine 
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the impact of the following 2 events (of same probability):  the extinction of the 3 species 1, 6 

and 7, the 4 other species remaining alive, and the extinction of the 3 species 2, 3 and 4, the 4 

other species remaining alive. The first event would cause the loss of 22 units while the 

second would cause the loss of only 13 units. 

The use of ePD requires the knowledge of the extinction probabilities, ip , for each 

species i, and these probabilities are generally not easy to quantify (Mooers et al. 2008). We 

consider that the studied species are divided into several groups more or less threatened and 

that an extinction probability is associated with each group. It is possible, for example, to 

consider the 5 IUCN Red List categories: Least Concern, Near Threatened, Vulnerable, 

Endangered and Critically Endangered. Note that ranking species in these categories is a 

difficult task (Mace et al. 2008). The extinction probability of the species i, ip , is then equal 

to the extinction probability assigned to the group of threat to which it belongs. Redding & 

Mooers (2006) and Isaac et al. (2007) have proposed ways to transform the Red List 

categories to extinction probabilities. Mooers et al. (2008) have shown that the choice of 

transformation of Red List categories to different extinction probabilities can affect the 

resulting species ranking for the metrics EDGE (Isaac et al. 2007) and HEDGE (Steel et al. 

2007; Mooers et al. 2008; Forest et al. 2015; Nunes et al. 2015). In this study, we examine the 

impact of the extinction probability value attributed to each group (and thus to each species) 

on the optimal protection strategy associated with the classical conservation problem outlined 

above and precisely defined below. 

 

3. Determining the best set of species to protect 

 

The problem that we consider here can be stated as follows: given a phylogenetic tree 

),,,( TANH   and extinction probabilities, pi, for each species, i, of T, determine a set of k 

species of T whose protection maximizes the ePD of T. Remember that we assume that the 

protection of a species ensures its survival. In other words, its probability of extinction 

decreases from pi to 0. This basic problem is a particular case of the Noah’s Ark problem 

which was first defined by Weitzman (1998). It is shown in (Hartman & Steel 2006 ) and 

(Pardi 2009) that the considered conservation problem can be solved easily by a greedy 

algorithm. The algorithm begins with an empty set, S , and sequentially adds to S the species, 

i, which maximizes the ePD of the set }{iS   until the cardinal of S is k. 
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Link with the HEDGE metric: The well-known HEDGE metric defines species priority ranks 

for a fixed tree and fixed extinction probabilities. The HEDGE score of the species i is equal 

to the increase of the ePD of T obtained by protecting this species with respect to the ePD of T 

obtained in protecting no species (Figure 2). One way of approaching the considered problem 

- determine the species of T to be protected so as to maximize the resulting ePD of T- consists 

in calculating the HEDGE score of each species and then retaining the k species with the 

highest scores. It is to be noted, however, that the HEDGE score does not take into account 

the protection actions actually taken. Indeed, if the species that has the highest HEDGE score 

is effectively protected (its extinction probability becomes equal to 0) the HEDGE scores of 

some other species can decrease significantly. To overcome this drawback, a natural 

extension of the HEDGE method, called I-HEDGE, has been proposed by Jensen et al. 

(2016). This method consists in gradually calculating the HEDGE score of each species 

taking into account at each stage the fact that a new species becomes protected. The new 

species that becomes protected is the one with the highest score, this one being calculated 

taking into account the species already chosen to be protected. This method, which therefore 

integrates the notion of phylogenetic complementarity, corresponds exactly to the greedy 

algorithm proposed by Pardi (2009) and Hartman & Steel (2006), and mentioned above. 

Figure 2 illustrates the computation of the EDGE and I-HEDGE scores. 

                  

                  
      10       7     

                  

                  

                  
   6   4  3  7  9  2  10  

                  

  6  3              
                  

:Ti  1   2    3  4  5 6   7    8 

ip : 0.8   0.6    0.8  0.8 0.4 0.8   0.6    0.6 

HEDGEi : (10.7520) (7.7520) (6.2720) (5.4720) (3.6064) (8.0064) (2.0064) (6.8064) 

I-HEDGEi : [10.7520] 

 

[1.8000] [3.2000] [2.4000] [2.8000] [8.0064] [1.2000] [6.0000] 

Figure 2. A hypothetical phylogenetic tree with 8 species. The lengths of the branches are 

indicated next to each branch. The extinction probabilities of each unprotected species (pi) are 

shown under each species. The HEDGE score for each species (HEDGEi) is shown in brackets 

under the corresponding species. The I-HEDGE score for each species (I-HEDGEi) is shown in 

square brackets under the corresponding species. According to these last values, the 3 species 

whose protection maximizes the ePD of T are 1, 6 and 8, and the corresponding ePD is equal 

to 55.6 (30.8416+10.7520+8.0064+6.0000). 
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Consider the detail of the calculation of the I-HEDGE scores on the tree in Figure 2. If no 

species is protected, the ePD of T is equal to 30.8416. The species whose protection increases 

the most the ePD of T is species 1. The protection of this species increases the ePD of T from 

30.8416 to 30.8416+10.7520=41.5936. Let us definitely set the value of the survival 

probability of species 1 to 1. The species (different from 1) whose protection increases the 

most the ePD of T is species 6. The protection of this new species increases the ePD of T from 

41.5936 to 41.5936+8.0064=49.6000. Let us definitively set the survival probability of 

species 6 to 1. The species (different from 1 and 6), the protection of which increases the most 

the ePD of T is species 8. The protection of this new species increases the ePD of T from 

49.6000 to 49.6000+6.0000=55.6000. 

 

4. Main result 

 

We present in this section experimental results which show that the choice of the values 

attributed to the extinction probabilities associated with the 5 groups of species considered 

does not have an immense influence on the solution of the problem under consideration 

although this choice may significantly affect the set of species to be protected as a priority. 

Consider the two scenarios defined by the probabilities )2,1;5,...,1(   gg  which 

designate the extinction probability of the species of the group g in the scenario . We denote 

by )2,1(* S  the optimal set of species to be protected in scenario . As we have seen 

above, these sets can be determined by the greedy algorithm. For each subset S of T and for 

each scenario , we denote by ),( STePD  the ePD of T generated by the protection of the 

species of S and calculated with the probabilities of the scenario  . 

We are interested first of all in the case where one decides to protect the species of 1*S . 

We then compute the resulting ePD of T with the two sets of extinction probabilities, that is to 

say ),( 1*1 STePD and ),( 1*2 STePD . We then consider the case where one decides to protect 

the species of 2*S  and one calculates the resulting ePD of T with the two sets of extinction 

probabilities, that is to say ),( 2*1 STePD  and ),( 2*2 STePD . We then calculate the two 

relative gaps denoted by gap
1
 and gap

2
: 

),(]/),(),([ 1*12*11*11 STePDSTePDSTePDgap   

),(]/),(),([ 2*21*22*22 STePDSTePDSTePDgap   
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The first of these gaps provides the relative error made (on the maximum ePD) in considering 

that the real scenario is the scenario 2 when in reality it is the scenario 1. The second gap 

provides the relative error made in considering that the real scenario is the scenario 1 when in 

reality it is the scenario 2.  

We first calculated gap
1
 and gap

2
 on 10,000 randomly generated instances 

corresponding to non ultrametric trees and also on 10,000 randomly generated instances 

corresponding to ultrametric trees. The description of all these instances and the 

corresponding detailed results are presented in Section 5.  

For the non ultrametric trees, the largest of the gaps obtained (out of 20,000) is equal to 

2.63% (Table 5). Therefore, we can say that, at least under these experimental conditions, the 

possible error committed – on the maximum ePD values – by the choice of transformation of 

categories to different extinction probabilities is relatively limited. However, it should be 

noted that the set of k species, optimal in scenario 1, may be quite different from the set of k 

species optimal in scenario 2. We measured their dissimilarity by the cardinal of their 

symmetric difference divided by the cardinal of their union. This criterion therefore varies 

from 0 to 1. For example, the dissimilarity between the two optimal sets corresponding to the 

largest gap is equal to 0.70 which corresponds to two very different sets (Table 5). Note that 

Mooers et al. (2008) had already observed that the choice of transformation of Red List 

categories to different extinction probabilities can affect significantly the resulting species 

ranking for the two well-known metrics EDGE and HEDGE.  

For the ultrametric trees, the largest of the gaps obtained (out of 20,000) is slightly 

higher than the one obtained for non-ultrametric trees since it is equal to 4.13% (Table 5). 

Here too, the dissimilarity between the two optimal sets corresponding to this gap is 

important. It is equal to 0.59 (Table 5).  

We then calculated gap
1
 and gap

2
 on 10,000 instances generated from the phylogenetic 

tree associated with the 52 Madagascar lemurs (species and subspecies) and studied by Pardi 

(2009). In this case, the phylogenetic tree considered (structure, length of the branches and 

category to which each of the 52 lemurs belongs) is definitively fixed. It includes 97 nodes in 

total. Each of the 10,000 instances is generated by associating to the 52 lemurs 2 different 

scenarios of extinction probabilities. The description of these instances and the corresponding 

detailed results are presented in Section 5. As in experiments on randomly generated 

phylogenetic trees we found that 1)  the possible error committed – on the maximum ePD 

values – by the choice of transformation of categories to different extinction probabilities is 
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relatively limited (0.89%) and 2) the two optimal sets corresponding to the largest error are 

very different (dissimilarity equal to 0.42). 

 

5. Description of the instances and detailed results 

 

Randomly generated non ultrametric phylogenetic trees 

 

The 10,000 instances considered were generated in the following way: 

Construction of the hypothetical phylogenetic trees: First, the number of non-leaf nodes is 

uniformly and randomly chosen between 50 and 1,000. Then, for each of these nodes, the 

number of children is uniformly and randomly generated between 2 and maxd , and maxd  is 

itself drawn at random uniformly between 2 and 4.  

Lengths of the branches: The length of each branch is uniformly and randomly generated 

between 1 and max , and max  is itself drawn at random uniformly between 5 and 20. 

Assignment of extinction probabilities: The set of species is divided into five categories and 

the category to which each species belongs is drawn at random in two different ways. In the 

first case, this group is drawn at random uniformly in the set {1,2,3,4,5}. The numbers of 

species in each group are then comparable. In the second case, the group is drawn at random 

to approximately obtain the following distribution of the species in the five groups, as in 

(Mooers et al. 2008): 2%, 4%, 9%, 9%, 76%. Considering the case 1 or the case 2 is chosen at 

random in an equiprobable manner. To define the extinction probabilities of an unprotected 

species we were inspired by the description of the 5 IUCN Red List categories (IUCN 2012): 

For each tree considered, two sets of extinction probabilities (corresponding to two 

hypothetical scenarios) are drawn at random uniformly in the intervals given in Table 1.  

 

Table 1. Randomly generated trees: possible values  

of the extinction probability of each category. 

Category Interval in which the extinction  

probability is chosen at random 

1 [0.50,1.00]  

2 [0.20,0.50]  

3 [0.10,0.20]  

4 [0.05,0.10]  

5 [0.00,0.05]  
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Maximum number of species that can be protected: Finally, the maximum number of species 

that can be protected is equal to the greatest integral number less than or equal to   

multiplied by the number of species, and   is drawn at random uniformly in the set {0.1, 0.2, 

0.3, 0.4, 0.5}.  

We also conducted other experiments slightly different from the previous ones by 

modifying the way extinction probabilities are attributed. In these experiments, the extinction 

probabilities of the species may vary within a category. More precisely, the extinction 

probability of each species is drawn at random uniformly in the range corresponding to its 

category. For example, if species 27 belongs to category 2, its extinction probability is drawn 

at random uniformly in the interval [0.20, 0.50]. We again generated 10,000 instances and we 

obtained results comparable to those we had previously obtained: The mean of the 20,000 

relative gaps is equal to 0.19%, the corresponding standard deviation is equal to 0.13%, and 

the largest relative gap is equal to 1.21%. The instance corresponding to this largest gap 

concerns 67 species divided into five categories respectively formed of 16, 12, 10, 15 and 14 

species. In this instance, the maximum number of species that can be protected is equal to 6 

and the dissimilarity of the two optimal sets obtained is equal to 0.50. 

 

Randomly generated ultrametric phylogenetic trees 

 

The 10,000 instances considered were generated in exactly the same way as for non-

ultrametric trees, and then the lengths of the branches linked to a species in each resulting tree 

are modified to obtain an ultrametric tree. Let L be the length of the longest path connecting 

the root to a species and let li be the length of the path connecting the root to the species i. For 

each species i, the length of the arc connected to this species is modified by adding to it the 

value L-li.  

 

Phylogenetic tree associated with Madagascar lemurs (Pardi 2009) 

 

The 10,000 instances considered were generated in the following way: 

Assignment of extinction probabilities: The set of species is divided into five categories. The 

category to which each species belongs is given by Pardi (2009). For each instance 

considered, two sets of extinction probabilities (corresponding to two hypothetical scenarios) 
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are drawn at random uniformly in the intervals given in Table 2. These intervals represent a 

variation around the values of the extinction probabilities proposed by Pardi (2009). 

 

Table 2. Madagascar lemurs: possible values of  

the extinction probability of each category. 

Category Interval in which the extinction  

probability is chosen at random 

1 [0.90,1.00]  

2 [0.65,0.85]  

3 [0.40,0.60]  

4 [0.15,0.35]  

5 [0.00,0.10]  

 

Maximum number of species that can be protected: As in experiments on randomly generated 

phylogenetic trees, the maximum number of species that can be protected is equal to the 

greatest integral number less than or equal to   multiplied by the number of species (52), and 

  is drawn at random uniformly in the set {0.1, 0.2, 0.3, 0.4, 0.5}.  

For the three types of phylogenetic trees considered (non-ultrametric, ultrametric, 

Madagascar lemur), statistics on the 10,000 generated instances, characteristics of the instance 

corresponding to the largest gap and solutions of the conservation problem considered for this 

instance and for the two associated scenarios are presented in Tables 3-5. 

With regard to the phylogenetic tree associated with Madagascar lemurs we also 

measured the impact that possible errors on the lengths of the branches could have on the 

solution of the considered conservation problem: determine k species to protect in order to 

maximize the resulting ePD. For this we have definitively assigned to each species the 

survival probability given by Pardi (2009) and we have randomly generated two sets of values 

for the lengths of the branches, thus obtaining two scenarios. The value of each branch is 

uniformly and randomly generated in the interval [0.75a, 1.25a] where a is the value of 

the branch given by Pardi. We therefore consider that a significant error ( %25 ) can be 

made on the lengths of the branches. We have thus built 10,000 different instances. For each 

instance, we have determined the 2 optimal sets S
*1

 and S
*2

 corresponding to the two 

scenarios and we have calculated the two relative gaps, gap
1
 and gap

2
, defined in Section 4. 

Here, ),( STePD  is the ePD of T generated by the protection of the species of S and 

calculated with the branch lengths of the scenario   ( =1 or 2). The maximum of these 2 

gaps over the 10,000 instances generated, that is to say the maximum error that can be made 

by choosing the wrong scenario, is equal to 1.68%. This error is larger than that obtained by 
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considering uncertainties on the survival probabilities. Moreover the two optimal sets of 

species corresponding to the largest gap are very different since their dissimilarity is equal to 

0.64. If we admit that an error of %50  can affect the length of the branches, the maximum 

relative gap goes to 5.28% and the dissimilarity to 0.57. 

 

Table 3. Statistics on the 10,000 randomly generated instances. 

 Non-

ultrametric 

trees 

Ultrametric  

trees 

Madagascar  

lemurs tree 

Maximum number of species in the 10,000 generated trees 2058 2058 - 

Minimum number of species in the 10,000 generated trees 74 74 - 

Mean of the 20,000 relative gaps (%) 0.08 0.07 0.08 

Standard deviation of the 20,000 relative gaps (%) 0.14 0.20 0.12 

Maximum of the 20,000 relative gaps (%) 2.63 4.13 0.89 

Dissimilarity maximum of the 10,000 pairs of optimal sets 0.70 0.68 0.42 

 

 

Table 4. Characteristics of the instances 

corresponding to the largest relative gap. 

 Non- 

ultrametric trees 
Ultrametric 

trees 
Madagascar 

lemurs tree 

Number of non-leaf nodes 727 147 - 

Number of species 1420 290 - 

dmax 4 4 - 

max  7 9 - 

Length of the longest path  

from the root to a species 

72 - - 

Length of the shortest path  

from the root to a species 

16 - - 

Number of species  

in each group 

297, 293, 267, 

274, 289 

55, 64, 50, 

58, 63 

- 

Scenario 1: Extinction  

probabilities by category:  

0.86, 0.24, 0.14, 

0.07, 0.01 

0.51, 0.47, 0.12, 

0.06, 0.01 

0.99, 0.76, 0.48, 

0.32, 0.05 

Scenario 2: Extinction 

probabilities by category:  

0.50, 0.46, 0.13, 

0.07, 0.03 

0.99, 0.22, 0.18, 

0.07, 0.03 

0.95, 0.67, 0.59, 

0.16, 0.01 
  0.1 

(142 species). 

0.2 

(58 species) 

0.3 

(15 species). 

Scenario 1: ePD obtained  

by protecting no species 

11003.39 8262.40 94.07 

Scenario 2: ePD obtained  

by protecting no species 

11237.61 7748.15 98.70 

ePD obtained by protecting  

all the species 

13485.00 10520.00 143.18 
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Table 5. Results associated with the solution of the problem 

in the two scenarios for the instances described in Table 4. 

 Non-ultrametric  

trees 

Ultrametric 

trees 

Madagascar 

lemurs tree 

Scenario 1: Maximum ePD  12176.37 9407.09 131.21 

Scenario 1: Distribution by category  

of the species to be protected 

category 1: 142 category 1: 31 

category 2: 27 

category 1: 5 

category 2: 6 

category 3: 2 

category 4: 2 

ePD obtained in scenario 1  

by protecting the species of the  

set optimal in scenario 2:  

11856.61 9265.58 130.87 

gap
1
 (%) 2.63 1.50 0.26 

Scenario 2: Maximum ePD  12001.33 9605.16 132.97 

Scenario 2: Distribution by category  

of the species to be protected 

category 1: 66 

category 2: 76 

category 1: 55 

category 2: 3 

category 1: 4 

category 2: 6 

category 3: 5 

ePD obtained in scenario 2  

by protecting the species of the  

set optimal in scenario 1 

11914.76 9208.83 131.79 

gap
2
 (%) 0.72 4.13 0.89 

Dissimilarity of the two optimal sets  0.70 0.59 0.42 

 

 

6. Conclusions and perspectives 

To determine which of a given set of endangered species should be protected as 

priorities, the criterion of the expected phylogenetic diversity (ePD) is recognized as a 

relevant criterion. However, its use requires explicit knowledge of the extinction probabilities 

of the species considered when they are protected and also when they are not protected. We 

assume here that the extinction probability of the protected species is zero. We were interested 

in the influence of the conversion of the extinction risk of a species to an extinction 

probability of this species. The extinction risk of a species is given by the fact that it belongs 

to a certain category (such as those of the IUCN Red List).  We showed experimentally, on 

randomly generated ultrametric and non-ultrametric phylogenetic trees as well as on a real 

tree, that the choice of the extinction probabilities values is not as important as might be 

feared. More precisely, if we consider 2 scenarios, corresponding to two different 

conversions, the ePD generated by the protection of a set of k species, optimal in the scenario 

1 and calculated with the probabilities of this scenario is not very distant from the ePD 

generated by the protection of a set of k species, optimal in the scenario 2 and calculated with 

the probabilities of the scenario 1. In other words, the error committed by retaining the 

scenario 2 when the real scenario would be the scenario 1 is not very important, at least in our 

experimental conditions. The terms “scenario 1” and “scenario 2” can be exchanged in the 
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preceding two sentences. It should be noted, however, that the set of k species, optimal in the 

scenario 1, may be quite different from the set of k species optimal in the scenario 2. 

We considered in this study that the survival probabilities of the protected species were 

equal to 1. It would be interesting to study other values for these probabilities and to measure 

the impact of the values retained (if the species is protected and if it is not protected) on the 

optimal ePD. It would also be interesting to study the impact of the uncertainties that 

inevitably exist on the structure of the phylogenetic trees considered and the values attributed 

to their branches. In section 5, we have given some preliminary results that show that the 

consequences of uncertainties on branch lengths may not be negligible.  
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