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Abstract. We consider a set of species S and are interested in the assessment of the subsets of 

S from a phylogenetic diversity viewpoint. Several measures can be used for this assessment. 

Here we have retained phylogenetic diversity (PD) in the sense of Faith, a measure widely 

used to reflect the evolutionary history accumulated by a group of species. The PD of a group 

of species X included in S is easy to calculate when the phylogenetic tree associated with S is 

perfectly known but this situation is rarely verified. We are interested here in cases where 

uncertainty regarding the length of branches and the topology of the tree is reflected in the 

fact that several phylogenetic trees are considered to be plausible for the set S. We propose 

several measures of the phylogenetic diversity to take account of the uncertainty arising from 

this situation. A natural problem in the field of biological conservation is to select the best 

subset of species to protect from a group of threatened species. Here, the best subset is the one 

that optimizes the proposed measures. We show how to solve these optimal selection 

problems by integer linear programming. The approach is illustrated by several examples. 

 

Keywords: Biodiversity conservation, phylogenetic diversity, uncertainty, protected species, 

optimization. 

 

 

1. Introduction 

 

The risk of extinction affecting a large number of species threatens biodiversity (Stork 2010). 

Many causes can be identified for this alarming situation (Collen et al. 2013). The 

international community agrees that there is an urgent need to try to halt the decline of 

biodiversity, but the resources available are of course limited (Convention on Biological 

Diversity 2011). It is therefore essential to have criteria for selecting the species to be 

protected as a priority. Many measures have been proposed to assess the value of protecting a 

given set of species (see, for example, (Moreno et al. 2017) and also the very extensive book 

by MacLaurin and Sterelny (2008) on this subject). In this article we have retained 

phylogenetic diversity, a measure widely used to reflect the evolutionary history accumulated 

https://link.springer.com/article/10.1007%2Fs10666-017-9561-7


2 
 

by a community of species. The reader can refer to (Maclaurin & Sterelny 2008, Chap.7 and 

Pellens & Grandcolas 2016) for a very comprehensive presentation of the role of phylogenetic 

diversity, in large sense, in the field of biological conservation. Many measures of 

phylogenetic diversity have been proposed (Vellend et al. 2010; Lean and Maclaurin 2016). 

We have retained here the measure proposed by Faith (1992a, 1992b). This measure that we 

note PD is easy to use when the phylogenetic tree (branch lengths and their arrangement in 

the tree) related to the set of species considered is perfectly known but this is an abstraction. 

Although many studies involving the notion of phylogeny rely on a single tree, uncertainty is 

inevitably present. It has many causes (Donoghue and Ackerly1996; Swenson 2009; Rangel et 

al. 2015; Nipperess 2016). Thus, uncertainty regarding the length of branches and the 

topology (branching pattern) of the tree can be reflected in the fact that several phylogenetic 

trees are plausible for a given set of species (Jetz et al. 2012; Arponen and Zupan 2016; 

Nipperess 2016). As Collen (2015) notes, establishing how best to make robust decisions with 

limited and uncertain information is an important avenue of research. The crucial question 

discussed here is how to estimate the phylogenetic diversity of a group of species by taking 

into account the multiple trees that are associated with this group. In an attempt to answer this 

question, we propose several measures derived directly from Faith’s phylogenetic diversity 

and discuss the pros and cons of these measures in considering uncertainty. For a group of 

species X, these measures are based on the aggregation of the PD of X, calculated on the 

different trees envisaged. Indeed, if there is no strong argument in favor of one of the trees, all 

must be taken into account (Mimouni et al. 2016). Techniques for aggregating criteria to 

ultimately achieve a single criterion are widely used in many disciplines. For a given set of 

species, the values of the suggested measures are easy to calculate. This is not the case if one 

tries to determine, among a given set of species, the subset that optimizes these values while 

respecting specific constraints such as a budgetary constraint. We show that this optimal 

selection problem can be easily solved for these different measures by integer linear 

programming. Several examples are used to illustrate the approach. 

 

2. Phylogenetic diversity 

 

A rooted phylogenetic tree associated with a set of species S can be considered as a 

directed tree, ( , , , )T V A S  , where V is the set of nodes (or vertices), A, the set of arcs – or 

directed edges or branches –, S, the set of leaves representing the species, and  , the vector of 

branch lengths. The branches of A connect two nodes and are directed from the root of T to its 
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leaves. A vertex i is said to be a successor of a vertex j if an arc of A goes from j to i and, 

conversely, i is said to be a predecessor of j if an arc of A goes from i to j. The root of T is the 

only vertex that has no predecessor and the leaves of T have no successor. The vertices of T 

that are neither root nor leaf have a single predecessor and at least two successors. For all 

Aa , we denote by La the set of species for which there is a path from the terminal node of a 

to these species. In other words, the survival of any species of La permits to preserve all the 

evolutionary history represented by the path of T going from the root to the leaf representing 

this species. The phylogenetic diversity created by Faith (1992a) and used here is by 

definition equal to   XLAa a
a,

 , for any set X included in S. Intuitively, it represents the 

total amount of evolutionary history embodied in the set of species X, since the time of the 

most recent common ancestor of the set (Faith 1992a; Chao et al. 2010). For example, the PD 

of the set of species {s2,s4,s6} calculated from phylogenetic tree 1 in Figure 1 is equal to 3.11. 

The reader is referred to (Maclaurin and Sterelny 2008; Faith 2013, 2016; Collen 2015; 

Pellens and Grandcolas 2016) for a comprehensive presentation of the concepts of PD and 

especially of its relevance in the field of biological conservation. The phylogenetic diversity 

requires the precise knowledge of the phylogenetic tree associated with the species concerned 

but this tree is generally not easy to establish. As mentioned in the introduction, we are 

interested in defining the phylogenetic diversity of a subset of species X included in S when 

there are uncertainties on the phylogenetic tree associated with S. These uncertainties are 

reflected in the existence of several phylogenetic trees that can be envisaged for the set of 

species S. In the following we propose several ways to evaluate the phylogenetic diversity of 

a subset X of S taking into account this multiplicity of trees. The proposed approaches apply 

as well in the case where a probability cannot be associated with each tree as in the opposite 

case (for example, equiprobable trees). However, it is assumed that there are no strong enough 

arguments to eliminate some trees. The final objective is to propose a method for selecting, 

under constraints and in a context of uncertainty, the ‘best’ set of species to be protected on 

the basis of the phylogenetic diversity criterion. 

 

3. Phylogenetic diversity measures with uncertainty on the phylogenetic tree 

 

We consider a set of species ),...,,( 21 msssS   and a set of n possible phylogenetic trees for 

these species, ),...,,( 21 nTTTT  . We note M the set of indices {1,...,m} and N, the set of 

indices {1,...,n}. Each tree Tt of T is represented by the quadruplet ( , , , )t t tV A S   where 
tV is 



4 
 

the set of nodes, tA , the set of arcs , S, the set of leaves, and t , the vector of branch lengths. 

For any subset X of S, we note )(XPDt  the PD of X in the tree Tt. We are faced with the 

question of being able to quantify in a certain way the phylogenetic diversity of a group of 

species by taking into account the uncertainties on the phylogenetic tree associated with these 

species. Below we propose different ways of expressing this phylogenetic diversity. 

 

3.1. Average and weighted average phylogenetic diversity (avPD and wavPD)  

 

One way to take into account the multiplicity of trees to assess the phylogenetic diversity of a 

group of species is to study the mean of its PDs on all trees (Nipperess 2016, Section Future 

directions). This is a very classic measure. We denote by avPD(X) the average phylogenetic 

diversity of a group of species X included in S. It can be expressed as follows: 

1
( ) ( )tt N

avPD X PD X
n 

  . 

Considering the weighted mean of the PD on all possible trees is a way of making one tree 

more important than another. We denote it by wavPD(X) and it can be expressed as follows: 

( )
( )

t tt N

tt N

w PD X
wavPD X

w









, 

where wt denotes the weight assigned to the phylogenetic tree Tt. Note that if wt=1 for any t 

then avPD(X)=wavPD(X). The advantage of avPD and wavPD lies in their simplicity, but 

they have a lot of drawbacks. The measure avPD is in fact the mathematical expectation of 

phylogenetic diversity that would be obtained by attributing an equal probability to all trees. 

Similarly wavPD is the mathematical expectation corresponding to the probability 

 Nt tt ww /  attributed to the tree Tt ( t N ). As is well known, an important disadvantage of 

these measures is that they are strongly influenced by extreme values of the PD. Moreover 

they allow compensation between a bad score and a good score. Thus, a set of species that 

optimizes an average phylogenetic diversity value can be very bad from the point of view of 

its PD calculated on some trees. Note that if the uncertainty regarding the phylogenetic tree 

concerned only the length of the branches constituting this tree, we could be interested, for 

any set of species X included in S, in the mathematical expectation of the PD of X provided 

that we could associate a probability to each possible length of the different branches 

(Nipperess 2016). 
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3.2. Robust phylogenetic diversity (rPD) 

 

When uncertainty affects the phylogenetic tree associated with a set of species, a robust 

measure of phylogenetic diversity can be investigated. The term robust solutions encompasses 

a set of solutions designed to protect the decision-maker against uncertainty. Several 

robustness measures can be used. For a very complete presentation of the concept of 

robustness in the presence of several scenarios, the reader can refer to (Kouvelis and Yu 

1997). In this section, we focus on a common robust measure that we note rPD. It is a very 

prudent measure which ensures that the PD of any subset of species X included in S is at least 

equal to the rPD of X regardless of the ‘true’ phylogenetic tree associated with S (among the 

trees considered). This measure is therefore very conservative since it takes into account the 

worst-case scenario. In practice, it consists of calculating the phylogenetic diversity of X in 

each tree and then retaining the lowest of the values obtained. We note it rPD(X). It can be 

expressed as follows: 

)(min)( XPDXrPD tNt . 

This measure is pessimistic because, for a given group of species, it retains the worst situation 

(in terms of phylogenetic diversity). We will see in the following that searching for a set of 

species SX   that maximizes rPD(X) is like searching for a set of species SX   that 

performs well regardless of the ‘true’ phylogenetic tree associated with S. This is the way the 

robust solution protects against uncertainty. This measure, which is interesting whatever the 

probabilities associated with each tree, is particularly useful in the case where all the 

considered trees are equiprobable. Note that the rPD measure is in the same vein as the 

“phylogenetic risk” approach advocated by Faith (2008). The difference lies in the fact that in 

(Faith 2008) the uncertainty associated with the conservation of a set of species comes from 

the extinction probabilities of these species whereas here the uncertainty comes from the fact 

that several phylogenetic trees are plausible for this set of species. 

We could also define another measure that is a compromise between the pessimistic measure, 

rPD, which we have just seen, and an optimistic measure that would consist in retaining, for a 

set of species X in S, its maximum PD on all trees (Hurwicz’s criterion). This measure is 

therefore a weighted average of extreme consequences. Given a pessimistic coefficient α ∈ 

[0,1] it is written: 

)(max)1()(min XPDXPD tNttNt    . 
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3.3. Ordered weighted average phylogenetic diversity (owaPD) 

 

We saw in the previous section a measure associated with a set of species X included in S that 

took into account the worst situation (associated with the phylogenetic tree providing the 

lowest value of PDt(X)) and also another measure that took into account both the worst 

situation and the best situation. We now propose to use another measure that takes into 

account all situations in some way. Ordered weighted averaging (OWA) operators were 

introduced by Yager (1998) as a tool for information aggregation. In the case we are 

interested in, this operator provides a measure of X that takes into account first the lowest 

value of PDt(X) then the value that immediately follows and so on until the best value is taken 

into account. We denote this measure by owaPD(X). Let w1,w2,…,wn be a decreasing set of 

weights lying in the unit interval and summing to one. The calculation of owaPD(X) can be 

performed as follows. First, calculate PDt(X) for any Nt , then multiply the weight wt with 

the lowest t’th value obtained and finally add all of it. This measure can be expressed as 

follows: 

 


Nt tt XPDwXowaPD )()( )(  

where )(t denotes the index of the tree corresponding to the lowest t’th value of the set

{ ( ) : }tPD X t N . The value of owaPD(X) is between the minimum and the maximum values 

of PDt(X). Compared to rPD, owaPD is less conservative since it enables trade-offs between 

several scenarios. Note however that owaPD includes rPD as a special case (w1=1 and 

w2=w3=…=wn=0). One of the difficulties that arise in using owaPD is the definition of 

weights w1,w2,…,wn. The meaning of these weights is indeed very different from that of the 

weights used in wavPD. This last measure violates the requirement of impartiality as it 

assigns the weights to the specific trees in order to reflect the importance of each tree and the 

trees are known (Ogryczak and Sliwinski 2003). On the contrary, the weight involved in 

owaPD reflect the importance given to the worst value, the one that comes immediately after 

and so on, but neither these values nor the tree from which they come are known. The reader 

can refer to the following references for a presentation of OWA operators, their interest and 

their use in different applications: (Yager and Kacprzyk 1997; Calvo et al. 2002; Llamazares 

2007; Olender 2016). 
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3.4. Highest guaranteed phylogenetic diversity for   trees (hPD) 

 

A value v for this measure means that there are  trees of T for which )(XPDt  takes at least 

the value v. Since we are interested in the highest possible value, v is therefore equal to the (n-

+1)’th lowest value of the set }:)({ NtXPDt  . This measure therefore does not take into 

account the worst (n-) values. It is denoted by ( )h PD X  and can be expressed as follows: 

 1,2,...,
( ) max min ( ) min ( )t t

t E t EE n

E

h PD X PD X PD X






 



   

where E denotes the  indices belonging to N and corresponding to the highest  values of 

)(XPDt . In other words, for  trees the phylogenetic diversity of X is at least equal to 

hPD(X). This measure can be considered as a special case of owaPD provided that the 

weights 1 2, ,..., nw w w  are allowed not to be necessarily decreasing. If 

1 1 20,..., 0, 1, 0,..., 0nw w w w w         then hPD(X)=owaPD(X). In the particular case 

where =n, hPD(X)=rPD(X). Note that in the case where a probability can be associated with 

each tree Tt of T, the probability that the phylogenetic diversity of a set X S  is greater than 

or equal to hPD(X) is greater than or equal to the sum of the probabilities associated with the 

trees whose indices belong to E (for example, /n when all the trees are equiprobable).  

  

3.5. Largest gap from maximum phylogenetic diversity (lgapPD) 

 

This measure which is part of the robust measures is by nature slightly different from previous 

ones. Consider a set of species, X, included in S and verifying a set of constraints C. This 

measure involves the highest PD that can be associated with a set of species included in S and 

satisfying C, and this for each tree considered. To evaluate a set of species X included in S 

(and verifying C) with this measure, the difference between the PD of X and the highest PD 

value that could be obtained on the same tree for a set of species included in S and satisfying 

C is calculated for each tree. The largest of these differences is then retained. This measure is 

denoted by lgapPD(X) and can be expressed as follows: 

 *( ) max ( )t
C t

t T
lgapPD X PD PD X


   

where *t
CPD  is equal to the maximum PD of a set of species included in S and satisfying C, in 

tree Tt. Thus, for any X included in S and verifying C, the distance between the PD of X and 
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the maximum PD of a set of species included in S and satisfying C is guaranteed in each tree 

insofar as this distance is less than or equal to lgapPD(X). This measure is therefore based on 

a regret concept. 

 

We will denote by PD(X) these 6 measures ( represents av, wav, r, owa, h, lgap) 

 

4. Example 

 

Consider the 4 hypothetical phylogenetic trees in Figure 1. These trees are associated with the 

set of 6 species {s1,s2,s3,s4,s5,s6}. They were generated with the sole purpose of illustrating, as 

best as possible, the PD measures presented in the previous section. Table 1 shows the PDt(X) 

values in each tree as well as the 6 PD(X) values when X={s1,s2,s3}. In this example 

lgapPD(X) is calculated assuming that the constraints C express only the fact that 3 species 

out of 6 must be selected. 

 

1 

 
 

2 

 

3 

 

4 

 
 

Figure 1. Four hypothetical ultrametric phylogenetic trees  

associated with 6 species (drawn with iTOL). 
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Table 1. PDs of the set {s1,s2,s3} in the four trees of Figure 1 and PDs. 

 

PD 

Tree 

1 

PD 

Tree 

2 

PD 

Tree 

3 

PD 

Tree 

4 

avPD wavPD 
w=(0.5,0.2,0.2,0.1) 

owaPD 
w=(0.4,0.3,0.2,0.1) 

rPD h2PD lgapPD 

3.22 2.79 2.27 2.05 2.5825 2.827 2.381 2.05 2.79 1.97 

 

5. Application to optimization problems 

 

As noted in the introduction, PD(X) is easy to calculate for a given set of species X included 

in S. On contrast, determining a set X included in S that optimizes PD(X) under some 

constraints is much more difficult. We show in the following that integer linear programming 

is an effective tool to address this issue. We will focus on the following 4 classic selection 

problems summarized by Chernomor et al. (2016) in the context of split diversity: 

 

Problem I (Species Selection): Given a set of n phylogenetic trees for m species, find a 

subset X of k species that optimizes PD(X) over all subsets of k species. 

Problem II (Budgeted Species Selection): Given a set of n phylogenetic trees for m species 

and a conservation cost for each species, find a subset of species X whose total conservation 

costs do not exceed a predefined budget while optimizing PD(X) over all subsets of species 

whose total conservation costs do not exceed this predefined budget. 

Problem III (Reserve Selection): Given a set of n phylogenetic trees for m species 

distributed in p areas, find a subset of k areas that optimizes PD(U) over all subsets of k 

areas where U is the set consisting of all species present in at least one of the k selected areas. 

Problem IV (Budgeted Reserve Selection): Given a set of n phylogenetic trees for m species 

distributed in p areas and conservation costs for each area, find a subset of areas whose total 

conservation costs do not exceed a predefined budget while optimizing PD(U) over all 

subsets of areas whose total conservation costs do not exceed this predefined budget where U 

is the set consisting of all species present in at least one of the selected areas. 

 

Optimization means maximization for =av, wav, owa, r, h  and minimization for =lgap. 

 

Given a set of possible phylogenetic trees associated with a set of species S, it is very easy to 

calculate PD(X) for =av, wav, owa, r, h , for any subset X of S. For =lgap the calculation 

is a little more complicated since it is first necessary to determine, for each tree, the maximum 
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PD of a set of species verifying some constraints. For example, these constraints may express 

that the set of species must correspond to the species present in k areas. This is an 

optimization problem in itself, which can be more or less difficult to solve. If constraints only 

express the fact that k species must be selected then the problem can be solved easily by a 

greedy algorithm (Hartmann & Steel 2006, Pardi 2009). The algorithm begins with an empty 

set, X, and sequentially adds to X the species, si, which maximizes the PD of the set {s }iX   

until the cardinal of X is k.  

Many conservation-relevant issues include determining, under specific constraints, a subset of 

species X included in S that is optimal with respect to phylogenetic diversity. We are 

interested here in the problems of determining sets of species that, under some constraints, 

optimize PD (Problems I-IV). These problems are generally difficult. Indeed, the method 

which would consist in calculating PD(X) for all the subsets X of S respecting the constraints 

is not practicable as soon as the number of species in X and/or S is large. We propose here a 

method based on integer linear programming to determine, under some constraints, the set X 

included in S which optimizes PD(X). 

 

6. Formulation of Problems I-IV by integer linear programs 

 

6.1.  Optimizing avPD, wavPD, rPD, hPD and lgapPD 

 

Let us recall that ),...,,( 21 nTTTT   is the set of phylogenetic trees that has to be considered 

for the set of species concerned, that 
tA  is the set of arcs of Tt and that 

t  is the vector of the 

branch lengths of Tt. More precisely, { : }t t
a ta A    where t

a  denotes the length of the 

branch a in the tree Tt. 
t
aL  refers to the set of species (leaves) under the arc a in the tree Tt. In 

other words, the survival of at least one species of t
aL  preserves the evolutionary history of 

the arc a if, however, Tt is the ‘true’ phylogenetic tree. The cost associated with the selection 

of species si will be designated by ci. We will note R={R1,R2,...,Rp} the set of areas 

considered, Cj the cost associated with the selection of the area Rj and B the available budget. 

We will note P={1,…,p}. Finally, bij is a parameter that is equal to 1 if species si is present in 

the area Rj and 0 if not. In order to formulate Problems I-IV by integer linear programs, we 

will use the following variables:  
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}1,0{ix )( Mi : 1ix  if and only if species si is selected; 

{0,1}t
az  ( , )tt N a A  : 1t

az   if and only if the set of selected species allows to preserve 

the evolutionary history of the arc a in the tree Tt; 

}1,0{jy )( Pj : 1jy  if and only if area Rj is selected; 

0 :  is a working variable for calculating the minimum of several quantities; 

{0,1}t  )( Nt : t  is a working variable allowing to take into account or not the tree Tt in 

calculating the optimal value of hPD; 

0tPD  ( )t N : phylogenetic diversity, calculated in the tree Tt, of the set of selected 

species, i.e. of the set { , 1}i is : i M  x = .  

Let us now examine the different constraints that will be used to formulate Problems I-IV 

with the 6 different measures proposed to assess phylogenetic diversity. 

 

(C0): max t
a

t
a ii L

z x


 ( , )tt N a A  . The Boolean variable t
az  must take the value 1 if and 

only if at least one of the species of t
aL  is selected. This constraint is not linear, we will 

replace it with the linear constraint C1 below; 
 

(C1): t
a

t
a ii L

z x


 ( , )tt N a A  . In the case of maximizing t
az , this constraint is equivalent 

to C0; 
 

(C2):
t

t t
t a aa A

PD z


   ( )t N ; 

 

(C3): kx
Mi i  

. The number of species selected must be equal to k; 

 

(C4): Bxc
Mi ii  

. The total cost of the selected species should not exceed the available 

budget, B; 
 

(C5):  


Pj jiji ybx )( Mi . Species xi can only be selected (xi=1) if at least one of the 

areas where it occurs is itself selected; 
 

(C6): ky
Pj j  

.The number of areas selected must be equal to k; 

 

(C7): ByC
Pj jj  

. The total cost associated with the selected areas should not exceed the 

available budget, B. 
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Once these variables and constraints are defined most of the mathematical programs that solve 

Problems I-IV, with PD(X) as a measure of the phylogenetic diversity, are easy to establish. 

These programs when  is equal to av, wav, r, hand lgap are given in Table 2. 

 

Table 2. Integer linear programs associated with Problems I-IV when  

phylogenetic diversity is measured by PD with  = av, wav, r, h and lgap.  

avPD and wavPD rPD hPD lgapPD 

1
max t tt N

w PD
n   

subject to: 
 

 

max  

subject to: 

( )tPD t N    

 

max  

subject to: 

( )t tPD H t N   

tt N
n 


   

min  

subject to: 
* ( )t
C tPD PD t N     

C1,C2,C3       

C1,C2,C4       

C1,C2,C5,C6     
 C1,C2,C5,C7        

(Problem I) 

(Problem II) 

(Problem III) 

(Problem IV) 

 

For avPD and wavPD the objective function, (1/ ) t tt N
n w PD

 , expresses wavPD for the set 

of selected species and avPD in the particular case where wt=1 for all .Nt  It should be 

noted that in all these programs, the set of species selected corresponds either to a set of 

directly selected species or to a set of species whose selection results from the selection of a 

set of areas. For rPD, according to constraint ( )tPD t N    and considering that  is the 

objective function to be maximized,  will take, at the optimum, the smallest of the n values 

( )tPD t N , i.e. the smallest of the n PD values (in the n trees considered) associated with 

the set of selected species. In the program associated with hPD, H is a sufficiently large 

constant that allows to make inactive the constraints in which t=1. The objective is to 

maximize the variable . Because of constraints ( )t tPD H t N    , the value of  will 

be equal, at the optimum, to the smallest of the quantities ( )t tPD H t N   but, according 

to constraint tt N
n 


  , n- variables t can take the value 1. In order to maximize , 

the values of t which will take the value 1 are those whose index corresponds to the smallest 

n- values of ( )tPD t N . At the optimum,  will therefore be equal to the value that comes 

immediately after. Recall that in the program associated with lgapPD, *t
CPD  denotes the 

maximum PD of a feasible set of species (directly selected or resulting from the selection of 
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areas), calculated in the tree Tt. According to constraint * ( )t
C tPD PD t N     and 

considering that  is the objective function to be minimized,  will take, at the optimum, the 

largest of the n values * ( )t
C tPD PD t N  , i.e. the largest deviation (in the n trees 

considered) we are interested in. 

 

6.2.  Maximizing owaPD 

 

Problems I-IV are somewhat more difficult to formulate by a mathematical program when the 

phylogenetic diversity of a set of species X is measured by owaPD(X). Here we show how to 

formulate the optimization of owaPD(X) by an integer linear program using the results 

established by Ogryczak and Sliwinski (2003) for linear programs with OWA objective 

functions. Let us use the Boolean variable eij ),( NjNi   which takes the value 1 if and 

only if the weight wi is assigned to the value of the PD of X in the tree Tj. For a set of species 

X included in S and fixed, owaPD(X) is equal to the optimal value of the linear program in 

Boolean variables P1(X). 

 

1

min ( )

1 ( )
P ( ) :

s.t. 1 ( )

0,1 , ( )

j i ijj N j N

ijj N

iji N

ij

w PD X e

e i N a
X

e j N b

e i N j N c

 









 

  

   


 




 

Indeed, given the objective function to minimize, the decreasing weights w1,w2,...,wn will be 

assigned to the PDs of X sorted in increasing order, respectively. The objective function thus 

expresses well, at the optimum of P1(X), owaPD for the selected species. It is known that in 

this type of program the integrality constraints (c) can be relaxed, i.e. replaced by the 

constraints 0 1ije   ),( NjNi   and finally by the constraints 0 ije  since constraints (a) 

and (b) prevent the eij variables from exceeding value 1. Consider the dual program of the 

program thus obtained by associating to constraints (a) and (b) the real variables i and i, 

respectively. The mathematical program P2(X) is obtained, whose optimal value is equal to 

that of P1(X). 
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2

max ( )

P ( ) : ( ) .
s.t. 

,

i ii N

i j j i

i i

X w PD X i N j N

R R i N

 

 

 


 



   


  



 

To solve the 4 problems under consideration, it is sufficient to express, in P2(X), PDi(X) as a 

function of variables xi, for problems I and II, and also as a function of variables yi for 

problems III and IV. The resulting formulations are presented below by program P3. 

   

P3:

1 2

3 4

5 6 5 7

max ( )

,

,

s.t. C ,C

C (if Problem I), C (if Problem II),

C ,C (if Problem III), C ,C (if Problem IV)

i ii N

i j j i

i i

w PD i N j N

R R i N

 

 

 


 

    

   









 

 

7. Example 

 

Let us return to the 4 phylogenetic trees from Figure 1 and consider Problems I (resp. III) in 

which we seek to select a set of 3 species (resp. 2 areas) that optimizes PD for =r, owa, h2 

and lgap. For Problem III, we assume that 4 areas R1, R2, R3 and R4 are concerned and that the 

6 species s1, s2, s3, s4, s5 and s6 are spread over these 4 regions as follows: s1 and s2 in R1, s3 

and s4 in R2, s4 and s5 in R3 and s5 and s6 in R4. The optimal solutions and their values are 

presented in Table 3. This table also presents, for comparison purposes, the solutions to 

Problems I and III when each tree is considered separately. In other words, we give for 

problem I (resp. III) and for each of the 4 trees, the set of 3 species (resp. 2 areas) that 

maximizes the PD in the tree considered. This table also shows the worst selection of species 

or areas that can be made based on one of the 4 phylogenetic trees while the ‘true’ 

phylogenetic tree is another of these 4 trees. For example, let us look at problem III with the 

rPD criterion. With this criterion, the optimal solution is to select areas R1 and R3. This 

selection ensures a PD of 4.40 regardless of the ‘true’ tree among the 4 trees considered. This 

solution is the best, i.e. there are no other selections of 2 areas that ensure a PD strictly greater 

than 4.40 on the 4 trees. Row 2 of Table 3 indicates that selecting 2 optimal areas based on 

only one of the trees could lead to a rather poor solution if this tree is not the right one. In the 
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worst case, the PD obtained would be equal to 3.44. In this case, the optimal solution for tree 

1 ({R1, R2}) was chosen while tree 2 is the ‘true’ tree. Choosing the solution of rPD max is 

therefore a strong protection against uncertainty since it ensures a PD of 4.40 in all cases 

while, as we have just seen, a bad choice of the ‘true’ tree results in a PD of 3.44 (about 22% 

less). Note that, in this small example, the solution that maximizes rPD is also the solution 

that minimizes the greatest deviation, for each tree, from the solution of PD max. For this 

solution, the largest of these deviations is equal to 0.42 whereas if the solution of maximum 

PD for tree 1 ({R1, R2}) is retained, the largest of these deviations is equal to 1.38. 

 

Table 3. Problems I and III on the 6-species instance described by Figure 1: Solutions 

optimizing PD and PD ( = r, owa, h2 and lgap) and the worst solutions that can be retained 

due to a bad choice of the ‘true’ tree.  

 Problem I 

6 species, 4 trees,  

3 species to be selected 

Problem III 

6 species, 4 trees, 4 areas,  

2 areas to be selected 

1. Solutions of PD 

max for each tree 

Sets of species of 

PD max for each 

tree, and their PD: 

{s1,s3,s5}           4.26 

{s1,s5,s6}           4.07 

{s1,s4,s5}           3.88 

{s1,s4,s5}           4.02 

Sets of areas of PD 

max for each tree, 

and their PD: 

{R1,R2}             4.72 

{R1,R4}             4.82 

{R1,R3}             4.50 

{R1,R3}             4.47 

2. Worst PD value 

that could be 

obtained  

Select the set of species of PD max for tree 

2,{s4,s5,s6}, when tree 4 is the ‘true’ tree. 

PD obtained for tree 4:                          2.67 

Select the set of areas of PD max for tree 1, 

{R1,R2}, when tree 2 is the ‘true’ tree. 

PD obtained for tree 2:                          3.44 

3. Largest error 

that could be 

committed 

Select the set of species of PD max for tree 

2, {s4,s5,s6}, when tree 4 is the ‘true’ tree. 

Error committed for tree 4:                   1.35 

Select the set of areas of PD max for tree 1, 

{R1,R2}, when tree 2 is the ‘true’ tree. 

Error committed for tree 2:                   1.38 

4. Solutions of 

rPD max 

Set of species of rPD max and its value: 

{s1,s4,s6}                                                3.57 

PD of the set of rPD max, for each tree: 

4.26, 3.65, 3.57, 4.02 

Set of areas of rPD max and its value: 

{R1,R3}                                                  4.40 

PD of the set of rPDmax, for each tree: 

4.71, 4.40, 4.50, 4.47 

5. Solutions of 

owaPD max with 

w=(0.4,0.3,0.2,0.1) 

Set of species of owaPD max and its value: 

{s1,s4,s6}                                              3.753 

PD of the set of owaPD max, for each tree: 

4.26, 3.65, 3.57, 4.02 

Set of areas of owaPD max, and its value: 

{R1,R3}                                                4.472 

PD of the set of owaPD max, for each tree: 

4.71, 4.40, 4.50, 4.47 

6. Solutions of 

hPD max with 

=2 

Set of species of hPD max and its value: 

{s1,s5,s6}                                                4.07 

PD of the set of hPD max, for each tree 

4.26, 4.07, 3.88, 3.15 

Set of areas of hPD max and its value: 

{R1,R4}                                                  4.50 

PD of the set of hPD max, for each tree 

4.37, 4.82, 4.50, 3.60 

7. Solutions of 

lgapPD min   

Set of species of lgapPD min, and the gap:  

{s1,s4,s6}                                                0.42 

PD of the set of species of lgapPD min, for 

each tree: 

4.26, 3.65, 3.57, 4.02 

Set of areas of lgapPD min, and the gap: 

{R1,R3}                                                  0.42 

PD of the set of areas of lgapPD min, for 

each tree: 

4.71, 4.40, 4.50 4.47 

 

In order to test the applicability of the proposed approaches, we tested them on a large sized 

instance with 10 phylogenetic trees covering 100 species. We have generated many 
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hypothetical rooted ultrametric binary trees with a pure birth model based on Yule’s process 

(Yule 1924; Steel and McKenzie 2002; Steel and Mooers 2010; Mooers et al. 2012). In this 

model the time that a given lineage persists until it speciates has an exponential distribution 

with a given rate. This random time provides the length of the corresponding branch. For this 

experiment, the birth rate was set at 1 and the time elapsed from the root to the leaves 

(species) was set at log( / 2) 3.91S   units. We start with a rooted tree composed of a root 

and its two successor nodes and repeat the following procedure until the time elapsed from the 

root to each pendant node (node without successor) is at least 3.91: select the pendant node 

for which the time separating it from the root is minimum and make it the direct ancestor of 

two new descendent nodes. The length of the two corresponding branches is drawn at random 

following the exponential distribution of rate 1. When the procedure has been completed, the 

pendant nodes (leaves) represent the species to be considered. The length of all the pendant 

branches (connected to a leaf) is then adjusted so that the time elapsed from the root to the 

present moment is exactly equal to 3.91. We thus obtain an ultrametric tree whose number of 

species can be different from 100. We then selected 10 trees, out of all the trees produced, 

covering exactly 100 species. These 100 species are numbered from 1 to 100 in the order in 

which they are generated by the process described above. These 10 trees therefore reflect the 

phylogenetic uncertainty regarding the 100 species considered. These 100 species are 

considered to be distributed over 10 areas as follows: area Rj is home to species si if and only 

if the double inequality, 1 10( 1.3) 1 10j i j     , is verified. Thus, area R1 is home to 

species s1,...,s11, area R2 is home to species s8,...,s21, area R3 is home to species s18,...,s31, etc. 

We solved problems I (optimal selection of 25 species) and III (optimal selection of 4 areas) 

with the PD criterion when =r, owa, h and lgap. Results are presented in Table 4. Let us 

look at some of the results of Table 4 for Problem I. First, we see that a wrong tree choice can 

lead to a very poor solution. Indeed, if we retain tree 4 to determine the best set of species 

while tree 10 is the ‘true’ tree, we obtain a PD equal to only 30.05 (line 2 of table 4). On the 

other hand, the robust solution (the one that maximizes rPD, line 4 of Table 4) ensures a PD 

of 51.73 (about 72% more) whatever the ‘true’ tree (among the 10 considered). If one looks at 

the gap on each tree between the maximum PD and the PD of the robust solution, the largest 

of these gaps is 61.68-52.56=9.12; it corresponds to tree 3. In addition, the solution that 

minimizes the largest of these gaps (line 7 of Table 4) results in a gap of only 3.77. However, 

the corresponding solution can lead to a PD of 49.29 (tree 10). For problem III and in these 

experimental conditions, the error that can be committed by choosing the worst tree is 
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relatively limited since it is equal to slightly less than 10% (line 3 of Table 4). The solutions 

of maximum rPD or minimum lgapPD in this case bring only a slight improvement. Arponen 

and Zupan (2016) had already observed, in a specific case concerning 275 European 

terrestrial mammals, that uncertainty about phylogenies may not have much impact with 

regard to the prioritization of evolutionary hotspots. But, as these authors point out, this result 

is not general. It may also depend on the conservation objective.  

 

Table 4. Problems I and III on a 100-species instance: Solutions optimizing PD and PD ( = 

r, owa, h6 and lgap) and worst solutions that can be retained due to a bad choice of the ‘true’ 

tree.  
 Problem I 

100 species, 10 trees,  

25 species to be selected 

Problem III 

100 species, 10 trees, 10 areas,  

4 areas to be selected 

1. Solutions of PD 

max, for each tree 

PD max for each tree: 

58.37, 60.38, 61.68, 56.68, 54.97, 

53.79, 55.28, 61.94, 53.83, 52.54 

PD max for each tree: 

72.59, 73.78, 82.42, 71.17, 69.88, 

66.94, 71.88, 80.89, 76.16, 65.99 

2. Worst PD value 

that could be  

obtained  

Select the set of species of PD max for 

tree 4 when tree 10 is the ‘true’ tree. 

PD obtained:                                 30.05  

Select the set of areas of PD max for 

tree 8 when tree 10 is the ‘true’ tree. 

PD obtained:                                62.93 

3. Largest error that 

could be committed 

Select the set of species of PD max for 

tree 8 when tree 1 is the ‘true’ tree. 

Error committed:                          26.67 

Select the set of areas of PD max for 

tree 1 when tree 8 is the ‘true’ tree. 

Error committed:                           7.37 

4. Solutions of rPD 

max 

rPD max:                                      51.73 

PD of the set of species of rPD max, 

for each tree: 

53.72, 55.29, 52.56, 51.81, 51.81, 

51.76, 51.73, 53.93, 51.74, 51.83   

rPD max:                                      65.99 

PD of the set of areas of rPD max, for 

each tree: 

71.83, 71.66, 79.80, 70.06, 67.89, 

66.94, 71.88, 75.21, 71.62, 65.99 

5. Solutions of  

owaPD max with 

w=(0.35,0.2,0.15,0.1, 

0.06,0.05,0.03,0.025, 

0.02,0.015) 

owaPD max:                            52.1012 

PD of the set of species of owaPD 

max, for each tree: 

53.13, 53.86, 54.60, 52.71, 53.07, 

52.60, 52.41, 56.91, 52.26, 50.93    

owaPD max:                            68.2073 

PD of the set of areas of owaPD max, 

for each tree: 

71.83, 71.66, 79.80, 70.06, 67.89,    

66.94, 71.88, 75.21, 71.62, 65.99    

6. Solutions of  

hPD max with =6 

hPD max:                                    55.28 

PD of the set of species of hPD max, 

for each tree 

55.42, 55.60, 56.62, 55.44, 50.38,    

48.55, 55.28, 55.71, 43.68, 44.65    

hPD max:                                    71.62 

PD of the set of areas of hPD max, for 

each tree 

71.83, 71.66, 79.80, 70.06, 67.89,   

66.94, 71.88, 75.21, 71.62, 65.99   

7. Solutions of  

lgapPD min   

gap:                                                 3.77                                         

PD of the set of species of lgapPD min, 

for each tree 

54.77, 56.92, 58.18, 53.05, 52.41, 

50.07, 51.51, 58.17, 51.20, 49.29 

gap :                                                3.03 

PD of the set of areas of lgapPD min, 

for each tree: 

70.69, 72.12, 82.42, 70.83, 69.88, 

64.67, 68.85, 79.54, 74.43, 64.06 

 

We solved another instance of Problem III by increasing the number of areas from 10 to 20 

(Table 5). The 100 species are distributed over the 20 areas as follows: area Rj is home to 

species si if and only if the double inequality, 1 5( 1.3) 1 5j i j     , is verified. In this case, 
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the error that can be committed by choosing the worst tree is much larger (about 17%) as 

shown by the results presented in Table 5.   

 

Table 5. Problem III on a 100-species instance: worst solutions 

that can be retained due to a bad choice of the ‘true’ tree. 

 Problem III 

100 species, 10 trees, 20 areas,  

4 areas to be selected 

1. Solutions of PD max for 

each tree 

PD max for each tree: 

54.76, 55.13, 58.55, 49.20, 50.11,  

49.29, 53.81, 55.98, 51.12, 48.05 

2. Worst PD value that 

could be obtained  

Select the solution of PD max for tree 

4 when tree 10 is the ‘true’ tree. 

PD obtained:                                40.74 

3. Largest error that could 

be committed 

Select the solution of PD max for tree 

4 when tree 1 is the ‘true’ tree. 

Error committed:                           9.10 

 

 

8. Concluding remarks 

 

In this article, we are interested in measuring the phylogenetic diversity of a group of species 

in the presence of uncertainties on the phylogenetic tree associated with these species. Many 

assessments of a group of species based on phylogenetic diversity, regardless of the precise 

meaning given to this concept, assume that the phylogenetic tree of these species is perfectly 

known. This is of course a simplifying hypothesis. Here, uncertainty is reflected in the fact 

that several trees are possible. Assessing the phylogenetic diversity of a group of species in 

the presence of uncertainty about the associated phylogenetic tree is a complex issue. We 

show on examples that this assessment can be quite distant from the true assessment if we are 

mistaken about the correct tree. We propose several measures taking into account the fact that 

several trees are plausible. These measures are easy to calculate. They aggregate the 

phylogenetic diversities, in the sense of Faith, calculated on each tree. We then focus on the 

natural and classical problem of selecting species (or areas) to maximize the associated 

phylogenetic diversity. For this purpose, decision makers may use any of the proposed 

measures according to their objectives. They can, for example, adopt a very conservative 

approach by selecting the group of species that minimizes the risk (on the PD value) due to an 

error on the tree. Instead, they can adopt a more optimistic approach. For the suggested 

measures, solving the selection problem is a difficult problem. We show that it can be easily 

formulated by integer linear programming. The problem is therefore easy to solve if an integer 
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linear programming software is available. Several examples based on hypothetical 

phylogenetic trees are presented to illustrate the proposed approaches. A natural extension of 

this study would be to consider extinction probabilities for each species considered (while 

maintaining the assumption that several trees are plausible) and to replace the notion of 

phylogenetic diversity with the well-known notion of expected phylogenetic diversity. 
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