
HAL Id: hal-02465026
https://hal.science/hal-02465026

Submitted on 3 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resource-based modeling and simulation of business
processes

Andrea d’Ambrogio, Grégory Zacharewicz

To cite this version:
Andrea d’Ambrogio, Grégory Zacharewicz. Resource-based modeling and simulation of business pro-
cesses. SCSC ’16. Summer Computer Simulation Conference, Jul 2016, Montreal, Canada. �hal-
02465026�

https://hal.science/hal-02465026
https://hal.archives-ouvertes.fr

Resource-based Modeling and Simulation
of Business Processes

Andrea D’Ambrogio
Dept. of Enterprise Engineering
University of Roma TorVergata

Via del Politecnico 1
I-00133 Roma (Italy)
dambro@uniroma2.it

Gregory Zacharewicz
Lab. IMS UMR CNRS 5218

University of Bordeaux
351 Cours de la Libération

33405 Talence cedex (France)
gregory.zacharewicz@u-bordeaux.fr

ABSTRACT
The simulation-based analysis of business processes (BPs)
is a key activity at various phases of the BP lifecycle, from
the design phase, to predict the process behavior, down to
the execution and improvement phases, to recover from
possible performance downgrades and/or improve the
process performance. The BP analysis is usually carried out
taking as input the BP description in a given BP modeling
language. This paper specifically addresses BPs described
in BPMN (Business Process Model & Notation) and
introduces an approach that exploits both model-driven
principles and the DEVS (Discrete Event System
Specification) formalism to first annotate the BPMN model
with the allocation of task resources described in terms of
performance and reliability properties and then transform
the annotated BPMN model into a DEVS-based model,
which can be eventually executed to get the analysis results
of interest. The BPMN annotation is carried out by use of
PyBPMN, a lightweight BPMN extension that allows
business analysts to specify the allocation of task resources
and their properties in terms of both time-related attributes
and reliability attributes. The paper overviews the proposed
approach and gives the details of the DEVS components
that are used to model the behavior of the corresponding
BPMN primitives.

Author Keywords
Modeling and Simulation, Business Process, BPMN,
DEVS, Performance, Reliability

ACM Classification Keywords
I.6.5 Computing Methodologies: SIMULATION AND
MODELING—Model Development; C.4 Computer
Systems Organization: PERFORMANCE OF SYSTEMS

INTRODUCTION
A Business Process (BP) consists of a set of related tasks
executed by human or automated resources to accomplish
well-defined goals, such as produce goods or provide
services [1].

Modern BP management approaches strongly recommend
the adoption of techniques to concretely support the
continuous BP analysis, throughout the entire lifecycle,
from the initial phases (when the functional and non-
functional requirements are specified) down to the final
phases (when the performance is monitored and measured
at execution time), in order to assess whether or not
performance objectives are met and plan appropriate
recovery actions when needed.

As argued in [2], effective BP analysis approaches should
focus on the use of adequate modeling and simulation
(M&S) techniques, which enable enterprise management to
figure out how to optimize BPs in order to maximize the
technical quality and eventually the quality of business.

The adoption of M&S-based approaches is essential in the
BP management domain, in which the competitive and
dynamic nature of the global marketplace pushes
enterprises to enact a continuous effort aimed at the
improvement of provided services and goods. In this
respect, the use of business process modeling combined
with the adoption of simulation-based analysis provides a
cost effective, accurate, and rapid way to evaluate
alternatives before committing the required effort and
resources [3, 4].

On the other hand, the concrete use of simulation-based
analysis of BPs is still limited, mainly due to the fact that
building simulation models require a non-negligible effort
and significant skills [4, 5, 6].

In this context, this paper proposes an automated approach
to build and parameterize simulation models of BPs defined
by use of BPMN (Business Process Model and Notation),
the standard language for BP specification [7]. The
proposed approach adopts model-driven standards and
tools, as well as the DEVS (Discrete Event System
Specification) formalism, to analyze the BP behavior.

The simulation-based analysis of BPs usually focuses on
the performance behavior of processes from the efficiency
point of view only (e.g., in terms of time-related properties
such as throughput or lead time), without taking into
account the important issue of process reliability, i.e., the

SummerSim-SCSC 2016 July 24-27, Montreal, Quebec, Canada
© 2016 Society for Modeling & Simulation International (SCS)

probability that the BP performs correctly in a given
timeframe (often referred to as mission time). The ability to
predict the reliability of a BP is instead important to assess
the effectiveness of a performance improvement or
optimization.

From the reliability point of view, BPMN natively provides
constructs to represent issues that affect or alter the BP
execution flow (e.g., operation failures, error events,
timeout events, etc.), as well as mechanisms to specify
actions that have to be carried out to ensure the consistency
of the failed BP instance (e.g., compensations, errors
handling, etc.). All such failure- and error-related events are
similar to exception handlers and are explicitly introduced
in the BPMN model by the BP designer.

Differently, in this paper we aim to introduce a reliability
analysis that takes into consideration unexpected failures of
the resources that execute the process tasks or, in other
words, those events that are not natively specified in
standard BPMN models and that cause the abnormal
interruption of the affected process instance (e.g., the
failure – and thus the unavailability – of a resource
allocated to a task).

The proposed approach makes use of the DEVS formalism
[8] to specify the BP behavior in terms of performance and
reliability properties of task resources. On the one hand, the
adoption of the DEVS formalism allows to take advantage
of the several available tools that can be used to execute
(i.e., simulate) the model. On the other hand, building a
DEVS model of a given BP specified in BPMN requires a
deep knowledge of the formalism, which business analysts
are usually not familiar with. Moreover, manually building
the DEVS model can be effort- and time-consuming, as
well as error prone.

To overcome such limitations, this paper proposes an
automated model-driven approach that takes as initial input
an annotated BPMN model of the BP under study and
yields as output the corresponding DEVS model, ready to
be executed. The annotated BPMN model includes the
allocation of task resources, which are described in terms of
their performance and reliability properties. To this
purpose, this work makes use of an extended version of
PyBPMN (Performability-enabled BPMN), a lightweight
BPMN extension that addresses the specification of
performance and reliability properties for a set of resources
that may allocated to process tasks [9, 10].

The remainder of this work is structured as follows: the
background section summarizes the main concepts at the
basis of this paper, specifically the principles of model-
driven approaches and the PyBPMN extension. The
following sections describe the model-driven approach for
generating the DEVS model, the DEVS atomic models of
BPMN primitives and an example application of the
proposed approach, respectively. Finally, the last section
gives some concluding remarks.

BACKGROUND
The next two subsections summarize the principles and the
standards introduced in the model-driven engineering field
and the PyBPMN extension that is used to annotate BPMN
models with the allocation of task resources, as well as with
the performance and reliability properties of such resources.

Metamodeling and Model Transformations
The BP specification has been often based on methods that
exploit process-related data and text documents in different
formats. Such document-based manual approach presents
natural limitations that have been addressed by the model-
based approach, which results in many significant
advantages, in terms of improved quality, enhanced
communication and stakeholder engagement, increased
productivity, enhanced knowledge transfer, and reduced
risks.

These improvements can be further enhanced by the use of
model-driven approaches, which increase the level of
automation throughout the BP lifecycle by considering
models as first-class artifacts. The use of such approaches
enables a radical shift in terms of modeling activities, from
a strictly contemplative use of models to a more productive
and powerful model use.

Metamodeling techniques and automated model
transformations are key enabling principles introduced by
such approaches in the broader field of model-driven
engineering [11]. A metamodel is a model used to describe
a family of models, in other words it is a model that defines
the primitives of a modeling language, which is used to
specify models at user level. As an example, the BPMN
metamodel is the model defining the primitives (i.e., task,
gateway, event, etc.) that are instantiated in standard BPMN
models. A model transformation is the specification of a set
of mapping rules that are executed to transform a given
model into a different model, which conforms to the same
or to a different metamodel.

Various incarnations of model-driven engineering
principles have proposed different standards and tools
claiming to support model-driven engineering. The
approach proposed in this paper makes use of ATL (Atlas
Transformation Language) as the language to specify model
transformations, which is then executed on top of the
Eclipse platform in order to map elements of an input
model into elements of the output model [12]. Each model
is instantiated from and conforms to a given metamodel,
which can be specified either in MOF (Meta Object
Facility), the metamodeling language defined by the OMG
[13], or in Ecore, the metamodeling language defined by
the Eclipse Modeling Framework [14].

PyBPMN-based annotation of BPMN models
The BPMN language does not natively provide any
construct to associate performance or reliability properties
to process elements.

In order to specify the performance and reliability
characterization of BPs, this paper approach makes use of
text annotations, which provide the required information
according to a well-defined syntax.

A BP is a collection of interconnected activities, which are
executable elements that can be atomic (i.e., tasks) or non-
atomic (i.e., sub-processes). The execution of a process task
requires the availability of specific resources, i.e., human
resources, devices and/or software services.

A BPMN model provides an abstract description of a BP in
terms of a set of tasks. The BP design and enactment is then
obtained through the allocation of concrete resources to
tasks.

The allocation of resources to tasks may lead to the
identification of different configurations. For instance, a
given service task could be implemented by different web
services, as well as a manual task could be performed by
different persons. A given BP configuration makes use of a
specific web service and a specific person for the service
task and the manual task, respectively.

According to this perspective, the BPMN model must be
appropriately annotated to specify both the resource
allocation and the performance and reliability
characterization of such resources. Such annotation is
carried out by use of PyBPMN (Performability-enabled
BPMN), a lightweight BPMN extension that addresses the
specification of performance and reliability properties of a
BP [9, 10].

In order to enable the representation of different
configurations implementing the same abstract BP, the
PyBPMN metamodel allows business analysts to represent
the set of resources associated to each BPMN FlowNode
element. Such element is used in the BPMN metamodel to
provide the single source and target elements of a sequence
flow that shows the order of elements in a process (as an
example, the Activity metaclass, which is used to
represent the work tasks of a process, is a sub-class of the
FlowNode metaclass). Each resource is characterized by
different performance and reliability properties.

Figure 1 shows the key metaclasses of the PyBPMN
metamodel. The PyElement is the base abstract metaclass,
used to specify workload (GaWorkloadEvent), reliability
(DaQualification) and performance (PaQualification)
properties. The reader is sent to [boccia11b] for a detailed
description of the relevant attributes.

Such properties can be associated either to FlowNode
elements through a PyDescriptor element or to resources
being referenced by the PyDescriptor element.

The proposed resource modeling is flexible enough to
enable a fine grained specification of resource usage.
Resources are modeled using the composite pattern, thus
enabling the specification of either a simple resource
(PyResource) or a subsystem (PySubsystem), which is

composed by any set of simple resources and other
subsystems.

The representation of different configurations for a BP is
obtained associating alternative resources to the same
FlowNode element.

The PyResourceBroker metaclass has been introduced to
enforce the selection of a resource over a set of alternative
resources (which can be simple resources or subsystems).
For example, if a FlowNode element is allocated to two
kinds of resources, where one kind (resource A) is known
and the other kind can be alternatively implemented by two
concrete resources (resources B1 and B2), the
PyDescriptor element associated to the FlowNode element
will have two resource references: one to PyResource A
and one to a PyResourceBroker element having
PyResource B1 and PyResource B2 as alternatives
association ends.

Figure 1. The PyBPMN metamodel.

The definition of resources and their performance and
reliability parameters is carried out in the BPMN language
using text annotations with a specific syntax.

Such a solution, based on standard BPMN elements such as
TextAnnotation elements, allows business analysts to
specify resource parameters using any BPMN editor.

A PyResourceBroker element is instead used to specify
alternative allocations, which may be used to identify
alternative resources used by a task in case of resource
failures.

The resources allocated to a FlowNode element are then
specified associating the corresponding TextAnnotation
elements.

According to this allocation mechanism, in case a single
resource is allocated to a given task, that resource may be
working, thus offering a given performance to the task, or
not working, thus implying a failure of the process instance
that uses that resource. In case a set of alternative resources

PyData

PyConfiguration

1 -configurations0..*

-name : EString

PyElement

1 -elements0..*

DaQualificationPaQualification

-pattern : ArrivalPattern

GaWorkloadEvent

1
-workloadParams0..1

1

-reliabilityParams0..1

1

-performanceParams0..1

-occurrenceProb : NFP_Real
-occurrenceDist : NFP_Real
-rate : NFP_Frequency

DaFault

-rate : NFP_Frequency
-MTTF : NFP_Duration
-MTTR : NFP_Duration

DaFailure

-serviceTime : NFP_Duration

PaService

-responseTime : NFP_Duration
-throughput : NFP_Frequency

PaResponse

PyDescriptor

PyAbstractResource

-resources*

1-targetRef1

PySubsystem PyResource PyResourceBroker

1

-subElements

1..*
1

-alternatives

1..*

*

-refersTo

*

FlowNode

Artifact

are allocated to a given task, when a resource fails the task
may use an alternative resource, which provides different
performance properties, and the task (as well as the process
instance) fails only if both resources fail.

OVERVIEW OF THE APPROACH
Figure 2 presents the proposed approach, which is based on
metamodeling, model mapping and model transformations.
Three different levels are identified: Model, MetaModel
and MetaMetaModel. The BPMN model is the source
model to be transformed, while the DEVS model is the
target model resulting from the ATL transformation. BPMN
and DEVS models conform to the BPMN 2.0 and DEVS
metamodels [15], respectively. The novelty in this mapping,
regarding previous results presented in [16], resides in
BPMN model is assumed to be annotated by use of the
PyBPMN extension described in the background section.

Figure 2. The model transformation approach.

Both metamodels have been specified in Ecore, which is
placed at the MetaMetaModel level in Figure 2, to denote
the fact the it is used to define the metamodels at the
MetaModel level. The mapping that defines the
transformation rules to generate DEVS models from
annotated BPMN models is specified at the MetaModel
level as well. As aforementioned, such a mapping is
specified by use of ATL and executed on top of the Eclipse
platform.

While the BPMN metamodel is officially released by the
OMG (Object Management Group), there is no standard
metamodel for the target DEVS metamodel. A synthesis of
various proposals for building a DEVS metamodel is
proposed in [15]. The transformation from BPMN models
to DEVS models has required gathering previous works for
setting up a DEVS metamodel, which has been here
adapted and simplified. The resulting metamodel, illustrated
in Figure 3, conforms to the DEVS specification [8] and has
been specified in Ecore.

DEVS models can be of two types, atomic and coupled
models. Each model has a list of input ports and output
ports. An atomic model has four main methods: internal
transition, external transition, output, and time advance. A

coupled model is a decomposition of DEVS models (atomic
or coupled) and DEVS coupling. In addition, there are three
types of coupling between ports: external input coupling
(connections between the input ports of the coupled model
and its internal components), external output coupling
(connections between the internal components and the
output ports of the coupled model) and internal coupling
(connections between the internal components).

Figure 3. Simplified DEVS metamodel.

The proposed transformation extends previous
contributions [16, 17], in which BPMN models are
transformed into DEVS and G-DEVS simulation models.
Nevertheless, in such contributions resources are not
explicitly allocated to tasks, so that they are assumed to be
all time available (in other words, resources do not fail).

This paper extends the previous works by introducing a
resource allocation mechanism and by explicitly taking into
account the failure of resources. Consequently, the DEVS
models library for BPMN has been also extended.

The resource allocation mechanism is inspired by works
developed in the workflow modeling field [8]. Workflow
models make a clear distinction between roles and actors,
where a role is a logical abstraction of one or more physical
actors. The idea is to introduce this distinction by
annotating the BPMN model with resources and brokers,
according to the PyBPMN annotation described in the
background section. In this respect, resource brokers can be
considered as roles that can be played by different actors
(i.e., the brokered resources) that possess the required
capacity.

MAPPING BPMN COMPONENTS TO DEVS
The role of mapping in model transformation consists in
defining links between concepts and relations from source
and target metamodels (BPMN and DEVS in this paper
case, respectively).

The various types of tasks defined by the BPMN 2.0
specification (e.g.., send and receive tasks, service tasks,
etc.), as well as gateways, flows and events are mapped to
DEVS atomic models, which are then coupled to define a
DEVS model of the overall BPMN process. Next
subsections describe both the behavioral description of
BPMN tasks and resources to DEVS atomic models and

their coupling. The novelty in the DEVS models with
respect to previous works [16, 17] is the DEVS actors
behavior, which has been extended to integrate reliability,
and a broker model, which has been added to carry out a
performance-aware selections of the actor that is available
to perform a task.

DEVS atomic model of the “Basic Task” component
The DEVS model of BPMN tasks (Figure 4) proposed in
[16] has been extended to integrate the resource allocation
mechanism. This model is initialized in a state “free”,
waiting for a triggering item to be treated (items can be
considered as the sequential triggering coming from
sequence flows or message flows). After receiving the item,
the task performs an allocation request to a resource. It calls
the resource broker, or directly the resources connected to
the task, to identify an actor with the potential skills to
execute the task. If the resource is available, the task can
complete the work on the item, according to the resource
performance properties, and then release it. If the resource
is not available, the item is put on hold and a new allocation
request is made to the resource after a given delay.

Figure 4. DEVS atomic model of basic task.

DEVS atomic model of the “Resource” component
The DEVS Resource model (Figure 5) has been initially
proposed in [17]. This model can be generally described as
follows. It is initially set to awaiting an allocation request.
When a request is received while the model is in this state,
the resource informs the broker or the task of its availability
and communicates its performance properties (which are
used to determine the task duration). Then, the task model
that requested the use of this resource computes the
allocation period, according to the PyBPMN annotation,
and communicates it back to the resource. Then the
resource is set to a busy state for the given amount of time,
consistently with the relevant PyBPMN annotation, and
therefore cannot, in this state, be allocated to another task.
As a result, other tasks performing an allocation request

will receive a negative response to their request. When the
time allocation has expired, the state model becomes free
again and thus available to the allocation task.

DEVS atomic model of the “Resource with Behavior”
component
In order to improve the ability of the model to represent real
world cases, the resource model has been further extended
to integrate the behavior of the resource. As an example,
depending on the number of solicitations of the resource a
degradation of its performance and reliability properties can
be observed. This DEVS atomic model of the resource
(Figure 6) is similar to the previous model but adds a local
behavior. Such behavior can be defined in this model or
synchronized with a central behavior model to observe
group effects or compute failures with stochastic
approaches at the global level. This possible influence on
this model from another role model can be tuned to fit
experience gathered by experts for instance. In any case, we
can distinguish two types of role models, material resources
models and human resources models.

Figure 5. DEVS atomic model of basic resource.

The DEVS model integrating the equipment and machine
resource behavior, not further detailed in this paper, is
defined from technical data sheets. These documents are
typically released by resource manufacturers and usually
provide reliability and availability properties of these
resources in terms of MTTF (mean time to failure) and
MTTR (mean time to repair).

The DEVS model of human behavior has been based on
psychological and physiological factors. Specifically,
factors such as emotions, stress, and fatigue may be taken
into account. These models are based on the work described
in [18], which defines stereotyped human behavior using
DEVS at the individual level, and in [19], which defines
social influence using DEVS at the group level. They have
both defined DEVS models able to represent, even highly
simplified, dynamics of human behavior. Such models can

Phase, Perf_Res, Duration_not_available, Processing_Item, Perf_Res

«Arriving_Item»

«Input_Resource»

Task

Free

δ=∞

Ask
resource
availabilit

y

δ=0

Processing
Item

δ=f(Processing_It
em, Perf_Res)

Act(Item_Cours,
Perf_Ress)

«Ressource»! Ask_resource

«Arriving_Item»?item

«Leaving_Item»!Processing_Item
«Info_Stock»!End_processing

«Leaving_Item»

«Resource»

Resource
not

available
δ=f(Duration_not

available)

Waiting
resource
answer

δ=∞

«Input_Resource»?(Res_not_avail
able, Duration_not_available)

«Input_Resource»?(Res_available,
Perf_Res)

Allocated
resource

δ=0
«Resource»! Allocation_lenght =
f(Processing_Item, Perf_Res)

Phase, Perf_Res, Duration_not_avail, Memo_demand

«Demand»

Resource

Free
δ=∞

Allocation
OK

δ=0

Allocation
NOT OK
δ=0

«Answer»

Resource
Busy

δ=Durée_Allocation

«Demand»? dem_resource

«Reponse»!(Res_avail, Perf_Res)

«Answer»!(Res_not_avail, Duration_not_avail)
Duration_Allocation = Duration_not_avail

«Demand»? dem_resource Duration_not_avail =
Remaining time δ= δ-e in state Resource Busy

Waiting
Allocation
Duration

δ=∞

«Demand»? Duration_allocation

allocation
not OK to

stored
demands
δ=0

«Demand»? dem_resource
Memo_demand = dem_resource

«Answer»!(Res_not_avail,
Duration_not_avail)

provide valuable information to control and anticipate the
operational safety of the modeled BP.

These behavioral models contribute to yield a more realistic
modeling and simulation of the overall business process.
The standard resource model (without failure behavior) is
available by default. Then, according to data from
PyBPMN annotation, it can be changed by the resource
model with behavior. In any case, it interacts with the
broker model to verify its availability and the duration of
allocation. In case of availability, the resource informs the
broker or directly the task about its current performance and
reliability capabilities, which are used to compute the task
duration and performance. The resource can have its
performance decreased due to simulation computable
factors including, e.g., fatigue or stress due to number of
solicitations. If the resource is not available, the broker can
manage a queue to store the demand and wake it up when it
becomes available again.

Figure 6. DEVS atomic model of resource with behavior.

DEVS coupled model of a Business Process
The DEVS atomic models described in previous sections
are coupled to yield the model of the overall BP specified
by use of a BPMN model. This requires applying a set of
rules for coupling the components.

As aforementioned, the model transformation has been
specified in ATL, which provides the language primitives
to specify mapping rules by use of a hybrid approach (both
declarative and imperative). Such rules can be informally
outlined as follows:

• Rule 1: Each BPMN model must contain a Start event
and an End Event models.

• Rule 2: Each task model is connected upstream to a
connector or a task.

• Rule 3: Each task model is connected downstream to a
connector or a task.

• Rule 4: Each task model is connected to a resource or
resource broker model.

• Rule 5: Each task model is connected to (at least) a
resource model.

• Rule 6: Each connector (gateway or event) model is
connected upstream and downstream to one or more task
models.

The next section illustrates an example application of the
proposed approach. Since the focus of this paper is on
model building, the example application will be limited to
the automated generation of the DEVS coupled model from
of a given BPMN model. The so obtained model can then
be executed onto one of the several DEVS implementation
tools.

APPLICATION CASE
The proposed DEVS model building approach is illustrated
by use of an example application to the BPMN model
shown in Figure 7, which consists of three tasks, a start
node, an end node and two exclusive gateway (X-Or)
connectors.

Figure 7. Example BPMN model.

As defined above, each DEVS model of a task (Task 1,
Task 2 and Task 3) must be associated with the DEVS
model of the resource or resource broker enabling it to
execute the task. The allocation of tasks to resources is
carried out by use of PyBPMN annotations, specified
according to the syntax described in the background section
(not shown in Figure 7 for the sake of readability). As an
example, the following text annotation specifies a resource
with name resource1, service time of 250 milliseconds and
MTTF of 50000 hours:
<<PyResource>>{
 name=resource1,
 performanceParams=(<<PaService>>{serviceTime=
 (value=250, unit=ms)}),
 reliabilityParams=(<<DaQualification>>{MTTF=
 (value=50000, unit=hours)})
}

Alternative resources may be specified by use of resource
brokers. As an example, the following text annotation
specifies a resource broker for two alternative resources
(resource1 and resource2):
<<PyResourceBroker>>{alternatives={resource1,
 resource2}}

This model illustrates different coupling situations that can
occur in a BPMN model. A task can be connected directly
to resources or through a broker that will identify at run
time the best resource according to expected or required
levels of performance and reliability.

Phase, Perf_Res, Duration_non_Available, Behavior, Memo_demand

«Request»

Resource with Behavior

Free

δ=∞

Allocation

OK

δ=0

Allocation

NOT OK

δ=0

«Answeri»

Resource

Busy
δ=Duration_Allocatio

n

«Request»? req_resource

«Answer»!(Ress_available,

Perf_Res)

«Reponse»!(Res_not_available,

duration_not_available) Duration_Allocation =

duration_not_available

«Request»? dem_resource

Duration_not_available = remaining time

δ= δ-e if Resource busy

Waiting

Allocation

Duration

δ=∞

«Request»? Duration_allocation

«BehaviorI»

«BehaviorO»

Processing

Behavior

δ=0

ModifPerf

(Behavior)

= Perf_Res

«BehaviorO»!

RequestBehavior

Waiting

Answer

Behavior

δ=0

«BehaviorI»?

Behavior

allocation

not OK for

request +

request

memorized

δ=0

«Request»? dem_resource

Memo_demand = dem_resource

«Answer»!(Res_not_available,

duration_not_available)

The transformed DEVS coupled model is presented in
Figure 8, which shows how the tasks have been connected
to specified resources or brokers, according to PyBPMN
annotations. It distinguishes, in particular, that the simplest
case is the direct connection between task and resource that
occurs between Task 3 and Resource 3. In the case of Task
1 and Task 2, a broker is used to select the best available
resource according to performance and reliability criteria,
as the ones described in [10], which presents an algorithm
based on performability, a joint measure of performance
and reliability. The coupled model also contains input and
output atomic models to generate and collect events.

The behavior of the tasks and resources is open to
reconfiguration, according to the requirements coming from
the BPMN annotations. The execution of the obtained
DEVS model allows evaluating alternative resource
allocations, so as to choose the best fitting without
modifying the structure of the input BPMN model.

The coupled model includes the DEVS models of start/end
event nodes, which are used to initialize and forward the
outgoing events, respectively. Outgoing events are
eventually coupled to an additional model that can classify,
process and analyze the simulation results. The analysis of
such results allows one to evaluate the key performance
indicators of the considered BP, in terms of efficiency,
reliability and other aggregated metrics.

The DEVS simulation model allows bridging the gap
between the BPMN model, which is commonly a static
view of the process, and the execution over time of the
model according to the performance and reliability
properties offered by resources allocated to tasks.

PERSPECTIVE ON INTEROPERABILITY
This work is going to open the possibility of considering
interoperability as an additional parameter for the selection
of resources to be allocated. Indeed, a task sequence
triggering is trivial but the transmission of an item or
information to the next task can face interoperability issues.
Thanks to the definition of an interoperability capacity
(indicator), we plan to discriminate resources considering
their capacity to respond to the information to be processed
or the service to be provided. At the BPNM level such
resources will still belong to the same pool but they will be
evaluated to obtain the required levels of reliability and
efficiency when executing the task. The selected resource
will be the one that, according to criteria, is estimated to
better address interoperability issues.

In more detail, the transmission of messages between
independent tasks and resource models will have to
overcome different categories of interoperability barriers,
so as to enact a correct flow of messages. In order to
include such interoperability-oriented characterization, the
model will be extended to represent the effort required and
the category of interoperability (e.g., syntactic, semantic,

Figure 8. DEVS coupled model of the example BP.

technological) that can satisfy the requirement of correct
and unambiguous communication.

CONCLUSIONS
This paper has introduced a model-driven approach to
generate DEVS-based simulation models from annotated
BPMN models. The BPMN annotation is carried out by use
of the PyBPMN extension, which allows business analysts
to specify the allocation of task resources, as well as their
performance and reliability properties. The annotated
BPMN model is then taken as input by a model
transformation that yields as output the corresponding
DEVS model, ready to be executed by use of a DEVS
simulator. The proposed approach extends previous works
that didn’t consider the resource allocation mechanism and
the failure of resources. The paper has illustrated the
mapping of BPMN elements to DEVS atomic models,
which are then coupled according to the process control
flow logic to get the final DEVS coupled model. Work is in
progress to complete the specification of the mapping rules,
which currently have been developed for basic BPMN
elements only.

ACKNOWLEDGMENTS
The second author gratefully acknowledges the grant from
the MSEE (Manufacturing Service Ecosystem) EU project.

REFERENCES
1. Weske, M., Business Process Management second

edition, Springer-Verlag, 2012.
2. Van Der Aalst, W. M., Business Process Management: a

Comprehensive Survey. ISRN Software Engineering,
2013.

3. Tumay, K., Business process simulation”. In
Proceedings of the 1996 Winter Simulation Conference,
edited by J. M. Charnes, D. J. Morrice, D. T. Brunner,
and J. J. Swain, 93–98, 1996.

4. Van der Aalst, W., J. Nakatumba, A. Rozinat, Russell,
N., Business Process Simulation: How to get it right?, in
Handbook on Business Process Management, edited by
J. vom Brocke and M. Rosemann, 317–342: Springer-
Verlag, 2010.

5. Hook, G., Business Process Modeling and simulation,
Proceedings of the 2011 Winter Simulation Conference,
edited by S. Jain, R. R. Creasey, J. Himmelspach, K. P.
White, and M. C. Fu, 773–778, 2011.

6. Kamrani, F., R. Ayani, Karimson, A., “Optimizing a
Business Process Model by Using Simulation”,
Proceedings of the 2010 IEEE Workshop on Principles
of Advanced and Distributed Simulation, 1–8, 2010.

7. Object Management Group, Business Process Model
and Notation (BPMN), version 2.0, 2011.

8. Zeigler, Bernard P., Herbert Praehofer, and Tag Gon
Kim. Theory of modeling and simulation: integrating
discrete event and continuous complex dynamic
systems. Academic press, 2000.

9. Bocciarelli, P., D’Ambrogio, A., A BPMN Extension
for Modeling Non Functional Properties of Business
Processes, Proceedings of the 2011 Symposium on
Theory of Modeling and Simulation, 160–168: Society
for Computer Simulation International, 2011.

10. Bocciarelli, P., D’Ambrogio, A., A Model-driven
Method for Enacting the Design-time QoS Analysis of
Business Processes, Software & Systems Modeling
13:573–598, 2014.

11. Atkinson, C., Kuhne, T., Model-driven development: a
metamodeling foundation, IEEE Software, 20(5), pp.
36-41, 2003.

12. ATL/User Guide – The ATL Language, available at
http://wiki.eclipse.org/ATL (last accessed on April
2016).

13. Object Management Group, Meta Object Facility
(MOF) Specification, version 2.0, 2004.

14. Budinsky, F., Steinberg, D., Ellersick, R., Grose, T.
Eclipse Modeling Framework. Addison Wesley
Professional, 2004.

15. Garredu S., Vittori E., Santucci J.F., Bisgambiglia P. A
Meta-Model for DEVS - Designed following Model
Driven Engineering Specifications. In Proceedings of
SIMULTECH, pp. 152-157, 2012.

16. Bazoun, B., Ribault, J., Zacharewicz, G., Ducq Y.,
Boyer H., SLMToolBox: Enterprise service process
modelling and simulation by coupling DEVS and
services workflow, International Journal of Simulation
and Process Modeling, In Press. 2016.

17. Zacharewicz, G., Frydman, C., Giambiasi, G., G-
DEVS/HLA environment for distributed simulations of
workflows, Simulation 84 (5), 197-213, 2008.

18. Seck, M., Giambiasi, N., Frydman, C., Baati, L., DEVS
for human behavior modeling in CGFs. The Journal of
Defense Modeling and Simulation: Applications,
Methodology, Technology, 4(3), 196-228, 2007.

19. Bouanan, Y., Forestier, M., Ribault, J., Zacharewicz, G.,
Vallespir, B.; Devs-based framework for message
dissemination in multi-layer networks, 27th European
Modeling and Simulation Symposium, EMSS,
Bergeggi; Italy Pages 416-424, 2015.

20. Hollingsworth, D., Workflow Management Coalition:
the Workflow Reference Model. WfMC document
Number TC00-1003, issue 1.1. January 1995.

