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Disparity weighted loss for semantic segmentation of driving scenes

Abdelhak Loukkal1,2, Yves Grandvalet2, You Li1

Abstract— Convolutional neural networks are the state of
the art methods for semantic segmentation but their re-
source consumption hinders their usability for real-time mobile
robotics applications. Recent works have focused on designing
lightweight networks that require less resources, but their
efficiency is accompanied with a drop in performance. In this
work, we propose a pixel-wise weighting of the cross-entropy
loss with the disparity map in order to give more importance to
close objects during the optimisation procedure of the network.
This weighting is applied to two lightweight networks, with
different efficiency/performance trade-offs, that were designed
for real-time autonomous driving. These networks are trained
on CamVid and Cityscapes datasets and the disparity maps are
obtained with an off-the-shelf unsupervised depth estimation
network. Our method does not increase the number of parame-
ters of the network nor imply any further manual labeling. This
weighting is evaluated on both the regular mean intersection
over union (mIoU) and a close-range mIoU. Compared to the
standard weighting scheme, this new loss weighting improves
the mIoU and the IoU of pertinent classes for autonomous
driving especially at close range.

I. INTRODUCTION

Semantic segmentation has been drawing a lot of attention

from computer vision and autonomous driving communities

for many years because in addition to detecting key elements

in the scene, it adds semantic information to the global

scene understanding problem. Convolutional neural networks

(CNN) have achieved impressive semantic segmentation

results and replaced the classic computer vision methods.

However, state-of-the-art CNNs rely on a very important

number of parameters and this comes with the price of a

prohibitive resource consumption. This computational burden

makes these networks less convenient for an autonomous

car where multiple cameras are needed and resources and

data bandwidth are limited. Recent works have focused on

designing very efficient networks that can run with a suffi-

cient frame rate on modern GPUs dedicated to autonomous

driving. These networks have fewer parameters than their

state-of-the-art counterparts and the direct consequence is a

major drop in performance.

One of the issues in driving scene datasets is the imbalance

between the labeled classes: critical classes like pedestrians

or cyclists are under-represented compared to the sky or

buildings. In order to compensate this imbalance, the loss

function of the CNN is weighted according to the frequency

of the classes, under-represented classes having the biggest

weights. However, class imbalance is not the only issue.

1Renault S.A.S, 1 av. du Golf, 78288 Guyancourt, France.
2Sorbonne universités, Université de technologie de Compiègne, CNRS,

Heudiasyc, UMR 7253, Compiègne, France.

Finely segmenting an object located far from the ego vehicle

does not seem to be a necessary asset for an autonomous

pilot system. A coarse segmentation or a bounding in this

situation should be sufficient , whereas having access to a

fine semantic segmentation of close objects can be useful to

have a better free space estimation.

In this work, a new weighting scheme, depicted in Figure

1, is proposed. Based on the assumption that objects that are

close to the vehicle are more important than those located

far away, this weighting scheme gives more weight to close

objects in the training loss. This is accomplished by pixel-

wise multiplying the cross-entropy loss by the disparity map

for each training image. The disparity maps are precomputed

for the whole dataset prior to training with an off-the-

shelf unsupervised CNN. The efficacy of the weighting is

evaluated with the mean Intersection over Union (mIoU)

metric and a close range mIoU on two different networks

and two datasets. A comparison with the frequency-based

weighting shows that this weighting scheme improves the

mIoU and the IoU for some important classes, especially in

close range.

Fig. 1: Disparity weighting: Each pixel in the cross-entropy

loss function is weighted by its value in the disparity map.

II. RELATED WORK

The success of deep CNNs for image classification [1]

has encouraged researchers to explore the effectiveness of

these networks for dense predictions tasks like semantic

segmentation or depth estimation. The current state of the

art approaches in semantic segmentation leverage the idea of

fully convolutional neural networks [2] keeping the spatial

information, that is eventually lost in regular CNNs, by

avoiding fully connected layers. These networks come in two

parts: the encoder extracts features from the input image and

the decoder up-samples the encoded feature map to match

the size of the input image. Skip connections between the

input and output of convolution layers were introduced in

[3] helping the gradient flow in deep architectures. Fully

connected conditional random fields (CRF) [4] were the state

of the art approach in semantic segmentation before the

resurgence of neural networks. Used as a post processing

step [5] or reformulated as a recurrent network [6], CRFs



are still popular in the computer vision community. State

of the art networks for pixel wise semantic segmentation

take also advantage of spatial pyramid pooling [7] and

dilated convolutions [5] to segment objects at different scales

and enlarge the receptive fields, hence the context, of the

convolution filters.

Another important aspect for CNNs, especially for mobile

robotics, is their resource consumption. Adam Paszke et

al, introduced ENET [8], an efficient CNN for semantic

segmentation that is 18 times faster than [9] meanwhile it

obtains better results on the mean Intersection over Union

(mIoU) metric. Real-time computation is achieved with early

downsampling that heavily reduces the size of the input. A

consequence of the aggressive downsampling is the loss of

information that incurs in much lower performance than state

of the art networks. Introduced in [10], ERFNET is another

efficient network based on the skip connections [3] and 1D

convolutions to reduce resource usage. ERFNET is twice as

slow as ENET but achieves much better mIoU.

Semantic segmentation is a very complex task for which

satisfying results were obtained thanks to public datasets

like KITTI [11], CamVid [12] and Cityscapes [13] which

contains much more labeled images than the two previous

ones. More recently, thanks to a new labeling pipeline,

Apolloscapes [14], a huge dataset of more than 100k labeled

images was released.

III. DISPARITY WEIGHTED CROSS-ENTROPY LOSS

A. Disparity with an unsupervised network

(a) CamVid image (b) CamVid image disparity

(c) Cityscapes image (d) Cityscapes image disparity

Fig. 2: Disparity estimation with an off-the-shelf unsuper-

vised CNN

Disparity maps can be acquired with a stereo setup but the

acquired maps are sparse and contain few measurements at

far distance. Given enough depth labels, supervised CNNs

[15] can also be used to estimate dense depth maps but

require a large amount of labeled data.

Recent works [16] have leveraged epipolar geometry con-

straints to estimate disparity maps as an intermediate output

in an image reconstruction network. It consists in taking

the left image as input, estimating the disparity map and

performing a reconstruction of the right image using the

disparity and a bi-linear sampler. Two disparity maps are

produced, left to right and right to left, and a left-right

consistency term is added to the reconstruction loss function.

This CNN is not suitable for an application where a precise

depth information is required but for this new weighting

scheme, only a magnitude estimation is required. The dis-

parity maps are precomputed for the whole dataset before

training, thus not requiring any additional labelling efforts.

B. Loss weighting

The usual cross entropy loss is the following:

−

h∑

i=1

w∑

j=1

c∑

k=1

tijk log(oijk) , (1)

where h, w are the dimensions of input images, c is the

number of classes, and o and t are the (h,w, c) tensors

corresponding respectively to the softmax output of the CNN

and to the one-hot encoded segmentation labels.

To remedy class imbalance, the widely used tech-

nique is median class frequency balancing [17], that con-

sists in weighting each pixel of class k by αk =
median({p1, ..., pc})/pk where pk is the proportion of pixels

of class k in the dataset. Another weighting, also based on

the frequency of the classes in the dataset, is:

αk = 1/ log(β + pk) (2)

where β is a hyper-parameter [8]. This weighting is also

used in [10]. The former weighting is referred to as FW and

compared to disparity weighting in the experiments section.

The disparity weighted cross-entropy is straightforward:

−
h∑

i=1

w∑

j=1

dij

c∑

k=1

tijk log(oijk) (3)

where d is the (h,w) matrix of disparity map. Frequency

based weightings put more weight on classes that are globally

underrepresented in terms of surface. These weightings are

not especially relevant for autonomous pilot systems, in the

sense that a big truck located far from the vehicle may not be

as important as a pedestrian close to the vehicle. Disparity

weighting encourages the network to focus on the close range

objects.

IV. EXPERIMENTS

The disparity weighting is tested on the Pytorch implemen-

tations of ENET and ERFNET. These networks are trained

using a single NVIDIA TITAN X with ADAM optimizer,

momentum 0.9, a batch size of 4, initial learning rate of 5e−4

and weight decay of 2e−4. Pretrained weights on Cityscapes

dataset are used for all networks.

These networks are trained on two semantic segmentation

datasets, CamVid and Cityscapes. CamVid contains 367

training samples and 233 validation samples. Cityscapes

contains 2975 training samples and 500 validation samples.

For both datasets, the additional disparity labels are obtained

with an unsupervised disparity CNN trained on Cityscapes.

Tables I and II report the raw proportions of pixels belonging

to each class.



TABLE I: Class proportions (in %) in the Cityscapes train set. Most represented classes are shown in bold.

road sidewalk building wall fence pole traffic light traffic sign vegetation terrain sky person rider car truck bus train motorcycle bicycle unlabeled
25.3 5.8 25.3 0.7 1.0 1.4 0.2 0.6 17.6 1.1 4.4 1.3 0.1 7.6 0.3 0.3 0.3 0.1 0.5 6.1

TABLE II: Class proportions (in %) in the CamVid train set. Most represented classes are shown in bold.

sky building pole road pavement tree traffic sign fence car pedestrian bicycle unlabeled
21.1 29.1 1.2 17.0 4.4 12.1 1.5 1.4 7.0 0.8 0.3 4.2

The evaluation metric for each class is the intersection

over union IoU defined as following:

IoU =
TP

TP + FP + FN
,

where TP, FP and FN are respectively the true positive,

false positive, and false negative pixel counts on the set

of test images. The mIoU is the mean of the individual

classes IoUs. A close-range IoU is introduced: it consists in

filtering both the ground truth segmentation and the predicted

segmentation with regard to the disparity. All pixels with a

disparity value inferior to a defined threshold are ignored.

The unsupervised depth estimation network outputs disparity

values that are normalised by the image width: the depth

values on each pixel can be retrieved by rescaling acccording

to the image width. To obtain the value of the depth in

meter, we use this relation relation between B, f and d
respectively the baseline, the focal length of the camera and

the disparity: Depth = B∗f
d

. We arbitrarily consider a depth

of 30 meters as being our close range limit and use the

corresponding disparity value as our threshold to filter the

pixels. For each dataset and each efficient network, three

weighting schemes are compared: No Weighting, Frequency

Weighting and Disparity Weighting respectively referred to

as NW, FW and DW. Here, frequency weighting corresponds

to the weighting introduced in [8], see equ. 2, with β = 1.02.

The values in the result tables are averaged on 3 runs for

each configuration.

A. Results on CamVid

Results for CamVid are presented in Table III.

a) ENET: ENET network with DW outperforms its

FW counterpart on the mIoU by 1.1% but more importantly

on important classes like pedestrians, cyclists, vehicles and

traffic signs by respectively 6.4%, 2.7%, 0.4% and 3% . The

network trained without any weighting has the worst mIoU

and the worst IoU on most of the important classes. Another

important effect of the disparity weighting is the decrease in

the sky IoU: this class has always the smallest disparity value

and has in consequence the smallest weight in the learning

loss function.

b) ERFNET: The same effects are observed with

ERFNET DW topping the FW by 1.5% on the mIoU and

respectively 4.4%, 1.4%, 1.3% and 1.4% on the IoUs of

pedestrians, cyclists, vehicles and traffic signs. We also

observe the decrease on the sky IoU by a lesser margin.

TABLE III: Results on CamVid validation set. Best results

are shown in bold. All networks are trained on 150 epochs.

ENET ERFNET

NW FW DW (ours) NW FW DW (ours)

mIoU 51.6 52.6 53.7 66.6 68.1 69.6

Pedestrians 30.2 29.0 35.4 55.4 56.4 60.8

Cyclist 4.8 20.0 22.7 52.8 59.2 60.6

Vehicle 65.1 67.2 67.6 77.8 79.4 80.7

Traffic sign 25.6 25.1 28.1 44.6 44.7 46.1

Road 89.5 89.7 89.5 92.9 94.2 93.3

Fence 27.7 28.2 31.9 42.0 46.7 51.4

Pole 19.1 18.9 19.6 35.4 38.4 38.0

Building 76.5 73.6 75.7 82.3 81.7 84.2

Sky 89.1 89.4 82.5 91.8 91.4 89.4

Pavement 71.8 71.4 72.2 80.4 81.9 82.0

Tree 67.8 66.6 65.5 75.9 76.2 77.1

B. Results on Cityscapes

Results for Cityscapes dataset are presented in Table IV.

Both ENET and ERFNET networks with disparity weighting

improve on the mIoU by respectively 0.5% and 0.3%.

However, the disparity weighting does not improve the IoU

of all important classes.

a) ENET: We observe the effect of the disparity weight-

ing on the road, sidewalk, bicycle and pedestrians IoUs

with respective improvements of 1.7%, 4.7%, 3.5% and

4.2% compared to FW. However FW outperforms DW on

important classes like rider, car, bus, train and motorcycle.

b) ERFNET: DW obtains the best IoUs for road, pedes-

trians, trains, bicycle, and cars with respective improvements

of 0.5%, 1% , 2.9% , 0.5% and 0.4%. Overall, ERFNET

achieves better results than ENET when weighted with the

disparity map.

c) Close range evaluation: Given that DW puts more

weight on closer objects, these two networks are evaluated

with the close range IoU to verify their emphasis on close

objects, see Table V. ENET DW obtains the best IoU on

most of the important classes with the exception of bus,

train and motorcycle. ERFNET obtains also the best IoU

results except for motorcycle and traffic light. In close range,

both networks perform better with our DW than with other

weighting schemes on the regular IoU.

Figures 3, 4, and 5 show the evolution of the IoU with

respect to the depth threshold for some important classes.

The presented results are for ERFNET trained on Cityscapes



TABLE IV: Results on Cityscapes validation set. Best results

are shown in bold. All networks are trained on 150 epochs.

ENET ERFNET

NW FW DW (ours) NW FW DW (ours)

mIoU 50.4 51.2 51.7 66.6 70.5 70.8

Road 93.7 93.1 94.8 96.5 96.6 97.1

Sidewalk 68.7 67.1 71.8 80.3 80.6 82.3

Building 84.6 83.4 84.7 89.9 90.1 90.6

Wall 26.3 24.0 24.7 44.4 51.5 52.8

Fence 29.5 30.8 33.3 50.2 54.4 55.2

Pole 39.2 38.0 39.2 57.5 59.1 59.2

Traffic light 20.7 23.9 20.5 57.1 60.4 59.3

Traffic sign 38.5 33.8 37.3 68.1 71.4 71.2

Vegetation 81.1 85.5 86.8 90.7 91.0 91.1

Terrain 42.7 37.6 44.1 58.4 60.4 61.9

Sky 87.1 86.2 86.6 93.3 91.8 93.2

Pedestrians 56.3 53.6 57.8 72.5 75.1 76.1

Rider 21.7 27.3 25.4 46.9 53.3 53.1

Car 86.0 86.5 86.4 91.5 92.5 92.9

Bus 45.8 54.2 51.1 57.1 74.5 74.3

Train 23.0 29.2 27.8 46.5 58.0 60.9

Motorcycle 10.0 21.6 13.8 35.5 44.3 43.5

Bicycle 53.5 51.5 55.0 66.2 69.7 70.2

Fig. 3: IoU of pedestrians and riders classes with different

depth thresholds. All pixels with a depth value superior to

the threshold are ignored in the IoU computation.

for both frequency and disparity weightings(best of the 3

runs for each for each weighting). In this experiment, all

pixels with a depth value above the specified thresholds are

ignored in the IoU computation. The depth values are rough

estimations as the unsupervised network is not precise. In

these figures, we first observe that for some classes IoUs

improve as the depth threshold decreases and for other

classes IoUs increase then decrease when getting too close

to the vehicle. This can be explained by the fact that some

classes are not very well represented in close range during

training: road or cars are represented at all ranges but this is

not the case for the bus class for example. We also clearly

observe the effect of disparity weighting when getting closer

to the ego vehicle. The IoUs with a 60 meters threshold

are equivalent for both weightings or slightly better for

frequency weighting but when the threshold is at 30 meters

or less, disparity weighting has consistently a better IoU (by

a significant margin for bus class, 20%).

TABLE V: Close-range results on Cityscapes validation set.

Best results are shown in bold. All networks are trained on

150 epochs.

ENET ERFNET

NW FW DW (ours) NW FW DW (ours)

mIoU CR 52.2 52.4 53.9 67.6 71.2 72.5

Road 95.3 94.1 96.3 98.8 98.8 99.0

Sidewalk 72.7 70.8 76.4 81 81.3 83.1

Fence 36.7 39.3 42.3 50.1 54.8 52.5

Pole 48.7 47.3 49.5 66.6 67.2 68.3

Traffic light 25.4 23.8 26.8 67.0 69.2 68.9

Traffic sign 49.1 40.0 50.1 75.9 78.2 78.2

Pedestrians 59.7 59.7 61.7 76.6 79.0 80.3

Rider 28.9 33.0 33.2 48.6 53.6 54.2

Car 90.3 89.9 91.3 93.7 94.2 94.7

Bus 49.0 52.3 51.9 61.1 75.3 77.7

Train 25.9 24.9 19.2 50.9 63.3 71.6

Motorcycle 9.7 26 11.7 37.8 47.1 46.5

Bicycle 61.0 57.6 63.7 70.1 73.5 74.2

Fig. 4: IoU of motorcycle and bus classes with different

depth thresholds. All pixels with a depth value superior to

the threshold are ignored in the IoU computation. .

C. Qualitative results

Figure 6 presents different situations where the close range

effect of the disparity weighting is observed. On these figures

we observe that DW produces better road segmentation in

close range which can avoid dangerous situations like in

the sixth image where a portion of sidewalk is detected in

the middle of the road. We also observe that DW ensures

better pedestrian delineation and sometimes detects objects

that are not detected by FW: on the first, the second and

the sixth image the rider in front of the vehicle is detected

by FW but not the bicycle he rides. On image 3 and 5 we

observe that DW assigns the correct class to the truck and the

bus but FW mistakes some part of these objects with other

similar classes. A better segmentation in close range avoids



Fig. 5: IoU of road and car classes with different depth

thresholds. All pixels with a depth value superior to the

threshold are ignored in the IoU computation.

dangerous situations where the vehicle could brake because

of a false alarm or hit an obstacle that was not detected.

D. Discussion

Experiments show improving but varying results depend-

ing on the dataset, the range of the metric and the chosen

network. A first explanation of these variations is given in

Tables I and II. The proportion of pixels corresponding to the

class sky in CamVid dataset is roughly 5 times greater than

in Cityscapes, which can explain why disparity weighting

works better on the former. A large part of the images in

CamVid corresponds to the sky and this part is ignored in

the loss function which helps the network focus on the other

more important classes. The performance increase is not very

important because these efficient networks naturally segment

better closer objects because close results in big objects.

Nevertheless, the disparity weighting still has interesting

properties and clearly observable effects on close range

segmentation.

V. CONCLUSION

In this paper, a new loss weighting scheme is introduced

for semantic segmentation of driving scenes. This weighting

consist in multiplying each pixel in the training samples by

its disparity value. The disparity maps for each sample are

precomputed prior to training with an off-the-shelf unsuper-

vised CNN. Intersection over union metric is improved on

CamVid and Cityscapes dataset with better results on the

former. This is partly explained by the proportion of classes

in both datasets, CamVid sky class being over represented

it is ignored because of its very low disparity, hence putting

more emphasis on other classes. Further investigation on

Cityscapes dataset show even more improvements when

evaluating with a close range IoU. Without any additional

labelling effort nor computation burden, disparity weighting

improves semantic segmentation performance. A similar

approach with dense optical flow could be tested with an

unsupervised flow estimation network. Instead of putting the

emphasis on close objects, it could be done on moving ob-

jects which would also make sense for autonomous driving.
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Fig. 6: Qualitative results on Cityscapes with ERFNET: we observe that DW behaves better in close range
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