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We propose an efficient nonlinear solver for the resolution of the Richards equation. It is based on variable switching and is easily implemented thanks to a fictitious variable allowing to describe both the saturation and the pressure. Numerical experiments show that our method enables to use Newton's method with large time steps, reasonable number of iterations and in regions where the pressure-saturation relationship is given by a graph.

Finite volume approximation of the Richards equation

The Richards equation is often used to model unsaturated flows in a porous medium Ω ⊂ R d (1 ≤ d ≤ 3). The fluid occupying the pore space is described by the pressure p ∈ R of the water phase and the water saturation s ∈ [0, 1], which represents the volume ratio of water in the pore space. The conservation law for the water volume then writes

∂ t (φ s) -div λ µ k r (s)(∇p -ρg) = 0 in Ω × R + , (1) 
where φ ∈ (0, 1) is the porosity of Ω , λ its intrinsic permeability, µ the water viscosity, ρ the water density and g the gravitational acceleration. The relative perme-ability function k r : [0, 1] → R + is continuous and nondecreasing, and we denote by s rw = max{s | k r (s) = 0} the residual water saturation. The saturation s and pressure p are linked pointwise by the relation

s = S (p) in Ω × R + , (2) 
where S : R → [0, 1] is nondecreasing and satisfies S (p) = 1s rn if p ≥ p b , s rn denoting the residual saturation of air, p b the entry pressure and S (p) → s rw as p → -∞. We assume that S is C 1 and convex on (-∞, p s ), and C 1 and concave on (p s , +∞) for some p s ≤ 0. We denote by s s = S (p s ). The above assumptions on k r and S are satisfied by the classical Brooks-Corey and van Genuchten-Mualem models respectively given by 

k rBC (s) = s 3+ 2 n eff , S BC (p) =    s rw + (1 -s rn -s rw ) p p b -n if p ≤ p b , 1 -s rn if p > p b , (3) 
k rvGM (s) = s 1 2 eff {1 -[1 -s 1 m eff ] m } 2 , S vGM (p) =    s rw + 1-s rn -s rw 1+ α ρg p n m if p ≤ p b , 1 -s rn if p > p b , (4) 
N = ∂ Ω \ Γ D : p = p D on Γ D × R + , - λ µ k r (s)(∇p -ρg) • n = q N on Γ N × R + , (5) 
with q N ≤ 0. Finally, the system is closed by prescribing an initial saturation profile

s(•, 0) = s 0 in Ω , with 0 ≤ s 0 ≤ 1. ( 6 
)
We refer to [START_REF] Bear | Introduction to modeling of transport phenomena in porous media[END_REF] for further details on the modeling and to [START_REF] Alt | Quasilinear elliptic-parabolic differential equations[END_REF] for the well-posedness of the problem. The problem (1), ( 2), ( 5), and ( 6) is discretized by means of a finite-volume scheme: an upstream mobility is used for convection and a two-point flux approximation (TPFA) for the capillary diffusion. Let (T , E , (x K ) K∈T ) be a finite volume mesh of Ω fulfilling the classical orthogonality condition required for the consistency of TPFA. Since this notion is classical, we remain sloppy here on the definition and refer to [6, Definition 9.1] for details. Let us just mention that T denotes the set of the cells, while the set of the edges E is partitioned into the set of the internal edges

E int = {σ ∈ E | σ = K|L = ∂ K ∩ ∂ L}, the set of the Dirichlet boundary edges E D ext = {σ ∈ E | σ ⊂ Γ D }
, and the set of the Neumann boundary edges

E N ext = {σ ∈ E | σ ⊂ Γ N }. We denote by E K = {σ ∈ E | σ ⊂ ∂ K}.
For the time discretization, we allow for non-uniform time steps

τ n = t n -t n-1 , n ≥ 1. At initial time t = 0, s 0 is discretized into s 0 K = 1 |K| K s 0 . For σ ∈ E int ∪E D ext , σ ∈ E K , we define the mirror value u n K,σ of u n K across σ by u n K,σ = u n L if σ = K|L ∈ E int and u n K,σ = u n σ = 1 τ n |σ | σ t n t n-1 u D if σ ∈ E D ext .
The conservation of the water phase is discretized into

φ K s n K -s n-1 K τ n |K| + ∑ σ ∈E K F n Kσ = 0, K ∈ T , n ≥ 1. ( 7 
)
The expression of the fluxes relies on a unique upwinding for capillary diffusion and for gravitationally induced convection, that is

F n Kσ = A σ { k r n σ ,up µ [ (p n K -p n K,σ ) + ρg (z K -z K,σ ) ]} if σ ∈ E int ∪ E D ext , 1 τ n t n t n-1 σ q N if σ ∈ E N ext , (8) 
where

k r n σ ,up = k r (s n K ) for (p n K -p n K,σ ) + ρg (z K -z K,σ ) ≥ 0, k r (s n K,σ ) otherwise, (9) 
A σ = m σ λ K λ L λ L d K,σ +λ K d L,σ if σ = K ∩ L, m σ λ K d K,σ if σ ∈ E D ext , (10) 
with

λ K = λ (x K ), d K,σ = |x K -x L | if σ = K|L ∈ E int , d K,σ = dist(x K , σ ) if σ ∈ E D ext
and m σ is the Lebesgue measure of the edge σ . The discrete water saturation and pressure are related cellwise by the relation

s n K = S (p n K ), K ∈ T , n ≥ 1. ( 11 
)
The scheme ( 7)-(11) admits a unique discrete solution (s n K , p n K ) K∈T for all n ≥ 1 and converges as the mesh size and the time step tend to 0 (this will be proved in a forthcoming work). In this contribution, we rather focus on the practical resolution of the nonlinear system ( 7)-( 11) via an iterative method. For our works, we choose to use Newton's method. Notice that the physical models presented above, both feature two difficulties for Newton's method: the function S BC is Lipschitz continuous but not C 1 and the mobility function k rvGM is singular at s = 1s rn where the derivative blows up.

Fictitious variable and Newton's method

A natural approach to solve the nonlinear system ( 7)-( 11) is to choose (p K ) K∈T as a primary unknown and to solve the corresponding nonlinear system thanks to Newton's method (or alternatively some modified Picard's method, see e.g. [START_REF] List | A study on iterative methods for solving Richards equation[END_REF]). However, the choice of the pressure as the primary variable is known to be inefficient for dry soils s 1 where they are outperformed by schemes using s as primary variable. On the other hand, the knowledge of the saturation is not sufficient to describe the pressure in saturated regions where s = 1. This motivated the introduction of schemes based on variable switching between s and p, see [START_REF] Forsyth | Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media[END_REF][START_REF] Diersch | On the primary variable switching technique for simulating unsaturated-saturated flows[END_REF]. Our approach is based on [START_REF] Brenner | Improving Newton's method performance by parametrization: The case of the Richards equation[END_REF] and can be seen as a reformulation of the variable switch which makes its implementation much easier. Unlike in [START_REF] Brenner | Improving Newton's method performance by parametrization: The case of the Richards equation[END_REF], we do not use the Kirchhoff transform which cannot be easily computed for the van Genuchten-Mualem model. The idea is to choose a parametrization of the graph {p, S (p)}, i.e. to choose two functions s : I → [s rw , 1s rn ] and p : I → R such that s(u) = S (p(u)) for all u ∈ I ⊂ R. Such a parametrization is not unique: one can for instance choose I = R, p = Id and s = S , or p = (Id + S ) -1 and s = (Id + S -1 ) -1 so that s (u) + p (u) = 1 for all u ∈ R. Here, we rather set I = (s rw , +∞) and

s(u) =    u if u ≤ u s , S p s + u -u s S (p - s ) if u ≥ u s , p(u) =    S -1 (u) if u ≤ u s , p s + u -u s S (p - s ) if u ≥ u s .
(12) where S (p - s ) denotes the limit of S (p) as p tends to p s from below. Since (p s , u s ) is the inflexion point of S , both s and p are C 1 and concave, and even C 2 if S is given by (4). Moreover, for all p ∈ R, there exists a unique u ∈ (s rw , +∞) such that (p, S (p)) = (p(u), s(u)). Choosing u as a primary variable in the scheme ( 7)-(11) amounts to search for u n = (u n K ) K∈T such that s n K = s(u n K ) and p n K = p(u n K ) for all K ∈ T . Equation ( 11) is then automatically satisfied. The resulting system F n (u n ) = 0 made of N T = Card(T ) nonlinear equations admits a unique solution u n since it is fully equivalent to ( 7)-(11). However, the nonlinear change of variable to pass from p n = (p n K ) K∈T to u n as primary variable strongly impacts the nonlinear solver. Our approach is based on Newton's method, that is detailed in Algorithm 1 and that include the following procedures in order to handle difficulties which are inherent to the chosen petrophysical models.

• check() and update()

The law of the relative permeability k r , in the van Genuchten-Mualem case (4), has very large derivative values, which can be equal to ∞ for s → 1. In order to overcome this difficulty, we approximate k rvGM , during Newton's iterations, for s ∈ N = [s lim , 1], with a polynomial krvGM (s) of second degree which satisfies the following conditions: k r (s lim ) = krvGM (s lim ), k r (s lim ) = kr vGM (s lim ), k r (s lim ) = kr vGM (s lim ). The idea is to progressively increase the value of s lim in order to recover the real law at convergence. The function check() verifies the error we commit in the approximation. If this error is smaller than a fixed tolerance, namely

|k rvGM (1) -krvGM (1)| < ε k vGM r
, it returns true, false otherwise. At each Newton's iteration, we increase the value of s lim thanks to the function update(). The increment speed depends on the norm of the residual. Let us call δ s w,max = 1-s rn -s lim . If F n (u n,i ) ∞ > ε F vGM we set δ s w,max = δ s w,max • ω and δ s w,max = δ 2 s w,max otherwise, with ω < 1.

• truncation()

Since F n is not necessarily C 1 (S BC is not C 1 in the Brooks and Corey case), following [START_REF] Jenny | Unconditionally convergent nonlinear solver for hyperbolic conservation laws with S-shaped flux functions[END_REF][START_REF] Wang | Trust-region based solver for nonlinear transport in heterogeneous porous media[END_REF], the Newton increment is truncated near the inflection point s s , as described in Algorithm 2.

• decreaseDeltaTime() and increaseDeltaTime()

In our numerical tests, we increase the time step in such a way that ∆t n+1 = min(∆t max , α + ∆t • ∆t n ) and decrease it in such a way that ∆t n+1 = max(α - ∆t • ∆t n , ∆t min ) with α + ∆t > 1 and α - ∆t < 1. If ∆t min is reached, the simulation stops.

Initialization: i = 0; u n,0 = u n-1 ; while F n (u n,i ) ∞ ≥ ε ∧ i ≤ i max ∨ ¬ check() do solve J(u n,i-1 )δ n,i + F n (u n,i-1 ) = 0 ; for K ∈ T do truncation(); u n,i K = max(s rw , u n,i-1 K + δ n,i K ); end i = i + 1; update(); end if i > i max then decreaseDeltaTime(); restart while loop ; else u n = u n,i ; n = n + 1;
increaseDeltaTime(); end Algorithm 1: Practical resolution of the system F n (u n ) = 0, where J is the Jacobian matrix. 

for K ∈ T do if s s -δ n,i K < u n,i-1 K ≤ s s then δ n,i K = s s -u n,i-1 K + ε δ ; else if s s ≤ u n,i-1 K < s s -δ n,i K then δ n,i K = s s -u n,i-1 K -ε δ ; end end

Numerical results

For the numerical validation of our scheme, we consider two tests inspired from those proposed in [START_REF] Casulli | A nested Newton-type algorithm for finite volume methods solving Richards' equation in mixed form[END_REF]. These two tests make use of the classical Brooks and Corey and Van Genuchten-Mualem models. For the simulations we take the following parameters: ε = 10 -12 , i max = 500, ε k vGM r = 10 -3 , ε F vGM = 10 -9 , ε δ = 10 -6 , α - ∆t = 0.5, ω = 0.07. As in [START_REF] Casulli | A nested Newton-type algorithm for finite volume methods solving Richards' equation in mixed form[END_REF], our aim is here just to improve the robustness of the Newton's algorithm when used with the TPFA scheme. Therefore, our study here focuses on the corresponding nonlinear system even if more accurate schemes could be used to better take into account the heterogeneities, in particular the ones related to the capillary pressures.

Test 1 with the Brooks and Corey model

In this test we simulate a vertical drainage through a layered soil Ω = [0m, 2m] from initially saturated conditions during a time interval [0, T ] with T = 105 • 10 4 s. At the initial time the pressure varies with respect to the height of the column, that is p 0 (z) = -ρg(z -2), where ρ = 10 3 kg • m -3 and g = 9.81m • s -2 . During the simulation, we impose a Dirichlet boundary condition p D = 0 Pa on the bottom of the column and a no-flow boundary condition on the top. The soil is made of two rock types: RT1 for 0m < z < 0.6m and 1.2m < z < 2m, and RT2 for 0.6m < z < 1.2m. Their hydraulic properties are given in Table 1. Simulations are performed on a mesh with 1000 cells and an initial time step ∆t ini = 2000 s which increases after the first time iteration up to ∆t max = 2 • ∆t ini using α + ∆t = 1.2. The truncation procedure, detailed in Algorithm 2, is activated during Newton's iterations. Table 2 gives the average number of iterations of the nonlinear solvers used here and in [START_REF] Casulli | A nested Newton-type algorithm for finite volume methods solving Richards' equation in mixed form[END_REF] along with the number of time steps. Note that a coarser mesh has been used in [START_REF] Casulli | A nested Newton-type algorithm for finite volume methods solving Richards' equation in mixed form[END_REF] for this test. Solutions obtained at the final time are shown in Figure 1. In some areas, pressures are higher than the entry pressure and the saturation-pressure relationship is there no more a function.

The problem can still be solved thanks to the use of the parametrization technique.

Figure 2 shows the evolution of the average Newton's convergence rate given, for a time step n, by CV n rate = 1

N n iter ∑ N n iter i=1 log 10 F n (u n,i ) ∞ log 10 F n (u n,i-1 )
∞ . The rate is on the whole equal to 2. Negative rates are due to residual norms which are greater than one at some iterations. During this simulation, the relative permeability is approximated following the strategy which has been previously described and activating the check() and update() procedures. The truncation method is not required here because S vGM is C 2 . Table 4 gives the average number of iterations of the nonlinear solvers used here and in [START_REF] Casulli | A nested Newton-type algorithm for finite volume methods solving Richards' equation in mixed form[END_REF] along with the number of time steps. Solutions obtained at the final time are shown in Figure 4. Figure 5 shows the evolution of the average Newton's convergence rate which is slightly bigger than 1. The loss of the quadratic convergence may be due to the low regularity of the laws and to the use of the approximation krvGM . Our method 151 13 Method proposed in [START_REF] Casulli | A nested Newton-type algorithm for finite volume methods solving Richards' equation in mixed form[END_REF] 482 (inner iterations) 24

Fig. 4: At the final time for Test 2: s obtained in [START_REF] Casulli | A nested Newton-type algorithm for finite volume methods solving Richards' equation in mixed form[END_REF] (left) and with our solution (right). 

  where s eff = s-s rw 1-s rn -s rw and, for the van Genuchten-Mualem model, m = 1 -1 n and p b = 0 Pa. Dirichlet boundary conditions are imposed on a part Γ D of ∂ Ω , while inflow Neumann boundary conditions are imposed on the complement Γ

Algorithm 2 :

 2 Detail of the function truncation(), where ε δ 1.

Fig. 1 :Fig. 2 :

 12 Fig. 1: Evolution in time of the saturation on the left and of the pressure on the right

Fig. 3 :

 3 Fig. 3: Configuration of the domain for Test 2.

Fig. 5 :

 5 Fig. 5: Test 2: Evolution of the average Newton's convergence rate during time iterations.

Table 1 :

 1 Hydraulic properties for Test 1

		1 -s rn	s rw	p b [Pa]	n	λ [m 2 ]	φ
	RT1	1.0	0.2	-3.4301 • 10 3	1.5	10 -13	0.35
	RT2	1.0	0.1	-1.4708 • 10 3	3.0	10 -11	0.35

Table 2 :

 2 Performances of the nonlinear (nl) solvers for Test 1

	total nl iterations	time iterations

Table 3 :

 3 Hydraulic properties for Test 2

		RT1 (Sand)	RT2 (Clay)
	1 -s rn	1.0	1.0
	s rw	0.0782	0.2262
	n	2.239	1.3954
	λ [m 8	1.04
	s lim	0.985	0.985
	φ	0.3658	0.4686

2 ] 6.3812 • 10 -12 1.5461 • 10 -13 α [m -1 ] 2.

Table 4 :

 4 Performances of the nonlinear (nl) solvers for Test 2

	total nl iterations	time iterations