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Abstract 

The impact of carbon characteristics (structure, porosity and surface chemistry) on the 

Sb/Carbon composites formation and electrochemical performances in Na-ion batteries is 

investigated herein. Mesoporous and non-porous hard carbon heated at different temperatures 

were used to support Sb nanoparticles prepared via a ball-milling/thermal reduction synthesis 

approach. The mesoporous carbon presenting higher surface area and oxygen functional 

groups induce the formation of small Sb nanoparticles (< 5 nm) well dispersed in the carbon 

network. For the hard carbon, the increase in the annealing temperature from 1100 to 1500°C 

leads to more organized structure but lower porosity and surface functionalities having as 

consequence the increase of Sb nanoparticle size and the particle agglomeration. The best 

electrochemical performances vs. Na were achieved for hard carbon/Sb composite treated at 

1100°C which combines several advantages like dispersed Sb nanoparticle, low surface area 

and good conductivity (360 mAh g-1 after 200 cycles). Regarding the long-term capacity 

retention, for all materials a drastic decay was observed starting to 300 cycles and associated 

to the Sb particle size agglomeration and growth during repeated charge/discharge cycles and 

amorphization of Sb particles as demonstrated by post-mortem analyses. 

Keywords: Sb; hard carbon; mesoporous carbon; alloy; Na-ion batteries; 
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1. Introduction 

Lithium-ion batteries (LIBs) are widely used for portable electronic devices such as phones, 

laptops, cameras and more recently emerged for large-scale energy storage applications for 

electrical vehicles and intermittent solar and wind energy sources. However, the increase 

demand for Li-ion batteries in an economical and geographical context where the Li sources 

become more and more scarce and localized only in few areas of the  

world requires tremendous efforts to find alternative cost-effective solutions for current LIBs. 

In the recent years, sodium-ion batteries (NIBs) have been brought into the spotlight due to 

the rich Na resources in the Earth’s crust which may offer a low-cost energy system for near 

future. Despite the rather similar working principles of LIBs and NIBs, Na+ is not able to 

insert into graphite anode due to its larger size, steric and thermodynamic limitations [1-3], 

leading to poor performances. Therefore, many studies were focused on hard carbon materials  

[4-6] having disordered structure and larger interlayer distance compared to graphite. Various 

types of hard carbons issue from the pyrolysis of monomers, polymers, biomass and natural 

resources have been proposed and capacities up to 300 mAh g-1 could be achieved in some 

cases via a storage mechanism involving adsorption and intercalation of Na+ in the carbon 

porosity and nanographitic domains [7-9].  In order to achieve higher gravimetric and 

volumetric capacities, anode materials based on alloying materials have been studied as well 

as anodes for Na-ion batteries. Their charge storage mechanism relies in the formation of 

alloys with sodium during the charging of the anode leading to much higher and attractive 

capacities than carbon. Among the reported alloying materials, antimony, tin, and phosphorus 

are considered promising for Na-ion batteries thanks to their appealing theoretical capacities 

[10;11]. Antimony (Sb) exhibits a high theoretical capacity (660 mAh g-1) upon full sodiation 

to Na3Sb alloy, good kinetic performance and high volumetric energy density compared to 

carbon materials. However, Sb anodes suffer from a major inconvenient related to its large 
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volume changes during sodiation/desodiation which induces particle growth and 

agglomeration, pulverization, loss of electrical contacts and thus performance degradation. 

Such large volume changes of alloy materials may limit their applications for NIBs. Lately, 

several solutions have been proposed to overcome this problem including the 

nanostructuration of the active material, the use of a second metal or the use of carbon 

materials in order to buffer the Sb volume expansion. 

 The nanostructuration by synthesizing nanoparticles, nanocrystals or nanorods can 

facilitate the electrolyte ion diffusion ensuring faster kinetics and high-rate performance [12-

14]. The use of metals such Al, Fe, Cu, Sn [15-21] to minimize the volume changes and to 

prevent aggregation during cycling has been also reported, however, except Sn, most of these 

metals are electrochemically inactive and would scarify the capacity in some extent. Taking 

into account this aspect, several works have been focused on carbon materials which are able 

not only to buffer the active material volume expansion and to avoid agglomeration but also 

to provide electrical conduction and electrolyte diffusion pathways. A literature table 

gathering the main forms of Sb and Sb/C composites, their synthesis methods along with their 

electrochemical performances is provided in Table 1. Darwiche et al. used commercially 

available bulk Sb electrode and mixed with vapor ground carbon fibers and carbon black 

conductive additives which resulted in high performance at a high current rate (550 mAh g-1 

at 4C, 160 cycles) [22]. Electrospinning was used to anchor Sb nanoparticles on self-sustained 

carbon nanofibers films derived from polyacrilonitrile (PAN) polymer [23-25] and the 

capacities were comprised between 274 and 650 mAh g-1. Liao et al. [26] reported a 

hydrothermal approach to obtain Sb particles in an amorphous carbon matrix which exhibited 

high capacity of 622 mAh g-1, at 100 mA g-1 current rate after 100 cycles. Other approaches 

such as sol-gel, impregnation of a carbon with a Sb salt followed by chemical reduction, 

polymerization in the presence of a Sb salt have been explored and yielded distinct materials 
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with capacities ranging between 241 and 554 mAh g-1 (see Table 1) [14;27-30]. Some simple 

approach consisting in mixing of a carbon with metallic antimony by ball milling has been 

demonstrated as well. Zhou et al. [31] used multiwall carbon nanotubes (MWCNTs) and Sb 

powder and obtained uniformly mixture of Sb NPs on MWCNTs by a wet milling approach. 

The materials exhibited a high capacity of 502 mAh g-1 at 100 mA g-1 current rate and 120 

cycles. Qian et al. [32] prepared Sb/C nanocomposites by mechanical milling of commercial 

Sb powder with a carbon black (Super P) and demonstrated a high capacity of 610 mAh g-1 at 

2 Ag-1 current rate over 100 cycles. Ramireddy et al. [33] prepared Sb/C composites in a 

similar manner by using graphite as carbon support. The particle size could be tuned from 1 to 

50 nm by adjusting the carbon and Sb weight ratio in the mixture allowing to obtain high a 

stable capacity at high current rates. Ji et al. [34] proposed a self-thermal-reduction approach 

of potassium antimony(III)-tartrate to form Sb/C rod composite which exhibited low capacity 

and fading after ~ 70 cycles, i.e., 150 mAh g-1 at 100 mA g-1 for 200 cycles, due to the 

material volume expansion and fragmentation. Such limitation could be overcome by using 

potassium chloride during the synthesis which leaded to dual carbon/Sb nanoparticle 

composite (Sb-O-C/C) with high capacity (500 mAh g-1) and good capacity retention for more 

than 200 cycles (Table 1).  

Considering these above mentioned works, it is clear that the carbon materials play an 

important role in the stabilization of Sb nanoparticles during synthesis and cycling, in 

improving the electronic conductivity and in fine in improving the electrochemical 

performance of SIBs. Despite that, most reported works are devoted to new synthesis routes 

to obtain Sb/C nanocomposites by employing different carbon and Sb sources and no 

systematic studies concerning the influence of carbon support characteristics on the formation 

of Sb nanoparticles and their performances in SIBs have been reported to our knowledge. 
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Moreover, long term cycling is rarely discussed although of prime importance for developing 

robust energy storage systems.  

Table 1. Literature review on Sb/C hybrid materials synthesis methods and performances for 

Na-ion batteries. 

 

Materials Synthesis method Electrochemical performances vs. Na Refs. 

Current 

density 

(mA g-1) 

Crev 

(mAh g-1) 

Cycle 

number 

Bulk Sb Commercial 4C 550 160 [22] 

Sb/C Sol-gel with citric acid 4C 115 50 [35] 

Sb/C Sol-gel with chitosan 500 403 100 [36] 

Sb/C Sol-gel 100 423 200 [27] 

Sb@N-doped C 

sheets 

Sol-gel 50 305 60 [30] 

Sb/CNFs Impregnation/chemical 

reduction 

100 542 100 [37] 

Sb/graphenes Chemical reduction 100 241 10 [29] 

Sb/graphene/CNFs 

Sb/CNFs 

Sb/CNFs 

 

Electrospinning 

100 

200 

100 

274 

600 

650 

100 

80 

300 

[23] 

[24] 

[25] 

Sb nanorode arrays Template 

electrodeposition 

1000 574 250 [13] 

Sb/porous carbon Salt template 100 456 500 [38] 

Sb nanocrystals One-pot colloidal  660 580 100 [14] 

Sb/amorphous C Hydrothermal route 100 622 110 [26] 

Sb/MWCNTs Wet milling 200 400 100 [31] 

Sb/C black Mechanical milling 2000 610 100 [32] 

Sb/C graphite Mechanical milling 100 420 100 [33] 

Sb/C yolk-shell Polymerization 50 554 200 [39] 

Sb/N-doped C Ionic liquids 100 440 100 [28] 

NanoSb/C Aerosol spray pyrolysis 100 385 500 [12] 

Sb/C roads 

Sb-O-C/C 

Self-thermal-reduction 

Thermal-reduction 

100 

100 

 150 

500 

200 

200 

[34] 

[34] 
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Therefore, we report in this work a simple ball milling procedure involving carbon 

materials and antimony salt followed by thermal reduction to obtain Sb/C nanocomposites. 

The influence of carbon texture, structure and surface chemistry on the Sb particle 

size/dispersion was evaluated by several techniques along with their electrochemical 

performances. Carbons possessing higher surface area and larger amount of functional groups 

lead to smaller and better dispersed Sb NPs and improved electrochemical performances. The 

carbon/Sb anodes tested for Na-ion batteries exhibits high reversible capacity after the first 

charge-discharge cycle up to 639 mAh g-1 and a stable capacity retention up to 200 cycles 

with a capacity of 360 mAh g-1. Moreover, irreversible capacity was successfully reduced by 

using carbon support with low surface area and low surface chemistry. The capacity fading at 

long term cycling is discussed as well in terms of materials characteristics. 

 

2. Materials and methods  

2.1 Materials Synthesis  

In a first step, the carbon support, i.e., a mesoporous carbon and a non-porous carbon called 

herein hard carbon was prepared by sol-gel polymerization. The mesoporous carbon was 

obtained as described previously [40], briefly phloroglucinol (the carbon source, 1.65g) and 

pluronic F-127 (the structure directing and pore generating agent) were dissolved in an acidic 

ethanol solution, followed by the glyoxal cross-linker addition (1.62 mL). The obtained 

polymer gel after 3 days aging is dried followed by thermal pyrolysis at 900°C under Ar. The 

preparation of the hard carbon support was the same as for the mesoporous carbon, the only 

difference is the absence of pluronic F-127 in the mixture. Three annealing temperatures were 

used, i.e., 1100, 1300 and 1500oC and the as-prepared carbons denoted: MC@900- for the 

mesoporous carbon and HC@T- for the hard carbons, where T=1100, 1300 and 1500oC. 
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In a second step, the C/Sb materials were prepared by using a simple ball milling of carbon 

supports with antimony acetate (Sb (CH3COO)3) for 1h, followed by a thermal reduction in 

presence of Ar:H2 gas mixture (1:1, 10L/h flow rate). The materials were heated at 250oC for 

1h to allow the melting of the precursor, followed by the increase of the temperature up to 

500oC for 1h (heating rate 5k/min) to decompose and reduce the precursor to metallic Sb. A 

schematic illustration of the synthesis pathway can be found in Figure 1. The Sb calculated 

loading was kept constant (60 wt.%) and the resulting materials denoted Sb/MC (for 

mesoporous carbon support) and Sb/HC@T, with T=1100, 1300, 1500oC (for hard carbon 

support). 

Phloroglucinol

Glyoxal

900 oC

Mesoporous carbon (MC)

Pluronic F127

Hard carbon (HC)

1100-1500oC

Phenolic Resin/Template

Phenolic Resin

2. Reduction
500°C, H2/Ar

1. Ball-milling
Sb(CH3COO)3

Hard carbon/ Sb

Mesoporous carbon/Sb

 

Figure 1. Schematic representation of the synthesis protocol developed for carbon/Sb 

materials preparation. 

2.2 Materials characterization 

The crystalline structure of the materials was characterized by X-ray powder diffraction 

(XRD) technique, by using a powder diffractometer D8 ADVANCE A25 from Bruker in 

Bragg-Brentano reflexion geometry θ – θ. Complementary microstructure analysis were 

performed by Raman spectroscopy in a backscattering geometry using a LabRAM BX40 

(Horiba Jobin-Yvon) microspectrometer equipped with a HeNe excitation source (wavelength 

532 nm). The material surface morphology/structure was investigated with a JEOL ARM-
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200F transmission electron microscope working at 200 kV. The surface chemistry was 

assessed by X-ray photoelectron spectroscopy (XPS) with a VG Scienta SES 200-2 

spectrometer equipped with a monochromatized Al Kα X-ray source (1486.6 eV) and a 

hemispherical analyzer. The pass energy was 100 eV. The bulk surface chemistry was 

determined by temperature programmed desorption coupled with mass spectrometry (TPD-

MS) [41]. The carbon is heat it under vacuum up to 950°C with a heating rate of 5°C/min 

resulting in the decomposition of oxygen functional groups into CO and CO2 gases which are 

monitored by a mass spectrometer. Additionally, water and H2 are evolved as well from the 

material. The amount of evolved gases can be obtained by time integration of the TPD curves 

by comparison with calibrated gases prior the analyses. 

The amount of antimony in the composite was determined by thermogravimetric analysis 

(TGA) conducted on a TGA 851 (Mettler-Toledo) instrument by heating the C@Sb 

composite under air (100 ml/min), from 30oC up to 900oC with a 10oC/min rate. The textural 

properties of the carbon/Sb materials were evaluated using N2 and CO2 sorption isotherms by 

using a Micromeritics ASAP 2420 set-up. The materials were outgassed at 200°C under 

vacuum for 12h prior to the analyses. The BET specific surface area (SSA) was calculated in 

the relative pressure range, P/P0, of 0.05-0.3. 

 2.3 Electrochemical characterization 

The electrode was prepared by mixing the carbon/Sb materials (70%) with carbon black 

(10%) and vapor grown carbon fibers - VGCF-S (10%) as conductive additives, and 

carboxymethylcellulose - CMC (10%) as binder. A quantity of 0.4 ml distillated water was 

added over the materials and homogeneously mixed by ball-milling for 1h. A film with a 

thickness of 100µm was laid down on a copper foil, dried at room temperature for 4h and at 

100oC under vacuum for other 12h.  
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The electrochemical performances of carbon support and carbon/Sb composites as negative 

electrode for Na-ion batteries were studied in coin cells assembled in an argon filled glove 

box. The electrolyte was NaClO4, 1M propylene carbonate (PC) as solvent and vinyl 

carbonate (VC)(1%) and fluoroethylene carbonate (FEC) (5%) as additives, which have 

proven to have a positive effect on the cycling of Sb particles [22]. The galvanostatic charge/ 

discharge measurements were carried out at room temperature on Mac pile (Biologic SA and 

MTI) battery testing system at room temperature. The capacity is reported per gram of C/Sb 

composite.  

3. Results and discussion 

3.1 Carbon support characterization 

The structure of carbon materials may impact the Na insertion but also their conductivity, 

therefore was analysed in detail by several complementary techniques. The XRD patterns for 

the carbon supports (Figure 2a) exhibit three broad diffraction peaks, corresponding to 

carbon with low degree of graphitization. A slight increase of the peak intensity could be 

observed for the hard carbons treated at temperature higher than 1100oC. The TEM pictures 

(Figure 2c, d, e, f) revealed a disordered structure for both mesoporous and hard carbons, but 

graphitic layers short domains are more obvious for the hard carbon, especially for the one 

treated at 1500oC. Figure 2b shows the Raman spectra of carbon support. Two typical bands, 

D (1363 cm−1) and G (1600 cm−1), are visible and usually employed for the assessment of the 

disorder in the graphitic structure [42;43]. For mesoporous carbon, the D band is more intense 

and broader than the G band while for hard carbons the increase of the temperature induces an 

increase in the intensity of G band, sign of a more ordered structure.  The ratio of ID/IG is 1.29 

for the mesoporous carbon and decreases with the thermal temperature from 0.94 for 

HC@1100 down to 0.74 for HC@1300 and 0.73 for HC@1500, respectively. The Raman 
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results confirm the XRD and TEM analyses which showed an increase of the carbon 

organization by increasing the temperature. 

1000 1200 1400 1600 1800 2000
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Figure 2. XRD patterns (a) and Raman spectra for carbon supports (b); TEM pictures for 

MC@900 (c), HC@1100 (d), HC@1300 (e), HC@1500 (f) 

The assessment of the carbon surface chemistry is one of the important factors since is 

impacting the interactions with the metal precursor salt and the stability of the particles during 

the synthesis but also the interactions with the electrolyte.  The composition and the surface 

chemistry of the carbon supports (<10 nm thickness) was determined by XPS measurements 
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and gathered in the Table 2. In the case of mesoporous carbon (MC@900), the amount of 

carbon is 95.7 at% and that of oxygen 4.3 at%. The deconvolution of the C1s peak (Figure 

S1a, Supporting Information) reveled the existence of ether (-C-OR), carbonyl (-C=O) and 

carboxyl (-COOR) groups at 286.1, 287.2 and 288.4 eV, respectively. The major 

contributions come from C-OR, COOR and then C=O. Similar groups and trend in term of 

quantities was found for hard carbon as well (Figure S1b, c, d, Supporting Information). 

Concerning the amounts of oxygen in hard carbon, they were found to be higher than for 

mesoporous carbon and only slightly decreasing with the increase in the annealing 

temperature. This observation is rather unexpected since the increase in the temperature 

generally leads to the decomposition of functional groups and to the decrease in the amount of 

oxygen. However, it should be reminded that this composition is only in the extreme surface 

of the materials and the composition it might be different in the bulk. For this reason, the 

TPD-MS technique was employed to study the materials oxygen functionalities. The carbon 

materials were heated under vacuum and the evolved gases (H2, CO, CO2 and H2O) recorded 

as a function heating temperature. The functional oxygenated groups decomposed in CO and 

CO2 gases and their release temperature provides insights on their nature. Typically, the CO2 

is derived from the decomposition of acidic groups, i.e., carboxyl or/and anhydride groups 

while CO is obtained by decomposition of more basic groups such as, carbonyl, phenol, ether 

and quinone groups [44]. 

 For the mesoporous carbon, MC@900, a large CO desorption peak ranged between 

200 and 900°C is recorded (Figure 3a) suggesting the existence of a large variety of 

oxygenated groups such as anhydrides, phenols, ethers and quinones [41;45;46]. The CO peak 

is more intense and narrower between 600 and 900°C, indication of more predominant basic 

groups in the material such as ethers and quinones. The CO2 desorption profile is less intense 

than CO one, and is mainly observed between 200-500°C suggesting carboxyl and anhydride 
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group [41;45;46]. These observations are in good agreement with the XPS results. Water 

release is also observed (100 – 600°C), which can be assigned to physisorbed water in carbon 

porosity at low temperature and to chemisorbed water or in-situ formed water at higher 

temperatures. In addition, an intense peak of hydrogen is evolved at temperatures higher than 

800°C suggesting the cleavage of the C-H bonds and the carbon structural organization. In the 

case of HC@1100 carbon, rather similar CO profiles are observed while the CO2 profile is on 

the contrary much larger indicated a greater number of anhydrides and lactones (Figure 3b) 

besides the carboxyl groups. As for the water profile, the low temperature peaks are intense 

probably due to the high amount of micropores in this material, as will be demonstrated latter 

on. It is worth to note that hydrogen evolution is less important than in the case of 

mesoporous carbon due to the higher synthesis temperature and better organized structure. For 

HC@1500 (Figure 3c), the peaks are less intense compared to the other materials sign of a 

poor surface chemistry. 

By integration of CO and CO2 desorption peaks, the amounts of the oxygenated functional 

groups can be determined (Table 2, Figure 3d). As a general trend, the amounts of CO are 

higher than CO2 for all materials, in well agreement with the desorption profiles intensity. The 

highest amounts of CO and CO2 are obtained for mesoporous carbon while for hard carbon 

they are decreasing with the increase of the annealing temperature (Figure 3d). The overall 

COx (CO + CO2, Table 2) quantities are following the same trend, and they are rather 

different from the one determined by XPS, confirming that the oxygen groups in the surface 

are rather different than in the bulk. It is possible that the higher amounts of water in the hard 

carbon may induce higher oxygen amount in the materials when analyzed by XPS. In the case 

of mesoporous carbon, functional groups maybe placed inside the pores and probably not 

accessible to be measured by XPS, resulting in lower oxygen amounts [47]. 
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Figure 3. TPD-MS desorption profiles of mesoporous carbon, MC@900 (a) hard carbon, 

HC@1100 (b), HC@1500 (c) and the CO and CO2 desorbed quantities from all carbons (d).  

The textural properties of the carbon support were evaluated by nitrogen adsorption/desoption 

isotherms (Figure S2, Supporting Information). For MC@900, the N2 type IV isotherms 

characteristic to mesoporous materials were observed, confirming the role of Pluronic F-127 

in the formation of mesopores (Vmeso = 0.47 cm3 g-1). The existence of some micropores is 

indicated, as well, by the presence of the points in the low relative pressure region (Vmicro = 

0.17 cm3 g-1) with a surface area of 412 m2 g-1. In case of HC@T, the isotherms correspond 

more to type I, but not many points are observed in the low-pressure region, indicating the 

character almost non-porous for these materials in line with the SSA below 4 m2 g-1 (Table 2). 
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Table 2. Properties of the mesoporous and hard carbon/Sb materials. Specific surface area 

(SSA) determined by BET method, chemical composition assessed by XPS, COx functional 

groups obtained by TPD-MS and Sb amount determined by TGA analyses. 

3.2 Carbon/Sb hybrid materials 

Taking into account the results obtained in our previous study on the influence of Sn loading 

[48], we considered 60 wt.% amount of Sb, the appropriate loading to obtain a good 

compromise between the Sb loading and the Sn particle homogeneity in the material.  

The XRD patterns of the carbon/Sb composites exhibit several peaks which were indexed to 

the Sb metallic phase (COD 9008575) (Figure 4a). Therefore, the implemented synthesis 

pathway allowed to decompose the antimony acetate precursor into antimony oxides and their 

further reduction under hydrogen and by carbo-reduction reactions results in the formation of 

metallic Sb, according to the following reactions: 

Sb(CH3COO)3 => Sb2O3 + (C–COOH) + H2O+COx                                (1) 

 Sb2O3 + H2 +C => Sb +H2O +COx                                                          (2) 

Material 
SSA 

m2 g-1 

C 

at. % 

O 

at. % 

COx 

mmol g-1 

Sb 

wt.% 

MC@900 412 95.7 4.3 0.97 - 

HC@1100 4.0 93.7 6.3 0.42 - 

HC@1300 0.1 94.3 5.7 0.20 - 

HC@1500 0.6 94.4 5.6 0.057 - 

Sb/MC@900 208 - -- - 51 

Sb/HC@1100 6 -  - 56 

Sb/HC@1300 2 - - - 47 

Sb/HC@1500 1 - - - 47 
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Figure 4. XRD patterns of carbon/Sb hybrid materials prepared using different carbon 

supports (mesoporous and hard carbon) and annealing temperatures for hard carbon (a) and 

TGA analysis performed in air on the carbon/Sb hybrid materials (b). 

The composition and thermal/chemical stability of carbon/Sb hybrid materials were 

determined by TGA in air (Figure 4b). The TGA curve for the mesoporous carbon presents a 

slight increase of the mass weight followed by two main mass weight losses observed at ~ 

400 and 600 °C, associated to the oxidation of carbon (C+O2   CO2). Regarding the 

Sb/HC@T, the gain in mass before 500oC is much more evident. In both cases, this gain could 

be associated to the oxidation of the Sb particles (Sb + O2 SbO2), in agreement with other 

works [26], [29]. In contrast with the mesoporous material, where this increase was not well 

visible (more likely because the particles are situated in the pores), for the hard carbon/Sb 

composites, the particles situated on the carbon surface determines firstly the oxidation of the 

metallic Sb, and then the carbon combustion. The derivatives for the TGA curves (not shown 

here) present mainly one exothermic peak for each material, but also one endothermic peak. 

The peaks are shifted to higher temperature in function of the thermal treatment temperature 

of the carbon support. The presence of two peaks corresponding to the carbon combustion 

could indicate that the size of the Sb particles (small particles/aggregates) or the place where 
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they are located (inside/outside of the pores) influence differently the carbon combustion. The 

real amount of Sb was calculated by taking into account the SbO2 quantity obtained after the 

TGA at 900oC in air (Figure S3, Supporting Information) and the Sb/O atomic ratio. The 

values presented in Table 2 indicate that the synthesis route allowed preparing materials with 

high loading of Sb and close to the calculated ones. Insights on the structure and morphology 

of the different materials were assessed by STEM in dark field. The Sb particle size have a 

great influence on Na+ diffusion pathways and on the storage mechanism as indicated in the 

introduction part. When using mesoporous carbon framework, the Sb nanoparticles are 

homogeneous distributed in the carbon framework (Figure 5a) and they have small size (< 5 

nm) as better visualized in the STEM images provided in the Figure S4a, Supporting 

Information. . For Sb/HC@T the homogeneity seems to strongly depend on the annealing 

temperature of the carbon support. The Sb/HC@1100 material presents a homogeneous 

distribution of Sb nanoparticles (Figure 5b) with slightly higher size than for mesoporous 

carbon and some larger particles observed (10-20 nm) as well as seen in Figure S4b, 

Supporting Information.  A closer look on a large particle by HRTEM allow to visualize the 

crystallite lattice fringes, however, on small particles it was difficult to observe it (Figure S5, 

Supporting Information). Increasing the annealing temperature of the carbon support to 1300 

and 1500oC, respectively, a significant increase in particle size is observed (up to 20 nm), 

along with a tendency to form agglomerates (up to 50 nm) (Figure 5c, d).  
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 Figure 5. STEM images for Sb/MC@900 (a), Sb/HC@1100 (b), Sb/HC@1300 (c) and 

Sb/HC@1500 (d). 

The precise determination of the particle size evolution is rather difficult to realize due to the 

high density of the particles. However, this behavior may be explained on one hand by the 

decrease of the amount of oxygen groups of carbon with the increase of the annealing 

temperature which decreases the hydrophilicity of carbon support and of the functional 

groups/ active sites serving as anchoring points for the antimony acetate precursor. On the 

other hand, an important role on the agglomeration of Sb particles could be played by the 

decrease of the pore volume and size with the temperature, as will be seen in the following 

part. 
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The textural properties of the composite materials were evaluated by N2 physisorption 

technique at 77K (Figure 6) and the corresponding textural data are gathered in Table 2. The 

surface area and the pore size/volume are carbon characteristics which may strongly impact 

not only the composite synthesis but also its electrochemical performances. A high pore 

volume and surface area can be beneficial since it may allow a good diffusion of the 

electrolyte but also can accommodate the Sb nanoparticles during synthesis and 

electrochemical cycling. On the contrary, the high surface area may induce undesirable 

reactions of the support with the electrolyte. Therefore, such characteristics must be 

determined. Type IV isotherms characteristic to mesoporous materials were observed in the 

case of the Sb/MC@900. The textural properties, namely the specific surface area and the 

pore volume decreased after the Sb addition from 412 to 208 m2 g-1(Table 2) and respectively, 

from 0.64 to 0.34 cm3 g-1.  
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Figure 6. N2 adsorption/ desorption isotherms (a) and pore size distribution (b) for carbon/Sb 

materials. 
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For the Sb/HC@T materials, surprisingly, the Sb addition induces a slight increase of the 

textural properties (SSA and pore volumes) compared to the values for the HC@T support 

(Table 2). The Sb/HC@1300 and Sb/HC@1500 materials present an increase of the adsorbed 

nitrogen volume at high relative pressures (P/P0) indicating an inter-particle porosity due to 

the larger amount of Sb particles on the carbon surface. The pore size distribution (PSD) 

(Figure 6b) determined from the adsorption branch of N2 isotherm indicates the existence of 

both micro- (0.6 nm) and meso-pores (7.5 nm) for all composite materials but also pores 

larger than 20 nm corresponding rather to the inter-particle porosity. 

3.3 Electrochemical performances 

The electrochemical tests for carbon/Sb materials were performed at C/10 constant current 

rate in the voltage range of 0.01-1.5V (vs. Na/Na+). Firstly, the carbon supports were tested in 

the same conditions as the composites materials for comparison purposes in order to evaluate 

their contribution to the capacity (Figure 7a). The carbon supports revealed a high 

irreversible capacity in the first cycles, representing 91-94% from the initial capacity no 

matter the material. However, it is worth to note that in the case of mesoporous carbon, 

MC@900, the irreversible capacity is significantly much higher than for the hard carbon, 

HC@1100 i.e., 738 mAh g-1 vs. 64 mAh g-1 (Figure 7c and Table S1). This may be related in 

large extent to the higher specific surface area but also to the richer surface chemistry of 

mesoporous carbon which induce more electrolyte decomposition and SEI layer formation 

[49;50]. Such higher irreversible capacity of the carbon support may negatively impact the 

irreversible capacity of the MC@Sb composite as well. 

Regarding the reversible capacity, it was found to be dependent on the carbon support. The 

mesoporous support presents a higher reversible capacity (55 mAh g-1) after the 100 cycles 

compared to the hard carbon supports, where the reversible capacities decrease with the 
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annealing temperature of the carbon from 13 mAh g-1 for HC@1100 to 4 mAh g-1 for 

HC@1500 (Figure 7a). This decrease of the capacity with the temperature could be 

associated with the higher hydrophobicity for the materials treated at high temperatures and 

the slight increase of the graphitization level of the carbon. The reversible capacity values are 

particularly very low for hard carbon materials since usually materials with similar specific 

surface area and structure delivers much higher capacity (> 200 mAh g-1) [51]. Such different 

behavior may come from the different electrochemical conditions used herein (binder, 

electrolyte, additives) which were optimized for Sb anodes [22] and which do to favor good 

performances for hard carbons. Considering the low reversible capacity of the pristine 

carbons, their contribution to the capacity of the C/Sb composite materials can be therefore 

neglected. For all carbons supports, the coulombic efficiency is quite low in the first cycle, 

but after 20 cycles it strongly increases to more than 90% and after 30 cycling reaches 100%. 

Generally, for the C/Sb composite materials, the irreversible capacity was significantly 

reduced compared to the carbon supports (Figure 7b and Table 3). This can be understood by 

the lower amount of carbon contained in the composites (~ 50 %) which limits the irreversible 

reactions with the electrolyte. Moreover, the irreversibility of the composite materials which 

use hard carbon as support was successfully reduced compared to the mesoporous materials 

(48% for Sb/MC@900 and 25-29% for Sb/HC@T) (Figure 7e). This decrease can be related 

to the lower SSA in case of the hard carbon, which in contact with the electrolyte reduce the 

SEI formation. A slight contribution to the irreversible capacity could come also from the 

small quantity of Sb oxides covering the Sb nanoparticles a well-known phenomenon for 

nanoparticles in contact with air (see Raman spectra provided in Figure S6, Supporting 

Information). 
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Table 3. Electrochemical performances for mesoporous and hard carbon/Sb materials. 

Material C 1st 

discharge 

C 1st 

charge 

C irrev 

(mAh g-

1) 

C rev 2nd 

cycle 

(mAh g-1) 

Crev 100th 

cycle 

(mAh g-1) 

Crev 300th 

cycle (mAh 

g-1) 

Crev 500th 

cycle (mAh 

g-1) 

Sb/MC@900 639 335 48% 354 224 117 49 

Sb/HC@1100 535 381 29% 398 377 285 92 

Sb/HC@1300 462 347 25% 362 271 95 37 

Sb/HC@1500 416 311 25% 323 253 114 28 

 

Concerning the reversible capacity in the first cycle, the Sb/MC@900 presents the highest 

specific capacity (639 mAh g-1), while for Sb/HC@T the values decreases with the annealing 

temperature from 535 mAh g-1 for Sb/HC@1100 to 419 mAh g-1 for Sb/HC@1500. It is worth 

noting that in most of the literature works regarding Sb/C composites, the cycling 

performances are presented only for a limited number of cycles (Table 1), which do not allow 

to assess the long-term behavior of such materials. We have therefore tested the materials for 

the long-term cycling, and during the 75 cycles a decrease of the capacity is observed for all 

materials. After the 250th cycle, another strong decay is noticed and for 500 cycles the 

materials kept only about 8% from their initial capacity for Sb/MC@900, Sb/HC@1300 and 

Sb/HC@1500 and 17% for Sb/HC@1100, respectively. The most well performing material 

from cycle stability point of view is Sb/HC@1100 material which, moreover exhibits the 

highest reversible capacity. A comparison between the reversible capacities of Sb/HC@1100 

and Sb/MC@900 is presented in Figure 7e, f. The better performances obtained for the hard 

carbon/Sb composite as support could be explained by a good compromise between the low 
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surface area and the good dispersion of the Sb particles in the carbon framework. Both these 

parameters may impact the performances. The Sb particles size are small and well dispersed 

in both composites ensuring short electrolyte pathways and insertion of Na. However, the 

carbon supports are rather different in terms of porosity (specific surface area and pore size 

distribution). The mesoporosity of MC carbon allow better diffusion of the electrolyte but in 

the same time the associated high surface area induce high irreversible capacity and probably 

thick and unstable SEI layer which are detrimental during long cycle. On the contrary, the low 

surface area in the case of HC ensures a low irreversible capacity related to an efficient SEI. 

The better structural organization of the HC carbon (see Figure 2) may also have a positive 

impact on the conductivity of Sb nanoparticles [52]. Moreover, it has been shown [53] that the 

increase of the annealing temperature of hard carbon improves its electronic conductivity. 

However, for the hard carbon supports annealed at higher temperature, i.e.,1300 and 1500oC 

even if they possess low surface area and better structure organization, they lose faster their 

performances due to the larger and agglomerated Sb particles (Figure 5c, d) situated most 

probably on the carbon surface triggering more agglomeration during sodiation/desodiation 

process.  
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Figure 7. Electrochemical performances of the carbon support and carbon/Sb materials 

(voltage range 0.01-1.5V (Na+/Na), C/10 current rate). The specific discharge capacity vs. the 

cycle number and the coulombic efficiency for the carbon supports (a). The specific discharge 

capacity vs selected cycle numbers and the coulombic efficiency (b), the comparison between 

the performances (irreversible and reversible capacity vs. cycle number) of mesoporous and 

hard carbon supports and their Sb based composites vs. Na (c, d, e, f). 

Taking into account the as-presented evolution, we can conclude that there is no need 

to use sacrificial templates in order to create mesopores in the carbon framework. The 

advantage of the mesopores for improving the electrolyte diffusion and the accommodation of 
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Sb particles it is contra balanced by its higher SSA which determines higher irreversibility. 

Moreover, there is no reason to treat the carbon support at high temperature (1300oC and 

1500oC, respectively) since the Sb agglomeration phenomena negatively impact the 

electrochemical performances. The coulombic efficiency of the C/Sb composite materials 

reaches fast 100% (after 10 cycles), which means that parasitic reactions take place because of 

the electrolyte degradation are limited after first cycles. That being said, the Sb/HC@1100 

could be considered the optimal composite for the proposed applications. 

Nevertheless, to better understand this fading behavior which is rarely discussed, 

Figures 8 presents the galvanostatic curves and derivative curves for Sb/MC@900 and 

Sb/HC@1100 for several specified cycles. For the Sb/MC@900 (Figure 8a, c), the first 

discharge profile shows a gradual voltage drop to 0.4 V, followed by a plateau and another 

strong decrease down to 0.01 V, delivering a discharge capacity of 639 mAh g-1. In the same 

time, 55% of the inserted Na can be reversibly desodiated, giving a charge capacity of 335 

mAh g-1. The subsequent discharge curves are very different compared to the first discharge 

because of the formation of SEI on the surface of the anode. The differences in shape and 

potential between the first insertion and the following ones are similar to the classically 

observed ones for Sb system and likely attributed to the “electrochemical grinding” occurring 

in the first discharge. This phenomenon induces the active material particle size grinding 

leading to smaller and sometimes amorphous particles [20], [54]. The next curves are almost 

overlapped indicating the good reversibility of the chemical reactions in the electrode. For the 

discharge curve which corresponds to the 75th cycle, a faster decrease of the potential is 

observed, corresponding to the significant decrease of the capacity which took place during 

the first 75 cycles.  
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The Figure 8b, d presents the galvanostatic and derivative curves for Sb/HC@1100 for 

selected cycles. The first discharge profile shows a rapid voltage drop to 0.8 V, followed by a 

gradual decrease down to ≈ 0.45V (Figure 8b).  
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Figure 8. The galvanostatic (a, b) and derivatives (c, d) curves for Sb/MC@900 and 

Sb/HC@1100 materials for the specified cycles (voltage range 0.01-1.5V (Na+/Na), C/10 

current rate).  

A plateau is observed at this value, followed by another strong decrease down to 0.01V, 

delivering a discharge capacity of 535 mAh g-1. The next curves present the same voltage 

drop to 0.8 V, from here a slow continue decrease of the voltage is observed down to 0.45, 

followed by a strong decrease to 0.01V. The curves corresponding to the second and third 

cycles are overlapped indicating the reversibility of the chemical reactions, while the curve 
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for the 75th cycle presents faster decrease to 0.01V. The 3 cathodic peaks observed in the 

derivative curves (Figure 8d) situated between 0.38 and 0.72V correspond to the multi-step 

formation of amorphous NaxSb and crystalline Na3Sb alloys at the end of discharge [22] 

according to the following equations: 

Sb + xNa+ + xe- ↔ NaxSb               (3) 

NaxSb + (3-x) Na+ + (3-x) e- ↔ Na3Sb  (4) 

For the first 3 anodic cycles, an intense peak is seen at 0.78 V and a small oxidative peak at 

0.90 V which splits in the 75th cycle into two peaks located at 0.81 and 0.91 V characteristics 

to the desodiation of crystalline Na3Sb. At 300 cycles, only one peak is observed which is 

shifted at 0.94 V, is broader and less intense, and further vanished at 500 cycles. The same 

behavior is seen for Sb/MC@900, but in this case, the 0.94 V peak almost disappeared after 

the 300 cycles. The disappearing of the peaks can be related to the observed fading of the two 

materials which occurred earlier for Sb/MC@900 compared to Sb/HC@1100. The reason 

behind the disappearing of the electrochemical peaks may be the amorphisation of Sb 

particles as observed in the literature [22]. 

 In order to better understand the changes which took place in the anode during the 

charge-discharge cycling, STEM analyses were performed on the post mortem electrodes 

(Figure 9). Two materials were selected which present very different physico-chemical 

properties in order to distinguish easier between the factors which could impact the 

electrochemical performances. So, the STEM images were taken for Sb/MC@900 (Figure 

9a) and Sb/HC@1500 electrodes recovered after 500 cycles (Figure 9b). The post mortem 

Sb/MC@900 material revealed a good homogeneity of Sb particles in the carbon matrix, 

comparable with that of the material before cycling (Figure 5a), confirming the well 

confinement of the Sb particles in the mesoporous structure. However, few agglomerates of 
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particles are formed during the cycling as well which are no more electrochemically active 

after several cycles and could be partially responsible for the decay of the reversible capacity 

after 75 cycles. Moreover, the decay after 300 cycles could be also associated to the 

amorphization on Sb nanoparticles.  On the contrary, the post mortem Sb/HC@1500 electrode 

shows more agglomerated particles (Figure 9b) compared to Sb/MC@900 composite, the 

material being more prone to form agglomerates even before the cycling (higher particle sizes 

and agglomerates before cycling, Figure 5d).  

                 

a) b)

 

Figure 9. STEM images after 350 cycles for Sb/MC@900 (a) and Sb/HC@1500 (b).  

In addition, the benefits of the better dispersed particles for the Sb/MC@900 material 

competes with the weakness due to the high surface area of the mesoporous carbon, which 

interacts with the electrolyte and forms continuously the SEI layer, originating a significant 

decay of the capacity in cycling. For the Sb/HC@1500, the irreversible capacity is 

significantly lower, thanks to the lower textural properties of the carbon support, but due to 

the larger Sb particles which are partially agglomerated [55] the material loses in 

performances. Therefore, both mesoporous and hard carbon could be successfully used as 

support to prepare carbon/Sb anodes for Na-ion batteries, by making a balanced compromise 

between the amount and the distribution of the Sb particles in the carbon matrix, and the 
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characteristics of carbon support. Well dispersed particles obtained at moderate Sb loading 

(~50%) and annealing temperatures of the carbon matrix could favor the diffusion of the 

electrolyte on the anode surface. On the other hand, the carbon porosity allows the particle 

confinement and accommodate the particles limiting their agglomeration during the cycling, 

but cannot totally prevent it, few aggregates being formed no matter the carbon support (more 

for hard carbon). However, in the same time this porosity could react with the electrolyte and 

form a SEI layer inducing a high irreversible capacity.  Therefore, small and well dispersed 

Sb particles on a suitable carbon support is not sufficient to ensure long term cycling. The 

emplacement of the particles in the carbon network can be as well an important factor. Ji et al. 

[34] succeed to avoid the fading of Sb/C composites by embedding carbon Sb nanoparticles in 

an amorphous carbon network. Such confinement of Sb particles in the carbon structure rather 

than in the carbon porosity or in the surface may better limit the particle growth and 

aggregation. Such hypothesis can be sustained by other two works [14], [25], where the Sb 

particles are trapped in the carbon structure by simultaneous synthesis of Sb and carbon in 

one-pot synthesis providing long term cycling performances.      

Conclusions 

Carbon materials presenting different structure, porosity and surface chemistry were 

synthesized by eco-friendly sol-gel methods and used to support Sb nanoparticles by ball 

milling-thermal reduction approach. The influences of the presence/absence of mesopores and 

the annealing temperature on the physico-chemical and electrochemical properties of 

carbon/Sb hybrid materials was investigated. Small and well dispersed Sb nanoparticles were 

obtained for mesoporous carbon and hard carbon supports treated at low temperature. By 

increasing the annealing temperature from 1100°C to 1500°C, the carbon porosity and surface 

oxygen-based functionalities decreases inducing the Sb particle size increase and 
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agglomeration. The electrochemical tests performed at a C/10 current rate in a voltage range 

of 0.01-1.5 V (Na/Na+) prove a successfully reduction of the irreversible capacity of 

mesoporous carbon and hard carbon from ≈ 91-94% to 48% and ~ 25-29% by preparing 

Sb/MC@900 and Sb/HC@T hybrid materials. The reversible capacity reached 535 mAh g-1 

for Sb/HC@1100 after the first cycle, while the other composites delivered lower capacities. 

For the long term cycling, the Sb/HC@1100 composite combining both low surface area, 

small Sb nanoparticles and optimal structure exhibited the most stable behavior up to 300 

cycles, while in the case of the other materials fading occurred in the first 75 cycles. In 

addition, for all materials a drastically capacity fading is observed at around 300 cycles with 

almost complete loss of the capacity. This behavior could be attributed to the Sb particle size 

agglomeration and amorphization during cycling. 
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