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Min (A)cyclic Feedback Vertex Sets and Min Ones Monotone 3-SAT

Irena Rusu1

LS2N, UMR 6004, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes, France

Abstract

In directed graphs, we investigate the problems of finding: 1) a minimum feedback vertex set (also
called the FEEDBACK VERTEX SET problem, or MFVS), 2) a feedback vertex set inducing an acyclic
graph (also called the VERTEX 2-COLORING WITHOUT MONOCHROMATIC CYCLES problem, or
ACYCLIC FVS) and 3) a minimum feedback vertex set inducing an acyclic graph (ACYCLIC MFVS).

We show that these problems are strongly related to (variants of) MONOTONE 3-SAT and MONO-
TONE NAE 3-SAT, where monotone means that all literals are in positive form. As a consequence,
we deduce several NP-completeness results on restricted versions of these problems. In particular, we
define the 2-CHOICE version of an optimization problem to be its restriction where the optimum value
is known to be either D or D + 1 for some integer D, and the problem is reduced to decide which of
D orD+1 is the optimum value. We show that the 2-CHOICE versions of MFVS, ACYCLIC MFVS,
MIN ONES MONOTONE 3-SAT and MIN ONES MONOTONE NAE 3-SAT are NP-complete. The
two latter problems are the variants of MONOTONE 3-SAT and respectively MONOTONE NAE 3-
SAT requiring that the truth assignment minimize the number of variables set to true.

Finally, we propose two classes of directed graphs for which ACYCLIC FVS is polynomially solv-
able, namely flow reducible graphs (for which MFVS is already known to be polynomially solvable)
and C1P-digraphs (defined by an adjacency matrix with the Consecutive Ones Property).

Keywords: feedback vertex set; 3-SAT; minimum ones 3-SAT; NP-completeness; flow reducible
graphs

1. Introduction

In this paper, we consider only simple directed graphs (with no loops or multiple arcs). A feedback
vertex set (abbreviated FVS) of a directed graph (or digraph) G = (V,E) is a set S ( V such that
S contains at least one vertex from each cycle of G. Then we say that S covers the cycles in G.
The term of cycle cutset or simply cutset is also used in the literature to name S. The FEEDBACK

VERTEX SET problem (abbreviated MFVS) requires to find a FVS S of minimum size inG. A vertex
2-coloring without monochromatic cycle of G is a coloring of the vertices in V with two colors, such
that no cycle of G has all its vertices of the same color. Each of the colors thus defines a set of
vertices inducing an acyclic graph, and each of them may therefore be seen as an acyclic FVS of G.
The problem of deciding whether an acyclic FVS exists for a given digraph G is classically called
VERTEX 2-COLORING WITHOUT MONOCHROMATIC CYCLE. We abbreviate it as ACYCLIC FVS,
in order to emphasize its relationship with feedback vertex sets.
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MFVS has applications in path analysis of flowcharts of computer programs [27], deadlock
recovery in operating systems [30], constraint satisfaction and Bayesian inference [3]. The NP-
completeness of MFVS in directed graphs has been established in [17], and - given the reduction
from VERTEX COVER - it implies both the APX-hardness of the problem, and an extension of the
results to undirected graphs. The NP-completeness stands even for directed graphs with indegree
and outdegree upper bounded by 2, as well as for planar graphs with indegree and outdegree upper
bounded by 3 [14]. Several classes of directed graphs for which MFVS is polynomially solvable are
known, including reducible flow graphs [27], cyclically reducible graphs [30], quasi-reducible graphs
[24] and completely contractible graphs [19]. The best approximation algorithms [26, 12] reach an
approximation factor of O(min{logτ∗loglogτ∗, logn loglogn}), where τ∗ is the optimal fractional
solution in the natural LP relaxation of the problem. In the undirected case, more intensively studied,
many classes of graphs admitting polynomial solutions are known, as for instance interval graphs
[20], permutation graphs [6] and cocomparability graphs [7]. The best approximation algorithms
[2, 4] reach an approximation factor of 2. A review on MFVS may be found in [13].

ACYCLIC FVS has applications in micro-economics, and more particularly in the study of ratio-
nality of consumption behavior [10, 23, 22]. The problem has been introduced in [9, 10] together
with a proof of NP-completeness in directed graphs. But the problem is NP-complete even in simple
directed graphs with no opposite arcs [23] (called oriented graphs). A variant requiring that S covers
only the cycles of a fixed length k also turns out to be NP-complete for each k ≥ 3 [18]. Very few par-
ticular classes of directed graphs for which the problem becomes polynomial are known: line-graphs
of directed graphs [22], oriented planar graphs of maximum degree 4 and oriented outerplanar graphs
[23]. In each graph of these classes, an acyclic FVS always exists. Several results not related to our
work here also exist on the undirected case but are in general devoted to the VERTEX k-COLORING

WITH NO MONOCHROMATIC CYCLE PROBLEM which is a generalization of ACYCLIC FVS (see
[23] for more information). By similarity with MFVS, we introduce here the problem ACYCLIC

MFVS, which requires to find a minimum size FVS that induces an acyclic graph, if such FVS exist.
The NP-completeness results we prove concern simple directed graphs containing no pair of op-

posite arcs, i.e. oriented graphs. We define 3c-digraphs as a class in which it is sufficient to cover the
3-cycles in order to cover all the cycles. Starting with a set C of 3-literal clauses, we associate with C a
setF of 3-literal clauses with literals in positive form, and we associate withF a representative graph
denoted G/(F). Then we show various relationships between 3-SAT problems and FVS problems,
according to the outline below. In this diagram, a one is a variable which is set to true.

C → F → G/(F)
set of 3-literal set of 3-literal clauses graph defined by the clauses,
clauses with positive literals in F , whose vertex set is U
on variable set X on variable set U and which is a 3c-digraph
satisfies 3-SAT iff satisfies NOT-ALL-EQUAL 3-SAT

satisfies 3-SAT with a truth iff S is a FVS
assignment whose ones define the set S ( U
satisfies NOT-ALL-EQUAL 3-SAT with a iff S is an acyclic FVS
truth assignment whose ones define the set S

Due to these results, MFVS and ACYCLIC MFVS are close to the problems MIN ONES MONO-
TONE 3-SAT and MIN ONES MONOTONE NOT-ALL-EQUAL 3-SAT. We use these relationships to
deduce new hardness results on these problems. In particular, we define the 2-CHOICE version of
an optimization problem to be its restriction where the optimum value is known to be either D or
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D+ 1 for some integer D, and the problem is reduced to decide which of D or D+ 1 is the optimum
value. We show that the 2-CHOICE versions of MFVS, ACYCLIC MFVS, MIN ONES MONOTONE

3-SAT and MIN ONES MONOTONE NAE 3-SAT are NP-complete. In addition, we also show the
NP-completeness of ACYCLIC FVS even for 3c-digraphs. The second part of the paper proposes two
classes of graphs for which ACYCLIC FVS is polynomially solvable. More particularly, the graphs
in these classes always have an acyclic FVS, and it may be found in polynomial time. These are the
reducible flow graphs [15] and the class of C1P-digraphs defined by an adjacency matrix with the
Consecutive Ones Property.

The paper is organized as follows. In Section 2 we give the main definitions and notations,
and precisely state the problems we are interested in. Section 3 presents the properties of the main
reduction, and gives a first NP-completeness result. Section 4 contains the other hardness results. The
polynomial cases are studied in Section 5. Section 6 is the Conclusion.

2. Definitions and notations

We denote a directed graph as G = (V,E), and its subgraph induced by a set V ′ ⊆ V as G[V ′].
Given an arc vw from v to w, w is called a successor of v, and v is called a predecessor of w. The
set of successors (resp. predecessors) of v is denoted N+(v) (resp. N−(v)). Moreover, N+[v] (resp.
N−[v]) is the notation for N+(v)∪ {v} (resp. N−(v)∪ {v}). A 3-cycle digraph (or a 3c-digraph) is
a directed graph in which each cycle has three vertices defining a 3-cycle. (All the cycles used here
are directed).

Focusing now on instances of satisfiability problems, let C be a set of 3-literal clauses over a set
of given variables X = {x1, x2, . . . , xn}. A literal is in positive form if it equals a variable, and
in negative form otherwise. A truth assignment of the variables in X such that each clause has at
least one true literal is called a standard truth assignment. When the truth assignment is such that
each clause has at least one true and at least one false literal, it is called a not-all-equal (NAE) truth
assignment. Let Cr = (lra ∨ lrb ∨ lrc) be any clause of C, and assume its literals are ordered from left
to right. We define the (non-transitive) relation / as:

lra / l
r
b , l

r
b / l

r
c and lrc / l

r
a (1)

where we assume that all clauses contribute to the same relation /, defined over all literals in C.
Then we define G/(C) to be the representative graph of C associated with the relation /, whose

vertices are the literals and such that ll′ is an arc iff the relation l / l′ has been established by at least
one clause (note that there are no multiple arcs).

A cycle of G/(C) is called a strongly 3-covered cycle if it contains three vertices that are the three
literals of some clause in C. These vertices thus induce a 3-cycle. Moreover, say that a set of 3-literal
clauses C, in which the order of literals is fixed, is in strongly 3-covered form if all the cycles of the
graph G/(C) associated with the relation / are strongly 3-covered cycles. Note that not all the sets C
of 3-literal clauses admit a strongly 3-covered form (examples are easy to build).

We present below the list of problems we are interested in. The notation ts(C) (resp. tNAE (C))
represents the minimum number of true variables (or ones) in a standard (resp. NAE) truth assignment
of C, if such an assignment exists; otherwise, ts(C) (resp. tNAE (C)) equals the number of variables
plus 1. Moreover, mfvs(G) (resp. amfvs(G)) is the cardinality of a minimum FVS (respectively a
minimum acyclic FVS) of G. The restrictions mentioned in the list below indicate the names of the
subproblems we deal with, and which are explained below.

3



3-SAT
Input: A set C of 3-literal clauses over a set of
given variables.
Question: Is there a standard truth assignment for
the variables?

Restrictions:
M 3-SAT

MIN ONES 3-SAT (MIN1 3-SAT)
Input: A set C of 3-literal clauses over a set of
given variables. A variable k.
Question: Is there a standard truth assignment for
the variables with no more than k true variables?

Restrictions:
MIN1-M 3-SAT

2-CHOICE-MIN1-M 3-SAT

NAE 3-SAT
Input: A set C of 3-literal clauses over a set of
given variables.
Question: Is there a NAE truth assignment for the
variables?

Restrictions:
M-NAE 3-SAT

MIN ONES NAE 3-SAT (MIN1-NAE 3-SAT)
Input: A set C of 3-literal clauses over a set of
given variables. A variable k.
Question: Is there a NAE truth assignment for the
variables with no more than k true variables?

Restrictions:
MIN1-M-NAE 3-SAT

2-CHOICE-MIN1-M-NAE 3-SAT

FEEDBACK VERTEX SET (MFVS )
Input: A directed graph G = (V,E). A positive
integer k.
Question: Is it true that mfvs(G) ≤ k?

Restrictions:
2-CHOICE-MFVS

ACYCLIC FVS
Input: A directed graph G = (V,E).
Question: Is there a FVS S ⊆ V such that G[S]
is acyclic?

MIN ACYCLIC FVS (ACYCLIC MFVS )
Input: A directed graph G = (V,E). A positive
integer k.
Question: Is it true that amfvs(G) ≤ k?

Restrictions:
2-CHOICE-ACYCLIC MFVS

For each of the four satisfiability problems above we have the MONOTONE restriction, asking that
the clauses in the input be made only of literals in positive form. These restrictions are identified by
a supplementary M in the name of the problem (see the first subproblem in the list of restrictions of
each 3-SAT problem). The 2-CHOICE restriction is defined for each minimization problem. Here the
input is reduced to instances for which the minimized parameter is known to be either D or D + 1,
for a given integer D, and the question is - as in the initial problem - whether the parameter is at most
D (or, equivalently, equal to D, given the hypothesis). The 2-CHOICE restriction of the MIN1-M
3-SAT problem is therefore:
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Min1 3-SAT [Th.3]

Min1 NAE 3-SAT [Th.3]
MFVS [Th.3]

Acyclic MFVS [Th.3]

Acyclic FVS [Th.2]

Mon
oton

e 2Choice3cdigraphs
NAE 3-SAT [25]

Min1 3-SAT [14]

NAE 3-SAT [Th.1]

Gen
eral

 cas
e 3-SAT [17]

NAE 3-SAT [25] Min1 3-SAT [14]
Acyclic FVS [9]MFVS [17]

Figure 1: Existing and new hardness results on the problems in our list. The external ellipse contains the problems in their
most general form. Each internal ellipse represents a restriction: MONOTONE, 2-CHOICE or 3c-digraphs. Concerning the
last restriction, it means that the input graph is a 3c-digraph for FVS problems, respectively that the representative graph
is a 3c-digraph for 3-SAT problems. Note that we always use the names of the initial (general) problems, the restrictions
being deduced from inclusions into one or several ellipses.

2-CHOICE MIN1-M 3-SAT
Input: A set C of 3-literal clauses, all in positive form, over a set of given variables. An integer D
such that D ≤ ts(C) ≤ D + 1.
Question: Is it true that ts(C) ≤ D? (equivalently, is it true that ts(C) = D?)

The 2-CHOICE restrictions for the other minimization problems are similarly defined.
FIG. 1 indicates known NP-completeness results about the problems in our list, as well as the six

NP-completeness results we prove here (the six problems in the ellipse representing the restriction
to 3c-digraphs). The NP-completeness of 3-SAT is due to Karp [17], whereas that of NAE 3-SAT
and M-NAE 3-SAT results from general theorems proved by Schaefer [25]. The problem M 3-SAT
is obviously polynomial, but MIN1-M 3-SAT is NP-complete (implying that Min1 3-SAT is NP-
complete), since it is the same as 3-HITTING SET and VERTEX COVER for 3-Uniform Hypergraphs
[14]. As indicated above, MFVS and ACYCLIC FVS are also NP-complete.

3. From 3-SAT to M-NAE 3-SAT

Our proofs are based on a classical sequence of reductions from 3-SAT to M-NAE 3-SAT, and
on the good properties of the representative graph G/(F) of the resulting set of clauses F .

Let C be a set of m 3-literal clauses, whose literals may be in positive or negative form, on the
variable set X = {x1, x2, . . . , xn}. We assume w.l.o.g. that no clause of 3-SAT contains the same
variable twice (regardless to the positive or negative form). Otherwise, such clauses may be either
removed (in case both forms are present) or replaced with equivalent suitable clauses ((l ∨ l ∨ l′) for
instance may be replaced with (l ∨ l′ ∨ u) and (l ∨ l′ ∨ u) where u is a new variable). Then in each
clause Cr = (li ∨ lj ∨ lk) we assume i < j < k and lu ∈ {xu, xu}, for all u ∈ {i, j, k}. When C is
considered as an instance of 3-SAT, each clause Cr = (li ∨ lj ∨ lk) is successively replaced with sets
of clauses, as in Table 1, so as to successively reduce 3-SAT to NAE 4-SAT, to NAE 3-SAT and to
M-NAE 3-SAT. Note that NAE 4-SAT is stated similarly to NAE 3-SAT except that the clauses have
four literals.

These reductions are explained as follows. In the first one (3-SAT to NAE 4-SAT), each variable
yu is related with xu in the sense that xu is assigned the value true in the 3-SAT instance iff the truth
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Table 1: Successive reductions from 3-SAT to M-NAE 3-SAT. Explanations are given in the text.
Reduction New variable set Set of clauses replacing clause Precisions

Cr = (li ∨ lj ∨ lk)
3-SAT to NAE 4-SAT U1 = {y1, y2, . . . , yn, z} (hi ∨ hj ∨ hk ∨ z) hu = yu if lu = xu

hu = yu if lu = xu
NAE 4-SAT to NAE 3-SAT U2 = {y1, y2, . . . , yn, z, (hi ∨ hj ∨ wr), (wr ∨ hk ∨ z)

w1, w2, . . . , wm}
NAE 3-SAT to U3 = ∪g∈U2\{z}{αg, βg, (Basic clauses) γu = αyu if hu = yu
M-NAE 3-SAT ag, bg, cg} ∪ {z} (γi ∨ γj ∨ αwr ), (βwr ∨ γk ∨ z), γu = βyu if hu = yu

(Consistency clauses)
∪g∈U2\{z}{(αg ∨ βg ∨ ag), One occurrence.
(αg ∨ βg ∨ bg), (αg ∨ βg ∨ cg), (do not duplicate
(ag ∨ bg ∨ cg)} for each clause)

assignment in NAE 4-SAT is such that yu 6= z. Equivalently, lu is true in the 3-SAT instance iff
hu 6= z in the NAE 4-SAT instance. Furthermore, a new variable w is added for each clause when the
transition from 4-literal clauses to 3-literal clauses is performed, making that each 4-literal clause is
replaced with an equivalent pair of 3-literal clauses. Finally, in order to eliminate literals in negative
form in the reduction from NAE 3-SAT to M-NAE 3-SAT, each variable g ∈ U2 \ {z} (since z is
already present only in positive form) is replaced with two variables αg and βg, respectively repre-
senting its literals in positive and negative form. Then, each clause from NAE 3-SAT is replaced with
its corresponding clause, a literal in positive (resp. negative) form being replaced with its correspond-
ing αg (resp. βg) literal in positive form. The consistency clauses added for each variable guarantee
that each pair of variables αg and βg must have different values in a NAE truth assignment.

The final set F of 3-literal clauses (whose literals are all in positive form) associated to the initial
set C of 3-literal clauses is then:

F = ∪Cr=(li∨lj∨lk),Cr∈C{(γi ∨ γj ∨ αwr)︸ ︷︷ ︸
Fr

, (βwr ∨ γk ∨ z)︸ ︷︷ ︸
F ′r

} ∪

∪g∈U2\{z} {(αg ∨ βg ∨ ag)︸ ︷︷ ︸
F1g

, (αg ∨ βg ∨ bg)︸ ︷︷ ︸
F2g

, (αg ∨ βg ∨ cg)︸ ︷︷ ︸
F3g

, (ag ∨ bg ∨ cg)}︸ ︷︷ ︸
F4g

(2)

where each γu is either αyu or βyu (1 ≤ u ≤ n) according to the rules in Table 1. In order to fix the
terminology, the four consistency clauses associated with a variable g in U2 \ {z} are denoted F1g,
F2g, F3g, F4g from left to right, whereas the two basic clauses (γi ∨ γj ∨αwr) and (βwr ∨ γk ∨ z) for
some fixed r ∈ {1, 2, . . . ,m} are respectively denoted Fr and F ′r. We also denote by N = |U3| the
total number of variables in F , which therefore satisfies N = 5(n+m) + 1.

The set F of clauses resulting from C in this way is said to be the M-NAE version of C. The
successive equivalences between problems in Table 1 (with their corresponding inputs) are not very
difficult to show (see [28] or [21] for a proof) and imply that:

Proposition 1. 3-SAT with input C has a solution iff M-NAE 3-SAT with input F has a solution.

Or, equivalently, C has a standard truth assignment iff F has a NAE truth assignment. Now, we
fix for each clause of F the order of literals used in Equation (2) (from left to right, in each clause).
Define the relation / according to Equation(1) and consider the representative graph G/(F). Note
that, since F has only literals in positive form, the set of vertices of G/(F) is U3.
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Proposition 2. Let C be any set of 3-literal clauses on a variable set, and let F be its M-NAE version.
The representative graph G/(F) is oriented, and each of its cycles is strongly 3-covered.

Proof. Recall that i < j < k in each initial clause Cr ∈ C. We prove several affirmations, which lead
to the conclusion.

(A1) G/(F) contains no pair of opposite arcs and no loop.

As the variables involved in each clause of C (and thus of F) are distinct, G/(F) has no loop.
Furthermore - due to the local role of ag, bg, cg - the only arcs defined by the consistency clauses
that could share both endpoints with other arcs are αgβg. But no basic clause contains literals with
the same index g (by the same previous assumption), therefore the arc αgβg cannot have an opposite
arc. Focusing now exclusively on arcs defined by basic clauses, note that basic clauses too contain
literals with a local role - namely αwr , βwr - and therefore only the arcs γiγj and γkz could possibly
have opposite arcs. But for the former one this is impossible by the assumption that i < j in each
clause, whereas the latter is impossible since the only arcs with source z have destination βwr (r =
1, 2, . . . ,m) and these literals are distinct from literals γu (u = 1, 2, . . . , n).

(A2) Assume Q = q1q2 . . . qd is a shortest cycle of G/(F) which is not strongly 3-covered. Then
we have

(i) Q cannot contain any of the vertices ag, bg or cg (g ∈ U2 \ {z}).

(ii) the arcs of Q possibly defined by consistency clauses are αgβg, g ∈ U2 \ {z}.

(iii) Q cannot contain z.

To show (i), we notice that the (arcless) subgraph ofG/(F) induced by ag, bg and cg, for a fixed g,
has ingoing arcs only from βg and outgoing arcs only to αg, implying that the cycle should necessarily
contain αg and βg, additionally to ag, bg or cg. Therefore the three literals of a clause among F1g, F2g

and F3g would be contained in Q. This is in contradiction with the assumption that Q is not strongly
3-covered. Affirmation (ii) is an easy consequence of (i). Finally, if Affirmation (iii) was false, then
the successor of z would be some βwt (arc defined by clause F ′t ) since the only successors of z are of
this form and thus - taking into account that Q cannot contain all literals of F ′t - we would have that
the next literal along the cycle is awt or bwt or cwt (from the consistency clauses F1t, F2t or F3t) thus
contradicting (i).

(A3) If a cycle of G/(F) contains at least two distinct literals γe ∈ {αe, βe} and γf ∈ {αf , βf}
with e, f ∈ {1, 2, . . . , n}, then it is a strongly 3-covered cycle.

Note that, by Affirmation (A1), such a cycle has at least three vertices. By contradiction, assume
that Q = q1q2 . . . qd (d ≥ 3) is a shortest cycle of G/(F) which is not a strongly 3-covered cycle
and contains γe ∈ {αe, βe} and γf ∈ {αf , βf} with γe 6= γf . In the case where vertices γe and γf
with e 6= f exist on Q, choose γe and γf such that e < f and the path P from γf to γe along the
cycle Q is as short as possible. Then P contains no other vertex γh ∈ {αh, βh}, h ∈ {1, 2, . . . , n},
since otherwise γe or γf would have been differently chosen. Moreover, P has at least two arcs,
otherwise an arc γfγe would exist with f > e and no clause in F allows to build such an arc, because
of the convention that i < j < k in each clause of C. In the opposite case, i.e. when only two
vertices γe and γf with e = f exist on Q, we necessarily have that {γe, γf} = {αe, βe} and αeβe is
an arc of Q, otherwise Q is not as short as possible. Then we denote P the path from βe (denoted
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γf for homogenization reasons) to αe (denoted γe). We have again that P contains no other vertex
γh ∈ {αh, βh}, and P contains at least two arcs (since d ≥ 3).

Thus in all cases we have a subpath P of Q with at least two arcs, joining γf to γe, such that
e ≤ f and there is no other γh, h = 1, 2, . . . , n, on P . We may assume that γf = qp and γe = qs,
with p < s. Then, recalling that P has at least two arcs, we deduce that qp+1 = αwr (due to some
basic clause Fr = (γi ∨ γf ∨ αwr) with an appropriate i) or qp+1 = z (due to some basic clause
F ′s = (βws ∨ γf ∨ z)). The latter case is impossible by Affirmation (A2.iii). In the former case
(qp+1 = αwr ), we deduce that qp+2 = βwr (the only other successor of αwr is γi from the same
clause Fr, but then Q would be a strongly 3-covered cycle) and according to (A2.ii) qp+3 cannot be
defined by a consistency clause indexedwr. Therefore qp+3 = γk from the clause F ′r = (βwr∨γk∨z)
and therefore γk = γe (since there is no other literal of this form on the path from γf to γe). As Fr

and F ′r express the initial 3-SAT clause (li∨ lf ∨ lk), we deduce i < f < k. With k = e we then have
f < e and this contradicts our choice above.

(A4) Every cycle in G/(F) is a strongly 3-covered cycle.

By contradiction, assume that Q = q1q2 . . . qd (d ≥ 3, by (A1)) is a shortest cycle of G/(F)
which is not a strongly 3-covered cycle. By affirmation (A2.iii), z does not belong to Q, and thus the
basic clauses F ′r can only contribute to Q with arcs of type βwrγk, for some r and k. By affirmation
(A3) which guarantees that at most one vertex γh belongs to Q, we deduce that basic clauses Fs

can only contribute with arcs of type γjαws or αwsγi, for some i, j, s. We also have by (A3) that
exactly 0 or 2 arcs, among all arcs of these three types - namely βwrγk, γjαws and αwsγi, for all
possible r, i, j, k, s - exist in Q, since 0 or 1 occurrence of a literal of type γe is possible on Q. In the
case 0 arc is accepted, then no arc from basic clauses is admitted on Q and therefore Q cannot exist
(since consistency clauses form only strongly 3-covered cycles). In the case two arcs are accepted,
exactly one vertex γe exists in Q. One of the two arcs incident with it is γeαwu (for some clause
Fu = (γi ∨ γe ∨ αwu)) since this is the only type of admitted arcs outgoing from γe. The arc
ingoing to γe is either βwvγe (for some clause F ′v = (βwv ∨ γe ∨ z)) or αwzγe (for some clause
Fz = (γe ∨ γj ∨ αwz)). All the other arcs are from consistency clauses. The successor of αwu is
then necessarily βwu and Affirmation (A2.ii) implies we have to use an arc outgoing from βwu and
defined by a basic clause. The only solution avoiding to use a third arc from basic clauses is that the
predecessor of γe on Q is βwv and v = u (so that βwu = βwv ). But then γe appears both in Fu and
in F ′u, and this is impossible since Fu and F ′u correspond to the same initial 3-SAT clause, which has
three distinct literals.

As a consequence, G/(F) is a 3c-digraph on the set of variables U3, with strongly 3-covered
cycles. Let us give the full name STRONGLY 3-COVERED MONOTONE NAE 3-SAT to the problem
M-NAE 3-SAT reduced to instances where the set of clauses admits a strongly 3-covered form.
Then, the representative graph of the input is a 3c-digraph. We have:

Theorem 1. STRONGLY 3-COVERED MONOTONE NAE 3-SAT is NP-complete.

Proof. The problem is in NP since it is a particular case of M-NAE 3-SAT. The reduction is from
3-SAT, by associating to a set C of 3-literal clauses its M-NAE version F . The set F is in strongly
3-covered form, by Proposition 2. By Proposition 1, the theorem follows.
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4. Hardness results

This section first presents results showing the relationships between solutions of the various 3-
SAT problems and the FVS problems (Subsections 4.1 and 4.2). Then these results are used to deduce
the aforementioned NP-completeness results (Subsection 4.3).

4.1. Properties of standard truth assignments
Proposition 3. Let S be a set of variables from U3. Then S is the set of true variables in a standard
truth assignment of F iff S is a FVS of G/(F) or S = U3.

Proof. By Proposition 2, the set S of true variables in a standard truth assignment for F allows us to
cover all the cycles in G/(F). If S 6= U3, we have that S is a FVS. Conversely, if S is a FVS of G or
S = U3, S covers all the 3-cycles and thus contains at least one literal in each clause. Thus the truth
assignment that sets to true all the variables in S is a standard truth assignment for F .

Remark 1. Since F has only literals in positive form, a standard truth assignment for F always
exists.

Lemma 1. Consider a standard truth assignment of F with a minimum number of true variables.
Then:

i) for each g ∈ U2 \ {z} at least one of αg and βg is true.

ii) for each g ∈ U2 \ {z}, exactly one of the variables ag, bg and cg is true.

Therefore 2(N−1)
5 ≤ ts(F) ≤ 2(N−1)

5 + 1.

Proof. Let ta() be a standard truth assignment of F with a minimum number of true variables.
Then no clause of type (ag ∨ bg ∨ cg), for some g, contains more than one true literal. If, by

contradiction, such a clause has all its variable set to true, then we can define a new truth assignment
tb() as a variant of ta() where variables bg and cg are set to false and αg is set to true (if it is not
already true). Then tb() has less true variables than ta(), a contradiction. And in the case where there
are exactly two true literals in the clause (ag ∨ bg ∨ cg), the false literal implies that at least one of
the variables αg, βg needs to be true so as to satisfy all the clauses F1g, F2g and F3g. But then one of
the two true literals in (ag ∨ bg ∨ cg) may be set to false, implying that ta() does not have a minimum
number of true literals, a contradiction.

Then ta() sets exactly one of the variables ag, bg, cg to true, resulting into N−1
5 true variables.

Moreover, at least one of the variables αg, βg needs to be true so as to satisfy all the clauses F1g, F2g

and F3g. This yields N−1
5 supplementary true variables, and fixes the lower bound of 2(N−1)

5 . In
order to show the upper bound, consider the truth assignment that defines z and, for all g ∈ U2 \ {z},
variables αg, ag as true. All the other variables are false. This is a standard truth assignment for F
with 2(N−1)

5 + 1 true variables.

Lemma 2. 2(N−1)
5 ≤ mfvs(G/(F)) = ts(F) ≤ 2(N−1)

5 + 1.

Proof. By Proposition 3, a minimum FVS S corresponds to the minimum set of true variables in a
standard truth assignment of F , and viceversa. Therefore mfvs(G/(F)) = ts(F). By Lemma 1,
ts(F) has the required bounds.
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4.2. Properties of NAE truth assignments

Let G = (V,E) be an oriented graph, and S an acyclic FVS of it. We start this section with a
result which allows us to deal simultaneously with the acyclicity of G[V \ S] and of G[S]. Say that a
graph is an LR-digraph if there exists a linear order ≺ on the vertices of G such that, for each vertex
v, its successors are either all before v (i.e. on its left side) or all after v (on its right side) in the
order ≺. Vertex v is called a left vertex in the former case, and a right vertex in the latter case. The
order is called an LR-order. The LR-order is non-trivial if it admits at least one right vertex and at
least one left vertex. An LR-order may be modified so as to move all the right vertices towards left
(without changing their relative order) and all the left vertices towards right (again, without changing
their relative order) after all the right vertices. The result is still an LR-order, that we call a standard
LR-order. The subgraph induced by each type of vertices is acyclic, since all the arcs outgoing from
a right (resp. left) vertex are oriented towards right (resp. left).

The following proposition is now easy:

Proposition 4. G has a non-empty acyclic FVS S iff G admits a non-trivial LR-order whose set of
right vertices is S.

Proof. IfG has an acyclic FVS S, then S 6= V and a topological order ofG[S] followed by a reversed
topological order ofG[V \S] yields a non-trivial standard LR-order. Conversely, let≺ be a non-trivial
LR-order and S be the set of right vertices. Then S 6= V and G[S] is acyclic, since all the arcs in S
are oriented from left to right. The graphG[V \S] is also acyclic, since V \S is the set of left vertices
and all arcs are oriented from right to left.

As a consequence, it is equivalent to look for an acyclic FVS in G, and to show that G is an
LR-digraph. In order to be as close as possible to the problems we defined, and which have been
defined in previous works, we state the results in terms of acyclic FVS. However, in the proofs we
merely look for an LR-order of G.

Proposition 5. Let S be a set of variables from U3. Then S is the set of true variables in a NAE truth
assignment of F iff S is an acyclic FVS of G/(F).

Proof. Recall that G/(F) has vertex set U3 of cardinality N , and has only strongly 3-covered cycles,
by Proposition 2. An arbitrary clause of F is denoted (uri ∨ urj ∨ urk) meaning that literal ura is the
occurrence of variable ua fromU3 (necessarily in positive form) in the r-th clause ofF . By definition,
in each clause, the order / defining the strongly 3-covered form is given by the order uri , u

r
j , u

r
k of the

variables in the clause.
⇒: Consider a NAE truth assignment for the variables in U3, whose true variables form the set S.

For each arc uauc of G/(F) define the relation ua J uc (intuitively: ua before uc) if ua is true, and
uc J ua if ua is false. Now, build the directed graph Γ with vertex set UΓ

3 = {uΓ
1 , . . . , u

Γ
N} and arc

set {uΓ
eu

Γ
f |ue J uf} (do not make use of transitivity). This graph collects the precedence relations

defined by J, and which require that true variables be placed before their successors in G/(F) and
that false variables be placed after their successors in G/(F). More precisely:

ue J uf iff either literalue is true andueuf is an arc ofG/(F)

or literaluf is false andufue is an arc ofG/(F). (3)
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We show that Γ is acyclic, so that any topological order of its vertex results into the sought LR-
order ≺, in which the true variables (i.e. those in S) are right vertices. By contradiction, assume Γ is
not acyclic.

(B1) Let qΓ
1 q

Γ
2 . . . q

Γ
d be a cycle in Γ. Then q1q2 . . . qd or qdqd−1 . . . q1 is a cycle in G/(F).

Note first that d ≥ 3, since otherwise the two arcs of a cycle of length two in Γ would be defined
by two arcs in G/(F) between the two same vertices, and G/(F) has at most one arc between two
given vertices (Proposition 2). We make the convention that qd+1 = q1, q0 = qd and similarly for
the vertices in Γ. The reasoning is again by contradiction. Assume first that q1q2 is an arc of G/(F).
Since by contradiction q1q2 . . . qd is not a cycle inG/(F), let h be the smallest index such that qh+1qh
is an arc of G/(F). Then there must also exist an index l ≥ h + 1 such that qlql−1 and qlql+1 are
arcs of G/(F). Now, in Γ the orientations of the two arcs with endpoint qΓ

l are defined by the truth
value of ql, and these arcs are both ingoing to qΓ

l (if ql is false) or both outgoing from qΓ
l (if ql is

true). In both cases, we deduce that qΓ
1 q

Γ
2 . . . q

Γ
d is not a cycle in Γ, contradicting the hypothesis. The

reasoning is similar in the case where q2q1 is an arc of G/(F).

(B2) No cycle q1q2 . . . qd in G/(F) induces a cycle in Γ.

Every cycle inG/(F) is a strongly 3-covered cycle, sinceF is in strongly 3-covered form (Propo-
sition 2). Among the three literals of the same clause present in q1q2 . . . qd, at least one (say qa) is true
and another one (say qb) is false, according to the truth assignment. Then the arcs of Γ with endpoints
qΓ
a , q

Γ
a+1 respectively qΓ

b , q
Γ
b+1 have opposite orientations, and the cycle of G/(F) does not define a

cycle in Γ.

(B3) Γ has no cycle and any topological order of Γ is an LR-order of G/(F).

By (B1) a cycle in Γ could only be defined by a cycle in G/(F). However, by (B2) cycles in
G/(F) cannot define cycles in Γ. So Γ is acyclic. Any topological order ≺ of Γ extends the relation
J, and therefore satisfies:

ua ≺ ub and there is an arc with endpointsua, ub inG/(F) iff

either literalua is true anduaub is an arc ofG/(F) or literalub is false andubua is an arc ofG/(F).
(4)

Now, let uc be a vertex of G/(F). Then either literal uc is true and for each of its successors ud
we have that (by (4)) uc ≺ ud so that uc is a right vertex in G/(F); or literal uc is false and for each
of its successors ud we have that (by (4)) ud ≺ uc, so that uc is a left vertex of G/(F).

⇐: Assume now that G/(F) admits an acyclic FVS S. Then S 6= ∅ since G/(F) has cycles. By
Proposition 4, G/(F) admits an LR-order ≺ in which the right vertices are defined by S. Assign the
value true to every variable that defines a right vertex in G/(F) and the value false to every variable
that defines a left vertex in G/(F).

Every clause (uri ∨ urj ∨ urk) of F defines a cycle in G/(F) with three vertices ui, uj and uk. In
the LR-order ≺ of G/(F), at least one of these three vertices is a left vertex (the largest according to
≺) and at least one of them is a right vertex (the lowest according to ≺). Thus by assigning the value
true to all the vertices in S (i.e. the right vertices of G/(F)), we define a NAE truth assignment for
F whose true variables are exactly those in S.
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Recall that tNAE (F) denotes the minimum number of true variables in a NAE truth assignment
of F , if such an assignment exists.

Lemma 3. Each NAE truth assignment for F (if such an assignment exists) with minimum number of
true variables satisfies:

i) for each g ∈ U2 \ {z} exactly one of αg and βg is true.

ii) for each g ∈ U2 \ {z}, exactly one of the variables ag, bg and cg is true.

Therefore 2(N−1)
5 ≤ tNAE (F) ≤ 2(N−1)

5 + 1, with the minimum (resp. maximum) reached iff z is
false (resp. is true).

Proof. Affirmation i) is due to the consistency constraints and the NAE requirements. For Affirmation
ii), clause (ag∨bg∨cg) and NAE requirements imply that at least one and at most two of the variables
are true. Moreover, if for instance ag and bg are true in a NAE truth assignment, modifying bg to false
yields another NAE truth assignment with smaller number of true variables, a contradiction.

By affirmations i) and ii), a NAE truth assignment with a minimum number of true variables
defines as true at least 2(N−1)

5 variables, namely one variable among each pair αg, βg and one variable
among each triple ag, bg, cg. The unique remaining variable in U3, the variable set of F , is z. The
lemma follows.

Lemma 4. 2(N−1)
5 ≤ amfvs(G/(F)) = tNAE (F) ≤ 2(N−1)

5 + 1.

Proof. By Proposition 5, a minimum acyclic FVS S corresponds to the minimum set of true variables
in a NAE truth assignment ofF , and viceversa. Therefore amfvs(G/(F)) = tNAE (F). By Lemma 3,
tNAE (F) has the required bounds.

4.3. NP-completeness results
The results in the previous section allow us to easily deduce the hardness of ACYCLIC FVS for

3c-digraphs:

Theorem 2. ACYCLIC FVS is NP-complete even for 3c-digraphs.

Proof. The problem is in NP, since testing the acyclicity of a graph is done in polynomial time. Then
the theorem is proved by reduction from 3-SAT. Given a set C of 3-literal clauses for 3-SAT, its M-
NAE version F satisfies Proposition 1, i.e. 3-SAT with input C has a solution iff M-NAE 3-SAT with
input F has a solution. The last affirmation holds, by Proposition 5, iff G/(F) has an acyclic FVS.
Moreover, by Proposition 2, G/(F) is a 3c-digraph, and the theorem is proved.

The following lemma will allow us to prove the hardness results for the 2-CHOICE restrictions
we defined.

Lemma 5. The following affirmations are equivalent:

i) tNAE (F) = 2(N−1)
5

ii) ts(F) = 2(N−1)
5

iii) mfvs(G/(F)) = 2(N−1)
5

12



iv) amfvs(G/(F)) = 2(N−1)
5

Proof. By Lemma 2, mfvs(G/(F)) = ts(F) and thus Affirmations ii) and iii) are equivalent. Sim-
ilarly, by Lemma 4, Affirmations i) and iv) are equivalent. It remains to show that i) and ii) are
equivalent.

i) ⇒ ii): By Lemma 1, the hypothesis that tNAE (F) = 2(N−1)
5 and since each NAE truth

assignment is also a standard truth assignment, we have that 2(N−1)
5 ≤ ts(F ) ≤ tNAE (F) = 2(N−1)

5

and thus ts(F) = 2(N−1)
5 .

ii) ⇒ i): Since ts(F) = 2(N−1)
5 , there exists a standard truth assignment ta() of F in which

exactly one of αg, βg and exactly one of ag, bg, cg, for each g ∈ U2 \ {z}, is true (by Lemma 1 i) and
ii)). Moreover z is false in this standard truth assignment, since the number of aforementioned true
variables is already 2(N−1)

5 . We now show that we can modify ta() in order to obtain a NAE truth
assignment containing the same number of true variables. To this end, notice first that if F contains
clauses with three positive literals, these clauses cannot be among clauses F1g, F2g, F3g, F4g and F ′r
since all of them contain at least one negative literal. Then define the truth assignment tb() for F as
a variant of ta() where, for each r such that all literals are true in the clause Fr, αwr is set to false
and βwr is set to true. Then tb() is a NAE truth assignment with the same number of true literals
as ta(), and thus by Lemma 3 tb(F) has minimum number of true literals, thus gives the value of
tNAE (F).

We are now ready to prove the result concerning the 2-CHOICE variants we defined in Section
2. Let us give the full name STRONGLY 3-COVERED 2-CHOICE-MIN1-M 3-SAT to the problem 2-
CHOICE-MIN1-M 3-SAT where the input is restricted to clauses C admitting a 3-strongly dominated
form, and similarly for 2-CHOICE-MIN1-M-NAE 3-SAT. Then the representative graph of the set
of clauses in the input is a 3c-digraph.

Theorem 3. The following problems are NP-complete:

• STRONGLY 3-COVERED 2-CHOICE-MIN1-M 3-SAT

• STRONGLY 3-COVERED 2-CHOICE-MIN1-M-NAE 3-SAT

• 2-CHOICE MFVS on 3c-digraphs

• 2-CHOICE ACYCLIC MFVS on 3c-digraphs.

Proof. All problems belong to NP, since they are restrictions of problems belonging to NP.
The reduction is done from NAE 3-SAT, which is NP-complete. Let the input of NAE 3-SAT

be a set C of 3-literal clauses over the variable set X = {x1, x2, . . . , xn}. As we did above for the
instances of 3-SAT (which are the same as those for 3-SAT), we build the M-NAE version F of C.
Then we have:

(C1) NAE 3-SAT with input C has a solution iff M-NAE 3-SAT with input F has a solution
where z is false.

Indeed, if NAE 3-SAT with input C has a solution then each clause (li ∨ lj ∨ lk) has at least one
true literal (say lp) and at least one false literal (say lq). Following the reductions in Table 1, recall the
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interpretation of the literals hu: lu is true in the initial instance iff hu 6= z in the NAE 4-SAT instance.
Then, if z is false, hp is true and hq is false, implying that the clause (hi∨hj ∨hk∨z) of NAE 4-SAT
is true. The other reductions successively transform this clause into equivalent sets clauses, implying
that there is a solution of M-NAE 3-SAT where z is false. Conversely, if z is false in the solution
of M-NAE 3-SAT for F , then by the equivalence of the clauses at each successive reduction (taken
backwards in Table 1) we deduce that in each clause (hi ∨ hj ∨ hk ∨ z) of NAE 4-SAT some hp must
be true whereas some hq must be false. The relationship between lu and hu then implies that lp is true
and lq is false, therefore NAE 3-SAT with input C also has a solution.

(C2) M-NAE 3-SAT with input F has a solution where z is false iff tNAE (F) = 2(N−1)
5 .

This is an easy consequence of Lemma 3.

(C3) tNAE (F) = 2(N−1)
5 iff STRONGLY 3-COVERED 2-CHOICE-MIN1-M-NAE 3-SAT with

input F and D = 2(N−1)
5 has a positive answer.

We first notice that F satisfies the hypothesis of STRONGLY 3-COVERED 2-CHOICE MIN1-
M-NAE 3-SAT. Indeed F has only strongly 3-covered cycles by Proposition 2, and 2(N−1)

5 ≤
tNAE (F) ≤ 2(N−1)

5 + 1 by Lemma 3. The affirmation is then immediate, by the definition of the
problem and the bounds we have on tNAE (F).

From the equivalences proved in (C1), (C2) and (C3), we deduce that STRONGLY 3-COVERED

2-CHOICE-MIN1-M-NAE 3-SAT is NP-complete. To deduce that the three other problems are NP-
complete, the same approach is used. By Lemma 5, (C2) holds even when in its second affirmation
tNAE () is replaced with ts(), or mfvs() or amfvs(). And (C3) holds when 1) tNAE () is replaced
with ts(), or mfvs() or amfvs(), and 2) STRONGLY 3-COVERED 2-CHOICE MIN1-M-NAE 3-SAT
is respectively replaced with STRONGLY 3-COVERED 2-CHOICE MIN1-M 3-SAT, or 2-CHOICE

MFVS on 3c-digraphs, or 2-CHOICE ACYCLIC MFVS on 3c-digraphs.

5. Classes for which Acyclic FVS is polynomially solvable

According to Proposition 4, solving ACYCLIC FVS on a particular class of directed graphs is
equivalent to testing in polynomial time, for the graphs in the class, whether an LR-order exists.

In this section, we present two classes of LR-digraphs for which the LR-order always exists and
may be found in polynomial time. ACYCLIC FVS is therefore solvable in polynomial time, and a
solution is computable in polynomial time.

5.1. C1P-digraphs

A directed simple graph G = (V,E) is called a C1P-digraph if its adjacency matrix has the
Consecutive Ones Property for Rows (C1PR). That means the columns of the matrix can be reordered
such that in each row of the matrix the ones are consecutive. An order of the columns that correctly
positions the ones in each row is called a good order. Then we easily have:

Proposition 6. C1P-digraphs are exactly the LR-digraphs admitting an LR-order positioning the
successors of each vertex on consecutive places.
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Proof. LetG be a C1P-digraph andA be its adjacency matrix. LetAC1R be the matrix obtained from
A by reordering the columns according to the good order, and then reordering the rows according to
the good order. Note that the row reordering does not change the C1R property realized by the column
reordering. Then AC1R still defines G but with the vertices ordered according to the good order. In
this order, the successors of each vertex v (represented by the ones on the row corresponding to v) are
consecutive. Moreover, since G is loopless, the element on the main diagonal of AC1R is 0 in each
row, therefore the successors of v are either all before or all after the diagonal. Then v is a left vertex
if the ones on its row are before the diagonal, and a right vertex otherwise.

Conversely, it is straightforward that each LR-digraph admitting an LR-order positioning the suc-
cessors of each vertex on consecutive places is a C1P-digraph.

Note that each order positioning the successors of each vertex on consecutive places necessarily
is an LR-order. To find such an order, we take advantage of the numerous studies on the C1P property
(see [11] for a survey). They show that a good order may be obtained in linear time for such a graph,
using for instance the algorithm in [5].

C1P-digraphs may be defined in terms of intersections of intervals, as follows. Following [8],
consider a family V of ordered pairs of intervals (Sv, Tv), v = 1, 2, . . . , n, on the real line. The
intersection digraph of the family V is the digraph with vertex set {1, 2, . . . , n} and whose arcset is
defined by all the ordered pairs vw such that Sv ∩ Tw 6= ∅. An interval digraph is any intersection
digraph of a family of ordered pairs of intervals. When the intervals Tv are singletons, the interval
digraph is called an interval-point digraph. Then we have:

Proposition 7 ([8]). A digraph D is an interval-point digraph iff its adjacency matrix has the Con-
secutive Ones Property for rows.

As C1P-digraphs are simple digraphs, we deduce that C1P-digraphs are exactly the loopless
interval-point digraphs, i.e. those for which the ordered pairs of intervals (Sv, {tv}) satisfy tv 6∈ Sv
(so that vv is never an arc).

5.2. Reducible flow graphs

A directed graph G = (V,E) is a flow graph if there exists a vertex s such that any vertex in
V \ {s} is reachable by a path from s. The flow graph is then denoted (G, s). Flow graphs are
used to model program flows and are therefore important in practice [27]. Among the well-known
subclasses of flow graphs, rooted DAGs and series-parallel directed graphs are very well studied
examples. We consider here the class of reducible flow graphs, introduced in [15] and studied for
instance in [16, 29, 1]. This class is one of the (not so many) classes of directed graphs for which
MFVS may be solved in polynomial time [27]. However, the FVS with minimum size returned by
the algorithm in [27] may not induce an acyclic graph, as shown by the graph in Fig. 5.2 (which is
inspired from an example proposed in [27]).

Most of the definitions we give below follow those in [29]. Let (G, s), with G = (V,E), be a
flow graph. We assume G is a simple directed graph, i.e. it does not have loops or multiple arcs.
A preorder numbering of G is an assignment po() of numbers to the vertices of G according to a
depth-first search traversal of G: po(s) = 1 and po(v) > po(w) iff v is visited after w. Notice that
we do not require consecutive po() values. The directed tree T = (V,E(T )) defined by the traversal
is called a depth-first spanning tree (or DFST) of G. The existence of a (directed) path in T from v to
w is denoted v ∗−→ w. Then the arc set E(G) is partitioned into:
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Figure 2: Example of a graph for which the minimum FVS computed by the algorithm in [27] induces a cycle. Plain
black, bold dashed and dotted arrows respectively represent tree, cycle and cross arcs. The minimum FVS returned by the
algorithm in [27] is formed by the vertices v1, v2 and v3, which induce a cycle.

• tree arcs vw, satisfying vw ∈ E(T ).

• forward arcs vw, satisfying vw 6∈ E(T ) and v ∗−→ w.

• cycle arcs vw, satisfying w ∗−→ v.

• cross arcs vw, such that none of v ∗−→ w and w ∗−→ v holds, and po(w) < po(v).

Several equivalent definitions of reducible flow graphs are proposed [16]. We chose to say that a
flow graph (G, s) is reducible if its acyclic subgraph induced by the union of tree, forward and cross
arcs is invariable when T changes, i.e. has the same set of arcs for any DFST T rooted at s. Reducible
flow graphs have a lot of nice properties, that we need for our proof and that we recall below. We
use the notation (G, s, T ) for a flow graph (G, s) provided with a DFST T . The associated preorder
numbering is denoted po().

5.2.1. Properties of reducible flow graphs
For this first property, say that a vertex w dominates a vertex v if w 6= v and each path from s to

v in G contains w.

Lemma 6 ([16]). Let (G, s, T ) be a flow graph. Then (G, s) is reducible iff w dominates v for any
cycle arc vw.

The second property confirms an intuition issued from the definition:

Lemma 7 ([16]). The cycle arcs of a reducible flow graph (G, s) are invariable for any DFST T
rooted at s.

Let w be a vertex of the flow graph (G, s, T ). Then define C(w) = {v | vw is a cycle arc} and
P (w) = {v | ∃z ∈ C(w) such that there is a path from v to zwhich avoidsw}. If C(w) is non-empty
and w 6= s, then w is called a head. This definition is correct, because of Lemma 7. Vertex s is not
called a head even if C(w) is not empty since it has a special role, as root of T . Furthermore, say that
a vertex w satisfies the T -path property if for all v ∈ P (w), w ∗−→ v.

Lemma 8 ([29]). The flow graph (G, s, T ) is reducible iff each head w satisfies the T -path property.
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Notice that s trivially satisfies the T -path property, by the definition of T . Let (G, s) be a flow
graph and v, w with v 6= s be two of its vertices. Collapsing v into w in G is the operation that
“shrinks” v and w into a single vertex called w, removing loops and redundant arcs. More formally,
arcs are added fromw to each vertex inN+(v)\N+[w] and from each vertex inN−(v)\N−[w] tow.
Then v and its incident arcs are removed. Collapsing a set S ⊆ V \ {s} into w in G is the operation
that successively collapses each v ∈ S into w. Given two vertices v, w, a reduction collapses v into
w if N−(v) = {w} and v 6= s.

Lemma 9 ([16]). A flow graph (G, s) is reducible iff it can be transformed into the graph ({s}, ∅) by
a series of reductions.

In order to show that reducible flow graphs are LR-digraphs, we need to explain the algorithm in
[29] for recognizing reducible flow graphs and constructing the sequence of reductions (according to
Lemma 9).

5.2.2. Tarjan’s reducibility algorithm
The basic idea of the algorithm is issued from Lemma 8: (G, s) is reducible iff each head w

has the T -path property. The algorithm proposed in [29] uses this idea in an optimized way, by
successively collapsing sets of vertices, so that subsequent tests are easier to perform. This is possible
since the collapsed graph inherits useful properties and constructions of the initial graph:

Lemma 10 ([29]). Let (G, s, T ) be a flow graph and w1 be its head with largest po() value. Let G′

be the graph resulting from G by collapsing P (w1) into w1. Then:

i) (G′, s) is a flow graph.

ii) For each arc v′u′ in G′, either v′u′ is an arc of G, or v′ = w1 and there is a vertex u in G such
that uu′ is an arc of G and w1

∗−→ u in T (v′u′ in G′ then corresponds to the arcs v′u′ of G in
the first case, resp. to the arc uu′ of G in the second case).

iii) The subgraph T ′ of G′ whose arcs correspond to arcs in T is a DFST of G′, with the preorder
numbering given by the po() values (restricted to the vertices in G′).

iv) Cycle, forward, cross arcs of G′ respectively correspond to cycle, forward, cross arcs of G.

v) If C ′(w) and P ′(w) are defined in (G′, s, T ′) similarly to (G, s, T ), then the heads of G′ are
the same as the heads of G except w1. Moreover, for each head w of G′, w has the T ′-path
property in G′ iff w has the T -path property in G.

In the Reducibility algorithm (Algorithm 1), heads w are ordered in decreasing order of their
po() value (step 1). For each w in this order, the algorithm tests the T -path property in the current
graph using the sets P ∗(w) of vertices (step 5 to 10), collapses P ∗(w) into w and continues with the
next head. In order to recall the head a vertex v is collapsed into, parameter hn(v) is defined to be
po(w) for all v ∈ P ∗(w) (step 8). In order to homogenize the presentation, we define hn(v) = 1
for all v 6= s that belong to no P ∗(w) and we denote P ∗(s) = {v ∈ V |hn(v) = 1}. Then P ∗(s)
is collapsed into s (step 13), and thus when the graph is reducible, in the end the resulting graph is
({s}, ∅). Note that the reductions are not detailed in this algorithm, but collapsing P ∗(w) into w at
each step means that a sequence of reductions is able to successively collapse each v from P ∗(w) into
w, as explained later.
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Algorithm 1 Reducibility algorithm [29]
Input: A flow graph (G, s).
Output: Answer “No” if (G, s) is not reducible; otherwise, answer “Yes” and for each vertex v 6= s

the value hn(v).
1: Let w1, w2, . . . , wk be the heads of G, ordered by decreasing value of po()
2: for v ∈ V \ {s} do hn(v) = 1 endfor
3: Gw0 ← G //w0 does not exist, this is a simple notation
4: for i = 1, 2 . . . , k do
5: Let P ∗(wi) be defined as P (wi) in the current graph Gwi−1

6: for v ∈ P ∗(wi) do
7: if not wi

∗−→ v then return “No” endif
8: hn(v)← po(wi)
9: end for

10: Collapse P ∗(wi) into wi, and call Gwi the resulting graph
11: end for
12: Let P ∗(s) = {v ∈ V \ {s} |hn(v) = 1}
13: Collapse P ∗(s) into s
14: Return “Yes”

Remark 2. Sets C∗(w) and P ∗(w) are subsets of V , although they are defined in a modified graph.
Moreover, sets P ∗(w) are disjoint.

Example 1. Consider the flow graph in Fig. 3. The four heads w1, w2, w3 and w4 are indicated on the
figure. Algorithm Reducibility computes P ∗(w1) = {e, f}, P ∗(w2) = {c, d}, P ∗(w3) = {w1, w2},
P ∗(w4) = {a, b, w3} and P ∗(s) = {w4}. The values hn() are computed on this basis, and are
indicated on the figure (second integer in the triple associated with each vertex).

The following relationship may be established between P ∗(w) and P (w):

Lemma 11. Let (G, s, T ) be a reducible graph. Then v ∈ P ∗(wi) iff v ∈ P (wi) and po(wi) =
max{po(wj) | v ∈ P (wj)}. Moreover, the vertices wj such that v ∈ P (wj) appear on the path from
s to v, in decreasing order of their value j.

Proof. We first show that if v ∈ P ∗(wi) then v ∈ P (wi). Since v ∈ P ∗(wi), there exists a
path P in Gwi−1 avoiding wi which joins v to a vertex z ∈ C∗(wi). By Lemma 10ii) applied to
wi−1, wi−2, . . . , w1, each arc ofP may be successively replaced by paths inGwi−2 , Gwi−3 , . . . , Gw1 , G
so as to obtain a path in G from v to z. Moreover, in Lemma 10ii), the path in T from w1 to u cannot
contain any wi, i > 1, since then the head w1 would not have the largest value po(). This implies that
the resulting path in G also avoids wi, and thus v ∈ P (wi).

We are now ready to prove the lemma.
⇐: By Lemma 10v) wi remains a head in Gw1 , . . . , Gwi−1 . Moreover, by the property we just

proved, v cannot belong to P ∗(w1), . . . , P ∗(wi−1), therefore v is a vertex ofGwi−1 . Now, v ∈ P (wi)
implies the existence of a path P in G avoiding wi and joining v to some z in C(wi). The resulting
paths in Gw1 , . . . , Gwi−1 also avoid wi (since no vertex is collapsed into wi) and join v to z (or the
vertex z collapses into). But then v ∈ P ∗(wi) since C∗(wi) contains z (or the vertex z collapses
into), as the arc from z (or the vertex it collapses into) to wi remains a cycle arc (Lemma 10iv)).
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Figure 3: An example of flow graph. The three integer values next to each vertex respectively represent its po(), hn() and
sn() numbers (the definitions are given in the text when we need them). As before, plain black, bold dashed and dotted
arrows respectively represent tree, cycle and cross arcs.

⇒: By the property at the beginning of the proof, we have that v ∈ P (wi). If by contradiction
po(wi) 6= max{po(wj) | v ∈ P (wj)}, then let wk be the head reaching the maximum value. Accord-
ing to the⇐ part of the lemma, v ∈ P ∗(wk). This is in contradiction with Remark 2 indicating that
the sets P ∗(wj) are disjoint.

To finish the proof, by Lemma 8, the property wj
∗−→ v holds for all j such that v ∈ P (wj). Since

there is a unique path from s to v in T , all these heads wj are on this path. As po(wj) > po(wl) iff
j < l by definition, it follows that the order of the heads wj on the path from s to v is the decreasing
order of the index j.

Once Algorithm Reducibility is applied, the reduction order is computed as follows. First, per-
form a preorder traversal of T (already built) by considering the children of each vertex in decreasing
order of their po() numbers. This new preorder traversal assigns new numbers sn(v) to the vertices v
such that [29]:

sn(v) < sn(w) for an arc vw iff vw is a tree, forward or cross arc. (5)

Then the reduction order α is established using the couples of values (hn(v), sn(v)), for each
v ∈ V , as follows: vertex v appears before vertex t in the reduction order iff either hn(v) > hn(t),
or hn(v) = hn(t) and sn(v) < sn(t). Equivalently, all vertices collapsed into w1 are before all
the vertices collapsed into w2 and so on. Vertices collapsed into s (those with hn(v) = 1) are at
the end of the reduction sequence. Moreover, vertices collapsed into the same vertex wi are ordered
according to their increasing value sn(). Then, each vertex represents the reduction with its father in
the tree T ′ resulting from the previous reductions. This father is exactly w such that v ∈ P ∗(w).

Example 2. On the example in Fig. 3, the resulting order α gives the sequence of vertices: e, f, c, d,
w2, w1, w3, a, b, w4, s.

Remark 3. In the following, we call Reducibility+ the algorithm obtained from Reducibility by
adding the necessary instructions allowing it to output the heads wi ordered by decreasing value
of po(), as well as the sets P ∗(s) and, for all i, P ∗(wi).
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5.2.3. Our algorithm for finding an LR-order
A cycle arc vw of (G, s) is called solved if v is collapsed into w (i.e. if hn(v) = po(w)) by

Algorithm Reducibility, and unsolved otherwise. In the latter case, w is also a head, and there exists
a path in T from w to hn(v) (since the cycle arcs from v to w and to hn(v) means they are both on
the path from s to v; by definition, hn(v) is the one with higher po() number, so the lower one).

The LR-ordering algorithm (Algorithm 2) attempts to affect the vertices of G either to the set R
(right vertices) or to the set L (left vertices) following the idea that for each w which is either a head
or s, the vertices in P ∗(w), on the one hand, and w, on the other hand, should be in different parts
of the partition (R,L). Instead of working with vertices, the algorithm starts by working with blocks,
that are sets of vertices. The blocks are the singletons containing one vertex w each (where w is a
head or s) and the non-empty sets P ∗(w) \W (so that each vertex of G belongs to a unique block).
The algorithm thus builds (steps 3 to 5) the undirected graph B whose vertices are the blocks and
whose edges join vertices that must be in different parts (R,L). This graph turns out to be a tree
(see Lemma 12), and thus admits a partition in two sets of blocks R′ and L′ with no internal edges,
computed in step 6. Once the partition is found, R (resp. L) collects all the vertices in some block
of R′ (resp. of L′). The graphs G[R] and G[L] turn out to be acyclic (Lemma 13 below), and thus
each of them is an acyclic FVS for G. In order to find an LR-order of G, it is sufficient to order the
vertices in each part according to the topological order, to reverse the order found for G[L], and to
concatenate the two resulting sequences of vertices (steps 9 to 11).

Example 3. On the example in Fig. 3, the boxes are {w1}, {w2}, {w3}, {w4}, {e, f}(=P ∗(w1)\W ),
{c, d}(=P ∗(w2) \W ) and {a, b}(=P ∗(w4) \W ). The set P ∗(w3) \W is empty, and is not a vertex
of B. The edges of B are therefore joining {w1} to {e, f} (due to w1 and P ∗(w1)), {w2} to {c, d}
(due to w2), {w3} to {w1} and {w2} (due to w3), {w4} with {w3} and {a, b} (due to w4), and {s} to
{w4} (due to s). The partition (R′, L′) of B is thus:

R′ = {{w1}, {w2}, {w4}}
L′ = {{e, f}, {c, d}, {w3}, {a, b}, {s}}

or viceversa. Then R = {w1, w2, w4} and G[R] has only two arcs, from w2 to the other vertices,
meaning that one can choose for instance the topological order R∗ given by w2, w1, w4. Simi-
larly, L = {e, f, c, d, w3, a, b, s}, with arcs ab, ef, cd, fb, fd. The topological order on G[R] may
be chosen to be, for instance, s, e, f, a, b, c, d, w3 which yields, after a complete reversal, L∗ :
w3, d, c, b, a, f, e, s. The LR-order U is then w2, w1, w4, w3, d, c, b, a, f, e, s, with the three first
vertices being right vertices and the remaining ones being left vertices.

Note that, in order to avoid confusions, we always use the term box to designate the vertices of B,
and we reserve the term vertex for the vertices of G. The edges of the undirected graph B then join
each box {w} (corresponding to some w ∈ W ) with the boxes {w′} whose unique vertex belongs to
P ∗(w), as well as to the box P ∗(w) \W containing the other elements in P ∗(w).

Theorem 4. Algorithm LR-ordering computes in polynomial time an LR-order of a reducible flow
graph (G, s).

Proof. It is clear that the algorithm runs in polynomial time, since all the operations it performs are
polynomial. The proof is organized in three lemmas, showing that the behavior of the algorithm is
the one we expected in our previous explanations.

Lemma 12. The (undirected) graph B defined in steps 3-5 of Algorithm LR-ordering is a tree.
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Algorithm 2 LR-ordering algorithm
Input: A reducible flow graph (G, s, T ).
Output: A sequence U of the vertices in G, defining an LR-order of V .

1: Apply Algorithm Reducibility+ on (G, s, T )
2: W ← {w1, . . . , wk, s}
3: V ′ ← ∪w∈W {{w}, P ∗(w) \W} // if P ∗(w) \W = ∅, do not use it
4: E′ ← {{w}X |w ∈W,X = P ∗(w)\W orX = {w′} with w′ ∈W ∩P ∗(w)} //edges, not arcs
5: B ← (V ′, E′)
6: (R′, L′)← partition of V ′ such that each of B[R′], B[L′] is edgeless
7: R← {x ∈ V |x belongs to a box inR′}
8: L← {w ∈ V |w belongs to a box inL′}
9: R∗ ← a topological order of the vertices in G[R]

10: L∗ ← a reversed topological order of the vertices in G[L]
11: U ← concatenate R∗ and L∗ in this order
12: Return U

Proof. Each box X in B but {s} is collapsed exactly once in Algorithm Reducibility, since by defi-
nition each box X is a subset of some P ∗(wi(X)). According to the definition of E′, the edges of B
are exactly the pairs {wi(X)}X . Then each box X but {s} has exactly one father wi(X), and B is a
tree.

.

Lemma 13. The graphs G[R] and G[L] are acyclic.

Proof. The proof is similar for G[R] and G[L]. We therefore present it only for GR. Let xy be an arc
of G[R].

(D1) If xy is a cycle arc then sn(x) > sn(y) and hn(x) > hn(y). Otherwise, sn(x) < sn(y)
and hn(x) ≥ hn(y).

Case 1. Consider first the case where y collapses into a head w 6= s. Then y ∈ P ∗(w) and thus
by Lemma 11 we have y ∈ P (w). Let wb1 . . . bi(= y) . . . bl(= v) be the cycle of G obtained by
concatenating the path from w to y in T (see Lemma 8), a path avoiding w that joins y with some
v ∈ C(w) and the arc vw. We show thatw dominates x inG. Indeed, if a path P1 from s to x avoiding
w existed, then the path P = P1bi(= y)bi+1 . . . bl(= v) would be a path from s to v avoiding w,
a contradiction to Lemma 6. Then w dominates x, and thus w is on the path P ′ in T joining s to
x. Then x collapses into one of the vertices in P ′ (by Lemma 11). If it collapses into one of the
vertices z between w (non-included) and x, then hn(x) > hn(y) since po(z) > po(w). Otherwise,
x belongs to P ∗(w) since there is a path from x to v(= bl), namely xbi(= y)bi+1 . . . bl(= v), and w
satisfies po(w) = max{po(w) |x ∈ P (w)} (see Lemma 11). In this case, hn(x) = hn(y). Thus in
all cases hn(x) ≥ hn(y). However, the equality cannot occur when xy is a cycle arc. Indeed, if xy is
a cycle arc, then y is on the path in T from s to x (by the definition of a cycle arc) and moreover xy is
unsolved. Then x cannot collapse into y and must collapse into a vertex w′ situated on the path from
y to x in T . But then hn(x) > hn(y) since po(w′) > po(w). Property (5) of sn() finishes the proof
in this case.
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Case 2. In this case, y collapses into s, thus necessarily hn(y) = 1 and thus hn(x) ≥ hn(y).
Again, for an unsolved cycle arc xy the equality cannot occur since then x must collapse into some
w which necessarily has larger po() than s, and thus has strictly larger hn(). According to property
(5), sn(x) < sn(y) for an arc xy iff xy is a tree, forward or cross arc and we are done.

(D2) G[R] cannot contain a cycle A = a1a2 . . . at.

By (D1), if such a cycle exists, arcs ajaj+1 (j = 1, . . . , t − 1) imply that hn(a1) ≥ hn(a2) ≥
. . . ≥ hn(at). If there is at least one strict inequality, we deduce hn(a1) > hn(at) and thus the arc
ata1 does not satisfy (D1), a contradiction. Therefore, none of the arcs ajaj+1 (j = 1, . . . , t), where
by convention at+1 = a1, is a cycle arc, as cycle arcs satisfy hn(aj) > hn(aj+1). But then again by
(D1) we have that sn(a1) < sn(a2) < . . . < sn(at), and the arc ata1 does not satisfy (D1).

Lemma 14. The sequence U gives a standard LR-order of G.

Proof. This is obvious now, since G[R] and G[L] are acyclic, and U is built using their topological
orders.

Theorem 4 is now proved.

Remark 4. On the example in Fig. 5.2, Algorithm LR-ordering finds R = {v1, v3, v4, v6, v7} and
L = {v2, v5, v8, v9}, each of which induce an acyclic graph. Note that none of the acyclic FVS R
and L solves ACYCLIC MFVS, since a minimum size acyclic FVS with three vertices exists (take for
instance {v2, v5, v8}).

6. Conclusion

In this paper, we investigated feedback vertex set problems, both from the viewpoint of their
hardness and by proposing easier particular cases. We have shown close relationships between these
problems, in their standard or acyclic variant, and the 3-SAT problems, in their standard or NAE
variant. As a result, we showed the NP-completeness of ACYCLIC FVS even on the class of 3c-
digraphs. We have also shown close relationships between the minimal variants of the aforementioned
problems, and deduced that even the choice between two proposed values that are one unit far from
each other is NP-hard. And this holds even on the class of 3c-digraphs (which are the input graphs in
the case of FVS problems, and the representative graphs of the clauses provided with an order of the
literals, in the case of 3-SAT problems).

Many questions remain open however. Is the class of 3c-digraphs a hard case for other NP-
complete problems? If so, what structural properties justify it? Can we extend the NP-hardness of the
2-CHOICE variants we have studied to smaller classes of graphs? Are the LR-digraphs an important
or useful class of graphs, for which - for instance - other NP-hard problems than ACYCLIC FVS have
polynomial solutions? To start with, is it possible to solve MFVS or ACYCLIC MFVS in polynomial
time on LR-digraphs? Or are there many other classes of graphs (e.g. the cyclically-reducible, the
quasi-reducible graphs or the completely contractible graphs that we cited in the Introduction) that
are subclasses of LR-digraphs?
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