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Abstract. The purpose of the present research project is to study 

multiaxial fatigue behavior of 2618 alloy. The influence of mean stress on 

the fatigue behavior under tension and torsion is particularly investigated. 

Fatigue tests under combined tensile-torsion, in or out of phase, as well as 

combined tensile-torsion-internal pressure tests have also been conducted. 

Multiaxial fatigue results are analyzed according to Fatemi-Socie criterion 

to predict the fatigue life. 

1 Introduction  

Aluminum alloys take the first rank in nonferrous materials and are the engineering 

materials of choice for several industrial applications; they are for instance widely used in 

aeronautic construction because of their good mechanical properties and low density.  

Numerous fatigue studies concerning these materials are focused on uniaxial loading. 

However, the aeronautical parts usually experience multiaxial fatigue loading during 

service and previous studies [1,2] showed that mean shear stress could have a detrimental 

effect on fatigue life. Evaluating fatigue life under complex loading conditions is therefore 

essential to understand the behavior of the component or the structure and to assess its 

safety and durability. 

Very few studies dealing with the effect of mean shear stress on the fatigue lifetime of 

aluminum alloys have been done, but in fact, this effect is very important because it makes 

the fatigue life decreased [1,2,3] and several components are subjected to unsymmetrical 

loading while in service.  

Many authors reached the conclusion that mean shear stress does not affect the fatigue life 

[4,5] as long as the  maximum shear stress is below the yield strength. The effect of the 

mean shear stress is not clear in the high cycle fatigue, but become obvious in the low cycle 

fatigue [6]. 
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In addition, it has been demonstrated for an aluminum alloy from 2xxx series that fatigue 

life gradually reduces with increasing mean shear stress when this latter is lower than a 

threshold value [1,7]. 

In the current study, the purpose of the research project about 2618 alloy is to study its 

multiaxial fatigue behavior. The influence of mean stress on the fatigue behavior under 

tension and torsion is particularly investigated. Fatigue tests under combined tensile-

torsion, in or out of phase, as well as combined tensile-torsion-internal pressure tests have 

also been conducted. It is important to note that research works with internal pressure 

loading is rare [8]. Multiaxial fatigue results are analyzed according to Fatemi-Socie 

multiaxial fatigue criterion to predict the fatigue life. Fracture surface observations and in 

particular crack initiation sites were also performed in order to broaden this analysis. 

2 Material and experimental procedures 

2.1 Material 

The material used in the present study is 2618-T851 aluminum-copper alloy developed by 

Rolls Royce (RR58) and characterized by high mechanical characteristics and low density. 

The chemical composition and mechanical properties are respectively presented on table 1 

and table 2. 

The material has been heated at 530°C±5°C to dissolve some intermetallic particles such as 

Al2CuMg, AI2Cu et Al7Cu4Ni [9,10], water quenched then tempered at 190°C (the maximal 

hardness is obtained at this temperature [11]). The material is deformed by tension and then 

quenched and tempered at 200°C during some minutes to give the mechanical properties 

cited in table 2. 
Table 1. Chemical composition of 2618-T851. 

 

 Cu Fe Mg Si Ni Ti Zn Mn Al 

atomic

% 

0,9-1,5 0,4-0,6 1,5-2 

 

0,2 0,2-0,6 0,15 

 

<0,1 

 

<0,15 Rest 

 

Table 2. Mechanical properties of 2618-T851 alloy. 

 

Young 

modulus E 

(GPa) 

Ultimate 

tensile strength 

(MPa) 

Tensile yield 

strength (0,2%) 

(MPa) 

Shear 

modulus G 

(GPa) 

Shear yield 

strength (0,2%) 

(MPa) 

Ratio  

σy/τy 

72 464 438 27 260 1,69 

 

For the microstructure, 2618-T851 alloy is characterized by the presence of many various 

intermetallic precipitates localized in grains and grain boundaries and divided in two types, 

the coarse particles (≥1µm) and hardened particles (≤200nm) as shown in figure 1. 
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Fig. 1. Microstructure of 2618-T851 aluminum alloy. 

2.2 Fatigue tests  

In this study, all the load-controlled fatigue tests were carried out at room temperature by a 

special testing MTS-809 machine. The testing machine is hydraulic multiaxial fatigue 

machine that can combine tension, torsion, and cyclic internal pressure loading until 1200 

bars. 

Two different specimen geometries are used as shown in figures 4 and 5. One is the full 

cylindrical specimen (figure 2) used for tension and/or torsion loading, and the other is the 

hollow cylindrical specimen (figure 3) used for internal pressure loading. 

The surface roughness is 0,8 µm for all the specimens. It was shown in a previous study 

that surface roughness has no effect on fatigue life of 2618-T851 with different surface 

arithmetic roughness levels corresponding to general industrial values in tension and torsion 

[13]. 

 

Fig. 2. Cylindrical specimen geometry (dimensions are in mm). 
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Fig. 3. Hollow cylindrical specimen geometry (dimensions are in mm). 

Uniaxial fatigue tests have been conducted under several stress ratios (-2, -1 and 0,1) with a 

frequency of 10 Hz, the variation of strain time dependency was determined using biaxial 

extensometer. 

2.3 Multiaxial stress states of hollow specimen 

When the internal pressure is applied, the stress state in cylindrical coordinates is given by 

the following equations: 
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The variation of the three stresses along the radius ‘r’ is shown in figure 4 where the stress 

components coming from the analytical analysis and from finite element computing are 

compared. Figure 4 illustrates the perfect coherence between the analytical and the 

numerical models. 
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Fig. 4. Left side: variation of stresses (analytical and numerical) along the radius r. Right side:  hoop 

stress. Pmax=244 bars and R=0,1. 

Understanding the variation of hoop and radius stresses along the radius in the case of a 

loading including internal pressure is of high importance to fully determine the stress states 

during combined loading and, in particular the position of the critical plane with the 

maximum shear stress for example, as seen in the following section. 

3 Results and discussion 

3.1 Effect of load ratio 

In a previous study, tensile tests conducted with a positive stress ratio (0,1) and a negative 

stress ratio (-2) have shown that a positive mean stress makes the fatigue life decrease 

significantly [13]. This effect is well known and is observed for numerous metallic alloys 

[14]. 

Results for pure torsion fatigue tests are shown in figure 5. A positive mean shear stress 

reduces the fatigue life [2,3] even if the maximum shear stress is below the yield strength. 

This sensitivity is more important at low stress amplitude. 

 

 

Fig. 5. Torsion S-N curve under different values of mean shear stress. 
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From these results, it is clear that the effect of mean shear stress must be taken into account 

to estimate fatigue life under multiaxial stress states. 

3.2 Multiaxial loading results 

Multiaxial fatigue tests have been carried out under tension-torsion loading with different 

mean normal/shear stress in-phase and out-phase (Table 3) and under multiaxial cyclic 

loading including internal pressure in different cases (Table 4). 

Results of pure tension and torsion tests and internal pressure with tension or torsion  are 

illustrated in figure 6. All the tests have been conducted with a stress ratio equal to 0,1 in 

each loading axe. 

 

 

Fig. 6. Results of pure uniaxial tests and uniaxial tests combined with internal pressure; stresses are in 

MPa and pressure in bars, R=0,1. 

Table 3. Tension-torsion fatigue test results, f=10 Hz. 

 
σa (MPa) τa (MPa) σm (MPa) τm (MPa) φ (°) Nf (Cycles) 

40 110 0 0 0 1,24.106 

95 193 0 0 0 2.05.104 

150 70 0 0 90 2,81.105 

150 70 0 0 0 2,64.105 

40 110 0 0 90 1,17.106 

137 97 0 0 0 1,36.106 

150 70 0 85,55 0 9,95.104 

150 100 0 122,22 90 7,42.104 

150 70 183,33 0 90 3,36.104 

 

Table 4. Multiaxial fatigue test results including internal pressure, φ=0°, f=1 Hz and R=0,1. 

 
σa (MPa) τa (MPa) Pa (bars) Nf (Cycles) 

100 100 100 1,9357.104 

69 69 69 1,13993.105 

50 50 50 >106 (Whitout failure) 

90 0 90 2,586.105 

100 0 100 1,3295.105 

0 135 90 16 

0 90 90 1,95.105 

0 69 69 1,4667.106 
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Results in Figure 6 show that for a given stress amplitude, the fatigue life is similar in 

tension and in torsion.  

This is consistent with the case of cast aluminum alloys where the ratio (τD/σD) is usually 

close to 1,1 [15] (τD and σD are respectively fatigue limits in torsion and tension). 

Adding internal pressure to uniaxial loading (tension or torsion) reduces the fatigue life and 

it seems that this detrimental effect is similar whatever the type of uniaxial loading 

combined with internal pressure (similar fatigue life time for tests performed with internal 

pressure of 90 bars combined with tension or torsion loading with a stress amplitude of 90 

MPa) .  

 

The results of the others tests combining tension and torsion in phase and out of phase as 

well as tension-torsion- internal pressure in phase will be analyzed in the last section.  

3.2 Surface fracture analysis 

Fracture surfaces observations were made to identify the different modes of fracture under 

the various load paths. The main microscopic fracture features are a combination of ductile 

intergranular and transgranular fracture.  When torsion is applied, some abrasion marks 

appeared in some regions.  

 

Whatever the nature of the loading, in the high cycle fatigue, the fatigue cracks initiated on 

a single site at the surface, and a coarse precipitate is found at the initiation site, as shown 

in figure 7. For two specimens tested in pure tension and broken over 10
7
 cycles, the cracks 

initiated in sub-surface (~200 m and 700 m from the surface) on coarse grain. 

It is also important to note that for hollow specimen tested with a loading including internal 

pressure, initiation sites were always on the outer surface, whatever the combinations and 

the values of the axial and/or shear stress amplitude. 

 

 

  

Fig. 7. Fatigue crack initiation site specimen tested in tension-internal pressure, σa=100 MPa, Pa=110 

bars and R=0,1 in each loading axe. 
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3.3 Fatigue life predictions 

Critical plane-based fatigue life analyses were performed using Fatemi-Socie [16] concept 

to predict fatigue life for multiaxial loading. Fatemi and Socie defined the critical plane as 

the plane associated with the maximum shear strain amplitude. 

Fatigue damage is supposed to be governed by the maximum shear stress amplitude 

(△γmax/2) and the maximum normal stress (σn,max) that are expressed on the model by the 

equation 4 below: 

                                  =  (2Nf)
bo

+ (2Nf)
co                                                               

(4) 

 

Where Sy is the material monotonic yield strength; it serves to normalize the maximum 

normal stress in order to preserve a dimensionless term, k is a material constant depending 

on number of cycles to failure. G is the shear modulus, τf’ is the shear fatigue strength 

coefficient, γf’ is the shear fatigue ductility coefficient, bo and co are shear fatigue strength 

and shear fatigue ductility exponents, respectively. 

In a first step, the identification of Fatemi-Socie approach parameters has been carried out 

from experimental tests obtained from uniaxial loading in tension (R=-2) and torsion (R=-

1), using the least square method on the whole set of fatigue data. 

In a second step, results of multiaxial fatigue tests have been compared to fatigue life 

predictions given by Fatemie-Socie model as illustrated in figure 8. 

 

 
Fig. 8. Experimental vs Predicted fatigue life by FS model, ‘T, To and P’ refer, respectively, to 

tension, torsion and internal pressure, φ is the phase angle. 

 

A very large scatter of the results is observed in figure 8.  This shows that this criterion is 

not able to reproduce multiaxial fatigue behavior of 2618 aluminum alloy. In addition, in 

some cases, the model predicts that critical plane is in the inner surface. This is obviously 

contradictory to experimental observations that show systematic initiation on the outer 

surface. 
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4 Conclusion 

In the present study, it has been proved that a mean shear stress has a negative impact on 

the fatigue life of 2618 alloy. 

In the high cycle regime, the cracks occur on surface from coarse intermetallic particles and 

at more than 10
7
 cycles, the cracks initiated on coarse grain in the sub-surface.  

The predictions obtained using Fatemi-Socie model for this alloy are not in good agreement 

with experimental results. Other multiaxial fatigue criteria are currently under investigation. 
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