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Abstract4

Classical methods of calibration usually imply the minimisation of an objective function5

with respect to some control parameters. This function measures the error between6

some observations and the results obtained by a numerical model. In the presence of7

uncontrollable additional parameters that we model as random inputs, the objective8

function becomes a random variable, and notions of robustness have to be introduced for9

such an optimisation problem.10

In this paper, we are going to present how to take into account those uncertainties by11

defining the relative-regret. This quantity allow us to compare the value of the objective12

function to its best performance achievable given a realisation of the random additional13

parameters. By controlling this relative-regret using a probabilistic constraint, we can14

then define a new family of estimators, whose robustness with respect to the random15

inputs can be adjusted.16

Keywords: Calibration, Robust optimisation, Relative-regret, Shallow-water equations17

1. Introduction18

Numerical models are widely used to study or forecast natural phenomena and im-19

prove industrial processes. However, by essence models only partially represent reality20

and sources of uncertainties are ubiquitous (discretisation errors, missing physical pro-21

cesses, poorly known boundary conditions). Moreover, such uncertainties may be of22

different nature. [1] proposes to consider two categories of uncertainties. On the one23
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hand aleatoric uncertainties, coming from the inherent variability of a phenomenon, e.g.24

intrinsic randomness of some environmental variables. On the other hand, epistemic25

uncertainties coming from a lack of knowledge about the properties and conditions of26

the phenomenon underlying the behaviour of the system under study. The latter can27

be accounted for through the introduction of ad-hoc correcting terms in the numerical28

model, that need to be properly estimated. Thus, reducing the epistemic uncertainty can29

be done through parameters estimation approaches. This is usually done using optimal30

control techniques, leading to an optimisation of a well chosen cost function which is31

typically built as a comparison with reference observations. An application of such an32

approach, in the context of ocean circulation modelling, is the estimation of ocean bottom33

friction parameters, as done in [2, 3, 4]. Moreover, as such studies are often performed34

at a coastal and regional scale, those models are often designed with open boundary35

conditions, and require external forcings, such as tidal and wind forcing. Those are then36

a source of aleatoric uncertainties, that should be taken into account as in [5].37

If we overlook the aleatoric uncertainties by choosing a specific outcome, the opti-38

mal control of the parameters to be estimated can lead to localized optimisation [6] and39

overcalibration, that is choosing a value that is optimal for the given situation. This40

value does not carry the optimality to other situations. In geophysics and especially in41

hydrological models, this overcalibration may lead to the appearance of abberations in42

the predictions as those uncertainties become prevalent sources of errors. In hydrology,43

uncertainties are the principal culprit of the existence of so called “Hydrological mon-44

sters” [7], that are calibrated models that perform really badly because some uncertainties45

in the modelling have been omitted, such as measurements errors. In flood modelling [8],46

the aleatoric uncertainty come from the structure of the model, and neglecting those47

uncertainties leads to underestimating hazard. In other domains as well, the aleatoric48

uncertainties can represent some manufacturing errors or environmental conditions such49

as wind direction and speed in wind turbine modelling [9] or atmospheric conditions in50

aerospace vehicle design [10], thus they represent an important role in risk management.51

It is then crucial to be able to take into account aleatoric uncertainties in optimi-52

sation problems. This consideration is called robust optimisation, or also robust design53

in [11], or optimisation under uncertainties [12, 13, 14]. Furthermore, the distinction is54

2



sometimes made between stochastic optimisation and robust optimisation, depending on55

the knowledge available on the aleatoric uncertainties.56

Let us denote k ∈ K the parameter to be estimated in order to reduce epistemic57

uncertainties. We assume that the aleatoric uncertainties can be modelled as a random58

vector U whose sample space is U. The probability measure associated with U is PU,59

and its density, if it exists, is pU. This distribution is assumed to be known, and that it60

is possible to sample from it. This choice is motivated by the fact that in various appli-61

cations, the aleatoric uncertainties come from expert knowledge, empirical observations,62

or the knowledge acquired using other models, for instance by ensemble assimilation.63

However, if it is not the case, [15] provides a comprehensive review of optimisation un-64

der uncertainty, especially on the modelling and sampling of the aleatoric uncertainties.65

Since the source of the aleatoric uncertainties is considered external, the choice of k does66

not have any influence on the distribution of the random variable U, and therefore the67

aleatoric and epistemic uncertainties are assumed independent.68

The cost function J(k,U) is a random variable in this context. It is most often69

defined as the squared norm of a given function G(k,U)70

J(k,U) =
1

2
‖G(k,U)‖2 (1)

For instance, in data assimilation, J describes a distance between the output of the71

numerical model and given observed data, plus generally some regularization terms. An72

example of such a function will be treated Section 4.73

For a practical purpose, we assume that for every realisation u ∈ U of U, finding74

ku ∈ K that minimises the cost function k 7→ J(k,U = u) is a well-posed problem, and75

that the optimum is unique. Additionally, the following assumptions are made: the cost76

function is strictly positive, and ∀ k ∈ K, the random variable J(k,U) has finite first-77

and second-order moments.78

In this paper, we aim at finding k̂ a robust estimator of k. The definition of robustness79

differs depending on the context in which it is used. Indeed, one definition of the robust-80

ness of an estimate is a measure of the sensibility of said estimate to outliers [16]. This81

leads to the introduction of robust norms in data assimilation [17]. In a Bayesian frame-82

work, robustness may refer to the sensitivity to a wrong specification of the priors [18].83
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As the distribution of U is assumed known, we are not going to consider distributional84

robustness, which deals with uncertainties on the distribution of U [19].85

Throughout this paper, robust has to be understood as satisfactory for a broad range86

of u, and/or as insensitive as possible to uncertainties encompassed in U.87

The usual practice consists in neglecting the variability of U by setting it to an a88

priori value ub. In this case, k̂ is set to the optimum kub of J(k,U = ub). There is89

no guarantee on the performance of k̂ if the calibrated model is used for predictions, as90

the estimated value will compensate the error made by a possibly wrong specification of91

ub: this may be a case of overcalibration In a data assimilation context, this situation92

appears if ub does not properly represent the conditions in which the observations have93

been obtained.94

Another strategy, that consists in minimising J over the joint space K × U, is not95

always possible or relevant. Indeed, joint optimisation increases the complexity of the96

optimisation, and the computed estimation of k̂ has no reason to be robust in the end:97

this kind of method does not take into consideration the intrinsic variability of the en-98

vironmental variable. The worst-case approach [20] is another popular method, and is99

based on the minimisation with respect to k of the maximum of the cost function for100

u ∈ U: mink maxu J(k,U = u). This approach may yield over-conservative solutions,101

and does not take into account the random nature of U.102

Accounting for the probabilistic nature of U leads to study the distribution of the103

random variable J(k,U), or the distribution of its minimisers kU. The latter is referred104

as the distribution of the conditional minimisers, notion that appeared notably in [21] and105

in [22] for a global optimisation purpose. Both approaches and related robust estimates106

are described in Section 2. Section 3 introduces a new class of estimators, by relaxing the107

constraint of optimality and defining regions of acceptability, similarly as [23] in discrete108

combinatorial problems, or [24, 25] in operations research. The rationale behind this109

relaxation is to be able to construct an estimate k̂ which produces values of the cost110

function close enough from the minimal cost attainable given the configuration induced111

by u ∈ U, with high enough probability. This similarity will be measured using the112

relative regret. By adjusting either the relaxation or the confidence level, we can then113

define the RRE, the relative-regret family estimators. Illustration of the various described114
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methods are given on a numerical example in Section 4.115

2. Classical robust estimators116

As mentioned before, robustness can be understood as satisfactory for a broad range117

of u, and/or as insensitive as possible to uncertainties encompassed in U. Under this118

definition, one may design robust estimators of k, either by using the moments of the119

cost function; or by exploiting the distribution of its minimisers.120

2.1. Optimisation of the moments121

Let us define µ(k) and σ2(k), the expected value and the variance of the cost variable122

for a given k as123

µ(k) = EU [J(k,U)] =

∫
U
J(k,u)pU(u) du (2)

σ2(k) = VarU [J(k,U)] =

∫
U

(J(k,u)− µ(k))
2
pU(u) du (3)

Minimising the expectation leads to the estimate kE defined by:124

kE = arg min
k∈K

µ(k) (4)

In order to take into account the spread around the mean value, one can choose to125

minimise the variance, leading to kV:126

kV = arg min
k∈K

σ2(k) (5)

A lot of different methods are readily available to solve these minimisation problems.127

For instance, stochastic Sample Approximation [26, 27] is based on a finite and fixed set128

of samples {ui}i=1...N of U. The estimations at a given k are computed using standard129

Monte Carlo, resulting in the following optimisation problems:130

k̂E = arg min
k∈K

N∑
i=1

J(k,ui) (6)

and131

k̂V = arg min
k∈K

N∑
i=1

J(k,ui)−
N∑
j=1

J(k,uj)

2

(7)
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If computationally affordable, one can perform these estimations on a regular grid132

on K× U. In case of expensive computer code, one can build a meta model to ease the133

minimisation, such as Gaussian processes [28]. Even though kE is a reasonable choice,134

there is no guarantee that J(kE,U = u) will not reach catastrophic level for some u.135

On the other hand, using kV will ensure stability of the cost function, but without any136

control of its performance. Ideally, one would want to have a small expectation and a137

small variance at the same time. Multi-objective optimisation is a proper tool to deal138

with these simultaneous and sometimes concurrent objectives, for exemple by computing139

the Pareto front of
(
µ(k), σ2(k)

)
as done in [29].140

As the computation of this Pareto front is usually hard and expensive, alternative141

strategies based on the minimisation of a scalarized version of the vector of objectives142

are often considered. Some are based on a weighted sum of the objectives, as presented143

in [30] and in [31], while some others are based on the minimisation of one of the objectives144

under constraints on the others, as performed in [32]. Both of these methods are based145

on an delicate choice of weights or of constraints before any computation. This choice146

relies heavily on a knowledge of the properties of the cost function.147

To summarise, even though the notions of mean and variance are quite easily under-148

stood, getting a satisfactory estimator is not that straightforward. One could instead149

consider how often a particular value k is a minimiser of the cost function, leading to the150

notion of most probable estimate, as explained in the next subsection.151

2.2. Most probable estimate152

Let us consider the minimal cost attainable in each configuration brought by u. The153

resulting conditional minimum is denoted J∗:154

J∗ : u ∈ U 7−→ J∗(u) = min
k∈K

J(k,U = u) (8)

Similarly, the function of conditional minimisers can then defined by:155

k∗ : u ∈ U 7−→ k∗(u) = ku = arg min
k∈K

J(k,U = u) (9)

Using this function, we can define the corresponding random variable K∗ as156

K∗ = k∗(U), (10)
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and its associated density function pK∗(k), that will be further referred as the density157

of minimisers. The mode of this density is called the Most Probable Estimate (MPE)158

and is noted kMPE:159

kMPE = arg max
k∈K

pK∗(k) (11)

To give some intuition on this estimate, let us imagine that the distribution of min-160

imisers is a dirac centered on kMPE. Then it would mean that this estimate is the161

minimiser of the cost function whatever the realisation of the uncertain variable, there-162

fore optimal in all conditions. If the distribution pK∗ is heavily dominated by a single163

value, the MPE may be a good candidate for robust control. This is not so obvious in164

the case of a multimodal distribution.165

In general, an analytical form of pK∗ is impossible to obtain, so an estimation p̂K∗166

must be used, and its maximum computed to get the MPE. In the rest of the paper,167

the hat notation will indicate an estimation using numerical values of the underlying168

theoretical quantity. Once again, a set of samples {ui}i=1...N can be used to compute169

the set {kui}i=1...N , from which one can approximate pK∗ . The resulting approximation170

and therefore its mode, is sensitive to the density estimation method. Main methods are171

KDE (Kernel Density Estimation) [33], and EM (Expectation-Maximisation) [34].172

KDE is a non-parametric estimation technique based on the use of a kernel function173

f . Assuming an isotropic kernel, the estimation has the following form:174

p̂K∗(k) =
1

NhdimK

N∑
i=1

f

(
k− kui

h

)
(12)

where h is the bandwidth. In a multidimensional setting, one usually consider a175

kernel based on the product of 1D kernels, applied independently to all components:176

f(k) =
∏dimK
j=1 f1D(k(j)) where k(j) is the j-th component of k. There is wide choice of177

available f1D, and a popular choice is the Gaussian kernel f1D(x) = 1√
2π

exp(−x2/2).178

The EM algorithm can also be used to estimate the density, by minimising the statis-179

tical distance between the empirical distribution and a mixture of ν Gaussian densities.180

The estimation has then the following form:181

p̂K∗(k) =

ν∑
i=1

πiφ(k; mi,Σi) (13)
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where φ(·; m,Σ) is the probability density function of the normal distribution of mean182

m and covariance matrix Σ, and {πi}i=1...ν are the mixing coefficients.183

In practice, despite the fact that those methods are well established, using them in184

a plug-in approach has some flaws. One of the basic assumption of density estimation185

is to assume that K∗ is a continuous random variable, hypothesis that may be violated.186

Worse, the notion of mode is not well defined when the distribution of the minimisers187

is a discrete-continuous mixture. This may result in inconsistent estimations of k̂MPE188

when using different methods as illustrated in next subsection.189

2.3. Numerical illustration190

Before going further in the explanation of our approach, let us illustrate the nature191

of previously detailed estimators, k̂E, k̂V and k̂MPE on two analytical cost functions.192

These functions are based on the Branin-Hoo’s function, slightly modified to ensure193

strict positivity:194

BH(x1, x2) =
1

51.95

[(
x̄2 −

5.1x̄21
4π2

+
5x̄1
π
− 6

)2

+

(
10− 10

8π

)
cos(x̄1)− 44.81

]
+ 2

(14)

with x̄1 = 3x1 − 5, x̄2 = 3x2

Using Eq. (14), we define the two cost functions on K× U = [0, 5]× [0, 5] as:195

JBH : (k,u) 7→ BH(k,u) (15)

JBHswap : (k,u) 7→ BH(u,k) (16)

Even though the functions are quite similar, the asymmetric roles of k and u cause196

different behaviour in the estimations.197

The random variable U is assumed to be uniformly distributed over U. The estima-198

tions are based on a 1000× 1000 regular grid over K×U. Both cost functions are shown199

on the top of Figure 1.200

The left (resp. right) column stands for JBH (resp. JBHswap). Functions µ(k) and201

σ(k) are drawn on the bottom row, respectively in purple and green. The corresponding202

minimisers k̂E and k̂V are also plotted. On this figure, we can observe that k̂E and k̂V203

are close for JBH, while being significantly different for JBHswap.204
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Figure 1: The left column concerns JBH, while the right one deals with JBHswap. Contours of both

functions are plotted on the top, and curves of µ(k) and σ(k) are shown on the bottom (respective scales

are not displayed). Estimates k̂E and k̂V are plotted with the dashed line.

Similarly, estimations of k̂MPE are depicted on Figure 2. The top row shows the205

contours of both functions as well as the set of conditional minimisers {kui}1≤i≤N in red,206

as defined in Eq. (9). The bottom row presents three approximations of the density of207

minimisers: the histogram in grey (bin size selected using Freedman-Diaconis from [35]),208

the result of a kernel density estimation (KDE) with Gaussian kernels in red (using209

Scott’s rule from [36] for bandwidth selection), and the estimation by a Gaussian mixture,210

calculated with the EM algorithm. The number of Gaussians has been fixed to 3, a guess211

based on the general shape of the histogram. Respective estimations of k̂MPE are also212

depicted using dashed lines.213

For JBHswap, we can observe that those three methods give consistent results, as214

k̂MPE,KDE = k̂MPE,EM = k̂MPE,histogram ≈ 0.8. This is not the case for JBH: using215

Kernel density estimation (Gaussian), the estimation of kMPE is k̂MPE,KDE ≈ 1.5, while216

using the histogram and Gaussian mixture, k̂MPE,histogram = k̂MPE,EM = 3.8.217
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Histogram

Figure 2: Top Left: JBH along with conditional minimisers in red. Bottom left: Estimated densities

using KDE and EM algorithm and the histogram. The dashed lines indicate the MPE found using those

methods. Right: Same quantities with JBHswap.

This difference is explained by the accumulation of minimisers at this point: this218

challenges the assumption that K∗ is continuous. As the density estimation techniques219

traditionally assume this continuity, the EM algorithm fits this using a normal distri-220

bution with a very small variance, while the KDE considers a sum of Gaussian kernels221

of constant bandwidth, located at the same point. This particular problem highlights222

an issue with kMPE, as its estimation is possibly sensitive to the density approximation223

procedure.224

Instead of just considering the optimal minimisers, we introduce a bit of leeway,225

and look for “acceptably not optimal” parameters. This slackness takes the form of a226

relaxation coefficient and its choice defines a new family of robust estimators, where each227

one of its member carries information on its robustness through this coefficient.228
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3. Relative regret-based family of estimators229

3.1. Relaxing the optimality constraint230

The density of minimisers has been estimated by optimising k 7→ J(k,U = u) over231

K for different realisations of u. Instead of focusing on optimal values, we propose to232

construct an acceptable neighbourhood in terms of performances of the cost function as233

well. In order to do so, we are going to introduce a relaxation coefficient α ≥ 1, and234

given u ∈ U, we say that k ∈ K is acceptable when J(k,U = u) ≤ αJ∗(u). Using the235

strict positivity of the objective function, we can define the relative-regret as the ratio236

J(k,U = u)/J∗(u), and the acceptability of k will then be tied to the maximal value237

taken by this ratio.238

In this context, for a given k, the set Rα(k) ⊆ U is defined as the set of u, for which239

k is acceptable:240

Rα(k) = {u ∈ U | J(k,U = u) ≤ αJ∗(u)} (17)

Figure 3 details the successive steps for the construction of the set Rα. First, the241

conditional minimisers are computed, as shown on the top plots. Afterwards, for a given242

level α = 1.5, the set of acceptable k can be identified for each u ∈ U, as shown on the243

bottom left plot. Finally, the region Rα(k) is the subset of U for which k is acceptable,244

as represented with a vertical slice on the bottom right plot.245

Introducing the random nature of U, one can define Γα(k) as the probability that k246

is acceptable given α:247

Γα(k) = PU [U ∈ Rα(k)] = PU [J(k,U) ≤ αJ∗(U)] (18)

In other words, Γα(k) is the probability that J(k,U) is between J∗(U) and αJ∗(U).248

Noting that without relaxation, i.e. when α is set to 1, Γ1 is non-zero if the set249

{u ∈ U | J(k,U = u) = J∗(u)} has non-zero measure with respect to PU. It happens250

when the distribution of K∗ presents atoms.251

This linked to the definition of the distribution of the minimisers K∗. For instance,252

if K is a discrete set, K∗ is a discrete random variable, and we can rewrite Γ1 as Γ1(k) =253

PU [J(k,U = u) = J∗(U)] = PU [k = k∗(U)] which is the probability mass function of254

K∗.255
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Figure 3: Principle of the relaxation of the constraint on JBH, and illustration of Rα(k). Top plots:

Computation of the conditional minimisers k∗(u). Top right plot: the set (k∗(u),u) of conditional

minimisers is represented in red. On the bottom left plot, for a relaxation α = 1.5, and u = 3, the

acceptable k are in cyan, while the non-acceptable ones are in orange, while the frontier {(k∗(u),u) |
J∗(u) = J(k,U = u)} is in yellow. On the bottom right plot, the set Rα(k) for α = 1.5 and k = 1.5 is

in green.

The motivation behind this relaxation is to take into account the local behaviour256

of the function around the conditional minimisers. For a given set of environmental257

conditions u, if the function k 7→ J(k,U = u) is flat around its minimum k∗(u), then258
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choosing k∗(u) + ε (for a small ε) will produce a value closer to the minimum than when259

the function has a high curvature.260

We consider in this work exclusively a multiplicative relaxation, instead of an additive261

one in the form J(k,u) ≤ J∗(u) + β for β > 0. Both formulations of the regret: the262

additive J − J∗ and the relative J/J∗, take into account the value of the conditional263

minimum J∗(u), but relative regret allow us to scale the region of acceptable points with264

respect to the best situation available: if J∗(u) is close to 0, the region of acceptable265

points will grow slowly, so at a given α, we put emphasis on k∗(u). On the other hand,266

if J∗(u) is large, it means that tuning the parameter to k∗(u) will not lead to very good267

performances of the cost function anyway. We can then put less weight on this value268

k∗(u) in the estimation, hence the region of acceptability that grows quickly. Finally, the269

relative regret is a normalized quantity, in constrast to the additive regret, which shares270

the same unit as J . This normalization, as well as the direct relation to the relative error271

J−J∗

J∗ allows for an interpretation of the relaxation as a fraction of error.272

The choice of the relaxation constant α can be made to ensure the existence of a273

parameter that is “acceptable” with a certain probability. For instance, given that J > 0,274

Γα(k) is increasing with respect to α for any k ∈ K. We can then focus on the smallest275

value of α such that Γα reaches a certain level of confidence p ∈ [0, 1]. This leads to the276

definition of αp277

αp = inf {α ≥ 1 | ∃kp ∈ K, Γα(kp) ≥ p}

= inf

{
α ≥ 1 | max

k∈K
Γα(k) ≥ p

}
(19)

Rewriting the equation above, we can express αp as the solution of the following278

chance constrained problem279  min q

s.t. maxk PU

[
J(k,U)
J∗(U) ≤ q

]
≥ p

(20)

that is the smallest α, such that there exists a particular kp ∈ K for which J(kp,U) ≤280

αpJ
∗(U) with probability p. As highlighted by the formulation of Eq. (20), kp and αp are281

the result of the optimisation of the Value-at-Risk of the random variable J(k,U)/J∗(U),282

which is a measure of risk usually applied in the financial sector (see [37]). In this spirit,283

when choosing kp, the relative error of the function J will be less than αp with probability284
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p. The maximal relative regret of the function will be αp, except for the 100(1 − p)%285

least favourable cases.286

The set of maximisers of Γαp for different p: {kp for p ∈ [0; 1]} is what we are calling287

the relative-regret family of estimators RRE.288

Figure 4 shows examples of Γαp for JBHswap, at different levels p, and the associated289

estimates of the RRE. We can see that changing the level p shifts the maximiser of Γαp .290

Since k1 is located quite far from the conditional minimisers, it arises as a compromise291

when the relaxation is large enough.292
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Figure 4: Illustration of the influence of different levels p on Γαp and on kp for JBHswap. When p

increases, Γαp increases as well.

We have then introduced the RRE, a family of estimators among which we can choose293

either large level of confidence p i.e. a large robustness as we are controlling the relative294

regret for a large fraction of possible configurations, or we can look for almost optimal295

performances albeit for a more reduced number of situations. Those quantities require296

the evaluation and optimisation of probabilities, so solving such a problem can be quite297

challenging. Moreover, the choice of a member of the RRE, that is the choice of a level298

of confidence p is also up to the modeller.299

3.2. Choice and computation of the relaxation coefficient300

3.2.1. Almost-surely bounded relative-regret301

Let us first consider that we want to satisfy the chance constraint of Eq. (20) almost302

surely: this is the particular case of p = 1. Given the strict positivity of J , the choice303
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of such a level of confidence is possible only if there exists a k such that the ratio304

J(k,U)/J∗(U) is bounded almost surely, and α1 is the solution of the (almost-surely)305

chance constrained problem:306  min q

s.t. mink
J(k,U)
J∗(U) ≤ q a.s.

(21)

307

thus, k1 verifies308

PU

[
J(k1,U)

J∗(U)
≤ α1

]
= 1⇐⇒ J(k1,U)

J∗(U)
≤ α1 a.s. (22)

Under the assumption that J(k, ·) is continuous for all k, this is equivalent to ap-309

proaching this problem using uncertain sets to model the uncertain nature of U:310

J(k1,u)

J∗(u)
≤ α1 ∀u ∈ U (23)

it follows then that311

α1 = max
u∈U

J(k1,U = u)

J∗(u)
= min

k∈K

{
max
u∈U

J(k,U = u)

J∗(u)

}
(24)

This can then be linked to Savage’s minimax approach [38], which consists in a worst-312

case approach for the additive regret J − J∗, when in Eq. (24) we look to minimise the313

worst-case scenario in terms of the ratio.314

Using Sample Average Approximation (SAA), based onN i.i.d. samples of U: {ui}1≤i≤N ,315

we can reformulate the problem Eq. (21) as316  min q

s.t. mink
J(k,ui)
J∗(ui)

≤ q for 1 ≤ i ≤ N
(25)

For a solution α̂1 of Eq. (25), as SAA acts as a relaxation of the initial problem317

Eq. (21), the solution found acts as lower bound on the true value α1: α̂1 ≤ α1.318

Moreover, this estimated value α̂1 can be used for the estimation of the relaxation319

constant for a level p close to 1. Using Clopper-Pearson intervals [39, 40], if α̂1 is a320

solution of Eq. (25), it is also a feasible solution of Eq. (20) at a level p =
(
η
2

)1/N with321

probability 1− η: α̂1 is then a probabilistic upper bound on α
( η2 )

1
N
.322

α̂1 ∈
[
α

( η2 )
1/N , α1

]
with probability 1− η (26)
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The estimated value α̂1 will then be optimistic in the sense that it will underestimate323

the true value α1. We can however control this approximation using the probabilistic324

bound lower bound of Eq. (26)325

Choosing a level of confidence p = 1 suffers from the same pitfall as the worst-case326

approach, as it may return over-conservative solutions, provided that a solution exists in327

the first place.328

3.2.2. Estimation of RRE329

We are now going to focus on the more general case, where we can choose: to fix330

p ≤ 1 and deduce αp, or to set a maximal threshold α and maximise the measure of the331

acceptable region, or finally to find a compromise p and αp in order to keep the latter332

not too large.333

A first approach is to set α, and then to estimate the function k 7→ Γα(k) as defined334

in Eq. (17). For instance, when N samples from U are available, namely {ui}1≤i≤N , a335

possible estimate of Γα is336

Γ̂α(k) =
Card

{
ui | J(k,U = ui) ≤ αJ∗(ui)

}
N

=
1

N

N∑
i=1

1{J(k,U=ui)≤αJ∗(ui)} (27)

This expression is maximised with respect to k, giving p̂ = maxk Γ̂α(k). We can also337

provide a confidence interval for the true value of Γα(k) where k = arg max Γ̂α.338

However, unless the modeller has some precise idea of desired relaxation, doing so339

may lead to an unsatisfactory pairing of α and p. Indeed if α is chosen too small, the340

resulting p̂ = maxk Γ̂α(k) will be also small, meaning that the cost function will have341

non acceptable values with high probability.342

Similarly, if p is fixed, the corresponding α̂p is computed by searching for the smallest343

α satisfying maxk Γ̂α(k) = p, or equivalently, by minimizing the quantile of order p of the344

relative-regret, which is the ratio J/J∗. Once again, if α̂p is too large, the cost function345

may not be controlled enough for the contemplated application.346

Looking for a compromise between p and α would be preferable. This could be347

achieved by studying p 7→ αp, and particularly its slope. If this curve presents a steep348

increase, the multiplicative constant αp must be increased by a large amount in order to349

increase the probability p by a small amount. Interesting couples (p, αp) would then be350

the ones located before an abrupt increase of the slope of p 7→ αp.351
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Another possibility is to model this compromise by the ratio (p/αp), as it increases352

with respect to p and decreases with respect to αp. The level of confidence pratio is then353

defined as the maximiser of p 7→ p/αp.354

3.3. Numerical Illustration355

In this Section, we will compare the different estimators introduced previously and356

summarised in Table 1 on JBH and JBHswap.357

Definition Related quantities Interpretation

arg min k∈K EU [J(k,U)] kE Long run performances

arg min k∈K VarU [J(k,U)] kV Steady performances

arg max k∈K pK∗(k) kMPE Most probable minimiser

inf {α | ∃kp ∈ K, Γα(kp) ≥ p} (p,kp, αp) Acceptable values

with fixed probability p

pratio = arg max p/αp (pratio,kratio, αratio) Maximal ratio of p and αp

Table 1: Robust estimators, based on a cost function J

As stated before, we chose to model the uncertainties as a random variable uniformly358

distributed on U. The bounded nature of U allows us to consider members of the RRE359

up to a level of confidence p = 1. From now on, k̂MPE is estimated using KDE with360

Gaussian kernels.361

The smallest estimated relaxation α̂1 and the corresponding k̂1 has been computed for362

JBH and JBHswap, using a regular grid of 1000×1000 points on K×U. The contour plots363

of those functions can be seen in the top plots of Figure 5. The frontier corresponding364

to the couples of points (k,u) verifying {J(k,U = u) = αJ∗(u)} has been drawn on365

top of these contour plots, for α = α̂1 and an arbitrary α = 1.5 < α̂1 to illustrate the366

effect of the acceptable region when the relaxation α changes. On the bottom plots, the367

curves k 7→ Γ̂α(k) for α = α̂1 and α = 1.5 along with the histograms of the minimisers368

are represented.369

One can notice that the relaxation allows us to avoid the issue brought by the accu-370

mulation of the minimisers of JBH at 3.8, as opposed to the MPE and its dependence on371

the estimation procedure of the distribution.372

17



0 1 2 3 4 5

k

0

1

2

3

4

5

u

JBH(k,u)

0 1 2 3 4 5

k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Γ̂
α

Probability Γ̂α̂1(k)
α̂1 =1.9506

0 1 2 3 4 5

k

0

1

2

3

4

5

u

JBHswap(k,u)

0 1 2 3 4 5

k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Γ̂
α

Probability Γ̂α̂1(k)
α̂1 =2.2196

Γ̂α̂1(k)

Γ̂1.5(k)

k̂1

{(k,u) | J(k,u) = α̂1J
∗(u)}

{(k,u) | J(k,u) = 1.5J∗(u)}
Histogram of the minimisers

Figure 5: Top: JBH and JBHswap contours. The thick yellow lines are the boundaries of the acceptable

region defined for α̂1, the thick orange are for α = 1.5. The red dashed line is the estimation k̂1. Bottom:

Γ̂α for α = 1.5 and α = α̂1, and estimated density of the minimisers.

In order to choose a satisfying level of confidence p, we are going to study p 7→ α̂p373

and p 7→ p/α̂p, as described in Section 3.2.374

The plot of p 7→ α̂p for JBH on Figure 6 shows what seems to be a piecewise linear375

behaviour. The last change of slope, i.e. for p ≈ 0.9 corresponds to a local maximum376

of the ratio, while the first change of slope at p̂ratio = 0.654 corresponds to the global377

18



maximum of the ratio. The RRE will then be evaluated for both of these values, as well378

as p = 1 for reference.379
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Figure 6: Evolution of the couples (p, αp) and corresponding ratio p/αp for JBH. The dashed line

indicates the level p associated with the highest ratio

For JBH, the numerical values of the robust estimators can be found in Table 2. For380

this particular problem, the different estimates are close to each other.381

Table 2: Estimation performed for JBH, sorted by value

Estimate Value

k̂V 1.371

k̂p, p = 1 1.557

k̂E 1.587

k̂MPE 1.628

k̂ratio, p̂ratio = 0.654 1.637

k̂p, p = 0.90 1.797

Practically speaking, in order to compare the effective values taken by the objective382

function given an estimate k̂ we are going to consider the functions u 7→ J(k̂,U = u),383

that we will call “profiles of k̂”. Those profiles are well suited for the representation of384
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the cost function for an estimate k̂ fixed as the uncertain variable is modelled with a 1D385

uniform random variable.386

For JBH, the curves are plotted in Figure 7.387
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Figure 7: Profiles of the different estimates for JBH, corresponding to the vertical cross sections of the

contour. The shaded region corresponds to the interval [J∗(u), α̂1J∗(u)]. The profiles of k̂MPE and

k̂ratio coincide in this case

By construction, the profile of k̂1 is always within the shaded region, corresponding388

to [J∗(u), α̂1J
∗(u)]. The profile of k̂E in contrast, exceeds α̂1J

∗(u) for u close to 5, while389

the profile of k̂V does it for u close to 0. Except for k̂V, the different estimators give390

somewhat comparable results.391

By contrast, JBHswap will show a different behaviour as Figure 8 provides the plots392

of p 7→ α̂p and p 7→ p/α̂p.393

Compared to the similar plots for JBH in Figure 6, α̂p exhibits a smoother behaviour394
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for JBHswap as no abrupt change of slope is easily discernable and the ratio presents a395

unique maximum for p̂ratio = 0.766. The numerical values of the estimations k̂ presented396

in Table 3 show that, contrary to JBH, the calibrated values are more spread over K.397

Table 3: Estimations performed for JBHswap, sorted by value

Estimate Value

k̂MPE 0.606

k̂ratio, p̂ratio = 0.766 1.537

k̂E 1.752

k̂V 2.638

k̂1, p = 1 2.798

Profiles of the different estimates of JBHswap are shown in Figure 9.398

In this case, k̂MPE, k̂E and k̂ratio present a similar behaviour. They perform very399

well for u > 2, especially for k̂MPE which is very close to the minimal value; however400

for u < 2, they produce high values of the function. The performances of k̂1 are closer401

to the performances of k̂V for this function, but it performs worse than k̂E and k̂V for402
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u > 2, even though its range is designed to stay within the interval [J∗(u); α̂1J
∗(u)].403

We have seen how some classical robust estimators and the RRE behave on two404

different analytical problems. In addition to the usual levels of confidence such as 90%405

and 95%, one can also settle for an ad-hoc compromise, where p maximises the ratio406

p/αp. When the sample space of U is bounded, a conservative solution is to set p = 1.407

We are now going to see how can robust minimisation is applied on the calibration of a408

numerical model.409
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4. Robust calibration of a numerical model410

4.1. Calibration of a toy numerical model411

We will follow the approach described in [41] in order to establish the function G412

described in the first section in Eq. (1), and the resulting cost function J .413

The calibration of a numerical model is usually based on the comparison between414

the numerical model and some observations, during a fixed time interval [0, T ] called415

assimilation window. The modelled physical system can be seen as a map from U to416

Y, the space of observations, denoted as Mo : u 7→ Mo(u), where u ∈ U is an input417

representing some environmental conditions. The observation mentioned above is the418

output of the physical system during the time-window, and is denoted byMo(utrue) ∈ Y,419

where utrue ∈ U is unknown.420

In addition of u, the numerical modelM depends on some other input k ∈ K. This421

additional parametrization comes usually from the successive simplifications needed to422

implement a numerical model of the observed physical system. k needs to be calibrated423

accordingly, so that the numerical model can be used to predict the behaviour of the424

physical system under different operating conditions.425

The misfit G is defined as the difference between the numerical model and the obser-426

vation. Choosing a squared norm, the cost function J defined in Eq. (1) is427

J(k,U = u) =
1

2
‖G(k,u)‖2 =

1

2
‖M(k,u)−Mo(utrue)‖2 (28)

4.2. The Shallow Water equations428

The model to calibrate is an implementation of the 1D Shallow Water equations,429

described in Eq. (29), where h is the height of the water column, q the discharge, and430

z the bathymetry, while g is the usual gravitation constant. The parameter to calibrate431

k is the quadratic friction term, proportional to the square of the inverse of Manning-432

Strickler coefficient. The environmental parameter u is the amplitude of a sine wave of433

period 1/ω0. The domain of those two parameters are K = [0.0, 1.3] and U = [0.5, 0.7].434
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∂th+ ∂xq = 0

∂tq + ∂x

(
q2

h + g
2h

2
)

= −gh∂xz − kq|q|h−7/3

h(0, t) = 20.0 + 3 · sin
(
2πt
2

)
+ 1.5 · u · sin

(
2πt
ω0

)
∂xq(0, t) = 0

(29)

These equations are integrated using a finite-volume scheme on a discretized domain435

[0, L], up to a time T . The output of the computer code is the sea surface height h, on the436

center of all the volumes and at all the time-steps, that will be denotedM(k,u; ω0 = 1.0).437

In this setting, the random variable U is uniformly distributed on U.438

To generate the observation, we set utrue = 2/3, and defineMo based on the computer439

model M, such that Mo(utrue) = M(ktrue,utrue; ω0 = 0.999). ω0 represents here the440

uncontrollable error between the observations and the numerical model and will now be441

omitted systematically in the notation.442

The true value of the bottom friction ktrue = (ktrue1 , ktrue2 , . . . , ktrueNvol
) is not constant443

over the whole domain, and is defined as444

ktruei = 0.2 ·
(

1 + sin

(
2πxi
L

))
(30)

where xi is the center of the i-th volume. The two sources of systematic errors445

are the one-dimensionality of K, and ω0. Given this setting, there exists no couple446

(k,u) ∈ K × U reproducing exactly the observations, thus the cost function will always447

be strictly positive.448

4.3. Computation of the robust estimates449

As the numerical model is expensive to run, it has first been evaluated on a relatively450

small regular grid covering K × U, and a metamodel based on Gaussian processes is451

constructed using those initial evaluations. In order to better capture the locus of the452

conditional minimisers {(k∗(u),u) | u ∈ U}, we select points maximising the PEI crite-453

rion [42, 43] in order to add points to the design that improve the metamodel accuracy454

close to the conditional minimisers. Afterwards, a bigger regular grid is evaluated by the455

metamodel once the design space has been sufficiently explored, and these computations456

are used to calibrate the model.457
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The different steps of the estimation are illustrated Figure 10, where the top plot458

shows the contour plot of J , with the conditional minimisers and the RRE of level p = 1.459

On the middle plot are shown the conditional moments, k̂E and k̂V and the estimated460

density of the minimisers. At the bottom of the Figure, Γ̂αp are represented for different461

levels p. As U is bounded, p = 1 is attainable, and k̂1 is evaluated.462
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We can see that the different estimations seem less problematic for this problem than463

for the analytical examples shown in Section 3.3, as everything appears to be very smooth464

and unimodal.465
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Looking at p 7→ αp and p 7→ p/αp on Figure 11, we can see that αp evolves almost466

linearly for p > 0.5, and that the ratio p/αp is monotonically increasing, so that the467

maximal ratio is found for p = 1.468
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Figure 11: Evolution of αp for different levels p, and ratio, for the shallow water problem

The different estimates take a wide range of values, as seen on Table 4, from 0.249469

to almost 1.0, while ktruei ∈ [0, 0.4] for 1 ≤ i ≤ Nvol. It can be noted that the calibration470

may lead to values outside the range given by the true ones. This can be interpreted471

as the fact that the calibration look to compensate for errors on ω0. As a basis for472

comparison, the global minimiser of J over K × U has also been computed, and k̂global473

is then obtained by discarding the u value.474

Similarly as for JBH and JBHswap, the profiles are depicted Figure 12.475

We can see that the performances of k̂1 and k̂E are very similar, but k̂1 has better476

performances when u > 0.6. When comparing with the global optimiser k̂global, k̂1477

performs better when u < 0.625, so more than half of the time. We are now going to478

compare how well some of those calibrated values compare in a forecast context.479

4.4. Assessing the quality of the forecast of the calibrated model480

For the calibration, the model has been integrated on a time-period [0, T ], called481

assimilation window, and have been compared with the observation of the sea water482
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Table 4: Calibrated values of k according to different criteria, for the shallow water problem

Estimate Value

k̂MPE 0.249

k̂global 0.290

k̂p, p = 1 0.423

k̂p, p = 0.90 0.458

k̂E 0.501

k̂p, p = 0.80 0.505

k̂p, p = 0.70 0.560

k̂V 0.990
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Figure 12: Profiles for the calibration problem, for the shallow water case

height on the same time-period. We now want to compare the quality of the different483

forecasts originating from different calibrated bottom frictions. Those forecasts result484
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from the integration of the numerical model between the time T and a time Tpred: the485

forecast window.486

Given the probabilistic nature of the environmental conditions U, the forecasts will487

also be probabilistic. We will then compare Mo
pred(U) and Mpred(k,U), that are the488

observation, and the numerical model on the forecast window for a calibrated k.489

Two metrics will be computed: the squared forecast error, and the Continuous Ranked490

Probability Score (CRPS) [44]. The parameters satisfying a robust criterion that are491

compared are the minimiser of the expectation k̂E, the minimiser of the variance k̂V and492

the relative regret of level p = 1, k̂1 as described in the previous section. We will also493

feature the global minimiser k̂global, and the conditional minimisers k̂∗(ui) where the494

chosen environmental variables are {ui}1≤i≤4 = {0.5, 0.55, 0.65, 0.7}. Those values, even495

though they do not meet a robustness criterion, are introduced in order to have a more496

precise idea on the possible performances of a deterministic version of the calibration497

problem. The conditional minimiser k̂∗(0.6) has been omitted as it results in a value498

very similar to the minimum of the expectation.499

4.4.1. Squared forecast error500

A first simple approach to measure the forecast quality is to take the squared difference501

between the numerical model and the observation for two samples of U. Given two502

environmental conditions u and u′ ∈ U, the former used to run the computer simulation503

and the latter to generate the observations, the squared forecast error for the parameter504

k is505

Spred(k,u,u′) =
(
Mpred(k,u)−Mo

pred(u′)
)2 (31)

Averaging over both u and u′ defines the mean squared forecast error, defined on506

every point of the spatial domain, and at every time-steps. This can be done using507

a Monte-Carlo approximation. As u and u′ are i.i.d., assuming that we have a set of508

samples {ui}1≤i≤Nu , the squared forecast error can then be approximated:509

S(k) =
1

N2
u

Nu∑
i=1

Nu∑
j=1

Spred(k,ui,uj) =
1

N2
u

Nu∑
i=1

Nu∑
j=1

(
Mpred(k,ui)−Mo

pred(uj)
)2 (32)
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The mean squared forecast error averaged over the whole space and over all the time-510

steps gives an indication on the overall prediction quality of the prediction given this511

metric, and are represented on the right of Figure 13. We can see that k̂global performs512

slightly better than k̂1, itself performing slightly better than k̂E. Averaging S(k̂) over the513

time steps between T and Tpred, we have an indication on the quality of the forecast in514

the squared sense depending on the spatial coordinate x, as seen on the left of Figure 13.515
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Figure 13: Squared forecast error for the shallow water case, depending on the calibrated parameter.

The left figure shows the squared error time-averaged as a function of the spatial coordinate x, while the

right barplot shows the relative change of the mean forecast error, averaged over time and space, taken

w.r.t. to the best attained performance for k∗(0.7)

We can see that the mean forecast error squared, on the right side, averaged over516

time and space is the smallest for the conditional minimisers k̂∗(0.7) and k̂∗(0.65), then517

k̂global, while k̂1.0 performs slightly better than k̂E.518

It may seem surprising that some parameters calibrated without a robustness aspect519

perform better than k̂1 and k̂E, but their performances are largely dependent on the520

choice of u and their associated conditional minimisers. Good forecasts can be achieved521
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as well as bad ones, as shown for u = 0.5, that leads to bad forecasts.522

One issue with the squared forecast error is that it will penalize strongly the forecasts523

that present high variability with respect to the environmental conditions. A way to deal524

with this is to use another metric, that takes the probabilistic nature of the forecasts525

into account.526

4.4.2. Continuous Ranked Probability Score527

Given the random variablesMpred(k̂,U) andMo
pred(U), representing the probabilis-528

tic forecast and the probabilistic observations, we can define the cumulative distribu-529

tion functions (CDF) Fpred(·, k̂) and F opred(·) The Continuous ranked probability score530

(CRPS) measures the squared difference between the predicted CDF Fpred using a cali-531

brated value, and the CDF of the observations F opred.532

CRPS(k) =

∫
R

(Fpred(ξ,k)− F opred(ξ))2 dξ (33)

The left plot of Figure 14 shows the CRPS averaged over time, where x denotes the533

spatial coordinate and the right plot shows the value of the CRPS averaged over time and534

space. The difference between the squared forecast error and the CRPS is apparent when535

comparing the general trends shared by the different calibrated parameters. According to536

the squared error, the sea water height of the physical region x = 4 is not well predicted,537

while around x = 8, the predictions are better. On the other hand, according to the538

CRPS, the region around x = 8 provide worse forecasts than when x = 4 and x = 7.539

Given the properties of the two metrics, we can conclude that the region around x = 4540

presents a lot of variability with respect to u, for both the true model and the numerical541

one. However, for x ≈ 8, there is a lot less variability, as the low squared error indicates,542

but probably a higher bias, due to the systematic errors between the truth and the543

numerical model.544

The numerical evaluations of the CRPS for different parameters show the same order545

of performances observed for the squared error: the calibrated parameters that present546

the best performances for forecasts according to those two metrics are k̂∗(0.7), k̂∗(0.65)547

which is very similar to k̂global, and then k̂1, and k̂E. This presupposes to know which u548

to choose for the conditional minimisation, thus having a strong insight on the value of549

the parameters in the first place.550
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Figure 14: CRPS computed for different calibrated parameters for the shallow water case. The left figure

shows the CRPS time-averaged as a function of the spatial coordinate x, and the right figure shows the

relative change of the CRPS averaged over time and space, taken with respect to the best attained CRPS

for k∗(0.7)

Conclusion551

In this paper, we dealt with a problem of robust calibration, or in other terms, the552

robust minimisation of an objective function. To adress this issue, we proposed a new set553

of robust estimators: the family of the RRE (Relative-regret estimators), and compared554

it in a forecast context to some other robust estimators, for the calibration of the bottom555

friction of a shallow water model.556

Our approach is based on the comparison of the objective function to the optimal557

value it can attain, given a realisation of the uncertain variable. By constraining this558

ratio in terms of probability, the modeller can then minimize the frequency at which the559

relative error of the objective function will exceed a prescribed threshold. Alternatively,560

at a level of confidence p, the associated threshold αp bounds the relative deviation of561

the objective function for the proportion p of the most favourable cases. The resulting562
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estimate can then be assessed robust, as it corresponds to values of the objective function563

as close as possible to the optimal values.564

Except for simple analytical examples, the exact evaluation of a member of the RRE565

is very expensive computer-wise, not to say impossible. Some bottlenecks appear: the566

computations of the conditional minimisers k∗(u) and the minimum J∗(u), that require567

very local exploration of K for every u; and the computations of the probability of568

overshooting a given bound that depends on J∗(u) (analogous to a probability of failure),569

task that requires an efficient exploration of the whole sample space U.570

For the calibration of the shallow water model presented in Section 4, we chose to571

construct a response surface based on Gaussian processes, which is then used for the572

extensive computations. This construction is first based on an initial design, that is573

enriched to better capture the locus of the conditional minimisers using the PEI criterion574

introduced in [42].575

Practically speaking, the estimation of those quantities is very crude, so the computa-576

tional cost may be very expensive. As perspective, specific strategies have to be created577

in order to carefully select each additional point that will be evaluated, and thus reduce578

the amount of evaluations needed of the numerical model. This selection can be based579

for instance on sequential design of computer experiments using Gaussian processes [45].580

Finally, the models upon which this calibration procedure have been applied are very581

simplistic. We plan in the future to apply this to the robust calibration of the bottom582

friction of a realistic model of the ocean.583
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