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Abstract

Classical methods of calibration usually imply the minimisation of an objective function

with respect to some control parameters. This function measures the error between

some observations and the results obtained by a numerical model. In the presence of

uncontrollable additional parameters that we model as random inputs, the objective

function becomes a random variable, and notions of robustness have to be introduced for

such an optimisation problem.

In this paper, we are going to present how to take into account those uncertainties by

defining the relative-regret. This quantity allow us to compare the value of the objective

function to its best performance achievable given a realisation of the random additional

parameters. By controlling this relative-regret using a probabilistic constraint, we can

then define a new family of estimators, whose robustness with respect to the random

inputs can be adjusted.
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1. Introduction

Numerical models are widely used to study or forecast natural phenomena and im-

prove industrial processes. However, by essence models only partially represent reality

and sources of uncertainties are ubiquitous (discretisation errors, missing physical pro-

cesses, poorly known boundary conditions). Moreover, such uncertainties may be of

different nature. [1] proposes to consider two categories of uncertainties. On the one

∗Corresponding author
Email address: victor.trappler@univ-grenoble-alpes.fr (Victor Trappler)

1Institute of Engineering Univ. Grenoble Alpes

Preprint submitted to Journal of Computational Physics October 29, 2020



hand aleatoric uncertainties, coming from the inherent variability of a phenomenon, e.g.

intrinsic randomness of some environmental variables. On the other hand, epistemic

uncertainties coming from a lack of knowledge about the properties and conditions of

the phenomenon underlying the behaviour of the system under study. The latter can

be accounted for through the introduction of ad-hoc correcting terms in the numerical

model, that need to be properly estimated. Thus, reducing the epistemic uncertainty can

be done through parameters estimation approaches. This is usually done using optimal

control techniques, leading to an optimisation of a well chosen cost function which is

typically built as a comparison with reference observations. An application of such an

approach, in the context of ocean circulation modelling, is the estimation of ocean bottom

friction parameters, as done in [2, 3, 4]. Moreover, as such studies are often performed

at a coastal and regional scale, those models are often designed with open boundary

conditions, and require external forcings, such as tidal and wind forcing. Those are then

a source of aleatoric uncertainties, that should be taken into account as in [5].

If we overlook the aleatoric uncertainties by choosing a specific outcome, the opti-

mal control of the parameters to be estimated can lead to localized optimisation [6] and

overcalibration, that is choosing a value that is optimal for the given situation. This

value does not carry the optimality to other situations. In geophysics and especially in

hydrological models, this overcalibration may lead to the appearance of abberations in

the predictions as those uncertainties become prevalent sources of errors. In hydrology,

uncertainties are the principal culprit of the existence of so called “Hydrological mon-

sters” [7], that are calibrated models that perform really badly because some uncertainties

in the modelling have been omitted, such as measurements errors. In flood modelling [8],

the aleatoric uncertainty come from the structure of the model, and neglecting those

uncertainties leads to underestimating hazard. In other domains as well, the aleatoric

uncertainties can represent some manufacturing errors or environmental conditions such

as wind direction and speed in wind turbine modelling [9] or atmospheric conditions in

aerospace vehicle design [10], thus they represent an important role in risk management.

It is then crucial to be able to take into account aleatoric uncertainties in optimi-

sation problems. This consideration is called robust optimisation, or also robust design

in [11], or optimisation under uncertainties [12, 13, 14]. Furthermore, the distinction is
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sometimes made between stochastic optimisation and robust optimisation, depending on

the knowledge available on the aleatoric uncertainties.

Let us denote k ∈ K the parameter to be estimated in order to reduce epistemic

uncertainties. We assume that the aleatoric uncertainties can be modelled as a random

vector U whose sample space is U. The probability measure associated with U is PU,

and its density, if it exists, is pU. This distribution is assumed to be known, and that it

is possible to sample from it. This choice is motivated by the fact that in various appli-

cations, the aleatoric uncertainties come from expert knowledge, empirical observations,

or the knowledge acquired using other models, for instance by ensemble assimilation.

However, if it is not the case, [15] provides a comprehensive review of optimisation un-

der uncertainty, especially on the modelling and sampling of the aleatoric uncertainties.

Since the source of the aleatoric uncertainties is considered external, the choice of k does

not have any influence on the distribution of the random variable U, and therefore the

aleatoric and epistemic uncertainties are assumed independent.

The cost function J(k,U) is a random variable in this context. It is most often

defined as the squared norm of a given function G(k,U)

J(k,U) =
1

2
‖G(k,U)‖2 (1)

For instance, in data assimilation, J describes a distance between the output of the

numerical model and given observed data, plus generally some regularization terms. An

example of such a function will be treated Section 4.

For a practical purpose, we assume that for every realisation u ∈ U of U, finding

ku ∈ K that minimises the cost function k 7→ J(k,U = u) is a well-posed problem, and

that the optimum is unique. Additionally, the following assumptions are made: the cost

function is strictly positive, and ∀ k ∈ K, the random variable J(k,U) has finite first-

and second-order moments.

In this paper, we aim at finding k̂ a robust estimator of k. The definition of robustness

differs depending on the context in which it is used. Indeed, one definition of the robust-

ness of an estimate is a measure of the sensibility of said estimate to outliers [16]. This

leads to the introduction of robust norms in data assimilation [17]. In a Bayesian frame-

work, robustness may refer to the sensitivity to a wrong specification of the priors [18].
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As the distribution of U is assumed known, we are not going to consider distributional

robustness, which deals with uncertainties on the distribution of U [19].

Throughout this paper, robust has to be understood as satisfactory for a broad range

of u, and/or as insensitive as possible to uncertainties encompassed in U.

The usual practice consists in neglecting the variability of U by setting it to an a

priori value ub. In this case, k̂ is set to the optimum kub of J(k,U = ub). There is

no guarantee on the performance of k̂ if the calibrated model is used for predictions, as

the estimated value will compensate the error made by a possibly wrong specification of

ub: this may be a case of overcalibration In a data assimilation context, this situation

appears if ub does not properly represent the conditions in which the observations have

been obtained.

Another strategy, that consists in minimising J over the joint space K × U, is not

always possible or relevant. Indeed, joint optimisation increases the complexity of the

optimisation, and the computed estimation of k̂ has no reason to be robust in the end:

this kind of method does not take into consideration the intrinsic variability of the en-

vironmental variable. The worst-case approach [20] is another popular method, and is

based on the minimisation with respect to k of the maximum of the cost function for

u ∈ U: mink maxu J(k,U = u). This approach may yield over-conservative solutions,

and does not take into account the random nature of U.

Accounting for the probabilistic nature of U leads to study the distribution of the

random variable J(k,U), or the distribution of its minimisers kU. The latter is referred

as the distribution of the conditional minimisers, notion that appeared notably in [21] and

in [22] for a global optimisation purpose. Both approaches and related robust estimates

are described in Section 2. Section 3 introduces a new class of estimators, by relaxing the

constraint of optimality and defining regions of acceptability, similarly as [23] in discrete

combinatorial problems, or [24, 25] in operations research. The rationale behind this

relaxation is to be able to construct an estimate k̂ which produces values of the cost

function close enough from the minimal cost attainable given the configuration induced

by u ∈ U, with high enough probability. This similarity will be measured using the

relative regret. By adjusting either the relaxation or the confidence level, we can then

define the RRE, the relative-regret family estimators. Illustration of the various described
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methods are given on a numerical example in Section 4.

2. Classical robust estimators

As mentioned before, robustness can be understood as satisfactory for a broad range

of u, and/or as insensitive as possible to uncertainties encompassed in U. Under this

definition, one may design robust estimators of k, either by using the moments of the

cost function; or by exploiting the distribution of its minimisers.

2.1. Optimisation of the moments

Let us define µ(k) and σ2(k), the expected value and the variance of the cost variable

for a given k as

µ(k) = EU [J(k,U)] =

∫
U
J(k,u)pU(u) du (2)

σ2(k) = VarU [J(k,U)] =

∫
U

(J(k,u)− µ(k))
2
pU(u) du (3)

Minimising the expectation leads to the estimate kE defined by:

kE = arg min
k∈K

µ(k) (4)

In order to take into account the spread around the mean value, one can choose to

minimise the variance, leading to kV:

kV = arg min
k∈K

σ2(k) (5)

A lot of different methods are readily available to solve these minimisation problems.

For instance, stochastic Sample Approximation [26, 27] is based on a finite and fixed set

of samples {ui}i=1...N of U. The estimations at a given k are computed using standard

Monte Carlo, resulting in the following optimisation problems:

k̂E = arg min
k∈K

N∑
i=1

J(k,ui) (6)

and

k̂V = arg min
k∈K

N∑
i=1

J(k,ui)−
N∑
j=1

J(k,uj)

2

(7)
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If computationally affordable, one can perform these estimations on a regular grid

on K× U. In case of expensive computer code, one can build a meta model to ease the

minimisation, such as Gaussian processes [28]. Even though kE is a reasonable choice,

there is no guarantee that J(kE,U = u) will not reach catastrophic level for some u.

On the other hand, using kV will ensure stability of the cost function, but without any

control of its performance. Ideally, one would want to have a small expectation and a

small variance at the same time. Multi-objective optimisation is a proper tool to deal

with these simultaneous and sometimes concurrent objectives, for exemple by computing

the Pareto front of
(
µ(k), σ2(k)

)
as done in [29].

As the computation of this Pareto front is usually hard and expensive, alternative

strategies based on the minimisation of a scalarized version of the vector of objectives

are often considered. Some are based on a weighted sum of the objectives, as presented

in [30] and in [31], while some others are based on the minimisation of one of the objectives

under constraints on the others, as performed in [32]. Both of these methods are based

on an delicate choice of weights or of constraints before any computation. This choice

relies heavily on a knowledge of the properties of the cost function.

To summarise, even though the notions of mean and variance are quite easily under-

stood, getting a satisfactory estimator is not that straightforward. One could instead

consider how often a particular value k is a minimiser of the cost function, leading to the

notion of most probable estimate, as explained in the next subsection.

2.2. Most probable estimate

Let us consider the minimal cost attainable in each configuration brought by u. The

resulting conditional minimum is denoted J∗:

J∗ : u ∈ U 7−→ J∗(u) = min
k∈K

J(k,U = u) (8)

Similarly, the function of conditional minimisers can then defined by:

k∗ : u ∈ U 7−→ k∗(u) = ku = arg min
k∈K

J(k,U = u) (9)

Using this function, we can define the corresponding random variable K∗ as

K∗ = k∗(U), (10)
6



and its associated density function pK∗(k), that will be further referred as the density

of minimisers. The mode of this density is called the Most Probable Estimate (MPE)

and is noted kMPE:

kMPE = arg max
k∈K

pK∗(k) (11)

To give some intuition on this estimate, let us imagine that the distribution of min-

imisers is a dirac centered on kMPE. Then it would mean that this estimate is the

minimiser of the cost function whatever the realisation of the uncertain variable, there-

fore optimal in all conditions. If the distribution pK∗ is heavily dominated by a single

value, the MPE may be a good candidate for robust control. This is not so obvious in

the case of a multimodal distribution.

In general, an analytical form of pK∗ is impossible to obtain, so an estimation p̂K∗

must be used, and its maximum computed to get the MPE. In the rest of the paper,

the hat notation will indicate an estimation using numerical values of the underlying

theoretical quantity. Once again, a set of samples {ui}i=1...N can be used to compute

the set {kui}i=1...N , from which one can approximate pK∗ . The resulting approximation

and therefore its mode, is sensitive to the density estimation method. Main methods are

KDE (Kernel Density Estimation) [33], and EM (Expectation-Maximisation) [34].

KDE is a non-parametric estimation technique based on the use of a kernel function

f . Assuming an isotropic kernel, the estimation has the following form:

p̂K∗(k) =
1

NhdimK

N∑
i=1

f

(
k− kui

h

)
(12)

where h is the bandwidth. In a multidimensional setting, one usually consider a

kernel based on the product of 1D kernels, applied independently to all components:

f(k) =
∏dimK
j=1 f1D(k(j)) where k(j) is the j-th component of k. There is wide choice of

available f1D, and a popular choice is the Gaussian kernel f1D(x) = 1√
2π

exp(−x2/2).

The EM algorithm can also be used to estimate the density, by minimising the statis-

tical distance between the empirical distribution and a mixture of ν Gaussian densities.

The estimation has then the following form:

p̂K∗(k) =

ν∑
i=1

πiφ(k; mi,Σi) (13)
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where φ(·; m,Σ) is the probability density function of the normal distribution of mean

m and covariance matrix Σ, and {πi}i=1...ν are the mixing coefficients.

In practice, despite the fact that those methods are well established, using them in

a plug-in approach has some flaws. One of the basic assumption of density estimation

is to assume that K∗ is a continuous random variable, hypothesis that may be violated.

Worse, the notion of mode is not well defined when the distribution of the minimisers

is a discrete-continuous mixture. This may result in inconsistent estimations of k̂MPE

when using different methods as illustrated in next subsection.

2.3. Numerical illustration

Before going further in the explanation of our approach, let us illustrate the nature

of previously detailed estimators, k̂E, k̂V and k̂MPE on two analytical cost functions.

These functions are based on the Branin-Hoo’s function, slightly modified to ensure

strict positivity:

BH(x1, x2) =
1

51.95

[(
x̄2 −

5.1x̄21
4π2

+
5x̄1
π
− 6

)2

+

(
10− 10

8π

)
cos(x̄1)− 44.81

]
+ 2

(14)

with x̄1 = 3x1 − 5, x̄2 = 3x2

Using Eq. (14), we define the two cost functions on K× U = [0, 5]× [0, 5] as:

JBH : (k,u) 7→ BH(k,u) (15)

JBHswap : (k,u) 7→ BH(u,k) (16)

Even though the functions are quite similar, the asymmetric roles of k and u cause

different behaviour in the estimations.

The random variable U is assumed to be uniformly distributed over U. The estima-

tions are based on a 1000× 1000 regular grid over K×U. Both cost functions are shown

on the top of Figure 1.

The left (resp. right) column stands for JBH (resp. JBHswap). Functions µ(k) and

σ(k) are drawn on the bottom row, respectively in purple and green. The corresponding

minimisers k̂E and k̂V are also plotted. On this figure, we can observe that k̂E and k̂V

are close for JBH, while being significantly different for JBHswap.
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Figure 1: The left column concerns JBH, while the right one deals with JBHswap. Contours of both

functions are plotted on the top, and curves of µ(k) and σ(k) are shown on the bottom (respective scales

are not displayed). Estimates k̂E and k̂V are plotted with the dashed line.

Similarly, estimations of k̂MPE are depicted on Figure 2. The top row shows the

contours of both functions as well as the set of conditional minimisers {kui}1≤i≤N in red,

as defined in Eq. (9). The bottom row presents three approximations of the density of

minimisers: the histogram in grey (bin size selected using Freedman-Diaconis from [35]),

the result of a kernel density estimation (KDE) with Gaussian kernels in red (using

Scott’s rule from [36] for bandwidth selection), and the estimation by a Gaussian mixture,

calculated with the EM algorithm. The number of Gaussians has been fixed to 3, a guess

based on the general shape of the histogram. Respective estimations of k̂MPE are also

depicted using dashed lines.

For JBHswap, we can observe that those three methods give consistent results, as

k̂MPE,KDE = k̂MPE,EM = k̂MPE,histogram ≈ 0.8. This is not the case for JBH: using

Kernel density estimation (Gaussian), the estimation of kMPE is k̂MPE,KDE ≈ 1.5, while

using the histogram and Gaussian mixture, k̂MPE,histogram = k̂MPE,EM = 3.8.
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Figure 2: Top Left: JBH along with conditional minimisers in red. Bottom left: Estimated densities

using KDE and EM algorithm and the histogram. The dashed lines indicate the MPE found using those

methods. Right: Same quantities with JBHswap.

This difference is explained by the accumulation of minimisers at this point: this

challenges the assumption that K∗ is continuous. As the density estimation techniques

traditionally assume this continuity, the EM algorithm fits this using a normal distri-

bution with a very small variance, while the KDE considers a sum of Gaussian kernels

of constant bandwidth, located at the same point. This particular problem highlights

an issue with kMPE, as its estimation is possibly sensitive to the density approximation

procedure.

Instead of just considering the optimal minimisers, we introduce a bit of leeway,

and look for “acceptably not optimal” parameters. This slackness takes the form of a

relaxation coefficient and its choice defines a new family of robust estimators, where each

one of its member carries information on its robustness through this coefficient.
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3. Relative regret-based family of estimators

3.1. Relaxing the optimality constraint

The density of minimisers has been estimated by optimising k 7→ J(k,U = u) over

K for different realisations of u. Instead of focusing on optimal values, we propose to

construct an acceptable neighbourhood in terms of performances of the cost function as

well. In order to do so, we are going to introduce a relaxation coefficient α ≥ 1, and

given u ∈ U, we say that k ∈ K is acceptable when J(k,U = u) ≤ αJ∗(u). Using the

strict positivity of the objective function, we can define the relative-regret as the ratio

J(k,U = u)/J∗(u), and the acceptability of k will then be tied to the maximal value

taken by this ratio.

In this context, for a given k, the set Rα(k) ⊆ U is defined as the set of u, for which

k is acceptable:

Rα(k) = {u ∈ U | J(k,u) ≤ αJ∗(u)} (17)

Figure 3 details the successive steps for the construction of the set Rα. First, the

conditional minimisers are computed, as shown on the top plots. Afterwards, for a given

level α = 1.5, the set of acceptable k can be identified for each u ∈ U, as shown on the

bottom left plot. Finally, the region Rα(k) is the subset of U for which k is acceptable,

as represented with a vertical slice on the bottom right plot.

Introducing the random nature of U, one can define Γα(k) as the probability that k

is acceptable given α:

Γα(k) = PU [U ∈ Rα(k)] = PU [J(k,U) ≤ αJ∗(U)] (18)

In other words, Γα(k) is the probability that J(k,U) is between J∗(U) and αJ∗(U).

Noting that without relaxation, i.e. when α is set to 1, Γ1 is non-zero if the set

{u ∈ U | J(k,U = u) = J∗(u)} has non-zero measure with respect to PU. It happens

when the distribution of K∗ presents atoms.

This linked to the definition of the distribution of the minimisers K∗. For instance,

if K is a discrete set, K∗ is a discrete random variable, and we can rewrite Γ1 as Γ1(k) =

PU [J(k,U) = J∗(U)] = PU [k = k∗(U)] which is the probability mass function of K∗.

The motivation behind this relaxation is to take into account the local behaviour

of the function around the conditional minimisers. For a given set of environmental
11
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Figure 3: Principle of the relaxation of the constraint on JBH, and illustration of Rα(k). Top plots:

Computation of the conditional minimisers k∗(u). Top right plot: the set (k∗(u),u) of conditional

minimisers is represented in red. On the bottom left plot, for a relaxation α = 1.5, and u = 3, the

acceptable k are in cyan, while the non-acceptable ones are in orange, while the frontier {(k∗(u),u) |
J∗(u) = J(k,U = u)} is in yellow. On the bottom right plot, the set Rα(k) for α = 1.5 and k = 1.5 is

in green.

conditions u, if the function k 7→ J(k,U = u) is flat around its minimum k∗(u), then

choosing k∗(u) + ε (for a small ε) will produce a value closer to the minimum than when

the function has a high curvature.
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We consider in this work exclusively a multiplicative relaxation, instead of an additive

one in the form J(k,u) ≤ J∗(u) + β for β > 0. Both formulations of the regret: the

additive J − J∗ and the relative J/J∗, take into account the value of the conditional

minimum J∗(u), but relative regret allow us to scale the region of acceptable points with

respect to the best situation available: if J∗(u) is close to 0, the region of acceptable

points will grow slowly, so at a given α, we put emphasis on k∗(u). On the other hand,

if J∗(u) is large, it means that tuning the parameter to k∗(u) will not lead to very good

performances of the cost function anyway. We can then put less weight on this value

k∗(u) in the estimation, hence the region of acceptability that grows quickly. Finally, the

relative regret is a normalized quantity, in constrast to the additive regret, which shares

the same unit as J . This normalization, as well as the direct relation to the relative error
J−J∗

J∗ allows for an interpretation of the relaxation as a fraction of error.

The choice of the relaxation constant α can be made to ensure the existence of a

parameter that is “acceptable” with a certain probability. For instance, given that J > 0,

Γα(k) is increasing with respect to α for any k ∈ K. We can then focus on the smallest

value of α such that Γα reaches a certain level of confidence p ∈ [0, 1]. This leads to the

definition of αp

αp = inf {α ≥ 1 | ∃kp ∈ K, Γα(kp) ≥ p}

= inf

{
α ≥ 1 | max

k∈K
Γα(k) ≥ p

}
(19)

Rewriting the equation above, we can express αp as the solution of the following

chance constrained problem min q

s.t. maxk PU

[
J(k,U)
J∗(U) ≤ q

]
≥ p

(20)

that is the smallest α, such that there exists a particular kp ∈ K for which J(kp,U) ≤
αpJ

∗(U) with probability p. As highlighted by the formulation of Eq. (20), kp and αp are

the result of the optimisation of the Value-at-Risk of the random variable J(k,U)/J∗(U),

which is a measure of risk usually applied in the financial sector (see [37]). In this spirit,

when choosing kp, the relative error of the function J will be less than αp with probability

p. The maximal relative regret of the function will be αp, except for the 100(1 − p)%
least favourable cases.
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The set of maximisers of Γαp for different p: {kp for p ∈ [0; 1]} is what we are calling

the relative-regret family of estimators RRE.

Figure 4 shows examples of Γαp for JBHswap, at different levels p, and the associated

estimates of the RRE. We can see that changing the level p shifts the maximiser of Γαp .

Since k1 is located quite far from the conditional minimisers, it arises as a compromise

when the relaxation is large enough.

0 1 2 3 4 5
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0.4

0.6

0.8

1.0

Γ
α

k1k0.8k0.6

Illustration of the probability Γαp for different p
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Γα(k), α = α1

Γα(k), α = α0.8

Γα(k), α = α0.6

Figure 4: Illustration of the influence of different levels p on Γαp and on kp for JBHswap. When p

increases, Γαp increases as well.

We have then introduced the RRE, a family of estimators among which we can choose

either large level of confidence p i.e. a large robustness as we are controlling the relative

regret for a large fraction of possible configurations, or we can look for almost optimal

performances albeit for a more reduced number of situations. Those quantities require

the evaluation and optimisation of probabilities, so solving such a problem can be quite

challenging. Moreover, the choice of a member of the RRE, that is the choice of a level

of confidence p is also up to the modeller.

3.2. Choice and computation of the relaxation coefficient

3.2.1. Almost-surely bounded relative-regret

Let us first consider that we want to satisfy the chance constraint of Eq. (20) almost

surely: this is the particular case of p = 1. Given the strict positivity of J , the choice

of such a level of confidence is possible only if there exists a k such that the ratio
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J(k,U)/J∗(U) is bounded almost surely, and α1 is the solution of the (almost-surely)

chance constrained problem: min q

s.t. mink
J(k,U)
J∗(U) ≤ q a.s.

(21)

thus, k1 verifies

PU

[
J(k1,U)

J∗(U)
≤ α1

]
= 1 ⇐⇒ J(k1,U)

J∗(U)
≤ α1 a.s. (22)

Under the assumption that J(k, ·) is continuous for all k, this is equivalent to ap-

proaching this problem using uncertain sets to model the uncertain nature of U:

J(k1,u)

J∗(u)
≤ α1 ∀u ∈ U (23)

it follows then that

α1 = max
u∈U

J(k1,U = u)

J∗(u)
= min

k∈K

{
max
u∈U

J(k,U = u)

J∗(u)

}
(24)

This can then be linked to Savage’s minimax approach [38], which consists in a worst-

case approach for the additive regret J − J∗, when in Eq. (24) we look to minimise the

worst-case scenario in terms of the ratio.

Using Sample Average Approximation (SAA), based onN i.i.d. samples of U: {ui}1≤i≤N ,

we can reformulate the problem Eq. (21) as min q

s.t. mink
J(k,ui)
J∗(ui)

≤ q for 1 ≤ i ≤ N
(25)

For a solution α̂1 of Eq. (25), as SAA acts as a relaxation of the initial problem

Eq. (21), the solution found acts as lower bound on the true value α1: α̂1 ≤ α1.

Moreover, this estimated value α̂1 can be used for the estimation of the relaxation

constant for a level p close to 1. Using Clopper-Pearson intervals [39, 40], if α̂1 is a

solution of Eq. (25), it is also a feasible solution of Eq. (20) at a level p =
(
η
2

)1/N with

probability 1− η: α̂1 is then a probabilistic upper bound on α
( η2 )

1
N
.

α̂1 ∈
[
α

( η2 )
1/N , α1

]
with probability 1− η (26)
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The estimated value α̂1 will then be optimistic in the sense that it will underestimate

the true value α1. We can however control this approximation using the probabilistic

bound lower bound of Eq. (26)

Choosing a level of confidence p = 1 suffers from the same pitfall as the worst-case

approach, as it may return over-conservative solutions, provided that a solution exists in

the first place.

3.2.2. Estimation of RRE

We are now going to focus on the more general case, where we can choose: to fix

p ≤ 1 and deduce αp, or to set a maximal threshold α and maximise the measure of the

acceptable region, or finally to find a compromise p and αp in order to keep the latter

not too large.

A first approach is to set α, and then to estimate the function k 7→ Γα(k) as defined

in Eq. (17). For instance, when N samples from U are available, namely {ui}1≤i≤N , a

possible estimate of Γα is

Γ̂α(k) =
Card

{
ui | J(k,U = ui) ≤ αJ∗(ui)

}
N

=
1

N

N∑
i=1

1{J(k,U=ui)≤αJ∗(ui)} (27)

This expression is maximised with respect to k, giving p̂ = maxk Γ̂α(k). We can also

provide a confidence interval for the true value of Γα(k) where k = arg max Γ̂α.

However, unless the modeller has some precise idea of desired relaxation, doing so

may lead to an unsatisfactory pairing of α and p. Indeed if α is chosen too small, the

resulting p̂ = maxk Γ̂α(k) will be also small, meaning that the cost function will have

non acceptable values with high probability.

Similarly, if p is fixed, the corresponding α̂p is computed by searching for the smallest

α satisfying maxk Γ̂α(k) = p, or equivalently, by minimizing the quantile of order p of the

relative-regret, which is the ratio J/J∗. Once again, if α̂p is too large, the cost function

may not be controlled enough for the contemplated application.

Looking for a compromise between p and α would be preferable. This could be

achieved by studying p 7→ αp, and particularly its slope. If this curve presents a steep

increase, the multiplicative constant αp must be increased by a large amount in order to

increase the probability p by a small amount. Interesting couples (p, αp) would then be

the ones located before an abrupt increase of the slope of p 7→ αp.
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Another possibility is to model this compromise by the ratio (p/αp), as it increases

with respect to p and decreases with respect to αp. The level of confidence pratio is then

defined as the maximiser of p 7→ p/αp.

3.3. Numerical Illustration

In this Section, we will compare the different estimators introduced previously and

summarised in Table 1 on JBH and JBHswap.

Definition Related quantities Interpretation

arg min k∈K EU [J(k,U)] kE Long run performances

arg min k∈K VarU [J(k,U)] kV Steady performances

arg max k∈K pK∗(k) kMPE Most probable minimiser

inf {α | ∃kp ∈ K, Γα(kp) ≥ p} (p,kp, αp) Acceptable values

with fixed probability p

pratio = arg max p/αp (pratio,kratio, αratio) Maximal ratio of p and αp

Table 1: Robust estimators, based on a cost function J

As stated before, we chose to model the uncertainties as a random variable uniformly

distributed on U. The bounded nature of U allows us to consider members of the RRE

up to a level of confidence p = 1. From now on, k̂MPE is estimated using KDE with

Gaussian kernels.

The smallest estimated relaxation α̂1 and the corresponding k̂1 has been computed for

JBH and JBHswap, using a regular grid of 1000×1000 points on K×U. The contour plots

of those functions can be seen in the top plots of Figure 5. The frontier corresponding

to the couples of points (k,u) verifying {J(k,U = u) = αJ∗(u)} has been drawn on

top of these contour plots, for α = α̂1 and an arbitrary α = 1.5 < α̂1 to illustrate the

effect of the acceptable region when the relaxation α changes. On the bottom plots, the

curves k 7→ Γ̂α(k) for α = α̂1 and α = 1.5 along with the histograms of the minimisers

are represented.

One can notice that the relaxation allows us to avoid the issue brought by the accu-

mulation of the minimisers of JBH at 3.8, as opposed to the MPE and its dependence on

the estimation procedure of the distribution.
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Figure 5: Top: JBH and JBHswap contours. The thick yellow lines are the boundaries of the acceptable

region defined for α̂1, the thick orange are for α = 1.5. The red dashed line is the estimation k̂1. Bottom:

Γ̂α for α = 1.5 and α = α̂1, and estimated density of the minimisers.

In order to choose a satisfying level of confidence p, we are going to study p 7→ α̂p

and p 7→ p/α̂p, as described in Section 3.2.

The plot of p 7→ α̂p for JBH on Figure 6 shows what seems to be a piecewise linear

behaviour. The last change of slope, i.e. for p ≈ 0.9 corresponds to a local maximum

of the ratio, while the first change of slope at p̂ratio = 0.654 corresponds to the global
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maximum of the ratio. The RRE will then be evaluated for both of these values, as well

as p = 1 for reference.
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Figure 6: Evolution of the couples (p, αp) and corresponding ratio p/αp for JBH. The dashed line

indicates the level p associated with the highest ratio

For JBH, the numerical values of the robust estimators can be found in Table 2. For

this particular problem, the different estimates are close to each other.

Table 2: Estimation performed for JBH, sorted by value

Estimate Value

k̂V 1.371

k̂p, p = 1 1.557

k̂E 1.587

k̂MPE 1.628

k̂ratio, p̂ratio = 0.654 1.637

k̂p, p = 0.90 1.797

Practically speaking, in order to compare the effective values taken by the objective

function given an estimate k̂ we are going to consider the functions u 7→ J(k̂,U = u),

that we will call “profiles of k̂”. Those profiles are well suited for the representation of
19



the cost function for an estimate k̂ fixed as the uncertain variable is modelled with a 1D

uniform random variable.

For JBH, the curves are plotted in Figure 7.
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Figure 7: Profiles of the different estimates for JBH, corresponding to the vertical cross sections of the

contour. The shaded region corresponds to the interval [J∗(u), α̂1J∗(u)]. The profiles of k̂MPE and

k̂ratio coincide in this case

By construction, the profile of k̂1 is always within the shaded region, corresponding

to [J∗(u), α̂1J
∗(u)]. The profile of k̂E in contrast, exceeds α̂1J

∗(u) for u close to 5, while

the profile of k̂V does it for u close to 0. Except for k̂V, the different estimators give

somewhat comparable results.

By contrast, JBHswap will show a different behaviour as Figure 8 provides the plots

of p 7→ α̂p and p 7→ p/α̂p.

Compared to the similar plots for JBH in Figure 6, α̂p exhibits a smoother behaviour
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Figure 8: Evolution of the couples (p, αp) and corresponding ratio p/αp for JBHswap. The dashed line

indicates the level p associated with the highest ratio

for JBHswap as no abrupt change of slope is easily discernable and the ratio presents a

unique maximum for p̂ratio = 0.766. The numerical values of the estimations k̂ presented

in Table 3 show that, contrary to JBH, the calibrated values are more spread over K.

Table 3: Estimations performed for JBHswap, sorted by value

Estimate Value

k̂MPE 0.606

k̂ratio, p̂ratio = 0.766 1.537

k̂E 1.752

k̂V 2.638

k̂1, p = 1 2.798

Profiles of the different estimates of JBHswap are shown in Figure 9.

In this case, k̂MPE, k̂E and k̂ratio present a similar behaviour. They perform very

well for u > 2, especially for k̂MPE which is very close to the minimal value; however

for u < 2, they produce high values of the function. The performances of k̂1 are closer

to the performances of k̂V for this function, but it performs worse than k̂E and k̂V for
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Figure 9: Profiles of the different estimates for JBHswap. Those profiles are the vertical cross sections of

the contours above. The shaded region corresponds to the interval [J∗(u), α̂1J∗(u)]

u > 2, even though its range is designed to stay within the interval [J∗(u); α̂1J
∗(u)].

We have seen how some classical robust estimators and the RRE behave on two

different analytical problems. In addition to the usual levels of confidence such as 90%

and 95%, one can also settle for an ad-hoc compromise, where p maximises the ratio

p/αp. When the sample space of U is bounded, a conservative solution is to set p = 1.

We are now going to see how can robust minimisation is applied on the calibration of a

numerical model.

22



4. Robust calibration of a numerical model

4.1. Calibration of a toy numerical model

We will follow the approach described in [41] in order to establish the function G
described in the first section in Eq. (1), and the resulting cost function J .

The calibration of a numerical model is usually based on the comparison between

the numerical model and some observations, during a fixed time interval [0, T ] called

assimilation window. The modelled physical system can be seen as a map from U to

Y, the space of observations, denoted as Mo : u 7→ Mo(u), where u ∈ U is an input

representing some environmental conditions. The observation mentioned above is the

output of the physical system during the time-window, and is denoted byMo(utrue) ∈ Y,

where utrue ∈ U is unknown.

In addition of u, the numerical modelM depends on some other input k ∈ K. This

additional parametrization comes usually from the successive simplifications needed to

implement a numerical model of the observed physical system. k needs to be calibrated

accordingly, so that the numerical model can be used to predict the behaviour of the

physical system under different operating conditions.

The misfit G is defined as the difference between the numerical model and the obser-

vation. Choosing a squared norm, the cost function J defined in Eq. (1) is

J(k,U = u) =
1

2
‖G(k,u)‖2 =

1

2
‖M(k,u)−Mo(utrue)‖2 (28)

4.2. The Shallow Water equations

The model to calibrate is an implementation of the 1D Shallow Water equations,

described in Eq. (29), where h is the height of the water column, q the discharge, and

z the bathymetry, while g is the usual gravitation constant. The parameter to calibrate

k is the quadratic friction term, proportional to the square of the inverse of Manning-

Strickler coefficient. The environmental parameter u is the amplitude of a sine wave of

period 1/ω0. The domain of those two parameters are K = [0.0, 1.3] and U = [0.5, 0.7].
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

∂th+ ∂xq = 0

∂tq + ∂x

(
q2

h + g
2h

2
)

= −gh∂xz − kq|q|h−7/3

h(0, t) = 20.0 + 3 · sin
(
2πt
2

)
+ 1.5 · u · sin

(
2πt
ω0

)
∂xq(0, t) = 0

(29)

These equations are integrated using a finite-volume scheme on a discretized domain

[0, L], up to a time T . The output of the computer code is the sea surface height h, on the

center of all the volumes and at all the time-steps, that will be denotedM(k,u; ω0 = 1.0).

In this setting, the random variable U is uniformly distributed on U.

To generate the observation, we set utrue = 2/3, and defineMo based on the computer

model M, such that Mo(utrue) = M(ktrue,utrue; ω0 = 0.999). ω0 represents here the

uncontrollable error between the observations and the numerical model and will now be

omitted systematically in the notation.

The true value of the bottom friction ktrue = (ktrue1 , ktrue2 , . . . , ktrueNvol
) is not constant

over the whole domain, and is defined as

ktruei = 0.2 ·
(

1 + sin

(
2πxi
L

))
(30)

where xi is the center of the i-th volume. The two sources of systematic errors

are the one-dimensionality of K, and ω0. Given this setting, there exists no couple

(k,u) ∈ K × U reproducing exactly the observations, thus the cost function will always

be strictly positive.

4.3. Computation of the robust estimates

As the numerical model is expensive to run, it has first been evaluated on a relatively

small regular grid covering K × U, and a metamodel based on Gaussian processes is

constructed using those initial evaluations. In order to better capture the locus of the

conditional minimisers {(k∗(u),u) | u ∈ U}, we select points maximising the PEI crite-

rion [42, 43] in order to add points to the design that improve the metamodel accuracy

close to the conditional minimisers. Afterwards, a bigger regular grid is evaluated by the

metamodel once the design space has been sufficiently explored, and these computations

are used to calibrate the model.
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The different steps of the estimation are illustrated Figure 10, where the top plot

shows the contour plot of J , with the conditional minimisers and the RRE of level p = 1.

On the middle plot are shown the conditional moments, k̂E and k̂V and the estimated

density of the minimisers. At the bottom of the Figure, Γ̂αp are represented for different

levels p. As U is bounded, p = 1 is attainable, and k̂1 is evaluated.
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Figure 10: Procedure of robust calibration for the shallow water problem. Top: contours of J , conditional

minimisers and {(k,U = u)|J(k,u) = α̂1J∗(u)}. Middle: Conditional moments and histogram and KDE

of the conditional minimisers. Bottom: Γ̂αp for different levels p

We can see that the different estimations seem less problematic for this problem than

for the analytical examples shown in Section 3.3, as everything appears to be very smooth

and unimodal.
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Looking at p 7→ αp and p 7→ p/αp on Figure 11, we can see that αp evolves almost

linearly for p > 0.5, and that the ratio p/αp is monotonically increasing, so that the

maximal ratio is found for p = 1.
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Figure 11: Evolution of αp for different levels p, and ratio, for the shallow water problem

The different estimates take a wide range of values, as seen on Table 4, from 0.249

to almost 1.0, while ktruei ∈ [0, 0.4] for 1 ≤ i ≤ Nvol. It can be noted that the calibration

may lead to values outside the range given by the true ones. This can be interpreted

as the fact that the calibration look to compensate for errors on ω0. As a basis for

comparison, the global minimiser of J over K × U has also been computed, and k̂global

is then obtained by discarding the u value.

Similarly as for JBH and JBHswap, the profiles are depicted Figure 12.

We can see that the performances of k̂1 and k̂E are very similar, but k̂1 has better

performances when u > 0.6. When comparing with the global optimiser k̂global, k̂1

performs better when u < 0.625, so more than half of the time. We are now going to

compare how well some of those calibrated values compare in a forecast context.

4.4. Assessing the quality of the forecast of the calibrated model

For the calibration, the model has been integrated on a time-period [0, T ], called

assimilation window, and have been compared with the observation of the sea water
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Table 4: Calibrated values of k according to different criteria, for the shallow water problem

Estimate Value

k̂MPE 0.249

k̂global 0.290

k̂p, p = 1 0.423

k̂p, p = 0.90 0.458

k̂E 0.501

k̂p, p = 0.80 0.505

k̂p, p = 0.70 0.560

k̂V 0.990
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Figure 12: Profiles for the calibration problem, for the shallow water case

height on the same time-period. We now want to compare the quality of the different

forecasts originating from different calibrated bottom frictions. Those forecasts result
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from the integration of the numerical model between the time T and a time Tpred: the

forecast window.

Given the probabilistic nature of the environmental conditions U, the forecasts will

also be probabilistic. We will then compare Mo
pred(U) and Mpred(k,U), that are the

observation, and the numerical model on the forecast window for a calibrated k.

Two metrics will be computed: the squared forecast error, and the Continuous Ranked

Probability Score (CRPS) [44]. The parameters satisfying a robust criterion that are

compared are the minimiser of the expectation k̂E, the minimiser of the variance k̂V and

the relative regret of level p = 1, k̂1 as described in the previous section. We will also

feature the global minimiser k̂global, and the conditional minimisers k̂∗(ui) where the

chosen environmental variables are {ui}1≤i≤4 = {0.5, 0.55, 0.65, 0.7}. Those values, even

though they do not meet a robustness criterion, are introduced in order to have a more

precise idea on the possible performances of a deterministic version of the calibration

problem. The conditional minimiser k̂∗(0.6) has been omitted as it results in a value

very similar to the minimum of the expectation.

4.4.1. Squared forecast error

A first simple approach to measure the forecast quality is to take the squared difference

between the numerical model and the observation for two samples of U. Given two

environmental conditions u and u′ ∈ U, the former used to run the computer simulation

and the latter to generate the observations, the squared forecast error for the parameter

k is

Spred(k,u,u′) =
(
Mpred(k,u)−Mo

pred(u′)
)2 (31)

Averaging over both u and u′ defines the mean squared forecast error, defined on

every point of the spatial domain, and at every time-steps. This can be done using

a Monte-Carlo approximation. As u and u′ are i.i.d., assuming that we have a set of

samples {ui}1≤i≤Nu , the squared forecast error can then be approximated:

S(k) =
1

N2
u

Nu∑
i=1

Nu∑
j=1

Spred(k,ui,uj) =
1

N2
u

Nu∑
i=1

Nu∑
j=1

(
Mpred(k,ui)−Mo

pred(uj)
)2 (32)
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The mean squared forecast error averaged over the whole space and over all the time-

steps gives an indication on the overall prediction quality of the prediction given this

metric, and are represented on the right of Figure 13. We can see that k̂global performs

slightly better than k̂1, itself performing slightly better than k̂E. Averaging S(k̂) over the

time steps between T and Tpred, we have an indication on the quality of the forecast in

the squared sense depending on the spatial coordinate x, as seen on the left of Figure 13.
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Figure 13: Squared forecast error for the shallow water case, depending on the calibrated parameter.

The left figure shows the squared error time-averaged as a function of the spatial coordinate x, while the

right barplot shows the relative change of the mean forecast error, averaged over time and space, taken

w.r.t. to the best attained performance for k∗(0.7)

We can see that the mean forecast error squared, on the right side, averaged over

time and space is the smallest for the conditional minimisers k̂∗(0.7) and k̂∗(0.65), then

k̂global, while k̂1.0 performs slightly better than k̂E.

It may seem surprising that some parameters calibrated without a robustness aspect

perform better than k̂1 and k̂E, but their performances are largely dependent on the

choice of u and their associated conditional minimisers. Good forecasts can be achieved
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as well as bad ones, as shown for u = 0.5, that leads to bad forecasts.

One issue with the squared forecast error is that it will penalize strongly the forecasts

that present high variability with respect to the environmental conditions. A way to deal

with this is to use another metric, that takes the probabilistic nature of the forecasts

into account.

4.4.2. Continuous Ranked Probability Score

Given the random variablesMpred(k̂,U) andMo
pred(U), representing the probabilis-

tic forecast and the probabilistic observations, we can define the cumulative distribu-

tion functions (CDF) Fpred(·, k̂) and F opred(·) The Continuous ranked probability score

(CRPS) measures the squared difference between the predicted CDF Fpred using a cali-

brated value, and the CDF of the observations F opred.

CRPS(k) =

∫
R

(Fpred(ξ,k)− F opred(ξ))2 dξ (33)

The left plot of Figure 14 shows the CRPS averaged over time, where x denotes the

spatial coordinate and the right plot shows the value of the CRPS averaged over time and

space. The difference between the squared forecast error and the CRPS is apparent when

comparing the general trends shared by the different calibrated parameters. According to

the squared error, the sea water height of the physical region x = 4 is not well predicted,

while around x = 8, the predictions are better. On the other hand, according to the

CRPS, the region around x = 8 provide worse forecasts than when x = 4 and x = 7.

Given the properties of the two metrics, we can conclude that the region around x = 4

presents a lot of variability with respect to u, for both the true model and the numerical

one. However, for x ≈ 8, there is a lot less variability, as the low squared error indicates,

but probably a higher bias, due to the systematic errors between the truth and the

numerical model.

The numerical evaluations of the CRPS for different parameters show the same order

of performances observed for the squared error: the calibrated parameters that present

the best performances for forecasts according to those two metrics are k̂∗(0.7), k̂∗(0.65)

which is very similar to k̂global, and then k̂1, and k̂E. This presupposes to know which u

to choose for the conditional minimisation, thus having a strong insight on the value of

the parameters in the first place.
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Figure 14: CRPS computed for different calibrated parameters for the shallow water case. The left figure

shows the CRPS time-averaged as a function of the spatial coordinate x, and the right figure shows the

relative change of the CRPS averaged over time and space, taken with respect to the best attained CRPS

for k∗(0.7)

Conclusion

In this paper, we dealt with a problem of robust calibration, or in other terms, the

robust minimisation of an objective function. To adress this issue, we proposed a new set

of robust estimators: the family of the RRE (Relative-regret estimators), and compared

it in a forecast context to some other robust estimators, for the calibration of the bottom

friction of a shallow water model.

Our approach is based on the comparison of the objective function to the optimal

value it can attain, given a realisation of the uncertain variable. By constraining this

ratio in terms of probability, the modeller can then minimize the frequency at which the

relative error of the objective function will exceed a prescribed threshold. Alternatively,

at a level of confidence p, the associated threshold αp bounds the relative deviation of

the objective function for the proportion p of the most favourable cases. The resulting
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estimate can then be assessed robust, as it corresponds to values of the objective function

as close as possible to the optimal values.

Except for simple analytical examples, the exact evaluation of a member of the RRE

is very expensive computer-wise, not to say impossible. Some bottlenecks appear: the

computations of the conditional minimisers k∗(u) and the minimum J∗(u), that require

very local exploration of K for every u; and the computations of the probability of

overshooting a given bound that depends on J∗(u) (analogous to a probability of failure),

task that requires an efficient exploration of the whole sample space U.

For the calibration of the shallow water model presented in Section 4, we chose to

construct a response surface based on Gaussian processes, which is then used for the

extensive computations. This construction is first based on an initial design, that is

enriched to better capture the locus of the conditional minimisers using the PEI criterion

introduced in [42].

Practically speaking, the estimation of those quantities is very crude, so the computa-

tional cost may be very expensive. As perspective, specific strategies have to be created

in order to carefully select each additional point that will be evaluated, and thus reduce

the amount of evaluations needed of the numerical model. This selection can be based

for instance on sequential design of computer experiments using Gaussian processes [45].

Finally, the models upon which this calibration procedure have been applied are very

simplistic. We plan in the future to apply this to the robust calibration of the bottom

friction of a realistic model of the ocean.
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