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In the work using interval mathematics, we develop knowledge for cardinal numbers from the viewpoint of uncertainty analysis. In the finite non-T 1 topological spaces, the inclusionexclusion formula provide interval estimations for the closure and interior of given sets. This paper introduces a novel approach that combines combinatorial and point-set topology, which leads to a number of results. Among these is the cardinality estimation for the intersection of two open sets that cover a hyperconnected topological space.

In point-set topology, trends of last five decades are connected with investigations of infinite cardinal functions of topological spaces. However, many combinatorial properties of finite topological spaces are in the shadow. Even so, discrete mathematics and combinatorics use finite sets for naturally formulated inclusion-exclusion identities via closure operators [START_REF] Dohmen | Improved Inclusion-Exclusion Identities via Closure Operators[END_REF] and improved Bonferroni inequalities via abstract tubes [START_REF] Dohmen | Improved Bonferroni Inequalities via Abstract Tubes. Inequalities and identities of inclusion-exclusion type[END_REF], [START_REF] Naiman | Inclusion-Exclusion-Bonferroni Identities and Inequalities for Discrete Tube Like Problems via Euler Characteristics[END_REF]. Also, we must emphasize, that characterizations of finite sets yield important results in computational topology (see, e.g., [START_REF] Naimpally | Topology with Applications. Topological spaces via near and far[END_REF], [START_REF] Dochviri | Computer Mathematics. Logical and point-set topological constructions (in Georgian)[END_REF]).

It seems that cardinality counting problems in discrete mathematics and combinatorics began using famous inclusion-exclusion formula. That is, for two given finite sets, we have the well-known view, namely,

card(A ∪ B) = card(A) + card(B) -card(A ∩ B).
This formula is successfully applicable, if we know exact values of cardinalities (see, e.g., [START_REF] Naiman | Inclusion-Exclusion-Bonferroni Identities and Inequalities for Discrete Tube Like Problems via Euler Characteristics[END_REF], [START_REF] Dohmen | Improved Inclusion-Exclusion Identities via Closure Operators[END_REF], [START_REF] Dochviri | Topological Sorting of Finitely Near Sets[END_REF]). However, it is interesting that the evaluation of cardinalities of corresponding sets occurs while we have imprecise information about cardinals of the particular sets. Such a situation arises when we have, for example, so-called big data sets and molecular structures.

Preliminaries

In [START_REF] Moore | Interval Analysis[END_REF], R. Moore developed interval mathematics for computational problems, where parameters of investigating models are uncertain and we are only able to describe parameters by closed interval estimations. In this section, we briefly recall basic operations of interval arithmetic.

Let [START_REF] Moore | Interval Analysis[END_REF], we have following interval arithmetic:

a 1 , a 2 , b 1 , b 2 , x ∈ R. A closed interval of the reals is denoted by [a 1 , a 2 ] = {x ∈ R : a 1 ≤ x ≤ a 2 }. From
(1) [a 1 , a 2 ] + [b 1 , b 2 ] = [a 1 + b 1 , a 2 + b 2 ]; (2) [a 1 , a 2 ] -[b 1 , b 2 ] = [a 1 -b 2 , a 2 -b 1 ]; (3) [a 1 , a 2 ]×[b 1 , b 2 ] = [minP, maxP ], where P = {a 1 b 1 , a 1 b 2 , a 2 b 1 , a 2 b 2 }; (4) If 0 / ∈ [b 1 , b 2 ], then [a1,a2] [b1,b2] = [a 1 , a 2 ] × [ 1 b2 , 1 b1 ].
It should be especially noticed that any real number k is identified with interval [k, k]. Moreover, if a 1 and b 1 are non-negative real numbers then interval multiplication (3) should be change in the following way

[a 1 , a 2 ] × [b 1 , b 2 ] = [a 1 b 1 , a 2 b 2 ]. Also, if a 1 ≥ 0 and b 1 > 0 then the rule (4) can be simplified as following [a1,a2] [b1,b2] = [ a1 b2 , a2 b1 ].
There are established several important computational differences between interval arithmetic from real one, but we do not need more information than we present here about interval mathematics.

In the sequel, the sets of natural and rational numbers are denoted by symbols N and Q, but

N 0 = N ∪ {0}.
For a rational number q ∈ Q we have to use two well-known notations:

⌊q⌋ = max{m ∈ Z|m ≤ q} and ⌈q⌉ = min{n ∈ Z|n ≥ q}.
For topological spaces we use notions from [START_REF] Arkhangel | Fundamentals of General Topology: Problems and Exercises[END_REF]. If O ⊂ X is an open subset of a topological space (X, τ ) then we will write O ∈ τ . The complement of an open set is called to be closed set. The collection of all closed subsets of (X, τ ) we denote by co(τ ). Also, in a finite topological space (X, τ ) denote by cl(A) closure (resp. int(A) interior of) A ⊂ X, which is minimal closed (resp. maximal open) set containing (resp. contained in) a set A.

Recall that a topological space (X, τ ) is T 1 space if and only if {x} is closed set, for every x ∈ X. Therefore, in T 1 space (X, τ ), we have {x} = cl({x}) for every x ∈ X.

For the finite, non-T 1 topological spaces cardinal estimations using closure and interior operators is less lightened part of discrete mathematics.

Naturally, if we know about a set A that both of estimations card(A) ∈

[a 1 , a 2 ] and card(A) ∈ [b 1 , b 2 ] are valid, where [a 1 , a 2 ] ∩ [b 1 , b 2 ] ̸ = {∅} then we should declare card(A) ∈ [max{a 1 , b 1 }, min{a 2 , b 2 }]. Theorem 2.1. Let A ⊂ B be subsets of a set X where card(X) = n and card(A) ∈ [a 1 , a 2 ]. Then card(B) ∈ [a 1 + 1, n -1].
Proof. It is obvious that A ⊂ B implies that card(A) < card(B). Since the minimal value of cardinality of a set A can be equal to a 1 , then a 1 + 1 ≤ card(B). On the other hand we have, B ⊂ X and card(B) < card(X) = n. Hence it can be write card(B) ≤ n -1.

Theorem 2.2. Let A, B and C be finite subsets of a set X such that

C = A × B, card(C) ∈ [c 1 , c 2 ] and card(A) ∈ [a 1 , a 2 ]. Then card(B) ∈ [⌈ c1 a2 ⌉, ⌊ c2 a1 ⌋]. Proof.
Since for Cartesian product C = A×B, we can write following cardinal equality: card(B) = card(C) card(A) , then applying above mentioned operation of the interval division we get card(B)

∈ [ c1 a2 , c2 a1 ] ∩ N 0 = [⌈ c1 a2 ⌉, ⌊ c2 a1 ⌋]. Theorem 2.3. Let X = A ∪ B be a finite set with card(X) ∈ [m, n], but card(A) ∈ [a 1 , a 2 ] and card(B) ∈ [b 1 , b 2 ]. Then card(A ∩ B) ∈ [a 1 + b 1 - n, a 2 + b 2 -m] ∩ N 0 .
Proof. Applying the famous inclusion-exclusion formula, we can write

card(A ∩ B) = card(A) + card(B) -card(A ∪ B) = card(A) + card(B) - [m, n]. By substitution of given cardinal estimations we obtain card(A ∩ B) ∈ [a 1 + b 1 -n, a 2 + b 2 -m] ∩ N 0 .

Main Results

In section, we work with topological spaces which are not even T 1 topologies. Examples of such topological spaces are known in the pointset topology as T 0 and R 0 spaces.

In the Theorem 3.1, Theorem 3.2 and Theorem 3.3, we assume that (X, τ ) is a non-T 1 space with card(X) = n and min{card(F

)|F ∈ co(τ ) \ {∅}} = 2. Theorem 3.1. Let A = {a 1 , a 2 , ..., a m } be a subset of a topological space (X, τ ) with m ∈ [1, ⌊ n 2 ⌋]. If cl({a i }) ∩ cl({a j }) = ∅, for i, j ∈ {1, 2, ..., m} and i ̸ = j then card(cl(A)) ∈ [2m, n].
Proof. It is known that in T 1 topological space (X, τ ) with card(X) = n we have card(cl({x})) = 1, for every x ∈ X. Therefore, in view our conditions we conclude that n ≥ card(cl({x})) ≥ 2, for every x ∈ X. Note that for the set A = {a 1 , a 2 , ..., a m } we can write its closure as following:

cl(A) = cl({a 1 })∪cl({a 2 })∪...∪cl({a m }). Therefore, the inequalities hold n ≥ card(cl(A)) = card(cl({a 1 }))+card(cl({a 2 }))+...+card(cl({a m })) ≥ 2m. Theorem 3.2. Let A = {x 1 , x 2 , ..., x p } be a subset of a topological space (X, τ ) with p ∈ [⌈ n 2 ⌉, n]. If card(cl(x)) ∈ [2, k x ], for any point x ∈ (X \ A) and cl({x i }) ∩ cl({x j }) = ∅, for i, j ∈ {p + 1, p + 2, ..., n}, i ̸ = j, then card(int(A)) ∈ [0, 2p -n], if n ≤ ∑ x∈(X\A) k x and card(int(A)) ∈ [n - ∑ x∈(X\A) k x , 2p -n], if ∑ x∈(X\A) k x < n. Proof. Assume that X = {x 1 , x 2 , ..., x n } and A = {x 1 , x 2 , ..., x p }. It is known that int(A) = X \ cl(X \ A). Since card(X \ A) = n -p then using Theorem 3.1. we can write card(cl(X \ A)) ∈ [2(n -p), n]. But, taking into account condition card(cl(x i )) ∈ [2, k i ], i = p + 1, n we obtain better estimation than previous, namely: card(cl(X \ A)) = card(cl(x p+1 )) + card(cl(x p+2 )) + ... + card(cl(x n )) ∈ [2, k p+1 ] + [2, k p+2 ] + ... + [2, k n ] = [2(n -p), min{n, ∑ n i=p+1 k i }]. It is clear that if n ≤ ∑ n i=p+1 k i then card(cl(X \ A)) ∈ [2(n - p), n]. Hence we get card(int(A)) ∈ [0, 2p -n]. If ∑ n i=p+1 k i < n then card(cl(X \ A)) ∈ [2(n -p), ∑ n i=p+1 k i ] and we obtain card(int(A)) ∈ [n - ∑ n i=p+1 k i , 2p -n].
Recall that a set A of a topological space (X, τ [START_REF] Levine | Semi-Open Sets and Semi-Continuity in Topological Spaces[END_REF]. The complement of an semi-open set is called semi-closed. The class of all semi-open (resp. semi-closed) subsets of a space (X, τ ) we denote usually as SO(X) (resp. 

) is called semi-open if there exists O ∈ τ \{∅} such that O ⊂ A ⊂ cl(O)

SC(X)). It can be easily to verify that A ∈ SO(X) if and only if

A ⊂ cl(intA), but B ∈ SC(X) if and only if int(clB) ⊂ B. Theorem 3.3. Let A ∈ SO(X) be a nonempty subset of (X, τ ). Then there exists k ∈ N such that card(A) ∈ [k + 1, 2k -1], where k ∈ [1, ⌊ n 2 ⌋]. Proof. For a set A ∈ SO(X) we can choose O ∈ τ \{∅} such that O ⊂ A ⊂ cl(O). Hence card(O) < card(A) < card(cl(O)) ≤ n. Denote by k = card(O), then it is obvious that k ∈ [1, n -1]. Hence card(A) ∈ [k + 1, n -1],

Theorem 3 . 4 .

 34 Let (X, τ ) be a hyperconnected topological space with card(X) ∈[m, n]. If X = O 1 ∪ O 2 , where O 1 , O 2 ∈ τ \{∅} are sets with card(O 1 ) ∈ [a 1 , a 2 ], card(O 2 ) ∈ [b 1 , b 2 ] and max{a 2 , b 2 } < m. Then card(O 1 ∩ O 2 ) ∈ [a 1 + b 1 -n, a 2 + b 2 -m] ∩ N 0 . Proof. Since in the hyperconnected space (X, τ ) we have O 1 ∩ O 2 ̸ = ∅, for any pair of O 1 , O 2 ∈ τ \ {∅} then it takes place following equality: card(O 1 ∩O 2 ) = card(O 1 )+card(O 2 )-card(O 1 ∪O 2 ) = [a 1 , a 2 ]+[b 1 , b 2 ]-[m, n] = [a 1 + b 1 -n, a 2 + b 2 -m] ∩ N 0 .

  Collecting our estimations we getk + 1 ≤ card(A) < [2k, n], i.e. card(A) ∈ [k + 1, 2k -1]. A topological space (X, τ ) is called hyperconnected if cl(O) = X, for every O ∈ τ \ {∅}. It is obvious that (X, τ ) is hyperconnected if and only if O 1 ∩ O 2 ̸ = {∅}, for any pair of O 1 , O 2 ∈ τ \ {∅}.Now, in contrast of above theorems we remove certain conditions from a topological space.

but by Theorem 3.1. we can write card(clO) ∈ [2k, n]. Note that the inequality 2k < n implies k ∈ [1, ⌊ n 2 ⌋].
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