
HAL Id: hal-02464746
https://hal.science/hal-02464746v1

Submitted on 29 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantum study of inelastic processes in low-energy
calcium–hydrogen collisions

A Belyaev, D Vlasov, A. O. Mitrushchenkov, N. Feautrier

To cite this version:
A Belyaev, D Vlasov, A. O. Mitrushchenkov, N. Feautrier. Quantum study of inelastic processes in
low-energy calcium–hydrogen collisions. Monthly Notices of the Royal Astronomical Society, 2019,
490 (3), pp.3384-3391. �10.1093/mnras/stz2763�. �hal-02464746�

https://hal.science/hal-02464746v1
https://hal.archives-ouvertes.fr


MNRAS 490, 3384–3391 (2019) doi:10.1093/mnras/stz2763
Advance Access publication 2019 October 12

Quantum study of inelastic processes in low-energy calcium–hydrogen
collisions

A. K. Belyaev ,1‹ D. V. Vlasov,1,2 A. Mitrushchenkov3 and N. Feautrier4

1Department of Theoretical Physics and Astronomy, Herzen University, St Petersburg 191186, Russia
2T-Systems Rus, St. Petersburg 199034, Russia
3Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208, CNRS, UPEC, UPEM, Université Paris-Est, 5 Bd Descartes, Champs-sur-Marne,
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ABSTRACT
Cross-sections and rate coefficients for the partial inelastic processes in calcium–hydrogen
collisions are calculated by means of the quantum reprojection method for nuclear dynamics
based on the accurate ab initio electronic structure data. That is, the atomic data for the 110
inelastic processes of excitation, de-excitation, ion-pair formation, and mutual neutralization
in Ca + H and Ca+ + H− collisions are computed for all transitions between the 11 low-
lying CaH(2�+) molecular states including ionic one. The quantum chemical data are used
in a hybrid diabatic representation, which is derived from the adiabatic representation. It is
found that the largest rate coefficients correspond to the mutual neutralization processes. At
the temperature 6000 K, the maximal rate is equal to 4.37 × 10−8 cm3 s−1. It is shown that the
large-valued rates are determined by long-range ionic–covalent interactions with final binding
energies from the optimal window, while moderate- and low-valued rates by both long- and
short-range non-adiabatic regions with final energies outside of the optimal window.

Key words: atomic data – atomic processes – scattering – stars: abundances.

1 IN T RO D U C T I O N

Determining relative and absolute abundances of different chemical
elements is of fundamental importance in astrophysics (see e.g.
reviews Asplund 2005; Barklem 2016a and references therein). This
can be done either by Local Thermodynamic Equilibrium (LTE)
or more accurately by non-Local Thermodynamic Equilibrium
(non-LTE) line formation modelling (Plaskett 1955; Steenbock &
Holweger 1984; Lambert 1993; Asplund 2005; Barklem 2016a).
While conventional LTE modelling does not require data on inelastic
processes, non-LTE modelling does require such data, in particular,
on radiative processes and on inelastic processes in collisions of
heavy atomic particles (atoms, ions) and electrons or hydrogen
(atoms, cations). It has been shown that data on inelastic processes
in collisions with hydrogen give the main uncertainty in non-LTE
modelling (see e.g. Asplund 2005; Barklem 2016a). Because of the
lack of accurate quantum data, the so-called classical Drawin for-
mula (Drawin 1968, 1969; Steenbock & Holweger 1984) has been
used for determining heavy-particles collisional rate coefficients
often with adjustable scaling factors. Later on it was recognized
that the Drawin formula does not have a physical background and
does not provide reliable data even with adjustable factors (Barklem
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et al. 2011). So, quantum data on inelastic collisions with hydrogen
are highly desirable.

Reliable data can be obtained by means of a model approach or
by a complete quantum study. The later is the most accurate, but
full quantum approaches are still time consuming and have been
applied only to a few systems involving collisions with hydrogen:
Na + H and Na+ + H− (Belyaev et al. 1999, 2010), Li + H and
Li+ + H− (Croft, Dickinson & Gadéa 1999a,b; Belyaev & Barklem
2003), H+ + H− (Stenrup, Larson & Elander 2009), Mg + H, and
Mg+ + H− (Belyaev et al. 2012; Guitou et al. 2015). For this reason,
this paper reports the results of the complete quantum treatment of
inelastic processes in calcium–hydrogen collisions.

Calcium is of particular interest in astrophysics. It plays an
important role in studies of stellar atmospheres, since calcium is
an α-element and produced by supernovae. In wide range of stellar
parameters, calcium is observed in the two ionization stages, Ca I

and Ca II, and it is one of the best observable chemical elements in
late-type stars (Mashonkina, Korn & Przybilla 2007; Mashonkina,
Sitnova & Belyaev 2017; Sitnova, Mashonkina & Ryabchikova
2018). This opens a way to determine stellar atmosphere parameters
and as well as calcium abundance by using both Ca I and Ca II lines.
As the result, dependences of Ca I and Ca II lines formation on
deviations from LTE modelling should be determined in non-LTE
modelling.
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Statistical equilibrium of Ca I and Ca II lines has been studied in
the past (see e.g. Drake 1991; Idiart & Thevenin 2000; Mashonkina
et al. 2007, 2017 and references therein). Several non-LTE calcium
stellar spectra modellings have been performed as well (Idiart &
Thevenin 2000; Christlieb et al. 2002; Frebel et al. 2005, 2015;
Mashonkina et al. 2007; Norris et al. 2007; Caffau et al. 2011; Cohen
et al. 2013; Mashonkina, Sitnova & Pakhomov 2016; Mashonkina
et al. 2017; Sitnova et al. 2018). In these papers, except for
Mashonkina et al. (2016, 2017) and Sitnova et al. (2018), rate
coefficients for inelastic processes in calcium–hydrogen collisions
were estimated by the classical Drawin formula. Since the Drawin
formula is unreliable, the required rate coefficients for calcium–
hydrogen collisions were evaluated later on by model quantum
approaches. First, they were computed by Belyaev et al. (2016)
by means of the asymptotic semi-empirical model (Belyaev 2013)
for electronic structure followed by the multichannel Landau–
Zener (LZ) model (Belyaev 1993; Yakovleva, Voronov & Belyaev
2016) for non-adiabatic nuclear dynamics. This approach picks
up the dominant contribution coming from the long-range non-
adiabatic regions created by the ionic–covalent interaction. Since
the ground-state molecular ionic configuration has the 2�+ molec-
ular symmetry, the large-valued inelastic transition probabilities,
cross-sections, and rate coefficients are determined by transitions
within this symmetry. These rate coefficients for the processes
in Ca + H and Ca+ + H− collisions were used for non-
LTE modelling by Mashonkina et al. (2016), Mashonkina et al.
(2017), and Sitnova et al. (2018). Later on the calcium–hydrogen
collisional rate coefficients were calculated by Barklem (2016b) and
Barklem (2017) by means of the asymptotic two-electron Linear
Combinations of Atomic Orbitals (LCAO) approach for electronic
structure followed by the same multichannel LZ model, that is,
based on the long-range non-adiabatic ionic–covalent interactions.
It has been shown that both approaches yield the rates roughly with
the same accuracy on average, especially for processes with the
largest rates that are in good agreement with quantum results, where
available. Recently, the accurate ab initio CaH electronic structure
calculations have been performed by Mitrushchenkov et al. (2017).
The accurate adiabatic potentials and non-adiabatic couplings
allow one not only to improve a long-range non-adiabatic nuclear
dynamical treatment by calculating more accurate parameters of
non-adiabatic regions, but also include short-range non-adiabatic
regions into consideration. This has been accomplished by Belyaev
et al. (2017) by means of the probability current method (Belyaev
2013), which takes into account all non-adiabatic regions, short and
long range, based on the accurate potentials (Mitrushchenkov et al.
2017). Both features, more accurate non-adiabatic parameters and
inclusion of short-range non-adiabatic regions, increase accuracy
of the calculated rate coefficients. On the other hand, having the
accurate CaH electronic structure known (Mitrushchenkov et al.
2017), one can study non-adiabatic nuclear dynamics by a complete
quantum method and obtain the most accurate data on inelastic
processes in Ca + H and Ca+ + H− collisions. This is performed
in this work by means of the reprojection method (see Grosser,
Menzel & Belyaev 1999; Belyaev et al. 2001; Belyaev 2010 for the
method).

It is worth mentioning that an accurate non-LTE treatment
requires information not only about the collisional processes in the
CaH system, but also in the CaH+ one, that is, in Ca+ + H, Ca2 +

+ H−, and Ca + H+ collisions. These data are currently available
from the recent calculations (Belyaev, Voronov & Gadéa 2018).
The calculations are performed by means of the probability current
method based on the accurate ab initio CaH+ adiabatic potentials.

Table 1. CaH(j2�+) molecular states taken into account in this study, the
corresponding scattering channels, their asymptotic excitation energies with
the respect to the ground-state level, the asymptotic binding energies, and
the statistical probabilities pstat

j for population of the molecular states. The
state j = 11 is also marked by ‘ion’ and corresponds to the ionic pair.

j Scattering channels
Asymptotic

energies (eV)
Binding

energies (eV) pstat
j

1 Ca(4s2 1S) + H(1s 2S) 0.0 −6.113 1.0
2 Ca(4s4p 3P) + H(1s 2S) 1.892 −4.221 0.11111
3 Ca(3d4s 3D) + H(1s 2S) 2.524 −3.589 0.06667
4 Ca(3d4s 1D) + H(1s 2S) 2.709 −3.404 0.2
5 Ca(4s4p 1P) + H(1s 2S) 2.933 −3.180 0.33333
6 Ca(4s5s 3S) + H(1s 2S) 3.910 −2.203 0.33333
7 Ca(4s5s 1S) + H(1s 2S) 4.131 −1.982 1.0
8 Ca(3d4p 3F) + H(1s 2S) 4.442 −1.671 0.04762
9 Ca(4s5p 3P) + H(1s 2S) 4.534 −1.579 0.11111
10 Ca(4s5p 1P) + H(1s 2S) 4.554 −1.559 0.33333
11(ion) Ca+(4s 2S) + H−(1s2 1S) 5.363 −0.750 1.0

2 C A L C I U M – H Y D RO G E N LOW- E N E R G Y
C O L L I S I O N S

2.1 Quantum-chemical data in hybrid diabatic representation

Mitrushchenkov et al. (2017) calculated ab initio CaH adiabatic
potentials for the following molecular symmetries: 2�+, 2�−, 2�,
2�, and 2�. It has been shown by the model studies of calcium–
hydrogen collisional processes (see e.g. Belyaev et al. 2016) that
the dominant non-adiabatic transitions occur in the CaH(2�+)
molecular symmetry. For this reason only this symmetry is included
into the present full quantum study of the inelastic processes
in calcium–hydrogen collisions. The accurate ab initio electronic
structure calculations (Mitrushchenkov et al. 2017) comprise the 11
low-lying CaH(2�+) molecular states, and they are all included
into the present CaH nuclear dynamic treatment. They contain
10 covalent Ca + H states and one ionic Ca+ + H− state
(j = 11). These molecular states and the corresponding scattering
channels are listed in Table 1. The higher lying molecular states
with potentials located above the 10th adiabatic potential are not
taken into consideration since the system passes the corresponding
non-adiabatic regions practically diabatically. Therefore, the ionic
potential is extended by the asymptotic Coulomb behaviour for the
energies above the asymptotic 10th potential.

The calculated CaH(2�+) adiabatic potential energies, the non-
adiabatic radial coupling derivative matrix elements 〈φj|∂/∂R|φk〉,
R being the internuclear distance, as well as the discussion of the
calculated data are presented in the paper of Mitrushchenkov et al.
(2017). {|φj〉} are the adiabatic electronic molecular functions.
In particular, it was found that some of the derivative coupling
matrix elements remain non-zero in the asymptotic region, R → ∞,
when the electronic coordinates are measured from the centre of
nuclear mass. It is known, that this is the fundamental feature of the
Born–Oppenheimer approach. It makes a challenge for the Born–
Oppenheimer treatment, but the reprojection method (Grosser et al.
1999; Belyaev et al. 2001; Belyaev 2010) solves this challenge.

In general, coupled channel equations can be solved numerically
in an adiabatic representation. However, in practice one meets severe
difficulties in numerically integrating coupled channel equations in
presence of narrow avoided crossings in an adiabatic represen-
tation. On the other hand, one also meets problems in making
transformations from an adiabatic to a diabatic representation, if
there are non-zero asymptotic non-adiabatic couplings. Moreover,
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Table 2. δ-like non-adiabatic matrix elements D
φ
jk(R) ≡ 〈

φj |∂/∂R|φk

〉

(in atomic units = au), their positions, heights, half-widths from the
CaH(2�+) quantum-chemical data in the adiabatic representation, R0 being
a centre of a corresponding non-adiabatic region.

〈
φj

∣∣ ∂
∂R

∣∣φk

〉
R0 (au)

〈
φj

∣∣ ∂
∂R

∣∣φk

〉
∣
∣∣∣
R=R0

(au) Half-width (au)
〈
φ8

∣∣ ∂
∂R

∣∣φ9
〉

29.6340322 1.227 × 104 8.1495 × 10−5
〈
φ8

∣∣ ∂
∂R

∣∣φ9
〉

9.7788768 46.18 2.1655 × 10−2
〈
φ8

∣∣ ∂
∂R

∣∣φ9
〉

6.2800250 18.92 5.286 × 10−2
〈
φ4

∣
∣ ∂

∂R

∣
∣φ5

〉
5.2377523 −32.85 3.044 × 10−2

〈
φ3

∣
∣ ∂

∂R

∣
∣φ4

〉
3.5693 22.24 4.4969 × 10−2

〈
φ10

∣∣ ∂
∂R

∣∣φ11
〉

4.4895217 96.87 1.032 × 10−2

diabatic potentials not necessary cross each other, and these non-
crossing potentials do not help to solve a problem of narrow non-
adiabatic regions. The present ab initio CaH(2�+) potentials exhibit
several narrow non-adiabatic regions with δ-like non-adiabatic
couplings, they are collected in Table 2. In order to solve these
problems, Vlasov, Rodionov & Belyaev (2018) proposed to make
transformations to a hybrid representation only in narrow non-
adiabatic regions, the transformations which guarantee crossing
diabatic potentials instead of avoided crossings. In addition, a hybrid
representation can be constructed even in presence of non-zero
asymptotic couplings.

The idea of the hybrid representation is to construct a transfor-
mation from a two-state narrow avoided crossing in the adiabatic
representation to a two-state diabatic representation with crossing
potentials based on a model, in particular, on the LZ model;
within the LZ model the non-adiabatic coupling has the Lorentzian
form. Other narrow non-adiabatic regions and molecular states
are transformed separately one-by-one where necessary keeping
residual non-adiabatic couplings. Finally, one has smooth non-
zero off-diagonal and diagonal matrix elements and smooth resid-
ual couplings instead of narrow avoided crossings (and sharp
potentials and couplings) in the coupled channel equations for
a non-adiabatic nuclear dynamical treatment. In practice, one
treats a two-state narrow avoided crossing separately from other
states and other non-adiabatic regions, then picks out a model
non-adiabatic coupling Dmodel

jk (R) from the original non-adiabatic

coupling
〈
φj |∂/∂R| φk

〉 ≡ D
φ
jk(R) calculated in the adiabatic rep-

resentation

D
φ
jk(R) = Dmodel

jk (R) + Dres
jk (R) , (1)

where Dres
jk (R) is a residual derivative coupling. The adiabatic

molecular functions {|φj〉} are related to a hybrid molecular basis
{|χ k〉} by a unitary transformation matrix C

|χ〉 = C |φ〉 . (2)

Within the LZ model, the non-adiabatic matrix element for two
adjacent adiabatic states is determined by the Lorentzian formula

Dmodel
jk (R) = DLZ

jk (R) = τ

(R − R0)2 + 4τ 2
, (3a)

τ = Hjk∣∣dHjj/dR − dHkk/dR
∣∣ , (3b)

where the Hamiltonian matrix elements Hjk, Hjj, and Hkk are
defined for two adjacent molecular states j and k in a diabatic
representation χ . The internuclear distance R0 is defined as the
separation corresponding to a minimum of an adiabatic potential

splitting. One can see that the height of the coupling is equal to
1/4τ , and this defines the non-adiabatic coupling DLZ

jk (R) within
the LZ model in the non-adiabatic region (having R0 known), see
equation (3a).

One may choose different matrices C depending on desired
properties of a hybrid basis {|χ k〉}. One of the possibilities is
to use not the whole derivative coupling D

φ
jk for determining a

transformation matrix C, but only a part of a coupling, namely, a
model coupling Dmodel

jk , e.g. the LZ coupling DLZ
jk , equation (3a).

In this case, the transformation coefficient elements of a matrix C,
equation (2), obey the following system of first-order differential
equations

d

dR
C = CDLZ , (4)

where the matrix elements of the derivative couplings are the
model couplings DLZ

jk (R), equation (3a), which can deviate from the
couplings obtained in the adiabatic representation, see equation (1).
Equation (4) is solved separately in narrow non-adiabatic regions
with the asymptotic boundary conditions in the form of the unit
matrix C = I at a distant internuclear distance. Note that in general,
model derivative couplings Dmodel

jk (R) might deviate from the LZ
coupling DLZ

jk (R), see equation (3a).
Applying a hybrid diabatization one time (with a transforma-

tion matrix C1 in one narrow non-adiabatic region), one has the
electronic Hamiltonian matrix Hχ in desired forms with crossing
potentials and a non-zero off-diagonal matrix element in one
selected non-adiabatic region. In this desired hybrid represen-
tation, the first derivative coupling matrix Dχ will be changed
as well and presented by the residual couplings Dres. Applying
consistently a hybrid diabatization N times (with transformation
matrices C1, . . . ,CN ) one-by-one in narrow non-adiabatic regions
(N diabatization procedures in total), one finally has the electronic
Hamiltonian matrix

Hχ = (
C+

N

(
. . .

(
C+

2

(
C+

1 UC1

)
C2

)
. . .

)
CN

)
, (5)

and the first derivative coupling matrix

Dχ =
(
C+

N

(
. . .

(
C+

2

(
C+

1

(
Dφ + d

dR

)
C1

)
C2

)
. . .

)
CN

)
= Dres , (6)

U being the (diagonal) electronic Hamiltonian matrix in the adia-
batic representation. Dres is a matrix constructed from the residual
couplings, obtained from equation (1) in each narrow non-adiabatic
region. A similar equation can be written for the second-derivative
matrix D(2)

χ in the hybrid representation (see Vlasov et al. 2018).
It is worth mentioning that usage of the Lorentzian function (3a)

in equation (4) for calculations of transformation matrices C guar-
antees crossing diabatic potentials in each selected non-adiabatic
region since an absolute value of the integral of the Lorentzian
function over R is equal to π /2.

Thus, the hybrid diabatization can be applied to selected (narrow)
non-adiabatic regions and it results in crossing diabatic potentials
in these (narrow) regions with non-zero off-diagonal Hamiltonian
matrix elements as well as with residual non-adiabatic (derivative)
coupling matrix elements including non-zero couplings in the
asymptotic region. The coupled channel equations include both
the off-diagonal Hamiltonian matrix elements and the residual
derivative matrix elements and this does not create a problem in
numerical integration since there is no narrow avoided crossings in
the quantum chemical data in the described hybrid representation.
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Figure 1. Diabatized potential energies of CaH(2�+) in the hybrid repre-
sentation as functions of the internuclear distance.

It is also worth mentioning some other approaches to transform
to a diabatic representation in a selected non-adiabatic regions (see
Mitrushenkov et al. 2000; Roos, Orel & Larson 2009a; Roos et al.
2009b; Voorhis et al. 2010; Zanchet et al. 2016). The main idea
of these approaches is to minimize non-adiabatic matrix elements
(Voorhis et al. 2010), which is implemented by different methods
(Mitrushenkov et al. 2000; Roos et al. 2009a,b; Zanchet et al.
2016), typically by varying transformation matrix parameters. In
particular, Roos et al. (2009a, b) and Zanchet et al. (2016) have
used a sequence of partial transformation matrices in addition to
varying adjustable parameters. The present approach deviates from
the previous ones by making transformation to a hybrid repre-
sentation in narrow regions and splitting non-adiabatic couplings
into two parts. A particular implementation is based on the LZ
type couplings (Landau 1932a,b; Zener 1932) and this guarantees
crossing of selected diabatic potentials in each treated non-adiabatic
region.

The collision system CaH has several narrow non-adiabatic
regions with sharp peaks of the couplings D

φ
jk(R) as functions

of the internuclear distance. They are collected in Table 2. These
regions are problematic for numerical integration of the coupled
channel equations and hence the subjects for application of the
hybrid diabatization described above in order to modify the quantum
chemical data into the hybrid representation.

The detailed description of the hybrid diabatization procedure
can be found in the paper of Vlasov et al. (2018). It is worth
mentioning the difference between this work and the work of
Vlasov et al. (2018): the additional non-adiabatic region around
R0 = 3.5693 atomic units (atomic units = au) for the coupling
〈φ3|∂/∂R|φ4〉 is taken into account in this work and a 3 × 3
transformation matrix C is computed accounting for two regions
simultaneously, around R0 = 5.2377523 au for the matrix ele-
ment 〈φ4|∂/∂R|φ5〉 and around R0 = 3.5693 au for the coupling
〈φ3|∂/∂R|φ4〉. Thus, in the present case N = 5, though six narrow
non-adiabatic regions has been diabatized.

The calculated CaH(2�+) potentials obtained in the hybrid
representation are shown in Fig. 1. Each plotted potential, which has
been diabatized, has a crossing(s) with a neighbouring potential(s)
in the vicinity of the internuclear distances listed in Table 2. Since
the treated non-adiabatic regions are narrow, they are typically
well separated, and hence, outside of these regions, the hybrid
quantum chemical data coincide with the adiabatic data obtained in
Mitrushchenkov et al. (2017).

2.2 Nuclear dynamical treatment

The present nuclear dynamical treatment of calcium–hydrogen
collisions is performed by means of the quantum reprojection
method (Grosser et al. 1999; Belyaev et al. 2001; Belyaev 2010),
which is based on numerical integration of the coupled channel
equations followed by calculations of the scattering matrix. This
is done in the hybrid representation described above. In this
representation, the coupled channel equations comprise both the
off-diagonal electronic Hamiltonian matrix elements and the radial
non-adiabatic couplings, and they all can induce non-adiabatic
transitions. Moreover, the hybrid representation is applied to the
narrow non-adiabatic regions only. Therefore, in the asymptotic
region the hybrid representation coincides with the adiabatic one.
This leads to the fact that the asymptotic radial non-adiabatic
coupling matrix elements 〈χ j|∂/∂R|χ k〉 remain non-zero, since this
is the fundamental feature of the Born–Oppenheimer approach.
Having radial non-adiabatic couplings non-zero in the asymptotic
region where the scattering matrix is calculated, one has to take
these non-zero matrix elements into account. Within the formalism
of the reprojection method (Grosser et al. 1999; Belyaev et al. 2001;
Belyaev 2010), the scattering matrix calculations are performed in
the adiabatic representation by means of construction of correct
incoming and outgoing asymptotic wave functions, and non-zero
radial non-adiabatic couplings are needed for this construction.

The coupled channel equations contain second derivative radial
non-adiabatic couplings as well. The corresponding formulas for
these couplings in the hybrid representation are derived in Vlasov
et al. (2018). However, since the δ-like first derivative radial
couplings are removed, the second derivative couplings get small
and can be estimated from the first derivative residual couplings
(Belyaev et al. 1999). Ultimately, they give small corrections only.

The final step is calculations of the partial cross-sections and rate
coefficients for collision processes of interest. Since exothermic
processes, mutual neutralization, and de-excitation at present, have
no energy thresholds, it is more practical to compute partial cross-
sections σ if(E) and rate coefficients Kif(T) first for the exothermic
processes i → f (Ei > Ef) by the following formulas

σif (E) = π�2pstat
i

2ME

∞∑
J=0

Pif (E, J )(2J + 1) , (7)

Kif (T ) =
√

8

πM (kBT )3

∫ ∞

0
σif (E)E exp

(
− E

kBT

)
dE , (8)

where E is the collision energy, J the total angular momentum
quantum number, M the reduced nuclear mass, pstat

i the statistical
probability of the initial channel i, kB the Boltzmann constant, T a
temperature. The cross-sections σ fi(E) and rate coefficients Kfi(T)
for the inverse processes f → i, the endothermic excitation and ion-
pair formation ones, can be then calculated from equations (7) and
(8) by the detailed balance relations

σf i(E) =
[

pstat
f

pstat
i

E − �Eif

E

]
σif (E − �Eif ) , (9)

Kf i(T ) =
[

pstat
f

pstat
i

exp

(
−�Eif

kBT

)]
Kif (T ) , (10)

where �Eif = Ei − Ef is the energy defect between channels i
and f.

MNRAS 490, 3384–3391 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/3/3384/5586579 by O
bservatoire de Paris - M

eudon user on 29 June 2023



3388 A. K. Belyaev et al.

Table 3. Rate coefficients in units cm3 s−1 for temperature T = 3000 K.

1 2 3 4 5 6 7 8 9 10 11

1 – 3.06e-15 1.12e-16 9.39e-19 7.19e-19 6.59e-20 2.71e-20 1.48e-20 6.28e-21 4.58e-21 4.25e-22
2 5.00e-13 – 3.14e-11 1.04e-13 6.05e-14 3.17e-15 1.20e-15 5.12e-16 1.78e-16 1.24e-16 8.60e-18
3 1.30e-13 2.21e-10 – 1.47e-12 4.60e-13 3.09e-14 1.33e-14 6.47e-15 1.69e-15 2.45e-15 3.72e-16
4 6.68e-15 4.54e-12 9.07e-12 – 9.49e-11 2.17e-12 4.64e-13 1.43e-13 5.97e-14 8.68e-14 1.09e-14
5 2.02e-14 1.04e-11 1.12e-11 3.75e-10 – 1.16e-11 2.72e-12 5.63e-13 1.89e-13 3.79e-13 7.56e-14
6 8.14e-14 2.40e-11 3.30e-11 3.77e-10 5.10e-10 – 9.44e-10 6.71e-11 1.19e-10 3.55e-10 6.62e-11
7 2.36e-13 6.38e-11 1.00e-10 5.67e-10 8.42e-10 6.64e-09 – 1.65e-10 9.50e-10 2.65e-09 4.42e-10
8 2.03e-14 4.31e-12 7.70e-12 2.77e-11 2.76e-11 7.48e-11 2.62e-11 – 4.42e-11 4.88e-11 6.44e-12
9 2.87e-14 4.97e-12 6.69e-12 3.83e-11 3.07e-11 4.39e-10 4.99e-10 1.47e-10 – 1.82e-09 2.16e-10
10 6.82e-14 1.13e-11 3.17e-11 1.82e-10 2.01e-10 4.29e-09 4.54e-09 5.28e-10 5.94e-09 – 4.46e-10
11 4.06e-13 5.02e-11 3.08e-10 1.46e-09 2.57e-09 5.11e-08 4.85e-08 4.47e-09 4.51e-08 2.86e-08 –

Table 4. Rate coefficients in units cm3 s−1 for temperature T = 6000 K.

1 2 3 4 5 6 7 8 9 10 11

1 – 1.59e-13 2.51e-14 7.88e-16 6.04e-16 9.84e-17 4.75e-17 9.09e-17 4.91e-17 5.61e-17 1.17e-17
2 6.78e-13 – 1.19e-10 1.50e-12 9.29e-13 1.08e-13 5.04e-14 6.43e-14 2.86e-14 2.75e-14 5.71e-15
3 2.20e-13 2.44e-10 – 9.16e-12 3.07e-12 4.49e-13 1.80e-13 2.14e-13 7.06e-14 1.14e-13 7.32e-14
4 2.97e-14 1.32e-11 3.94e-11 – 2.38e-10 1.67e-11 4.36e-12 3.81e-12 1.69e-12 2.55e-12 1.54e-12
5 5.84e-14 2.11e-11 3.39e-11 6.11e-10 – 6.17e-11 1.63e-11 9.78e-12 3.82e-12 7.21e-12 7.12e-12
6 6.32e-14 1.62e-11 3.28e-11 2.85e-10 4.09e-10 – 1.31e-09 2.23e-10 3.19e-10 9.58e-10 9.07e-10
7 1.40e-13 3.48e-11 6.05e-11 3.41e-10 4.96e-10 6.03e-09 – 2.75e-10 1.69e-09 4.81e-09 3.74e-09
8 2.33e-14 3.86e-12 6.25e-12 2.59e-11 2.59e-11 8.89e-11 2.39e-11 – 4.93e-11 6.02e-11 2.95e-11
9 3.49e-14 4.77e-12 5.73e-12 3.19e-11 2.81e-11 3.54e-10 4.09e-10 1.37e-10 – 2.66e-09 8.38e-10
10 1.25e-13 1.44e-11 2.89e-11 1.51e-10 1.66e-10 3.33e-09 3.63e-09 5.24e-10 8.33e-09 – 1.67e-09
11 3.60e-13 4.14e-11 2.58e-10 1.26e-09 2.27e-09 4.37e-08 3.92e-08 3.57e-09 3.63e-08 2.32e-08 –

Table 5. Rate coefficients in units cm3 s−1 for temperature T = 10 000 K.

1 2 3 4 5 6 7 8 9 10 11

1 – 1.30e-12 2.80e-13 2.36e-14 1.60e-14 2.17e-15 8.94e-16 3.77e-15 2.36e-15 3.21e-15 1.21e-15
2 1.29e-12 – 1.96e-10 5.88e-12 3.39e-12 3.98e-13 1.78e-13 4.63e-13 2.29e-13 2.83e-13 9.62e-14
3 3.49e-13 2.46e-10 – 2.84e-11 9.55e-12 1.41e-12 4.47e-13 8.72e-13 3.37e-13 5.42e-13 6.56e-13
4 1.09e-13 2.75e-11 1.06e-10 – 3.82e-10 3.60e-11 9.00e-12 1.36e-11 5.80e-12 8.82e-12 1.06e-11
5 1.60e-13 3.42e-11 7.67e-11 8.26e-10 – 1.24e-10 3.06e-11 3.02e-11 1.34e-11 2.22e-11 4.69e-11
6 6.78e-14 1.25e-11 3.53e-11 2.42e-10 3.85e-10 – 1.50e-09 3.57e-10 4.41e-10 1.10e-09 2.66e-09
7 1.08e-13 2.17e-11 4.33e-11 2.34e-10 3.69e-10 5.81e-09 – 3.36e-10 1.88e-09 4.66e-09 8.52e-09
8 3.11e-14 3.85e-12 5.77e-12 2.41e-11 2.48e-11 9.46e-11 2.29e-11 – 4.74e-11 6.16e-11 5.48e-11
9 5.04e-14 4.94e-12 5.78e-12 2.67e-11 2.85e-11 3.03e-10 3.33e-10 1.23e-10 – 3.82e-09 1.37e-09
10 2.11e-13 1.88e-11 2.86e-11 1.25e-10 1.46e-10 2.33e-09 2.54e-09 4.92e-10 1.17e-08 – 2.79e-09
11 5.96e-13 4.80e-11 2.60e-10 1.13e-09 2.31e-09 4.21e-08 3.49e-08 3.29e-09 3.18e-08 2.10e-08 –

2.3 Data on Ca + H and Ca+ + H− collisions

Partial cross-sections and rate coefficients Kif(T) for the excita-
tion, de-excitation, mutual neutralization, and ion-pair formation
processes in Ca + H and Ca+ + H− collisions are calculated
in this work for the collision energy up to 145 eV and for the
temperature range T = 1000–10 000 K for all transitions between
the scattering channels listed in Table 1. As mentioned above, the
dominant mechanism of the processes treated is associated with
the long-range ionic–covalent interactions. Since the most-valuable
probabilities correspond to transitions due to long-range radial non-
adiabatic couplings within one molecular symmetry, and the fact
that the ground Ca+ + H− ionic molecular state has the 2�+

symmetry, so covalent molecular states of the same symmetry
are taken into account, that is, 10 low-lying 2�+ covalent states
in addition to the ground ionic molecular state, see Table 1. The
calculated data are published online as supplementary material to

this paper. For the temperatures T = 3000, 6000, and 10 000 K the
calculated rate coefficients are also presented in Tables 3, 4, and 5.
For T = 6000 K the rate coefficients are shown in Fig. 2 in the form
of graphical representation.

It is seen from Fig. 2 and Tables 3, 4, and 5 that the mutual
neutralization processes (the initial channel i = 11 = ionic) have
the largest rate coefficients. At the temperature T = 6000 K, the
largest rates correspond to neutralization into the final channels
with the following atomic states:

Ca(4s5s 3S) (11 → 6 transition), the rate 4.37 × 10−8 cm3 s−1,
Ca(4s5s 1S) (11 → 7), the rate 3.92 × 10−8 cm3 s−1,
Ca(4s5p 3P) (11 → 9), the rate 3.63 × 10−8 cm3 s−1,
Ca(4s5p 1P) (11 → 10), the rate 2.32 × 10−8 cm3 s−1.
One can see that the largest rate coefficients exceed the value

10−8 cm3 s−1.
Fig. 3 exhibits the distribution of mutual neutralization rate

coefficients at T = 6000 K as a function of the final-state binding
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Inelastic processes in Ca–H collisions 3389

Figure 2. Graphical representation of the rate coefficients Kif (in units
of cm3 s−1) for the partial processes of excitation, de-excitation, mutual
neutralization, and ion-pair formation at the temperature T = 6000 K. The
channel numbers are collected in Table 1.
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Figure 3. Distribution of the mutual neutralization rate coefficients Kif(T) at
T = 6000 K as a function of the final-state binding energy. The black circles
correspond to the results of the present full quantum calculations, orange
pluses to the calculations by the semi-empirical multichannel approach
(Belyaev et al. 2016), the red triangles to the ab initio probability current
method calculations (Belyaev et al. 2017), and the blue diamonds to the
calculations by the LCAO multichannel approach (Barklem 2017). The
dashed curve depicts the estimates from the simplified model (Belyaev &
Yakovleva 2017).

energy. It is seen that in agreement with the prediction of the
simplified model (Belyaev & Yakovleva 2017), the largest rate
corresponds to neutralization into the final channel f = 6 from
the optimal window, that is, the binding energy range in the vicinity
of −2 eV. The processes into the final channels f = 7 and 9 have
nearly the same rates as one into the final channel f = 6, since
they are all belong to the optimal window. The neutralization rate
into the final channel f = 8 is one order of magnitude smaller
than the rates into the neighbouring channels because the molecular
states i = 11 (ionic) and f = 8 are coupled by a two-electron-
transition interaction while other ionic–covalent interactions are
based on single-electron transitions. Outside of the optimal window
in both directions, the rate coefficients decrease in agreement with
the simplified model prediction although there are some deviations,

the largest one is for the ground-state channel f = 1, otherwise the
simplified model works surprisingly well.

The same Fig. 3 shows the results of other calculations (Belyaev
et al. 2016, 2017; Barklem 2017) for these collisions, as well as the
estimates from the simplified model (Belyaev & Yakovleva 2017).
It is important to emphasize that the rate coefficients from Barklem
(2017) are summed over all possible symmetries, while other results
are the rates obtained in the 2�+ symmetry only. It is seen that
the probability current calculations (Belyaev et al. 2017) and the
predictions from the simplified model agree well with the present
full quantum calculations. The very good agreement is observed
for the final channel f = 6 with the largest rate coefficient: All
calculations give practically equal values within the uncertainty of
20–30 per cent. Outside of the optimal window, the deviations of
the LCAO multichannel calculations from the full quantum one get
more markable in both directions: underestimating for the higher
lying final channels f ≥ 7 and overestimating for the lower lying
final channels f ≤ 5. This is likely due to different electronic
structures and the fact that the multichannel formulas account for the
long-range non-adiabatic regions only, while both the full quantum
(reprojection) method and the probability current method account
for all long- and short-range regions.

Among the de-excitation processes in H-collisions, the largest
rates at T = 6000 K correspond to the following processes:

Ca(4s5p 1P) + H → Ca(4s5p 3P) + H,

the transition 10 → 9, the rate 8.33 × 10−9 cm3 s−1, and

Ca(4s5s 1S) + H → Ca(4s5s 3S) + H,

the transition 7 → 6, the rate 6.03 × 10−9 cm3 s−1.
Among the excitation processes, the largest rate coefficients at

T = 6000 K correspond to the following transitions:

Ca(4s5s 1S) + H → Ca(4s5p 1P) + H, (7 → 10), the rate 4.81 ×
10−9 cm3 s−1,

Ca(4s5p 3P) + H → Ca(4s5p 1P) + H, (9 → 10), the rate
2.66 × 10−9 cm3 s−1.

It is seen that the maximal neutralization rate is at least 5 times
larger than the largest (de)-excitation rates. The rate coefficients
for other processes have typically values between 10−17 and
10−9 cm3 s−1.

According to the simplified model (Belyaev & Yakovleva 2017),
the distribution of the inelastic rate coefficients for excitation and de-
excitation processes depends on both initial and final state binding
energies. For this reason, Figs 4, 5, and 6 show the distributions of
the rate coefficients for the different initial channels i, namely, for i =
10, 9, and 7, respectively. Indeed, one can see that the distributions
for the different initial channels and, hence, for the different initial
channel binding energies are different. In addition, one can see a
scatter of the data calculated by different methods, a greater scatter
for (de)-excitation than for the mutual neutralization processes. One
can conclude that the prediction of the simplified model gives a
good order of magnitude for the mutual-neutralization/ion-pair-
formation rate coefficients as long as long-range ionic–covalent
interactions are dominant, while the agreement is less satisfactory
for excitation/de-excitation.

Temperature dependences of the large-valued rate coefficients
of mutual neutralization processes are shown in Fig. 7. The data
from the full quantum calculations (solid lines) are compared with
the probability current method results (symbols). First of all, it
can be seen in this figure that the neutralization rates are weakly
varying with the temperature. The same conclusion holds for the de-
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Figure 4. De-excitation (f ≤ 9) and ion-pair formation (f = 11) rate
coefficients Kif(T) at T = 6000 K for the initial channel i = 10 as functions
of the final-state binding energy. The key legends are given in Fig. 3.
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Figure 5. De-excitation (f ≤ 8), excitation (f = 10), and ion-pair formation
(f = 11) rate coefficients Kif(T) at T = 6000 K for the initial channel i = 9
as functions of the final-state binding energy. The key legends are given in
Fig. 3.
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Figure 6. De-excitation (f ≤ 6), excitation (f = 8–10), and ion-pair
formation (f = 11) rate coefficients Kif(T) at T = 6000 K for the initial
channel i = 7 as functions of the final-state binding energy. The key legends
are given in Fig. 3.
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Figure 7. Temperature dependence of the mutual neutralization rate coef-
ficients for the transitions i = 11 (ionic) → f = 10, 9, 8, 7, 6, 5 calculated
by the full quantum approach (solid lines) and by the probability current
method (symbols).

excitation processes. Second, one can see that both methods provide
close results over the whole temperature range treated. This helps
to determine reaction mechanisms.

The analysis of the nuclear dynamics shows that the inelastic
processes with the large-valued rate coefficients occur due to long-
range ionic–covalent interactions, when covalent states are located
in the optimal window. The examples are the mutual neutralization
processes 11 → 6, 11 → 7, 11 → 9, and 11 → 10, as well as the
(de)-excitation processes 10 → 9, 7 → 6, 7 → 10, and 9 → 10, etc.
For many processes with low- and moderate-valued rates, short-
range non-adiabatic regions contribute significantly into inelastic
transitions in addition to the long-range non-adiabatic regions. In
these cases, the reaction mechanism is due to several non-adiabatic
regions, both long and short ranges.

3 C O N C L U S I O N S

The present full quantum study of the inelastic processes in Ca
+ H and Ca+ + H− collisions is based on the accurate ab
initio adiabatic potentials and non-adiabatic couplings calculated by
Mitrushchenkov et al. (2017). It has been shown by the model stud-
ies that the dominant non-adiabatic transitions in calcium–hydrogen
collisions occur within the CaH(2�+) molecular symmetry, so only
this symmetry is included into the present quantum study. The
ground ionic Ca+ + H− state and 10 low-lying covalent molecular
states of the 2�+ symmetry are included into the present CaH
nuclear dynamic treatment. The non-adiabatic nuclear dynamics is
studied by means of the reprojection method (Grosser et al. 1999;
Belyaev et al. 2001; Belyaev 2010).

The ab initio electronic structure exhibits the presence of several
narrow non-adiabatic regions, which cause the problems for numer-
ical integration of the coupled channel equations for radial nuclear
wave functions. In order to solve these problems, the quantum
chemical data are transferred from the adiabatic to the hybrid
diabatic representation. The hybrid diabatization method (Vlasov
et al. 2018) is applied only into narrow non-adiabatic regions. The
non-adiabatic nuclear dynamics is then treated in the hybrid diabatic
representation. Since the obtained hybrid representation coincides
with the adiabatic one in the asymptotic region, the asymptotic non-
adiabatic couplings remain non-zero, and these non-zero couplings
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are taken into account by the reprojection method for calculating
the scattering matrix.

The present accurate full quantum treatment shows that the
largest rate coefficients correspond to the mutual neutralization
processes with the final-channel energies from the optimal win-
dow, that is, when the final-channel binding energies are around
−2 eV. The largest neutralization rates have the values exceeding
10−8 cm3 s−1. The reaction mechanism for these processes is based
on the long-range ionic–covalent interactions. Among de-excitation
and excitation processes, the maximal rate coefficients at least
5 times smaller than the maximal neutralization rate and corre-
spond to the de-excitation transitions Ca(4s5p 1P) → Ca(4s5p 3P)
and Ca(4s5s 1S) → Ca(4s5s 3S) induced by H-collisions. These
transitions correspond to the spin-forbidden atomic transitions
between singlet and triplet states. But non-adiabatic transitions in
collisions occur between molecular states and, hence, the atomic
selection rules are not valid any more. The collisional processes
with moderate and low values of the rate coefficients are based
on non-adiabatic transitions which are located in both long- and
short-range non-adiabatic regions. Therefore, omitting short-range
regions might underestimate rate coefficients.

The calculated collision data are compared with other available
data, which were obtained by the model approaches. The very good
agreement is found for the processes with the large-valued rate
coefficients. For the processes with moderate and low values of the
rate coefficients some deviations are observed. The better agreement
is found for the rates computed by the probability current method,
which accounts not only long-range non-adiabatic regions, but also
short-range regions. The calculated data are available online.
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Caffau E. et al., 2011, Nature, 477, 67
Christlieb N. et al., 2002, Nature, 419, 904
Cohen J. G., Christlieb N., Thompson I., McWilliam A., Shectman S.,

Reimers D., Wisotzki L., Kirby E., 2013, ApJ, 778, 56
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