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We reconsider our former determination of the chiral quark condensate hq̄qi from the related
QCD spectral density of the Euclidean Dirac operator, using our renormalization group optimized
perturbation (RGOPT) approach. Thanks to the recently available complete five-loop QCD RG coefficients,
and some other related four-loop results, we can extend our calculations exactly to N4LO (five loops)
RGOPT, and partially to N5LO (six loops), the latter within a well-defined approximation accounting for all
six-loop contents exactly predictable from five-loop RG properties. The RGOPT results overall show a very

good stability and convergence, giving primarily the RG-invariant (RGI) condensate, hq̄qi1=3RGIðnf¼0Þ¼
−ð0.840þ0.020

−0.016ÞΛ̄0, hq̄qi1=3RGIðnf¼2Þ¼−ð0.781þ0.019
−0.009ÞΛ̄2, hq̄qi1=3RGIðnf ¼ 3Þ ¼ −ð0.751þ0.019

−0:010ÞΛ̄3, where Λ̄nf

is the basic QCD scale in the MS scheme for nf quark flavors, and the range spanned is our rather

conservative estimated theoretical error. This leads e.g., to hq̄qi1=3nf¼3ð2 GeVÞ ¼ −ð273þ7
−4 � 13Þ MeV, using

the latest Λ̄3 values giving the second uncertainties. We compare our results with some other recent
determinations. As a by-product of our analysis we also provide complete five-loop and partial six-loop
expressions of the perturbative QCD spectral density, that may be useful for other purposes.

DOI: 10.1103/PhysRevD.101.074009

I. INTRODUCTION

The chiral quark condensate hq̄qi is a main order
parameter of spontaneous chiral symmetry breaking,
SUðnfÞL × SUðnfÞR → SUðnfÞV for nf massless quarks.
It is an intrinsically nonperturbative quantity, indeed
vanishing at any finite order of ordinary perturbative
QCD in the chiral limit. For nonvanishing quark masses,
the famous Gell-Mann-Oakes-Renner (GMOR) relation
[1], e.g., for the two lightest flavors,

F2
πm2

π ¼ −ðmu þmdÞhūui þOðm2
qÞ ð1:1Þ

relates the condensate with the pion mass mπ and decay
constant Fπ together with the (current) quark masses. At
present the light quark masses mu;d;s determined from
lattice simulations (see [2] for a recent review) give an
indirect determination of the condensate from using (1.1).
Phenomenological values of the condensate can also be
extracted [3,4] indirectly from data using spectral QCD
sum rule methods [5]. However, the GMOR relation (1.1)

entails explicit chiral symmetry breaking from quark
masses, and is valid up to higher-order terms Oðm2

qÞ.
Thus more direct “first principles” determinations are
always desirable to disentangle quark current mass effects
for a better understanding of the dynamical chiral sym-
metry breaking mechanism at work in QCD. Analytical
determinations have been derived in various models
and approximations, starting early with the Nambu and
Jona-Lasinio model [6,7]. There is also a long history of
determinations based on Schwinger-Dyson equations and
related approaches [8–11] typically. Lattice calculations
have also determined the quark condensate by different
approaches [12], in particular by computing the spectral
density of the Dirac operator [13–15] directly related to
the quark condensate via the Banks-Casher relation
[16–18]. Although some of the lattice determinations
are very precise, those always rely on extra assumptions
and modelization to extrapolate to the chiral limit [19],
using mainly chiral perturbation theory [20]. Moreover the
convergence properties of chiral perturbation [21] for
nf ¼ 3 are not as good as for nf ¼ 2, and different recent
lattice simulations still show rather important discre-
pancies [2]. Also, within an extended chiral perturbation
framework, it has been found significant suppression of the
three-flavor case with respect to the two-flavor case [22],
which may be attributed to the relatively large explicit
chiral symmetry breaking from the strange quark mass.
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Our renormalization group optimized perturbation
(RGOPT) approach [23–25] provides analytic sequences
of (variational) nonperturbative approximations having a
nontrivial chiral limit. As such it provides in particular an
alternative independent determination of the chiral con-
densate [26]. More generally the RGOPT method has also
been explored so far in various models, in particular to
improve the resummation properties of thermal perturbative
expansions for thermodynamical quantities at finite temper-
atures [27,28], and for QCD at finite densities [29]. In the
present work we iterate on our previous three- and four-
loop RGOPT determination [26] of the condensate in
vacuum from the related spectral density, by going at
the complete five-loop and partial six-loop level of our
approximation.
In Sec. II we shortly recall the well-known connection of

the condensate with the spectral density of the Dirac
operator through the Banks-Casher relation. Also for
completeness, in Sec. III we shortly review our RGOPT
variational construction of nonperturbative approximations,
and its adaptation to the evaluation of the spectral density,
as already detailed in Ref. [26]. In Sec. IV we derive the
standard perturbative quark condensate and related pertur-
bative spectral density, exactly up to five-loop order and
partially up to six-loop order in a well-defined approxi-
mation, thanks most notably to the recently available five-
loop RG coefficients [30,31], in particular the crucially
relevant vacuum anomalous dimension [32]. The pertur-
bative spectral density for an arbitrary number of quark
flavors can also be useful for other purposes irrespective of
our variational approach, most typically for perturbative
matching of lattice simulation results. Section V gives our
detailed numerical analysis and the RGOPT condensate
results order by order up to five and (approximate) six
loops, discussing also different approximation variants in
order to estimate the theoretical uncertainties of our
predictions. In Sec. VI we compare with other recent
determinations, mainly from lattice simulations. Finally
Sec. VII presents a summary and conclusions, and the
Appendix completes various relevant expressions.

II. SPECTRAL DENSITY AND THE
QUARK CONDENSATE

For a more detailed review of the connection of the
density of eigenvalues ρðλÞ of the Dirac operator with the
chiral condensate hq̄qi through the Banks-Casher relation
[16], we refer to our previous four-loop analysis [26] and to
former works and reviews (see e.g., [17]). The link between
the spectral density and the condensate appearing in the
operator product expansion has been carefully discussed in
[10]. In short, in the infinite volume limit the spectrum of
the Euclidean Dirac operator becomes dense, and using the
formal definition of the quark condensate together with the
properties of the eigenvalues of the Dirac operator leads to
the relation

hq̄qiðmÞ ¼ −2m
Z

∞

0

dλ
ρðλÞ

λ2 þm2
: ð2:1Þ

Equation (2.1) essentially expresses that the two-point
quark correlator has a spectral representation as a function
of m. The Banks-Casher relation is the chiral symmetric
limit of Eq. (2.1), that gives the chiral condensate as

lim
m→0

hq̄qi ¼ −πρð0Þ; ð2:2Þ

if the spectral density at the origin can be determined. Note
also that for nonzero fermion massm, the spectral density is
thus determined by the discontinuity of hq̄qiðmÞ across the
imaginary axis:

ρðλÞ ¼ −
1

2π
½hq̄qiðiλþ ϵÞ − hq̄qiðiλ − ϵÞ�jϵ→0: ð2:3Þ

For nonvanishing quark mass m, hq̄qi has a nontrivial
perturbative series expansion, ∼m3f½lnðm2=μ2Þ�, and its
discontinuities are simply given by those coming from the
perturbative logarithmic mass dependence. Therefore the
above relation (2.3) also allows us to calculate the corre-
sponding perturbative spectral density. However, the λ → 0
limit, relevant for the true chiral condensate, trivially leads
to a vanishing result, since perturbatively ρðλÞ ∼ λ3. But as
we recall below a crucial feature of the variational RGOPT
method is to circumvent this, giving a nontrivial result
for λ → 0.

III. RG OPTIMIZED PERTURBATION

A. Optimized perturbation (OPT) and RGOPT
construction

The RGOPT is basically a variational approach made
compatible with RG properties. The starting point is to
deform the standard QCD Lagrangian by introducing a
variational (quark) mass term partly treated as an inter-
action term. One can most conveniently organize this
systematically at arbitrary perturbative orders, by introduc-
ing a new expansion parameter 0 < δ < 1 interpolating
between the (massive) free Lagrangian Lfree and the
original (massless) Lagrangian Lint respectively. This
amounts first to the prescription

mq → m ð1 − δÞa; g → δ g; ð3:1Þ
within some given (renormalized) perturbative expansion
of a physical quantity Pðm; gÞ (here g≡ 4παS for QCD). In
Eq. (3.1) we introduce for more generality an extra
exponent a, that plays a crucial role in our approach, as
we recall below. Next the resulting expression is expanded
in powers of δ at order k, the so-called δ expansion [33],
and afterwards δ → 1 is taken to recover the original
massless theory. This leaves a remnant m dependence at
any finite k order: Since at infinite k order there is in
principle no dependence onm, a finite-order approximation
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can be obtained through an optimization (OPT) prescrip-
tion, i.e., a minimization of the dependence on m,

∂
∂mPðkÞðm; g; δ ¼ 1Þjm≡m̃ ≡ 0; ð3:2Þ

determining a nontrivial dressed mass m̃ðgÞ. The prescrip-
tion is consistent with renormalizability [34–36] and gauge
invariance, and (3.2) realizes dimensional transmutation, in
contrast with the original mass vanishing in the chiral limit.
In simpler one-dimensional models the procedure is a
particular case of “order-dependent mapping” [37], and
was shown to converge exponentially fast for the oscillator
energy levels [38].
Now in most previous OPT applications, the simple

(linear) value a ¼ 1 was used in Eq. (3.1) for the δ
expansion mainly for simplicity. In contrast we combine
[23–25] the OPT Eq. (3.2) with RG properties, by requiring
the (δ-modified) expansion to satisfy, in addition to
Eq. (3.2), a perturbative RG equation:

μ
d
dμ

ðPðkÞðm; g; δ ¼ 1ÞÞ ¼ 0; ð3:3Þ

where the (homogeneous) RG operator acting on a physical
quantity is defined as1

μ
d
dμ

¼ μ
∂
∂μþ βðgÞ ∂

∂g − γmðgÞm
∂
∂m : ð3:4Þ

Note that once combined with Eq. (3.2), the RG equation
takes a reduced massless form:�

μ
∂
∂μþ βðgÞ ∂

∂g
�
PðkÞðm; g; δ ¼ 1Þ ¼ 0: ð3:5Þ

Then a crucial observation is that after performing (3.1),
perturbative RG invariance is generally lost, so that
Eq. (3.5) gives a nontrivial additional constraint,2 but
RG invariance can only be restored for a unique value
of the exponent a fully determined by the (scheme-
independent) first-order RG coefficients [24,25]:

a≡ γ0=ð2b0Þ: ð3:6Þ
Therefore Eqs. (3.5), (3.6) and (3.2) together completely fix
optimized m≡ m̃ and g≡ g̃ values. Moreover the pre-
scription with (3.6) drastically improves the convergence
properties [25].
Another known issue of standard OPT is that Eq. (3.2)

alone generally gives more and more solutions as one
proceeds to higher orders, with some being complex. Thus

it may be difficult to select the right solutions, and
unphysical (nonreal) ones are a burden. In contrast, the
additional constraint (3.6) guarantees that at arbitrary δ
orders at least one of both the RG and OPT solutions g̃ðmÞ
continuously matches the standard perturbative RG behav-
ior for g → 0 [i.e., asymptotic freedom (AF) for QCD],

g̃ðμ ≫ m̃Þ ∼
�
2b0 ln

μ

m̃

�
−1

þO
��

ln
μ

m̃

�
−2
�
; ð3:7Þ

and these AF-matching solutions are often unique at a
given order for both the RG and OPT equations. However,
(3.6) does not guarantee in general that the compelling
AF-matching solution remains real valued for all physi-
cally relevant ranges. Actually the occurrence of complex
solutions is merely a consequence of solving exactly the
(polynomial) Eqs. (3.2) and (3.5), but since those equations
are derived from a perturbative expansion originally, they
cannot be considered truly exact. Thus in practice one can
often recover real solutions by considering a more approxi-
mate (perturbatively consistent) RG equation or solution
(see e.g., [25,29]).

B. RGOPT for the spectral density

As shortly reviewed above in Sec. II, using the spectral
density with the Banks-Casher relation (2.2) gives direct
access to the QCD condensate in the chiral limit. Therefore
the spectral density constitutes a particularly suitable ansatz to
apply our variational approach (see [26] formore discussions).
The RG equation relevant for ρðλ; as ≡ αS=πÞwas derived in
[26] and is completely analogous to the standardRG equation,
but with the mass replaced by the spectral parameter,
�
μ
∂
∂μþ βðasÞ

∂
∂as − γmðasÞλ

∂
∂λ − γmðasÞ

�
ρðλ; asÞ ¼ 0:

ð3:8Þ
One can next proceed to the modification of the resulting
perturbative seriesρðλ; asÞ as impliedby theδ expansion, now,
from Eq. (3.8) clearly applied not on the original mass but on
the spectral value3 λ:

λ → λð1 − δÞa as → δas: ð3:9Þ

Consequently the mass optimization on hq̄qi thus translates
into an optimization of the spectral density with respect
to λ,

∂ρðkÞðλ; asÞ
∂λ ¼ 0; ð3:10Þ

at successive δk order (see [26] for more details).

1Our normalization is g≡ 4παS, βðgÞ≡ dg=d ln μ, γmðgÞ≡
−d ln m=d ln μ; see Appendix for relations to [30,31].

2A connection of the exponent a with RG anomalous
dimensions/critical exponents had also been established previously
in the D ¼ 3 Φ4 model for the Bose-Einstein condensate critical
temperature shift by two independent OPT approaches [39,40].

3We simplify notations with λ≡ jλj since it is necessarily
positive.
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Finally, as one last subtlety, note that the interpolation
exponent a in Eq. (3.6) is universal insofar as the original
expansion to be modified is itself (perturbatively) RG
invariant. Now since mhq̄qi is the RG-invariant quantity,
rather than hq̄qi, when performing the perturbative modi-
fication implied by (3.9) on the spectral density, it is easily
derived that the consistent value to be used is rather

a ¼ 4

3

�
γ0
2b0

�
; ð3:11Þ

which also maintains the occurrence of essentially unique
AF-matching solutions with a behavior similar to (3.7)
(with m → λ understood).

IV. PERTURBATIVE QUARK CONDENSATE
AND SPECTRAL DENSITY

A. Perturbative quark condensate

The perturbative expansion of the QCD quark conden-
sate for a nonzero quark mass can be calculated system-
atically from the directly related vacuum-energy graphs. A
few representative Feynman graph contributions at succes-
sive orders are illustrated (up to three-loop order only) in
Fig. 1. (There are evidently some more three-loop con-
tributions, not shown here.) Note that the one-loop order is
Oðg0Þ ¼ Oð1Þ. The perturbative series for the renormalized
quantity mhq̄qi up to six-loop order reads formally,

mhq̄qiðm;asÞ¼
�

3

2π2

�
m4

�
1

2
−Lmþ4as

�
L2
m−

5

6
Lmþ

5

12

�

þa2s
X3
i¼0

c3iL3−i
m þa3s

X4
i¼0

c4iL4−i
m

þa4s
X5
i¼0

c5iL5−i
m þa5s

X6
i¼0

c6iL6−i
m

�
; ð4:1Þ

where Lm ≡ lnðm=μÞ, m≡mðμÞ and as ≡ αSðμÞ=π in the
MS scheme with renormalization scale μ. The two-loop
contributions were calculated in the MS scheme long ago,
first in [41] (see also [36]). At higher k-loop orders (k ≥ 3)
we have formally defined the coefficients as cki for
convenience, with their explicit expressions given below
and in the Appendix. Before detailing these expressions,
we recall some rather well-known but important features
related to RG properties. First, note that the calculation of
the graphs in Fig. 1 still contains divergent terms, not
canceled by mass and coupling renormalization (as is clear
already from the very first one-loop graph). Those diver-
gences need an additive renormalization; in other words
mhq̄qi has its own anomalous dimension directly related to
the (quark part of) vacuum-energy anomalous dimension.
This also implies that the finite expression (4.1) is not
separately RG invariant: More precisely the perturbative
RG invariance is expressed in our normalization as

μ
d
dμ

ðmhq̄qiðm; asÞÞ þ 4m4Γ0ðasÞ≡ 0; ð4:2Þ

where the first term is the (homogeneous) RG operator
given in Eq. (3.4) and Γ0 is the vacuum-energy anomalous
dimension [41,42], remarkably recently evaluated fully
analytically to five loops by the authors of Ref. [32] [see
more details in Eq. (A2) in the Appendix]. Therefore note
that the RG consistency expressed by requiring Eq. (4.2) to
hold perturbatively order by order allows us to determine
all the logarithmic ðLmÞp coefficients cki, with k ≥ iþ 2 at
perturbative orders k from lower (< k) order coefficients
and RG βðasÞ and γmðasÞ functions up to order k − 2 and
k − 1 respectively. In addition the knowledge of Γ0ðasÞ at
k-loop order, together with lower-order terms, fixes the
remaining single logarithm coefficients ck;k−1. The latter
well-known RG properties constitute a crucial preliminary
step of our RGOPT calculations, first requiring the precise
perturbative m dependence, namely the relevant coeffi-
cients including massive quarks in (4.1).
At three loops accordingly all the logarithmic coeffi-

cients c3i, i ≤ 2 are easily determined [26] as mentioned
above from lower orders and RG properties. The remaining
nonlogarithmic coefficient c33, not related to RG proper-
ties, was calculated in [43] from related three-loop quan-
tities. In our normalization (and restricted to Nc ¼ 3 for
QCD) these coefficients read

c30¼−
2

9
ð81−2nfÞ;

c31¼
2

9
ð141−5nfÞ;

c32¼
1

16

�
52nhþ20nl−

4406

9
þ32

3
z3

�
;

c33¼
1

432
½6185−768a4−32ln22ðln22−6z2Þþ504z3

þ528z4þð672z3−750Þnh−6nlð32z3þ45Þ�; ð4:3Þ

x x x

x x

FIG. 1. Samples of standard perturbative QCD contributions to
the chiral condensate up to three-loop order. The cross denotes a
mass insertion.
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for nl “light” (massless) and nh massive quarks, with
nf ¼ nl þ nh, zk ¼ ζðkÞ, and a4 ¼ Li4ð1=2Þ. In Eq. (4.1)
nl and nh do not enter explicitly at one and two loops (fully
described, up to unshown counterterms, by the first two
graphs of Fig. 1). At three loops nl and nh enter inde-
pendently only within the Lm and nonlogarithmic coef-
ficients c32, c33 respectively, as can be deduced from
inspection of the graphs of Fig. 1. To give a more numerical
savor, in particular of the nl; nh dependence and relative
size compared to the other (pure gauge) contributions, one
has to reasonable (10−6) accuracy:

c30 ¼ −18þ 4

9
nf;

c31 ¼
94

3
−
10

9
nf;

c32 ¼ −29.7959þ 3.25nh þ 1.25nl;

c33 ¼ 16.4566þ 0.133755nh − 1.15925nl: ð4:4Þ

Next at higher orders using βðasÞ and γmðasÞ to four loops
[44] and Γ0ðasÞ to five loops [32], we obtain after algebra
the four-loop and five-loop exact analytical expressions of
the logarithmic coefficients given in the Appendix [see
Eqs. (A6) and (A8)–(A12)]. Numerically at four-loop order
this reads4

c40 ¼ 85.5− 5.11111nf þ 0.0740741n2f;

c41 ¼ −224.333þ 16.7037nf − 0.246914n2f;

c42 ¼ 342.151− 51.1008nh − 32.1008nl þ 0.975309n2h

þ 0.308642n2l þþ1.28395nhnl;

c43 ¼ −375.082þ 42.6214nh þ 43.5949nl − 0.0382074n2h

− 0.790268nhnl − 0.752061n2l ; ð4:5Þ

and at five-loop order5

c50 ¼ −418.95þ 42.1444nf − 1.38519n2f þ 0.0148148n3f;

c51 ¼ 1469.29 − 173.995nf þ 6.01543n2f − 0.0617284n3f;

c52 ¼ −3079.72þ 436.666nf − 14.1506n2f þ 0.102881n3f

þ nhð155.167 − 11.7778nf þ 0.222222n2fÞ;
c53 ¼ 5102.45 − 852.446nh − 843.205nl þ 61.7769nhnl

þ 27.7449n2h þ 34.032n2l − 0.344719n2hnl

− 0.701646nhn2l þ 0.00406919n3h − 0.352858n3l ;

c54 ¼ ðnf − 24.5Þc44 − 617.146þ 309.613nh þ 144.324nl

− 16.7381n2h − 4.8565n2l − 21.5946nhnl

− 0.0719093n2hnl − 0.0533908nhn2l − 0.0301426n3h
− 0.0116241n3l ; ð4:6Þ

wherewemade clear the c54 dependence upon the four-loop
nonlogarithmic c44 coefficient, not yet given explicitly at
this stage as this deserves a more detailed discussion in
the next subsection below. Similarly we have derived
all the six-loop coefficients that are determinable exactly
from RG properties: These are given in the Appendix
[see Eq. (A14)].
Note that the nonlogarithmic five-loop coefficient c55 is

presently not known, and this finite contribution (before
renormalization) is presumably technically very challeng-
ing to evaluate. Fortunately it does not play any role in our
(five-loop) determination below since as above explained in
Sec. II, only the lnp½m�, p ≥ 1 terms contribute to the
spectral density, Eq. (2.3).

B. Exact versus approximate determinations of c44
As just mentioned, we stress that more generally all the

nonlogarithmic coefficients ckk in Eq. (4.1) trivially do not
contribute directly to the spectral density at any order k. Yet
these ckk are actually indirectly relevant, depending at
which perturbative order one is performing calculations,
since those coefficients enter in the next-order ckþ1k single
logarithm coefficient via RG properties, as explicitly
demonstrated in Eq. (4.6) [see also Eq. (A12) in the
Appendix]. The four-loop nonlogarithmic c44 coefficient
was not known until very recently; nevertheless we could
derive its approximate (but dominant) contribution by
exploiting other known four-loop results, as explained
next. However while completing the present work, inter-
estingly the complete c44 has been very recently calculated
[45], which allows us to perform the five-loop RGOPT
analysis with a fully known c54 coefficient.
Let us first derive our approximation for c44 (that we will

also use in the numerics below, to assess the sensitivity
of our method upon such variations in the perturbative
coefficients). For that purpose we exploit the relation of the
condensate to another four-loop contribution as follows:

4We should point to a correction in c43 here as compared with
Eq. (5.13) of [26] (that was also differently normalized by an
overall 43 factor): This mistake, due to our previously incorrect
interpretation of nh dependence from given nl ¼ nf − 1, nh ¼ 1
results, changes c43 by a few 0.1%, but affects our four-loop
RGOPT condensate value by less than 10−3.

5The authors of [32] provide the vacuum-energy anomalous
dimension at five loops for both diagonal contributions of the nl
massless and nh ¼ 1 massive quark, and nondiagonal contribu-
tions (i.e., quarks of different masses). It is straightforward to
derive from their results the more specific case of nl ¼ 0 and
nhð¼ nfÞ degenerate quarks of mass m, more relevant to our
calculation.
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∂
∂m ðhq̄qiðmÞÞ ¼ −Πsðq2 ¼ 0Þ; ð4:7Þ

where Πsðq2Þ≡ i
R
d4xeiq:xh0jTJsðxÞJsð0Þj0i is the two-

point scalar correlation function (the scalar current being
defined as Js ¼ q̄q). This well-known relation (see e.g.,
[20]) is valid to all orders both at the bare and renormalized
levels. The various [vector, axial, (pseudo)scalar] correla-
tors have been investigated intensively in the literature
[46,47], and up to four loops [48,49]. In particular the four-
loop Πsð0Þ contribution was calculated in [49], however
not incorporating the so-called singlet contributions (as
those were not directly relevant to the calculation of [49]).
[We recall that the singlet contributions involving two
disconnected quark lines in the two-point correlators, only
appear starting at three-loop order, and for Πsð0Þ at three
and four loops they are nonvanishing only for massive
quark contributions ∝ nh.] The nonsinglet four-loop non-
logarithmic contribution to Πsð0Þ is given in the MS
scheme in Eq. (B.1) of [49], a result that we recast here
for completeness in our normalization conventions:

Π4−loop;ns
s ð0Þ ¼

�
3

2π2

�
a3sm2

�
1

2
C̄ð3Þ;s
−1 þ lnðm=μÞ terms

�
;

ð4:8Þ

with

C̄ð3Þ;s
−1 ¼−325.6276432þ16.39537650nhþ19.76434509nl

−1.670198265n2h−0.9856898698nlnh

þ0.7103788267n2l : ð4:9Þ

Now at the level of the quark condensate being a one-point
function, there is no distinction between “singlet” and
“nonsinglet” contributions, these being all included if the
condensate is calculated from basics. But if deriving the
condensate using Eq. (4.7), we may explicitly separate
the contributions that correspond to “singlet” or “non-
singlet” within Πsð0Þ. Accordingly from a straightforward
integration from Eq. (4.7) with input (4.8), we obtain the
“incomplete-singlet” (IS) approximation of c44

6:

cIS44¼−
1

6
C̄ð3Þ;s
−1 −

1

3
c43

¼179.2986813−16.93968372nhþ0.2911021798n2h

−17.82568131nlþ0.1322905474n2l
þ0.4277044657nhnl: ð4:10Þ

Note that the first (dominant) term in Eq. (4.10) is the pure
gauge contribution, while terms ∝ nl; nh originate from
four-loop contributions with virtual massless and massive
quarks.
Alternatively, the independent calculation very recently

performed in [45] includes the complete contributions
directly for the condensate: In the normalization of
Eq. (4.1) this full c44 reads7

c44¼179.29868127533155−15.013277376448457nh

þ0.7428868214454403n2h−17.825681312474572nl

þ0.13229054734724904n2l
þ1.0016895879838739nlnh: ð4:11Þ

As can be seen Eq. (4.10) is fully consistent with the
complete result of Eq. (4.11) (numerically within 10−10

relative accuracy) for its “nonsinglet” part (including in
particular the dominant gauge contributions). Numerically
the additional contributions within the full c44 are not at all
negligible at four loops: For our relevant case with no
massless quarks (nl ¼ 0) and nhð¼ nfÞ (degenerate) mas-
sive ones, Eq. (4.11) is ∼4% (∼7.5%) larger than (4.10),
respectively for nf ¼ 2 (nf ¼ 3). In the numerics below we
evidently preferably use the full Eq. (4.11), relevant for the
five-loop spectral density via Eq. (4.6), but in Sec. V D we
also compare results obtained with the “incomplete-singlet”
approximation Eq. (4.10) in order to have a sensible estimate
of the stability of five-loop RGOPT results with respect to
this well-defined variation of the perturbative coefficients.
We anticipate that it impacts the final condensate value
roughly by a 1(2)% change of the relative magnitude of
jhq̄qij1=3 respectively for nf ¼ 2 (nf ¼ 3).

C. Explicitly RG-invariant condensate

One may use RG properties to define a RG-invariant
renormalized condensate expression, namely that obeys the
homogeneous RG Eq. (3.4), by compensating for the
anomalous dimension in Eq. (4.2), as follows. The RG
noninvariance of (4.1) can be perturbatively restored most
simply upon considering perturbative extra finite subtrac-
tion contributions [26,36],

½mhq̄qi�inv ≡mhq̄qi − Sðm; asÞ; ð4:12Þ

where we define

Sðm; asÞ ¼
3

2π2
m4

as

X
k≥0

skaks ð4:13Þ

6Equation (4.7) implies that c43 also enters this relation. Since
c43 is an exact contribution from the condensate, Eq. (4.10)
involves both “singlet” and “nonsinglet” (from C̄ð3Þ;s

−1 ) contribu-
tions to Πsð0Þ.

7The original four-loop results of [45] combine exact analytical
contributions with other (gauge) contributions known numeri-
cally but to very high accuracy of at least 10−74. Here we give for
compactness the results numerically with 10−16 accuracy.
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with coefficients determined order by order by

μ
d
dμ

Sðm; asÞ ¼ μ
d
dμ

mðhq̄qiÞ ¼ −4m4Γ0ðasÞ: ð4:14Þ

Once having determined as above all the correct logarith-
mic coefficients ckj, j < k at perturbative order k, one may
apply the first equality in Eq. (4.14), using the RG operator
Eq. (3.4), to the finite expression (4.1), not separately RG
invariant, to determine the subtraction function Sðm; asÞ
uniquely. Of course, Sðm; asÞ actually only depends on the
vacuum-energy anomalous dimension and other RG func-
tions βðasÞ and γmðasÞ, as the second equality in (4.14)
shows [which is nothing but a rewriting of Eq. (4.2) above].
Note that Eq. (4.13) necessarily starts with the s0=as term
to be consistent with RG-invariance properties. In our
normalization (4.13) the exact si expressions up to five
loops are given for completeness in the Appendix [see
Eq. (A16)]. Note, however, that Eq. (4.13) plays actually no
role in our subsequent determination of the condensate in
the present work, since Sðm; asÞ does not involve any lnðmÞ
terms, so trivially it does not contribute to the spectral
density. We have worked out this quantity for completeness
since the expression (4.12) is nevertheless useful in other
context (see e.g., Ref. [29]).

D. Perturbative spectral density at five and six loops

From the generic perturbative expansion for the con-
densate, Eq. (4.1) calculating the (perturbative) spectral
density formally involves calculating all logarithmic dis-
continuities according to Eq. (2.3). This is simply given by
taking in (4.1) all nonlogarithmic terms to zero, those
having obviously no discontinuities, while replacing all
powers of logarithms, using m → ijλj etc., as

lnn
�
m
μ

�
¼ 1

2n
lnn

�
m2

μ2

�

→
1

2n
1

2iπ

�
lnn

�jλj2
μ2

eiπ
�
− lnn

�jλj2
μ2

e−iπ
��

ð4:15Þ

leading to the following substitution rules for the first few
terms

ln

�
m
μ

�
→ 1=2; ln2

�
m
μ

�
→ Lλ;

ln3
�
m
μ

�
→

3

2
L2
λ −

π2

8
; ln4

�
m
μ

�
→ 2L3

λ −
π2

2
Lλ;

ln5
�
m
μ

�
→

5

2
L4
λ −

5π2

4
L2
λ þ

π4

32
;

ln6
�
m
μ

�
→ 3L5

λ −
5π2

2
L3
λ þ 3

π4

16
Lλ; ð4:16Þ

where Lλ ≡ lnðλ=μÞ (note the π2k terms appearing starting
at order ln3m).
We obtain in this way the perturbative spectral density up

to six-loop order formally,

−ρMS
QCDðλ;asÞ¼

�
3

2π2

�
λ3
�
−
1

2
þ4as

�
Lλ−

5

12

�

þa2s
X3
i¼1

ρ3iL3−i
λ þa3s

X4
i¼1

ρ4iL4−i
λ

þa4s
X5
i¼1

ρ5iL5−i
λ þa5s

X6
i¼1

ρ6iL6−i
λ

�
; ð4:17Þ

where the coefficients ρki for k ≥ 3 are straightforwardly
related to the cki of the original condensate using (4.16) as
follows:

ρ31 ¼
3

2
c30;

ρ32 ¼ c31;

ρ33 ¼
1

2
c32 −

π2

8
c30; ð4:18Þ

ρ41 ¼ 2c40;

ρ42 ¼
3

2
c41;

ρ43 ¼ −
π2

2
c40 þ c42;

ρ44 ¼ −
π2

8
c41 þ

1

2
c43; ð4:19Þ

ρ51 ¼
5

2
c50;

ρ52 ¼ 2c51;

ρ53 ¼ −
5

4
π2c50 þ

3

2
c52;

ρ54 ¼ −
π2

2
c51 þ c53;

ρ55 ¼
π4

32
c50 −

π2

8
c52 þ

1

2
c54; ð4:20Þ

and so on at higher (six-loop) order [see Eq. (A15) in the
Appendix].
At this stage, before proceeding with RGOPT, we remark

that the above (ordinary) perturbative spectral density ρðλÞ
expression for arbitrary nl, nh in Eq. (4.17) can be useful for
different purposes, independent of the RGOPT approach.
For instance it should allow us to proceed at higher order
the recently developed approach of Ref. [50], to fit recent
lattice precise calculations of the spectral density, in order
to extract αS.
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V. NUMERICAL RGOPT RESULTS FOR THE
CONDENSATE UP TO SIX LOOPS

We are now fully equipped to proceed with the main
purpose, that we recap is to find solutions of the RGOPT
equations, Eqs. (3.10) and (3.8), applied to the spectral
density Eq. (4.17) at successive orders, after the modifi-
cations implied by Eqs. (3.9) and (3.11). The RGOPT
results up to four loops were obtained in [26] to which we
refer for more details. Here we will first summarize the
main steps and important features for self-containedness,
before presenting in more details our new results at five and
six loops. We also discuss in details the numerical impact of
some controllable approximations, that will be specified,
and how we accordingly estimate theoretical uncertainties
of our predictions.

A. Summary of previous results up to four loops

At one-loop order Oð1Þ for the spectral density, (3.9)
only affects the first constant term −1=2 in Eq. (4.17):
Since there is no logarithmic Lλ contribution, one obtains
for Eq. (3.10) the trivial optimized solution, λ ¼ 0. Thus
nontrivial solutions occur starting at next-to-leading (NLO)
two-loop order of the modified perturbation. Accordingly
at NLO the modified series reads

−ρδ1QCD ¼ 3

2π2
λ3
�
19

58
þ g
π2

�
Lλ −

5

12

��
; ð5:1Þ

and the OPT (3.10) and RG (3.8) equations have a unique
solution given in the first lines of Tables I and II for nf ¼ 2,
3 respectively, using also (2.2). These results used the RG
Eq. (3.8) at one-loop order, that gives simple analytic
solutions. But since our optimized expression actually
relies on exact two-loop calculations, it appears more
sensible to use the RG Eq. (3.8) at the same (two-loop)
order to incorporate a priorimore consistently higher-order

effects. Doing this gives the results in the second lines of
Tables I and II for nf ¼ 2, 3. Those results, to be considered
more accurate, show a substantial decrease of the optimal
coupling αS to a more perturbative value with respect to the
results using the one-loop RG equation.
At higher orders the precise numbers obtained for the

condensate also depend on the specific definition of the Λ̄
reference scale, which is generally perturbative and a matter
of convention to some extent. The numbers in the first lines
of Table I were obtained using the simpler one-loop form,
Λ̄ ¼ μe−1=ð2b0gÞ, consistent with the one-loop RG equation
used. Next, when comparing below with other determi-
nations of the condensate, we use conventionally a four-
loop definition of Λ̄ (see, e.g., [51]), in agreement with
most other past determination conventions. Except, at
five-loop order, we obviously adopt the more consistent
five-loop perturbative definition of Λ̄. The four-loop QCD
scale Λ̄ expression reads in our normalizations [where
g≡ 4παSðμÞ],

Λ̄4−loop
nf ðgÞ≡ μe−

1
2b0gðb0 gÞ

− b1
2b2

0 exp

�
−

g
2b0

·

��
b2
b0

−
b21
b20

�

þ
�
b31
2b30

−
b1b2
b20

þ b3
2b0

�
g

��
; ð5:2Þ

with a straightforward generalization upon including the
five-loop coefficient b4. In Tables I and II we actually give
for convenience the value of the scale-invariant condensate
hq̄qiRGI, which can be more appropriately compared
between different perturbative orders. It is defined in our
normalization as

hq̄qiRGI ≡ hq̄qiðμÞ exp
�Z

dg
γmðgÞ
βðgÞ

�

¼ hq̄qiðμÞð2b0 gÞ
γ0
2b0

×

�
1þ

�
γ1
2b0

−
γ0b1
2b20

�
gþOðg2Þ

�
ð5:3Þ

where higher-order terms not shown here are easily derived,
since only depending on the RG coefficients bi; γi known
up to five loops. We remark, however, that our RGOPT
optimization also fixes a scale simply obtained from using

TABLE I. nf ¼ 2 RGOPT results at successive orders up to
four loops for the spectral parameter λ̃, α̃S, and RG-invariant
condensate hq̄qi1=3RGI calculated at the consistent perturbative order
from (5.3). Λ̄2 is conventionally normalized in most cases by
Eq. (5.2), except in the very first line where the one-loop
expression Λ̄≡ μe−1=ð2b0 gÞ is rather used. The corresponding
scale values from Eq. (5.2) are also given in the last column.

δk, RG order ln λ̃
μ

α̃S −hq̄qi1=3RGI

Λ̄2

μ̃
Λ̄2

δ, RG one loop − 2275
10092

87π
328

≃ 0.83 0.996 2.2
δ, RG two loop −0.45 0.480 0.821 2.8

δ2, RG two loop −0.686 0.483 0.792 2.797
δ2, RG three loop −0.703 0.430 0.783 3.104

δ3, RG three loop −0.83895 0.40522 0.77428 3.308
δ3, RG four loop −0.82164 0.39071 0.77247 3.448

TABLE II. Same caption as Table I for nf ¼ 3.

δk order ln λ̃
μ

α̃S −hq̄qi1=3RGI

Λ̄3

μ̃
Λ̄3

δ, RG one loop − 283
972

27π
104

≃ 0.82 0.987 2.35
δ, RG two loop −0.56 0.474 0.789 3.06

δ2, RG two loop −0.766 0.493 0.772 2.942
δ2, RG three loop −0.788 0.444 0.766 3.273

δ3, RG three loop −0.97402 0.41367 0.74377 3.547
δ3, RG four loop −0.96506 0.39906 0.74232 3.709
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Eq. (5.2) (or its lower-order equivalent) for Λ̄ðg̃Þ, that is
given indicatively in Tables I and II. We stress that the
optimal coupling α̃S and corresponding optimal scale μ̃, or
the optimal spectral parameter λ̃, are to be considered
intermediate values with no universal physical interpreta-
tion, since their precise obtained values depend on the
physical quantity being optimized. The physically mean-
ingful result is obtained when inserting α̃S and λ̃ within the
quantity being optimized, here ρðλ; αSÞ. (This feature is
quite general in optimization procedures: The values of the
optimization parameters for a given physical quantity should
not in general be used to evaluate another physical quantity.)
At three-loop, a2s , order, the nf dependence appears

explicitly within the perturbative coefficients of the spectral
density; see Fig. 1 and the last a2s coefficient in Eq. (4.17).
There occur two real solutions for L̃λ; α̃S, but the selection
of the unique physical solution is unambiguous since only
one is clearly compatible with AF behavior for g → 0,
lnðλ̃=μÞ ≃ −dk=ð2b0gÞ þOð1Þ with dk ¼ Oð1Þ, both for
the RG and OPT equations. In contrast the other real
solution has for g → 0 a coefficient of opposite sign to AF,
and gives ln λ̃=μ > 0, which is incompatible with pertur-
bativity, since we expect μ ≫ λ̃ similar to the perturbative
range μ ≫ m̃ ∼ Λ̄ for the original expansion with mass
dependence. As stressed above in Sec. III the occurrence of
an essentially unique solution with the correct AF-match-
ing behavior at successive orders is a crucial feature of
RGOPT, as will be illustrated further below.
At three and four loops the RGOPT results for nf ¼ 2; 3

are specified in Tables I and II respectively.8 As indicated in
each case we compare results obtained when using first the

RG Eq. (3.8) truncated at lower order, and next taking the
full RG equation at the same three- or four-loop order
respectively, incorporating more higher-order dependence.
At four loops the raw optimization results actually give
several real solutions for λ̃; α̃S but there are no possible
ambiguities since once more all solutions are eliminated
from the AF-matching requirement, except a single one,
with α̃S > 0 and L̃λ < 0 as expected.
One observes a further decrease of the optimal coupling

α̃S from three to four loops to more perturbative values, as
well as the corresponding decrease of L̃λ, meaning that μ̃ is
also larger. The stabilization/convergence of the results is
clear for the scale-invariant condensate hq̄qiRGI given in
Tables I and II, which at four-loop order has almost no
variation upon RG equation truncations.9 Note that the
optimal values α̃S decrease substantially with increasing
orders as compared to the lowest nontrivial order result
above, thus indicating more perturbatively reliable results;
moreover α̃S appears to somehow stabilize at three and four
loops. Notice also that compared with the more than 10%
change in α̃S upon going from two to three loops, the final
physical condensate value only varies by 0.25%, showing a
strong stability. Also, while hq̄qi1=3=Λ̄ changes by about
20% compared to the crude two-loop result in the first lines
of Tables I and II it stabilizes rapidly at higher orders
showing a posteriori that the first nontrivial two-loop result
seems already a quite realistic value. This stability at only
NLO is a welcome feature for the usefulness of the RGOPT.
A similar behavior was observed when optimizing the pion
decay constant in [25].
In Fig. 2 we illustrate for nf ¼ 3 (resp. left) and nf ¼ 2

(resp. right) the different RG and OPT branches obtained at

FIG. 2. The different branch solutions LRG
λ ðαS; kÞ (solid curves) and LOPT

λ ðαS; kÞ (dashed curves), k ¼ 1, 2, 3, at δ3 (four-loop) order.
Left: nf ¼ 3. Right: nf ¼ 2. Distinct branches appear to join within some αS range where they actually become complex conjugated,
since only their real parts are plotted within this range.

8Since all the perturbative coefficients are known exactly at
four loops, or to very high accuracy at five loops, our optimized
results at a given order are in principle obtained to high accuracy.
But in Tables I and II (and similarly at higher orders below) we
give results to an accuracy largely sufficient for our purpose,
given the extra uncertainties that will be discussed below.

9In our numerical analysis below we use for convenience the
exponentiated form of the RG-invariant factor as in (5.3), but note
that the relative difference with the fully perturbatively expanded
one is less than 10−3 for all considered optimized coupling
values.
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four loops, respectively as LRG
λ ðαS; kÞ, LOPT

λ ðαS; kÞ, where
the number of solutions are at most k ¼ 1; ::3 at four loops.
The clearest situation is the one for nf ¼ 3, where the two
AF-matching RG and OPT branches (namely the two
curves with the lowest Lλ values for any αS > 0 in
Fig. 2) are real for any αS > 0 and intersect at a unique
value, that determines unambiguously the solution; com-
pare the last line in Table II. Similar properties hold for all
considered cases at lower orders. Next in Fig. 2 (right) for
nf ¼ 2, two of the OPT branches inconveniently become
complex (conjugate) valued within the range 0.25≲ αS ≲
0.33 (so that their real parts shown here appear joined).
Nevertheless one can still unambiguously select the correct
AF-matching OPT branch, that is the one intersecting with
the AF-matching RG branch, so that the correct solution is
again unique.

B. Five-loop and six-loop results

Up to four loops, all the perturbative coefficients and RG
quantities entering our evaluation have been known exactly
for some time. Thanks to the recently calculated five-loop
vacuum anomalous dimension [32], Eq. (A5), and the very
recent complete calculation [45] of the four-loop nonlogar-
ithmic coefficient c44ðnfÞ given in Eq. (4.11), all the
relevant perturbative coefficients needed at five loops are
exactly available for the spectral density, Eq. (4.17). Thus
we can extend our evaluation for the physically relevant
nf ¼ 2; 3 values to five-loop order, correspondingly includ-
ing up to five-loop contributions in the RG β and γm
functions within the optimization, after performing consis-
tently the δ expansion in Eq. (3.9) to order δ4. As mentioned
above it is also useful to estimate the sensitivity of our
results to the well-defined approximation Eq. (4.10) neglect-
ing in c44 the (subdominant) four-loop singlet contributions.
Furthermore, higher-order coefficients are (partly) determi-
nable solely from perturbative RG invariance, a feature that
we can exploit to consider also (approximate) six-loop
results (RGOPT order δ5). More precisely all the presently
known five-loop RG coefficients, together with the com-
plete four-loop coefficients, allow us to determine exactly
the six-loop coefficients c6k, 0 ≤ k ≤ 4 of ln6−kðm=μÞ of
Eq. (4.1). While the single logarithmic term (k ¼ 5) would
need the presently unknown six-loop vacuum-energy
anomalous dimension as well as the five-loop nonlogar-
ithmic coefficient c55. The explicit expressions of the c6k are
given in Eq. (A14) in the Appendix. Consequently from
Eq. (4.16) all six-loop logarithmic terms, ρ6kL6−k

λ , k ¼ 1; 5
of the spectral density in Eq. (4.17) are exactly predicted
[see Eq. (A15)], except for its last unknown nonlogarithmic
coefficient. As we will examine below, the six-loop results,
although being approximate, are quite important to assess a
more reliable determination of the condensate, due to the
occurrence of rather unwelcome instabilities for the strictly
five-loop results.

1. Five-loop and six-loop nf = 2 results

We examine now in some details our procedure and
results for nf ¼ 2, with quite similar features given more
briefly below for nf ¼ 3, except when important differences
need to be mentioned. For nf ¼ 2, at five loops we obtain
one real solution that appears at first sight the closest
to the lower (four-loop) results, namely, Lλ̃ ¼ −0.5699,
α̃S ¼ 0.5963, which gives hq̄qi1=3RGI ≃ −0.863Λ̄2 obtained
using the RG equation at five loops. (Very close results are
obtained if using instead the RG equation at four loops.)
Without further inquiries one would conclude from this
result that the five-loop RGOPT produces an anomalously
large shift of the condensate value, as compared with
the seemingly well-stabilized three- and four-loop results
∼ − ð0.78 − 0.77Þ in Table I. A directly related issue is the
anomalously large optimized coupling that corresponds to
this solution, αS ∼ 0.6, in contrast with the regularly
decreasing coupling obtained at increasing orders up to
four loops, in Tables I and II.
However, upon applying our general criteria to select the

correct solutions, a more careful examination shows that
this solution cannot be correct, since it is not sitting on the
perturbative AF-matching branch, in contrast to what
occurs systematically at lower orders. This feature can
be checked rather easily by perturbatively expanding at first
order the four different branch solutions for RG and OPT
equations respectively, that both give quartic equations in
Lλ ≡ lnðλ=μÞ at five loops [thus respectively giving
LRG
λ ðαS; kÞ, LOPT

λ ðαS; kÞ with k ¼ 1;…4], and examining
which one(s) exhibit the perturbative AF-matching behav-
ior, and whether the latter are matching the optimized
Lλ̃; α̃S values obtained at the intersecting solution(s).
Equivalently it can be seen more pictorially in Fig. 3
illustrating the different branches and (some of) their
intersecting solutions (these branches are shown in a
somewhat restricted but physically relevant range of Lλ

and αS): In contrast with the four-loop results in Fig. 2, the
RG branches now also become complex, similar to the OPT
branches, within a rather important αS range 0.27≲ αS≲
0.56, and the only real intersection occurring at αS ≃ 0.596,
Lλ̃ ≃ −0.57 (visible near the top right of Fig. 3) sits on RG
and OPT branches that are not linked to the correct AF
behavior.
Therefore, at five-loop order the RG and OPT AF-

matching branch do not have a real-valued common
intersection: a feature which somewhat complicates our
investigation as compared with lower orders. This large
perturbation sufficiently destabilizing the regular trend
observed at lower orders to suppress real AF-matching
solutions, has two distinct, clearly identified origins. The
first feature (but having a rather moderate impact on final
results) is that the five-loop vacuum anomalous dimension
coefficient [32] is much larger relative to lower orders,
moreover varying very much with nf [compare Γ0

4 in
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Eq. (A5) with Γ0
3 in Eq. (A4) in the Appendix]. [In contrast,

as illustrated below, going from the four-loop to the five-
loop β function for the RG equation has a very modest
impact, which can be traced to the moderate numerical
changes of adding five-loop RG coefficients to βðαSÞ,
γmðαSÞ functions.] Note that Γ0

4 enters the five-loop con-
densate Lm coefficient c54ðnfÞ, but it is not the sole
contribution: The net effect from Γ0

4 is typically that
jc54ðnfÞ=c50ðnfÞj ∼ 10 roughly, which may be compared
qualitatively with the similar four-loop quantities giving
jc43=c40j ∼ 3. But the second feature, that upon inspection
happens to be the principal reason why the AF-matching
solution is pushed into the complex domain, is that the
discontinuities from Eq. (4.15) entail also a relatively large
term ∼π4 appearing for the first time at five-loop order
in ρðλ; asÞ, within the nonlogarithmic coefficient. More
precisely, it is the first term of Eq. (4.20) modifying
the relevant original perturbative coefficient, c54ðnfÞ in
Eq. (4.1) by about 60%, while all other coefficients are
more moderately affected by the discontinuity contribu-
tions. Simply ignoring this contribution would be clearly
inconsistent, and we will examine below how to better
circumvent those problems.
Note in Fig. 3 that the AF-matching RG and OPT

branches have not disappeared but just became complex
(conjugate) valued within a certain αS range, rather unfortu-
nately where the sought intersecting solution is expected.
Indeed one can determine precisely the complex-conjugated
solution that sits on the AF-matching branch: Using the
four-loop RG equation, we obtain Lλ̃ ≃ −0.778� 0.303i,
α̃S ≃ 0.358� 0.0537i, that gives for the (RG-invariant)
condensate ≃ − ð0.801� 0.0195iÞΛ̄ð2Þ (see Table III for
more details). Accordingly the correct AF-matching branch,
although complex valued in the relevant range, happens to
give a corresponding condensate value with a small imagi-
nary part, andwith a real part in smoother continuitywith the

four-loop real solution. Also the corresponding (real part of
the) optimal coupling α̃S is more reasonably smaller than for
the (wrong) naive real solution above. Very similar results
are obtained if using rather the five-loop RG equation (see
Table III).
At this stage without further investigation one may just

take the real part as the physically relevant result, and
interpret the imaginary parts as a rough estimate of the
theoretical uncertainties of the results (although this is
presumably not the best possible prescription to estimate
the intrinsic uncertainties). But given that the unwelcome
occurrence of nonreal solutions is only a consequence of
solving exactly the RG and OPT polynomial equations in
Lλ, and that it is seemingly not far from a real solution at
five loops, one can more appropriately attempt to recover
real solutions by a variant of the procedure. Accordingly a
first possibility is simply to (perturbatively) approximate
the sought optimized solutions at five loops. Alternatively
another possibility is to proceed to next (six-loop) order: At
least this is possible in the approximation of neglecting
the nonlogarithmic six-loop coefficient being the only
contribution not presently derivable from already known
lower-order results (as explained above at the beginning of
Sec. V B). Let us examine in turn those two possibilities.

2. Perturbatively truncated five-loop RG solutions

At five loops, instead of solving exactly the relevant RG
and/or OPT optimization Eqs. (3.8) and (3.10), one can
consider more perturbative approximations, as long as
those remain consistent with the original perturbative order
considered. Indeed the RG Eq. (3.8) generates terms of
formally higher order than five loops: More precisely it is
easy to see that at five loops Eq. (3.8) acting on the five-
loop (α4S) spectral density Eq. (4.17) involves up to α9S
terms, due to the highest five-loop RG contributions
∝ b4α6S, γ4α

5
S respectively. But b4, γ4 appear first at order

α5S, α4S respectively. Accordingly a presumably sensible
procedure is to truncate [24] the RG equation suppressing
higher-order terms in αS until possibly recovering a real
common RG and OPT solution. At the same time if
suppressing too many higher-order terms one loses the
consistency with the RG content required at a given (here
four- or five-loop) order. A similar reasoning shows that the
next-order six-loop RG coefficients, b5; γ5 (presently not
known), would enter first respectively the α6S, α

5
S coeffi-

cients of the RG equation.
Therefore it appears sensible to truncate any αkS, k ≥ 6 in

the result of Eq. (3.8), that would be anyway affected by
presently unknown higher orders. Further truncating the α5S
term implies, however, losing any dependence from the
five-loop b4 (while it still involves the five-loop γ4 one).
Accordingly we found it instructive to consider the effects
of successive truncations, progressively suppressing the
highest α9S down to α6S (or even possibly α5S) terms and

FIG. 3. Some of the different RG (solid curves) and OPT
(dashed curves) branches, respectively LRG

λ ðαSÞ, LOPT
λ ðαSÞ at δ4

(five-loop) order for nf ¼ 2. Distinct branches appear to join
within some αS range where they actually become complex
conjugate, since only their real parts are plotted within this range.
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comparing. This is done below, with all results compiled in
Table III obtained by optimizing the spectral density
ρðλ; αSÞ and keeping only the AF-matching branch solution
(unique at a given order).
From the nf ¼ 2 results of Table III, at five loops it

appears not that easy to recover real solutions: Upon
truncating terms progressively starting from highest-order
ones, the results do not change much at first, although there
is a slow but clear decrease of the corresponding imaginary
parts. Also, despite the not small Im½Lλ̃� values, the resulting
condensate has much smaller imaginary parts, and real parts
remain very stable, differing relatively only byOð10−3Þ for
the different truncations. Similarly, for all cases there are
tiny differences between the results using the four-loop or
five-loopRG equation. The α̃S value is alsomore reasonably
perturbative, and close to the real four-loop results of Table I.
Truncatingmaximally the RG equation (namely by all terms
αk≥6S , but that still involves all the five-loopRG coefficients),
the correct (AF-matching) solution has a tiny imaginary part,
so that its real part may be considered reliable, giving
hq̄qi1=3RGI ≃ −ð0.800� 0.0005iÞΛ̄2. Note that if further
truncating theRG equation, one not only loses the consistent
RG content at five-loop order, but the corresponding RG
equation no longer gives any AF-matching branch.

3. Approximate (partial) six-loop RGOPT

As sketched above, the second alternative is to proceed
at next (six-loop) order of Eq. (4.17), with the ln6−kðλÞ
coefficients given explicitly in the Appendix [see
Eqs. (A14) and (A15)]. The motivation, apart simply from
the fact that most of the six-loop coefficients are readily
exploitable from RG properties, is that the discontinuities
(4.15) entail additional contributions ∝ π4 [see the last
terms in Eq. (4.16)], that tend to partially balance the
instability triggered by π4 discontinuity terms appearing
first at five-loop order. At this point it is worth remarking
that such features are generically expected from Eq. (4.15):
Typically in [26] we have calculated the spectral density for
the Gross-Neveu (GN) OðNÞ model [52] in the large-N
limit, to very high perturbative orders, that exhibits a clear
pattern. The RGOPT solutions at increasing orders con-
verge slowly toward the exact result (known for the GN
model), those solutions being destabilized each time novel
π2k contributions appear first, at increasing orders.10

However, if keeping only fixed π2k terms (namely discard-
ing π2kþ2, etc., terms appearing at higher orders),

remarkably at sufficiently high fixed order all the π2k

terms cancel, and the exact GN spectral density is
obtained [26].
For the QCD spectral density such exact cancellations are

not expected; moreover obviously we are quite limited in
trying to reach still higher orders. But inspired from these
properties it is worth comparing two available successive
orders (five and six loops), that actually rely on the same
five-loop RG content, since as we recall, five-loop RG
properties predict most of the six-loop coefficients of ρðλÞ
[all except the nonlogarithmic one, ρ66 in Eq. (4.17)].
Accordingly one should keep in mind that it remains an
approximation to the complete six-loop results, since ρ66
involves the presently unknown six-loop vacuum anoma-
lous dimension and the five-loop nonlogarithmic coefficient
c55. Therefore we simply set ρ66 to zero in our numerics
[neglecting also consistently the other nonlogarithmic con-
tributions generated at six loops from the discontinuities
(4.16)] We will argue below that this approximation should
moderately deviate from the complete six-loop results.
For nf ¼ 2 the corresponding partial six-loop RGOPT

results are given in the last two lines of Table III, also
considering the (maximal) RG-consistent truncation. As
one can see a real solution is recovered at six loops;
moreover the two AF-matching RG and OPT branches
remain real for all the physically relevant αS range, and
their intersection occurs for a substantially smaller α̃S value
as compared to five loops. This is illustrated also in Fig. 4,
zooming on the RG and OPT branches in the relevant range
of Lλ; αS, which looks qualitatively more similar to the
four-loop nf ¼ 3 case. It is striking that the resulting
condensate value is much closer to the four-loop results;
that is not a numerical accident but is more essentially the
effect of partially balancing at six loops the instability from
the large π4 terms occurring first at five loops.

4. Summary of nf = 2 results

As a tentative summary of the previous nf ¼ 2

investigation:
(i) At five loops, the impact of both large five-loop

vacuum-energy anomalous dimensions and (more
importantly) the first occurrence of π4 terms from
(4.15) are strong enough to destabilize the regular
features observed at lower orders up to four loops.
Consequently one fails to obtain a strictly real
AF-matching solution. Yet the five-loop results from
successive truncations of nonmandatory higher-
order terms in the RG equation are very consistent,
reflecting a good stability. Also the imaginary parts
are small enough (especially for the maximal trun-
cation of αk≥6S ; see Table III) and can be included
within the theoretical uncertainties.

(ii) Next, going to six loops restores a real unique AF-
matching solution, that results from a partial balance

10The GN spectral density exhibits at low orders even a more
pronounced destabilization than for QCD, because the (large-N)
basic perturbative expansion of hq̄qiGNðmÞ in the MS scheme has
vanishing nonlogarithmic coefficients. Therefore, relative to zero,
the large contributions generated by (4.15) within ρðλÞ are
maximally destabilizing corrections.
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of the destabilizing π4 terms. This solution has very
regular properties and happens to be very close to the
four-loop results.

These properties are more generically confirmed from
comparison with the other relevant values nf ¼ 3, or
nf ¼ 0, as illustrated next.

C. Five- and six-loop nf = 3 results

For nf ¼ 3 at five loops, very similar to nf ¼ 2 there is
one real RGOPT solution appearing at first the closest to
the four-loop real results, using the RG equation at five
loops: Lλ̃ ≃ −0.693411, α̃S ≃ 0.598. This gives for the RG-
invariant condensate, ≃ − 0.813Λ̄3; thus a large shift from
the four-loop results of Table II. But again upon examining
the AF branches these do not match this real solution, and

the correct AF-matching but complex-valued branch gives
a more reasonable result, with small imaginary parts and a
real part closer to the four-loop real results (see Table IV).
Similar to nf ¼ 2 we have performed a systematic

analysis of all possible RG-consistent truncations. We
illustrate in Table IV the more relevant results, omitting
intermediate case details. Overall the behavior is quite
similar to nf ¼ 2: At five loops one fails to recover strictly
real AF-matching solutions, but the maximal truncation
(discarding αk≥6S , not losing the five-loop RG content) gives
very small imaginary parts, and we will take the real part
and add appropriate uncertainties in our final estimate.
Next, similar to the nf ¼ 2 results, at six-loop order one

recovers a real AF-matching solution given in the last two
lines in Table IV, with very regular properties and close to
the four-loop results of Table II.

D. Impact of approximated five-loop contributions

We now consider the approximation defined in Sec. IV B
and relevant for nf ¼ 2; 3, of using for the four-loop non-
logarithmic coefficient c44 our expression in Eq. (4.10)
derived from the related nonsinglet four-loop scalar two-
point correlator [49]. We recall that at the level of the
optimized spectral density, this affects results only via
the five-loop single logarithmic coefficient c54. Since the
previous results in Sec. V B including the very recently
determined [45] exact c44 coefficient Eq. (4.11) are
accordingly more complete, we will not include the
variations resulting from this approximation within our
uncertainty estimates. Nevertheless, given that the more
exact five-loop results above are somewhat prevented by

TABLE III. nf ¼ 2 results at RGOPT δ4 (five loops) and partial δ5 (six loops) for the (RG-invariant) condensate hq̄qi1=3RGI=Λ̄2 and the
corresponding optimal values of the spectral parameter λ̃, coupling α̃S, and scale μ̃, from optimizing ρðλ; αSÞ with Eqs. (3.10) and (3.8).
We compare the results of (perturbatively consistent) successive RG equation truncations. Λ̄2 is normalized by Eq. (5.2) when the four-
loop RG equation is used or by its five-loop extension when the five-loop RG equation is used.

RGOPT [ρðλ; αSÞ] δk, RG order ln λ̃
μ

α̃S −hq̄qi1=3RGI

Λ̄2

μ
Λ̄2

δ4, RG four loop (full) −0.77785� 0.30316i 0.35785� 0.053706i 0.80084� 0.019516i 3.6418
δ4, RG five loop (full) −0.78815� 0.31499i 0.35181� 0.0501i 0.80104� 0.019553i 3.7403

δ4, RG five loop (α

=

k≥9
S ) −0.80175� 0.3081i 0.35384� 0.043583i 0.80101� 0.019379i 3.7596

δ4, RG four loop (α

=

k≥8
S ) −0.81664� 0.29248i 0.35958� 0.036002i 0.80033� 0.018530i 3.7292

δ4, RG five loop (α

=

k≥8
S ) −0.8151� 0.28951i 0.36097� 0.036464i 0.8009� 0.018641i 3.7094

δ4, RG four loop (α

=

k≥7
S ) −0.83759� 0.25140i 0.37539� 0.024696i 0.80048� 0.015453i 3.5816

δ4, RG five loop (α

=

k≥7
S ) −0.83618� 0.250i 0.37603� 0.025177i 0.80121� 0.01559i 3.5728

δ4, RG four loop (α

=

k≥6
S ) −0.93852� 0.17354i 0.40216� 0.01192i 0.79914� 0.0004024i 3.3298

δ4, RG five loop (α

=

k≥6
S ) −0.93840� 0.17332i 0.40223� 0.011871i 0.79994� 0.0004919i 3.3292

δ5, RG five loop (full) −1.0846 0.32689 0.77133 4.3737

δ5, RG five loop (α

=

k≥6
S ) −1.1422 0.33778 0.77260 4.1671

FIG. 4. Some of the relevant RG (solid curves) and OPT
(dashed curves) branches, respectively LRG

λ ðαSÞ, LOPT
λ ðαSÞ at δ5

(six-loop) order for nf ¼ 2.
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instabilities from producing real solutions, it is instructive
to study their sensitivity upon such a well-defined approxi-
mation. The corresponding results are shown in Table V for
nf ¼ 2 and nf ¼ 3 at five and six loops.
Very similar to the results obtained with the full c44, at

five loops the RGOPT gives nonreal AF-matching solu-
tions, but with small imaginary parts. Accordingly in
Table V the results are not too different from the ones
using the exact c44 in Tables III and IV, except that the
imaginary parts are somewhat smaller. For nf ¼ 3, real AF-
matching solutions are recovered upon maximal trunca-
tions consistent with RG at five loops. At six loops real AF-
matching solutions are also recovered, and these differ from
the ones with exact c44 in Tables III and IV by ∼1% (∼2%)
lower in Λ̄ units for nf ¼ 2 (nf ¼ 3) respectively. All these
features are consistent with the fact that the loss of a real
solution at five loops is essentially due to the occurrence of
relatively large π4 terms, while the ∼4% (∼7%) for nf ¼ 2

(nf ¼ 3) decrease in the approximated c44 Eq. (4.10), as
compared with the complete one Eq. (4.11), has a more
moderate impact.
We conclude that the approximation neglecting the four-

loop singlet contributions within c44 produces a change in
the final condensate magnitude jhq̄qij1=3 that is ∼1%ð2%Þ
smaller in magnitude respectively for nf ¼ 2 (nf ¼ 3),
which again reflects a good overall stability.

E. The condensate in the quenched approximation

One can also easily extend our calculations formally for
nf ¼ 0: Actually a quark of massm setting the overall scale
in Eq. (4.1) “dressed” at higher orders by pure gauge
interactions is still understood in this case, and the
perturbative removal of the quarks entering at three loops
in Fig. 1 and higher orders may be viewed as a perturbative
analog of the “quenched” approximation, which has its
own theoretical interest, and can be compared with lattice

TABLE IV. nf ¼ 3 results at five and six loops; same caption as Table III.

RGOPT [ρðλ; αSÞ] δk, RG order ln λ̃
μ

α̃S −hq̄qi1=3RGI

Λ̄3

μ
Λ̄3

δ4, RG four loop (full) −0.92148� 0.29624i 0.36925� 0.051547i 0.76927� 0.016561i 3.9124
δ4, RG five loop (full) −0.93013� 0.3038i 0.36465� 0.04859i 0.76838� 0.016134i 3.9911

δ4, RG four loop (α

=

k≥6
S ) −1.064� 0.13845i 0.42391� 0.012618i 0.77089� 0.0024578i 3.4384

δ4, RG five loop (α

=

k≥6
S ) −1.0639� 0.13833i 0.42394� 0.012593i 0.76975� 0.0023702i 3.4297

δ5, RG five loop (full) −1.2340 0.33863 0.74042 4.6923

δ5, RG five loop (α

=

k≥6
S ) −1.2618 0.3449 0.74076 4.5578

TABLE V. nf ¼ 2 and nf ¼ 3 results at five and six loops using the approximate cIS44 coefficient from Eq. (4.10). Same caption as
Table IV.

RGOPT [ρðλ; αSÞ] δk, RG order ln λ̃
μ

α̃S −hq̄qi1=3RGI

Λ̄2

μ
Λ̄2

nf ¼ 2:
δ4, RG four loop (full) −0.71996� 0.23156i 0.37549� 0.05979i 0.79341� 0.0099350i 3.4177
δ4, RG five loop (full) −0.74047� 0.24939i 0.36580� 0.053884i 0.79353� 0.0098374i 3.5523

δ4, RG four loop (α

=

k≥6
S ) −0.92679� 0.10146i 0.39942� 0.0074906i 0.79090� 0.0015884i 3.3590

δ4, RG five loop (α

=

k≥6
S ) −0.926667� 0.10103i 0.39949� 0.0074377i 0.79166� 0.0016397i 3.3583

δ5, RG five loop (full) −1.15411 0.32270 0.75896 4.4605

nf ¼ 3: ln λ̃
μ

α̃S −hq̄qi1=3RGI

Λ̄3

μ
Λ̄3

δ4, RG four loop (full) −0.77002� 0.19327i 0.40513� 0.082108i 0.75375� 0.0019729i 3.3255
δ4, RG five loop (full) −0.79824� 0.18251i 0.40213� 0.067656i 0.75291� 0.00097752i 3.4381

δ4, RG four loop (α

=

k≥6
S ) −1.1570 0.42880 0.76070 3.3996

δ4, RG five loop (α

=

k≥6
S ) −1.1572 0.42885 0.75957 3.3905

δ5, RG five loop (full) −1.3589 0.33097 0.71983 4.8713

JEAN-LOÏC KNEUR and ANDRÉ NEVEU PHYS. REV. D 101, 074009 (2020)

074009-14



simulations as we will examine. Specializing our calcu-
lations to the quenched approximation from the known
exact nf dependence in all relevant perturbative and RG
coefficients, one simply takes nf ¼ 0 everywhere consis-
tently. Proceeding as previously described, from the first
NLO (two-loop) nontrivial order up to five loops gives the
results in Table VI.
The solutions in Table VI for the quenched case, up to

five-loop order included, are all located on the real AF-
matching branch (which is unique at a given order),
although when using five-loop RG in the very last line,
the solution is located very close to the border of non-AF-
matching branches. We observe that the condensate mag-
nitude jhq̄qij1=3 is driven to ∼2.5% higher values when
going from four to five loops, as similarly observed above
for nf ¼ 2; 3 in Tables III and IV. As above mentioned this
is essentially traced to the instability from the first
occurrence of π4 discontinuity term at five loops.
Although in this quenched case one obtains at five loops

a real solution upon using the complete RG, it is also
instructive to examine the trend obtained from successive
RG truncations, or alternatively when performing the
calculation at six loops, giving the results in Table VII.
As one can see here it is the effect of RG truncation that
pushes the AF-matching solution to (slightly) nonreal
values. Comparing these RG-truncated results from

Table VII, which have negligible imaginary parts, with
the corresponding real solutions using the complete RG in
Table VI, gives a useful estimate of the impact of such RG-
consistent truncations. Concerning the six-loop results,
very similar to the nf ¼ 2 and nf ¼ 3 cases they are real
and very regular, and again much closer to the four-loop
results in Table VI.
Finally for completeness we have also considered the

nf ¼ 1 case: Although it is not very relevant physically, it
can be viewed at least as a further consistency cross-check
of our results. We have explored variants similar to other nf
values above but simply summarize here the main results.
At four-loop order one obtains the unique real solution

hq̄qi1=3RGIðnf ¼ 1; four loopÞ ¼ −0.8039Λ̄1 ð5:4Þ

which appears very close to the “average” of nf ¼ 0 and
nf ¼ 2 four-loop results. At five loops, using four- or five-
loop RG, the real solution is no longer on the AF-matching
branch, similar to the nf ¼ 2; 3 cases. The unique AF-
matching solution obtained from truncating αk≥6S in the RG
equation gives

hq̄qi1=3RGIðnf ¼ 1; truncated RG five loopÞ
¼ −ð0.8271� 0.0007iÞΛ̄1: ð5:5Þ

Finally at six loops a real solution is recovered, giving

hq̄qi1=3RGIðnf ¼ 1;RG five loopÞ ¼ −0.7984Λ̄1: ð5:6Þ

Similar to the nf ¼ 0, 2, 3 cases, once more the five-loop
results produce a substantial ∼2.8% increase of the con-
densate as compared to the four-loops results, while the six-
loop results are very close to the latter.

F. Evaluating theoretical uncertainties

Comparing the different above results from nf ¼ 0 to
nf ¼ 3, it is tempting to consider the manifestly more
stable results obtained at four loops and six loops as a
likely better approximation than the more sensibly shifted

TABLE VI. nf ¼ 0 (quenched approximation) results up to five
loops; same caption as Table I.

δk order ln λ̃
μ

α̃S −hq̄qi1=3RGI

Λ̄0

μ̃
Λ̄0

δ, RG one loop − 179
1452

11π
40

≃ 0.86394 1.0072 1.9370

δ, RG two loop −0.27548 0.49747 0.9122 2.4945

δ2, RG two loop −0.54201 0.47091 0.85679 2.5795
δ2, RG three loop −0.54434 0.41691 0.83522 2.8224

δ3, RG three loop −0.63438 0.39314 0.83741 2.9713
δ3, RG four loop −0.60347 0.38002 0.83508 3.0687

δ4, RG four loop −0.54077 0.39241 0.85253 2.9764
δ4, RG five loop −0.45296 0.42275 0.86069 2.8045

TABLE VII. nf ¼ 0 results at five and six loops; same caption as Table III.

RGOPT [ρðλ; αSÞ] δk, RG order ln λ̃
μ

α̃S −hq̄qi1=3RGI

Λ̄0

μ
Λ̄0

δ4, RG four loop (full) −0.54077 0.39241 0.85253 2.9764
δ4, RG five loop (full) −0.45296 0.42275 0.86069 2.8045

δ4, RG four loop (α

=

k≥6
S ) −0.70122� 0.11373i 0.36891� 0.0031072i 0.84724� 0.00030466i 3.1610

δ4, RG five loop (α

=

k≥6
S ) −0.70089� 0.11265i 0.36906� 0.0030291i 0.85101� 0.00019590i 3.170

δ5, RG five loop (full) −0.90052 0.30873 0.82242 3.912

δ5, RG five loop (α

=

k≥6
S ) −0.97183 0.31740 0.82383 3.772
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five-loop results. Note indeed that if discarding the latter,
the combined four-loop and six-loop results would provide
a seemingly very accurate determination. But since the
six-loop results are only partial, we more conservatively
combine all those results within our estimate of uncertain-
ties. More precisely we take the average between the four-,
five- and six-loop results as our central values and their
differences as our theoretical uncertainties (taking at five
loops the real parts of the results having the smallest
imaginary parts, that are consequently more reliable). Then
we estimate the uncertainties linearly from the complete
range spanned by maximal and minimal values.
For nf ¼ 0, for which real solutions occur at all RGOPT

successive orders considered, we obtain

hq̄qi1=3RGIðnf ¼ 0Þ ≃ −ð0.840þ0.020
−0.016ÞΛ̄0; ð5:7Þ

where we give only a three digit accuracy given the
uncertainties.
For nf ¼ 2, proceeding similarly we obtain

hq̄qi1=3RGIðnf ¼ 2Þ ≃ −ð0.781þ0.019
−0.009ÞΛ̄2: ð5:8Þ

And finally for nf ¼ 3:

hq̄qi1=3RGIðnf ¼ 3Þ ≃ −ð0.751þ0.019
−0:010ÞΛ̄3: ð5:9Þ

Equations (5.7)–(5.9) constitute our primary results, as
these do not depend on any extra theoretical or exper-
imental input besides the basic perturbative content used in
the calculation and the RGOPT method. Now, to make
contact with other independent determinations of the quark
condensate, often conventionally given at the standard scale
μ ≃ 2 GeV for reference, one needs to perform a (pertur-
bative) renormalization scale evolution. One should keep in
mind that, in contrast with the above results, such RG
evolution unavoidably also entails αs (and other related)
uncertainties.

VI. hq̄qiðμ= 2 GeVÞ AND COMPARISON
WITH OTHER DETERMINATIONS

To evolve perturbatively the condensate from our results
above, the simplest procedure is to take the values obtained
for the scale-invariant condensate (5.3), within uncertain-
ties, Eqs. (5.7)–(5.9) and extract from these the condensate
at another chosen (perturbative) scale μ0, using again (5.3)
at five-loop order, now taking g≡ 4παSðμ0Þ, after evolving
αSðμÞ at five-loop order of Eq. (5.2) toward the conven-
tional scale μ0 ¼ 2 GeV. The overall reliability of this
(perturbative) evolution is to be assessed on the grounds
that the primary RGOPT results above at four, five and six
loops are obtained at reasonably perturbative optimized
scale values (3.3ΛMS ≲ μ̃≲ 4.8ΛMS; compare Tables I–IV).

It is more appropriate to separate the discussion below for
different nf values, since those do not have all the same
reliability status (also when comparing our results with
other independent determinations of the condensate) as we
discuss next. We consider successively nf ¼ 3, nf ¼ 2, and
nf ¼ 0 (quenched approximation).

A. nf = 3

For nf ¼ 3, one can use very reliable αS determinations
in the perturbative range. We also account properly for the
charm quark mass threshold effects [53] on αSðμ ∼mcÞ.
From the most recent world average αSðmZÞ value [51]

αSðmZÞ ¼ 0.1179� 0.0010; ð6:1Þ

we obtain in a first stage, accounting for threshold effects at
μ ∼mb and μ ∼mc,

11

Λ̄ðnf ¼ 3Þ ¼ ð331� 16Þ MeV ð6:2Þ

and

αSð2 GeVÞ ¼ 0.3007� 0.008: ð6:3Þ

Then using Eq. (5.3) applied to Eq. (5.9) leads to

hq̄qi1=3nf¼3ð2 GeVÞ ¼ −ð0.826þ0:021
−0:011ÞΛ̄3: ð6:4Þ

Thus combining Eq. (6.2) with (6.4) leads to

hq̄qi1=3nf¼3ð2 GeV; Λ̄wa
3 Þ ≃ −ð273þ7

−4 � 13Þ MeV ð6:5Þ

where the first error is our rather conservative theoretical
RGOPT uncertainty from Eq. (6.4) and the second one is
from Λ̄ð3Þ uncertainty. (Since these two uncertainties have
very different origin we do not combine them.) It is worth
remarking at this point that Eq. (6.4) is only slightly shifted
with respect to our previous (average of three- and four-
loop RGOPT) result [26], while the central value and
uncertainties in Eq. (6.5) [compare Eq. (6.6) of [26] ] are
principally affected by the slight decrease of the most
recent αS world average with substantial increase of
uncertainties (see [51] for detailed explanations on these
features).

11For the rather low values of the scales involved, it appears
more appropriate to use the exponentiated forms Eqs. (5.2) and
(5.3), somewhat more stable than their purely perturbative
expansions. We have also cross-checked our five-loop RG
evolution with the results using the well-known public code
RUNDEC [54] recently upgraded to five-loop order.
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To compare with other independent determinations, first
the most precise nf ¼ 3 lattice determination we are aware

of, in the chiral limit, is hq̄qi1=3nf¼3ð2 GeVÞ ¼ −ð245� 5�
8Þ MeV [55]. Our results are thus marginally compatible
with the latter, within uncertainties of both results. Note,
however, that various recent lattice results vary in a wider
range for nf ¼ 3, as compiled from [2]: from 214� 6� 24

[56] to 290� 15 [57]. This is largely due to the still difficult
required extrapolation of lattice results to the chiral limit,
which for the SUð3Þ case is affected by large uncertainties.
A recent very precise nf ¼ 3 lattice calculation [58] using
time moments of a heavy-strange pseudoscalar correlator,
has obtained hs̄si1=3ð2 GeVÞ ∼ −ð296� 11Þ MeV. Since it
is not in the chiral limit, it should not be directly compared
with our result, given the large strange quark mass involved.
Indeed as our nf ¼ 3 results are based on a relatively
accurate RGOPT determination (5.9), and (6.5) obtained
from a reliable Λ̄ð3Þ world average, they appear useful
independent determinations since being in the strict chiral
limit, thus relevant to possibly assess the actual impact from
explicit chiral symmetry breaking by the strange quarkmass,
by comparison with other determinations that include the
latter, like [58].

B. nf = 2

For nf ¼ 2, one cannot directly link our results to the
true phenomenological perturbative range values of αS as
above. Nevertheless, given that the (optimized) coupling
values obtained in Tables I and III are reasonably pertur-
bative, we can consider a perturbative (five-loop) RG
evolution (consistently performed in a simplified QCD
picture where the strange and heavier quarks are all
infinitely massive, i.e., “integrated out”). To give a final
(numerical) determination of the condensate, we need a
value for Λ̄ðnf ¼ 2Þ. To our knowledge there are not many
nonperturbative results for Λ̄ð2Þ (as compared with the
numerous studies for nf ¼ 3), and those results mostly
originate from lattice calculations. We therefore rely on a
lattice determination [59] (that best fulfill the reliability
criteria of the review [2]) obtained from the Schrödinger
functional method:

Λ̄ðnf ¼ 2Þ ¼ ð310� 20Þ MeV: ð6:6Þ

One should keep in mind, however, that somewhat larger
uncertainties are obtained if taking more conservatively all
presently available lattice results [59,60], as compiled in
[2].12 After RG evolution up to 2 GeV we obtain accord-
ingly from Eq. (5.8):

hq̄qi1=3nf¼2ð2 GeVÞ ¼ −ð0.863þ0.021
−0.010ÞΛ̄2: ð6:7Þ

[Notice that this strictly nf ¼ 2 result, thus with the strange
and heavier quarks integrated out, correspondingly hasαSðμÞ
values not consistent with the phenomenological values of

Eq. (6.3): Instead we find α
nf¼2

S ð2 GeVÞ ≃ 0.262� .008.]
Combining (6.7) with Eq. (6.6) leads to13

hq̄qi1=3nf¼2ð2 GeV; Λ̄2Þ ≃ −ð267þ7
−4 � 18Þ MeV; ð6:8Þ

where again the first error range is our RGOPT uncertainty
from Eq. (6.7) while the second one is from the Λ̄ð2Þ
uncertainty. Since lattice uncertainties are mostly statistical
and systematic, while ours are theoretical, it is not obvious to
combine these in a sensible manner and we keep more
conservatively separate uncertainties.
To compare our result (6.8) with other recent deter-

minations, first the presumably most precise nf ¼ 2

lattice determination to date is also from the spectral
density [15] hq̄qi1=3nf¼2ðμ ¼ 2 GeVÞ ¼ −ð261� 6� 8Þ,
where the first error is statistical and the second is
systematic. Our results are thus very compatible within
uncertainties. Note, however, that the above quoted
lattice value [15] was obtained by fixing the scale with
the kaon decay constant FK determined in the quenched
approximation. Overall, recent nf ¼ 2 lattice determina-
tions of the condensate in the chiral limit from several
independent methods are much more precise than those
for nf ¼ 3. We quote the estimate recently performed in

[2], by combining results from [15,62]: jhq̄qij1=3nf¼2 ¼
−ð266� 10Þ MeV, where the uncertainties include both
systematic and statistical ones.
One may also compare with recent results from

spectral sum rules [4]: hūui1=3ð≡hd̄di1=3Þð2 GeVÞ≃
−ð276� 7Þ MeV, but keeping in mind that the latter
sum rules actually determine precisely the current quark
masses, so that the hūui value is indirectly extracted from
using the GMOR relation (1.1). Accordingly the compari-
son is not strictly for the chiral limit. In this context, even
though the overall reliability of Λ̄ð2Þ is not yet at the level
of Λ̄ð3Þ, the results (5.8) and (6.8) constitute reasonably
accurate independent determinations in the chiral limit.
Indeed, given that the present nf ¼ 2 lattice results for the
condensate are quite accurate, it is tempting alternatively to
combine the latter with our firmer result Eq. (5.8), in order
to rather determine a new independent estimate of Λ̄ð2Þ:

12Our own determination of Λ̄ðnf ¼ 2Þ from the pion decay
constant Fπ using three-loop RGOPT [25] is compatible with the
range obtained from lattice simulations, but also has larger
uncertainties, as compared to our RGOPT Λ̄ðnf ¼ 3Þ results.

13As compared with our 2015 four-loop result [26], note that
the central value in Eq. (6.8) is principally affected by the
somewhat lower central Λ̄ðnf ¼ 2Þ value from (6.6) as compared
with previously used value from [61].
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Taking the above quoted estimate of the condensate given
by [2], this gives

Λ̄ðnf ¼ 2Þ ¼ ð308þ4
−6 � 12Þ MeV: ð6:9Þ

C. nf = 0 (quenched approximation)

Finally for completeness we also give results for the
quenched approximation (nf ¼ 0). In this case we evolve
αSðμÞ and use Eq. (5.3) at five loops but in the appropriate
nf ¼ 0 approximation. As previously we need Λ̄ðnf ¼ 0Þ,
available from various approaches with lattice simulations.
We rely on the average performed in [2], combining
different precise lattice results [63]:

Λ̄ðnf ¼ 0Þ ¼ ð257� 7Þ MeV: ð6:10Þ

As stressed in [2], it is worth noting that this value is
obtained by using the same value as for nf ¼ 2 and nf ¼
2þ 1 of the basic lattice scale defined from the quark static
potential, r0 ¼ 0.472 fm, which for nf ¼ 0 amounts
merely to a defining convention for Λ̄ðnf ¼ 0Þ.
Next the RG evolution from Eq. (6.12) leads to

hq̄qi1=3nf¼0ð2 GeVÞ ¼ −ð0.932þ0:022
−0:018ÞΛ̄0: ð6:11Þ

Combining (6.10) with Eq. (6.11) we obtain

hq̄qi1=3nf¼0ð2 GeV; Λ̄0Þ ¼ −ð240þ6
−5 � 6Þ MeV: ð6:12Þ

It appears to us not easy to compare (6.12) with other
determinations, since most phenomenological determina-
tions of the condensate are obviously obtained for nf ≥ 2.
Concerning lattice simulations, most of the modern calcu-
lations no longer use the quenched approximation, per-
forming simulations with fully dynamical sea quarks, while
too old results in the quenched approximation are presum-
ably affected by rather large uncertainties. To our knowl-
edge, there is one precise, often quoted latest quenched
simulation result [64]:

hq̄qi1=3nf¼0ð2 GeV; latticeÞ ¼ −ð250� 3Þ MeV: ð6:13Þ

So our result (6.12) appears consistent with the latter within
uncertainties. We stress, however, that our study of the
quenched case nf ¼ 0 is merely motivated as a consistency
cross-check of our method, since the quenched approxi-
mation is anyway not very realistic.

D. Further discussion on hq̄qiðnf Þ dependence
Comparing all our results for nf ¼ 0; 2; 3 at the same

perturbative orders, it appears that the ratio of the quark
condensate to Λ̄3 has a sizable but moderate dependence on
the number of flavors nf: There is a clear trend that
jhq̄qi1=3jðnfÞ=Λ̄ðnfÞ decreases regularly, roughly linearly
by about 4% for nf → nf þ 1 (that is clear at least from the
studied nf ≤ 3 cases). Naively (perturbatively) the moder-
ate dependence on nf is expected (as long as nf is not
large), since it only appears explicitly at three-loop order.
Nevertheless it does not imply a similar decrease of the
absolute condensate values, as those depend on Λ̄ðnfÞ, that
appears rather to increase with nf for nf ≤ 3 [at least if
considering the low lattice Λ̄ð0Þ value (6.10), but it is not so
clear from comparing Λ̄ð2Þ and Λ̄ð3Þ given all the present
uncertainties in their values]. Concerning the nf ¼ 3 to
nf ¼ 2 condensate ratio, various lattice results have still
rather large uncertainties at present [2] but some recent
results are more compatible with a ratio unity [58,65]. The
spectral sum rules prediction for the ratio is also not very
precise [66,67]: hs̄si=hūui ¼ 0.74þ0.34

−0.12 , (see also the recent
review [68]). Since our results are by construction valid in
the strict chiral limit, taken at face value they indicate that
the possibly larger difference obtained by some other
determinations [2,22] is more likely due to the explicit
breaking from the large strange quark mass, rather than an
intrinsically strong nf dependence of the condensate in the
exact chiral limit.

VII. SUMMARY AND CONCLUSION

We have reconsidered our variational RGOPT approach
applied to the spectral density of theDirac operator, the latter
being obtained in a first stage from the perturbative
logarithmic discontinuities of the quark condensate in the
MS scheme. This construction allows successive sequences
of nontrivial variationally optimized results in the strict
chiral limit, from two- to five-loop levels using exactly
known perturbative content, and partially up to six loops, the
latter more approximately relying on the six-loop content
exactly predictable from five-loop renormalization group
properties. The results Eqs. (5.7)–(5.9) are those that we
consider the firmer, while latter results in Eqs. (6.8) and (6.5)
are further affected by present uncertainties in perturbative
evolution and Λ̄ values. Equations (5.7)–(5.9) show a very
good stability and empirical convergence, although the
strictly five-loop results exhibit some instabilities with
respect to both four- and six-loop results. Those instabilities
are traced to specific features of the spectral density, namely
the occurrence at growing orders of new large π2k disconti-
nuity contributions that tend to destabilize the original
perturbative coefficients when first appearing at a given
order. For all the considered cases from nf ¼ 0 (quenched
approximation) to nf ¼ 3, it is striking that the six-loop
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results are very close to the four-loop ones, both exhibiting
very stable properties. It appears convincing to us that the
systematically∼2% higher values of jhq̄qij1=3RGIðnfÞ obtained
at five-loop RGOPT order are largely an artifact of the
instability from the π4 discontinuity terms appearing first at
five-loop order. Nevertheless we have incorporated more
conservatively the differences between the four-, five- and
six-loop results as intrinsic theoretical uncertainties, which
are of order �2%. Notice that, if less conservatively
discarding the presumably less reliable strictly five-loop
results from our averages, the lowest values in Eqs. (5.7)–
(5.9) are favored, with much smaller uncertainties. In any
case the final condensate values and uncertainties in
Eqs. (6.5) and (6.8) are more affected by the present
uncertainties on the basic QCD scale Λ̄, both for nf ¼ 2

and nf ¼ 3. (To possibly get rid of Λ̄ uncertainties, par-
ticularly for nf ¼ 2, one could in principle apply RGOPT
directly to a more physical RG-invariant quantity, like
hq̄qiRGI=F3

π , combining the present analysis with the one
in [25] for Fπ, but this involves somewhat nontrivial issues
and is left for future investigation.)
In conclusion the chiral condensate values obtained in

our analysis are very compatible, within uncertainties, with
the most precise recent lattice determinations for all
considered nf values. Our results for nf ¼ 3 are perhaps
of particular interest, given that other independent deter-
minations are either not in the chiral limit or, concerning
lattice results, are affected by still rather important uncer-
tainties in the chiral extrapolation [2]. Finally our results
have indicated a moderate flavor dependence of the
hq̄qi1=3nf =Λ̄nf values in the chiral limit for nf ≤ 3.
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APPENDIX: RG AND OTHER PERTURBATIVE
QUANTITIES

In this Appendix we give for completeness all the
relevant quantities related to perturbative RG properties
used in our calculations. The RG coefficients up to five
loops for a general gauge theory were obtained in complete
analytical form respectively in Ref. [30] for the beta
function and [31] for the anomalous mass dimension.
We do not repeat those expressions explicitly here, refer-
ring to these articles. Note simply that we mainly use the
normalization g≡ 4παSðμÞ≡ 4π2asðμÞ, such that

βðgÞ≡ dg
d ln μ

¼ −2
X
k

bkgkþ2; γmðgÞ ¼
X
k

γkgkþ1;

ðA1Þ

where our bk, γk expressions are related as bk ¼
βkð4π2Þ−1−k, γk ¼ 2ð4π2Þ−1−kγk with respect e.g., to
the first Refs. [30,31] respectively.

1. Vacuum-energy anomalous dimension

Next, in our normalization conventions the anomalous
dimension of the vacuum energy, Γ0ðasÞ entering Eq. (4.2),
is given to five-loop order as

Γ0ðasÞ ¼ −2 ×
�

3

16π2

��
1þ

X4
k¼1

aksΓ0
k þOða5sÞ

�
ðA2Þ

with the coefficients up to three loops determined long
ago [42],

Γ0
1 ¼

4

3
; Γ0

2 ¼
457

72
−

5

12
nl −

29

12
nh −

2

3
z3; ðA3Þ

and the four-loop Γ0
3 and five-loop Γ0

4 coefficients obtained
in full analytical form in Ref. [32] are given explicitly
respectively in Eqs. (3.4) and (3.5) of [32], for nf ≡ nl þ
nh quark flavors and nh ¼ 1 heavy quark.14 For complete-
ness we give here their relevant expressions adapted to our
case (in numerical form for short), where in practice we
consider nl ¼ 0 and nhð≡nfÞ massive degenerate quarks:

Γ0
3ðnl; nhÞ ≃ 33.6625þ 0.18139n2h − 32.5586nh

þ 0.214632nhnl − 4.96507nl þ 0.0332417n2l ;

ðA4Þ
and

Γ0
4ðnl; nhÞ ≃ 242.021þ 0.0185562n3h þ 17.6037n2h

þ 0.03715n2hnl − 43.3192nl þ 1.0631n2l
þ 0.0000376492n3l − 299.998nh

þ 18.6668nhnl þ 0.0186315nhn2l : ðA5Þ

2. Perturbative condensate and spectral density

Next, the coefficients of the perturbative quark conden-
sate, Eq. (4.1), were given at three loops in Eq. (4.4). Using
Eqs. (4.2) with Eq. (3.4) we determine the relevant
coefficients at four-loop and higher orders:

14Note a trivial factor 2 normalization difference in Eq. (A2)
with respect to [32] due to our use of d ln μ in Eq. (4.2). Also Γ0

k
in Eqs. (A2)–(A5) differ by an overall factor 3=ð16π2Þ from the
original ðγdi;nd0 Þk in the notations of [32].
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c40 ¼
1

54
ð81 − 2nfÞð57 − 2nfÞ;

c41 ¼ −
1

81
ð18171þ 20n2f − 1353nfÞ;

c42 ¼
1

8 × 81
½226647 − 30690nh − 18378nl þ 632n2h þ 832nhnl þ 200n2l − 72ð57þ 28nfÞz3�;

c43 ¼
1

32 × 729
½4n2hð4752z3 − 5935Þ − 4n2l ð3024z3 þ 751Þ þ 8nlnhð864z3 − 3343Þ

− 12nfð2304a4 þ 96lz2 − 5040z4Þ þ 12nlð22428z3 þ 53093Þ − 12nhð30060z3 þ 9720z5 − 124373Þ
þ 9ð87552a4 þ 3648lz2 þ 10368z3 − 68400z4 − 81840z5 − 854633Þ�; ðA6Þ

where nf ¼ nl þ nh, lz2 ¼ ln2ð2Þðln2ð2Þ − 6z2Þ, zi ¼ ζðiÞ.
In numerical approximation this gives

c40 ¼ 85.5 − 5.11111nf þ 0.0740741n2f;

c41 ¼ −224.333þ 16.7037nf − 0.246914n2f;

c42 ¼ 342.151 − 51.1008nh − 32.1008nl þ 0.975309n2h þ 0.308642n2l þ 1.28395nhnl;

c43 ¼ −375.082þ 42.6214nh þ 43.5949nl − 0.0382074n2h − 0.790268nhnl − 0.752061n2l ; ðA7Þ

while the complete expression for the last nonlogarithmic four-loop coefficient c44 is given explicitly in Eq. (4.11).
Similarly we obtain for the five-loop logarithmic coefficients:

c50 ¼ −
1

4 × 135
ð81 − 2nfÞð57 − 2nfÞð49 − 2nfÞ; ðA8Þ

c51 ¼ −
1

8 × 81
ð−952101þ 40n3f − 3898n2f þ 112749nfÞ; ðA9Þ

c52 ¼
1

16 × 243
ð2150625nh − 95963n2h þ 1264n3h − 146134nhnl

þ2928n2hnl − 50171n2l þ 2064nhn2l þ 400n3l
−144nfð−869þ 28nfÞz3 þ 3ð515779nl þ 72ð−56554þ 931z3ÞÞÞ; ðA10Þ

729 × 43c53 ¼ 32n3hð648z3 − 773Þ − 32n3l ð324z3 þ 125Þ
þ 9ð−ð768a4 þ 32lz2Þð57 − 2nfÞð49 − 2nfÞ
þ116448z3 þ 1675800z4 þ 1292280z5 þ 23864201Þ
þ nhð−4320ð27nf − 836Þz5 þ 6310872z3 − 1455840z4 − 50009817Þ
þ 96nln2hð324z3 − 557Þ þ nlnhð−131328z3 þ 43200z4 þ 3132538Þ
− 15nlð608040z3 þ 97056z4 − 50256z5 þ 1871063Þ
þ n2hð−761616z3 þ 21600z4 þ 2316653Þ
þ n2l ð−32736nh þ 630288z3 þ 21600z4 þ 815885Þ; ðA11Þ
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243 × 2 × 43c54 ¼ −243 × 43ð49 − 2nfÞc44
þ n3hð48z3 − 1728z4 þ 875Þ þ n3l ð48z3 − 1728z4 þ 1451Þ
þ n2hnlð144z3 − 5184z4 þ 3201Þ
þ nhn2l ð144z3 − 5184z4 þ 3777Þ

þ nhnl

�
−144z3ð81z3 þ 2735Þ þ 128736z4 þ 268992z5 − 48600z6 −

9903989

18

�

þ n2h

�
−72z3ð162z3 þ 3191Þ þ 96444z4 þ 173376z5 − 48600z6 −

16643189

36

�

þ n2l

�
−164088z3 þ 32292z4 þ 95616z5 −

3164789

36

�

þ nh

�
−162816a4 − 6784lz2 þ 12z3ð39228z3 þ 407969Þ − 932766z4

− 8087688z5 þ 262800z6 þ 3213000z7 þ
54045443

6

�

þ nl

�
−162816a4 − 6784lz2 þ 12ð134429 − 12990z3Þz3

þ 638958z4 − 461448z5 − 927900z6 − 95256z7 þ
21934883

6

�

þ 1170432a4 þ 48768lz2 þ 12z3ð8031z3 þ 1007870Þ − 5759550z4

− 27852768z5 þ 10192050z6 þ 8641836z7 −
145813179

8
; ðA12Þ

where we conveniently expressed c54 in terms of the four-loop nonlogarithmic c44 coefficient. In numerical approximation
we obtain

c50 ¼ −418.95þ 42.1444nf − 1.38519n2f þ 0.0148148n3f;

c51 ¼ 1469.29 − 173.995nf þ 6.01543n2f − 0.0617284n3f;

c52 ¼ −3079.72þ 436.666nf − 14.1506n2f þ 0.102881n3f

þ nhð155.167 − 11.7778nf þ 0.222222n2fÞ;
c53 ¼ 5102.45 − 852.446nh − 843.205nl þ 61.7769nhnl

þ 27.7449n2h þ 34.032n2l − 0.344719n2hnl

− 0.701646nhn2l þ 0.00406919n3h − 0.352858n3l ;

c54 ¼ ðnf − 24.50Þc44 − 617.146þ 309.613nh þ 144.324nl

− 16.7381n2h − 4.8565n2l − 21.5946nhnl

− 0.0719093n2hnl − 0.0533908nhn2l − 0.0301426n3h − 0.0116241n3l : ðA13Þ

It is straightforward to apply the RG Eq. (3.4) to obtain similarly the six-loop logarithmic coefficients c6k of L6−k
m . To avoid

unnecessarily lengthy expressions it is convenient to equivalently express the c6k as functions of the above lower-order
perturbative and RG coefficients: With the same normalization as in Eq. (4.1), with an overall 3=ð2π2Þm3a5s factor at six
loops, they read
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c60 ¼ −
8π2

3
ð2b0 þ γ0Þ;

c61 ¼ −
4π2

5
ð4ð2b0 þ γ0Þc51 þ 5c50γ0 þ 8π2c40ð3b1 þ 2γ1ÞÞ;

c62 ¼ −4π2½ð2b0 þ γ0Þc52 þ γ0c51 − 2π2ðð3b1 þ 2γ1Þc41 þ 2c40γ1Þ
− 16π4c30ðb2 þ γ2Þ�;

c63 ¼ −
4

3
π2
h
3γ0c52 þ 4ð2b0 þ γ0Þc53 þ 4π2ð2ð3b1 þ 2γ1Þc42 þ 3γ1c41

þ 4π2ð3c30γ2 þ 4c31ðb2 þ γ2Þ þ 8π2c20ðb3 þ 2γ3ÞÞÞ
i
;

c64 ¼ 4π2½−2ð2b0 þ γ0Þc54 − γ0c53 − 4π2ðð3b1 þ 2γ1Þc43 þ γ1c42Þ
− 16π4ð2c32ðb2 þ γ2Þ þ c31γ2Þ
− 64π6ððb3 þ 2γ3Þc21 þ γ3c20Þ þ 512π8γ4�: ðA14Þ

Next from Eqs. (4.15) and (4.16) it is straightforward to derive the corresponding six-loop coefficients of the spectral
density in the normalization of Eq. (4.17), that we give here for completeness:

ρ61 ¼ 3c60; ρ62 ¼
5

2
c61; ρ63 ¼ 2c62 −

5π2

2
c60; ρ64 ¼

3

2
c63 −

5π2

4
c61;

ρ65 ¼ c64 −
π2

2
c62 þ

3π4

16
c60; ρ66 ¼

1

2
c65 −

π2

8
c63 þ

π4

32
c61: ðA15Þ

Note that from standard RG properties, only c65 [and therefore only the nonlogarithmic coefficient ρ66 of ρðλÞ in Eq. (A15)]
depends on the presently unknown six-loop vacuum energy Γ0

5 and nonlogarithmic five-loop coefficient c55. Accordingly,
as explained in the main text, we simply ignore c65 and ρ66 in our six-loop analysis.

3. RG-invariant perturbative subtraction

Next, we also derive for completeness the coefficients entering the subtraction function Sðm; gÞ defined in Eqs. (4.12) and
(4.13), such that mhq̄qi − Sðm; gÞ defines a (finite) condensate obeying the homogenous RG equation Eq. (3.4) up to five
loops, that can be useful for different purposes. We obtain after some algebra15

s0 ¼
1

8π2ðb0 − 2γ0Þ
¼ −

6

ð15þ 2nfÞ
;

s1 ¼ ð2γ0Þ−1
�
4π2ðb1 − 2γ1Þs0 −

Γ0
1

8π2

�
¼ 633þ nf

48ð15þ 2nfÞ
;

s2 ¼ ð2γ0 þ b0Þ−1
�
ð4π2Þ2ðb2 − 2γ2Þs0 − 2ð4π2Þγ1s1 −

Γ0
2

8π2

�

¼ nhð−24519þ 33408z3Þ þ nlð1401þ 33408z3Þ − 746nlnh − 2101n2h þ 1355n2l − 27ð4151þ 320z3Þ
144ð15þ 2nfÞð−81þ 2nfÞ

;

s3 ¼ ð2γ0 þ 2b0Þ−1
�
ð4π2Þ3ðb3 − 2γ3Þs0 − 2ð4π2Þ2γ2s1 − 4π2ð2γ1 þ b1Þs2 −

Γ0
3

8π2

�
;

s4 ¼ ð2γ0 þ 3b0Þ−1
�
ð4π2Þ4ðb4 − 2γ4Þs0 − 2ð4π2Þ3γ3s1 − ð4π2Þ2ð2γ2 þ b2Þs2 − 2ð4π2Þðγ1 þ b1Þs3 −

Γ0
4

8π2

�
ðA16Þ

where we give both generic compact expressions and their particular QCD values, the latter for the four-loop s3 and five-
loop s4 coefficients given numerically to 10−6 accuracy as

15The normalization of si coefficients in Eq. (4.13) is different from the one in Ref. [26] for convenience, but Eq. (A16) is consistent
with our previous expressions up to three-loop order in [26].
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s3 ¼
32

ð−81þ 2nfÞð−57þ 2nfÞð15þ 2nfÞ
× ð2485.78þ 1045.17nh − 1314.62nl þ 436.946nhnl

þ 351.286n2h þ 85.66n2l − 8.6872n3h − 2.56879n3l
− 19.9432n2hnl − 13.8248nhn2l þ 0.00262828n2hn

2
l

þ 0.0573077n3hnl − 0.0538034nhn3l þ 0.0282158n4h − 0.0273397n4l Þ; ðA17Þ

s4 ¼
16

ð−49þ 2nfÞð−81þ 2nfÞð−57þ 2nfÞð15þ 2nfÞ
× ð−1947880.þ 0.0102918n6h þ 13.0258n5h þ 0.0432323n5hnl

þ 682641.nl − 98179.9n2l þ 3437.72n3l þ 42.1262n4l
− 1.59314n5l − 0.00822672n6l − 943.625n4h þ 50.5099n4hnl

þ 0.0617844n4hn
2
l þ 19279.n3h − 2788.75n3hnl þ 71.782n3hn

2
l

þ 0.0206508n3hn
3
l − 105289.n2h þ 41995.6n2hnl − 2704.5n2hn

2
l

þ 42.5442n2hn
3
l − 0.0308082n2hn

4
l − 723426.nh − 203469.nhnl

þ 26154.4nhn2l − 817.246nhn3l þ 6.65319nhn4l − 0.0308418nhn5l Þ: ðA18Þ
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