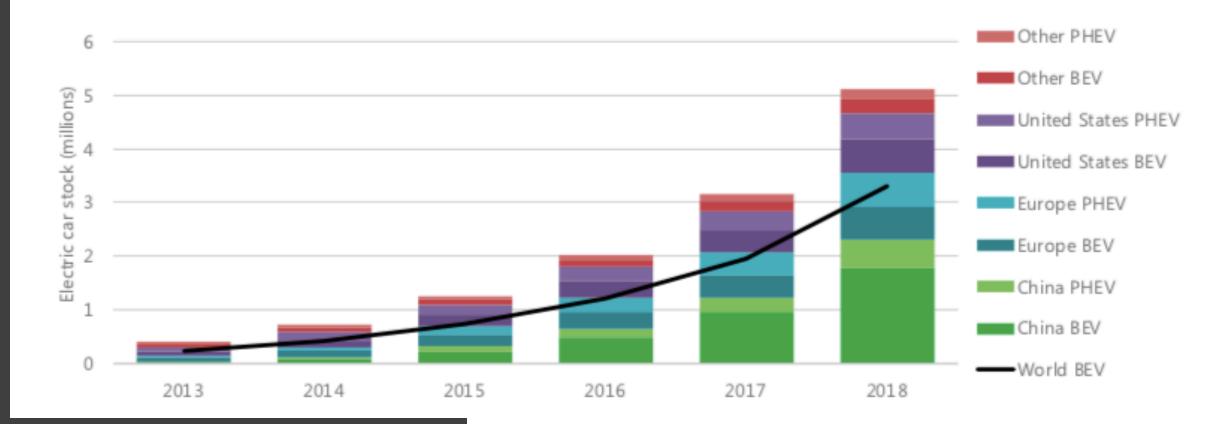


Using EVs to Provide Grid Electric Services: Regulatory Challenges

Yannick Perez


CentraleSupélec – Paris

Vedecom Institute

Yannick.perez@centralesupelec.fr

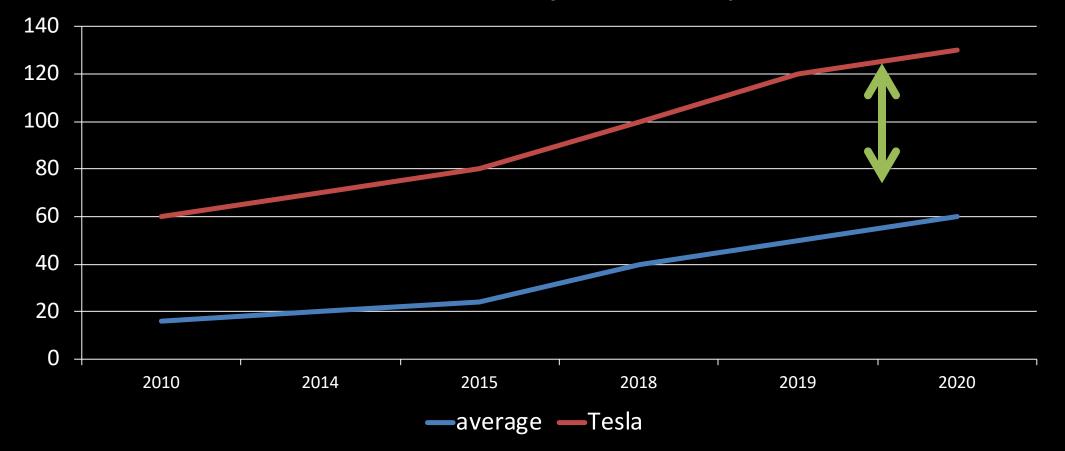
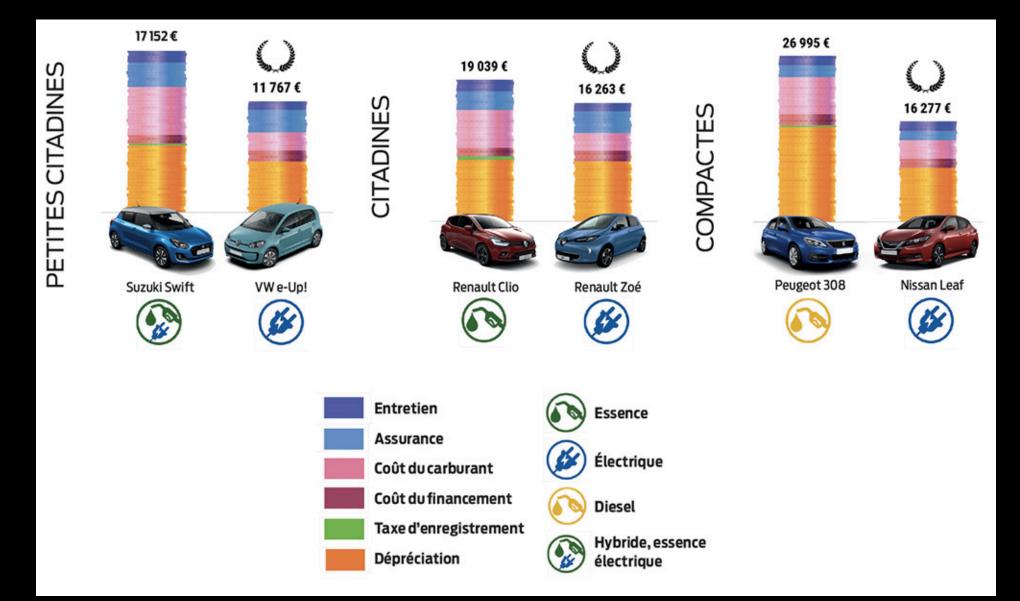

EV sales are starting

Figure 1.1. Passenger electric car stock in main markets and the top-ten EVI countries

Common strategy: more stored energy / car


Evolution of the battery size in kWh per car

Electric cars save more energy than they daily use

- Size of the battery goes from 24 to 100 kWh
- EV consumes 15-20 kWh per 100 km
- Mean Drivers Daily trips/day is 24 km -40 km
 - –EVs are very flexible resources (to store or deliver electricity) if needed = Distributed Storage Services (DSS)
 - —Arbitrage between private use (house-building) or other flexibility buyers of DSS (Energy markets / grids)

First Goal : To make EV cheaper than ICE...

Who need flexible electricity storage?

Electricity markets Electricity grids (TSO or DSO) Buildings Houses Each (segment / service) need a specific analysis...

3 main sources

And Up to 16 services

A	Wholesale	Demand Response– Wholesale	 Manages high wholesale price or emergency conditions on the grid by calling on users to reduce or shift electricity demand
		Energy Arbitrage	 Allows storage of inexpensive electricity to sell at a higher price later (includes only wholesale electricity purchase)
		Frequency Regulation	 Provides immediate (4-second) power to maintain generation- load balance and prevent frequency fluctuations
		Resource Adequacy	 Provides capacity to meet generation requirements at peak loading in a region with limited generation and/or transmission capacity
		Spinning/ Non-Spinning Reserves	 Maintains electricity output during unexpected contingency event (e.g., an outage) immediately (spinning reserve) or within a short period (non-spinning reserve)
В	Utility	Distribution Deferral	 Provide extra capacity to meet projected load growth for the purpose of delaying, reducing or avoiding distribution system investment in a region
		Transmission Deferral	 Provide extra capacity to meet projected load growth for the purpose of delaying, reducing or avoiding transmission system investment
		Demand Response– Utility	 Manages high wholesale price or emergency conditions on the grid by calling on users to reduce or shift electricity demand
С	Customer	Bill Management	 Allows reduction of demand charge using battery discharge and the daily storage of electricity for use when time of use rates are highest
		Backup Power	 Supplies power reserve for use by Residential and Commercial users when the grid is down

Rules on the Electricity wholesale market are for existing technologies

Not for **Distributed Storage Services**

Electricity markets and Evs

Energy Policy 119 (2018) 140-148

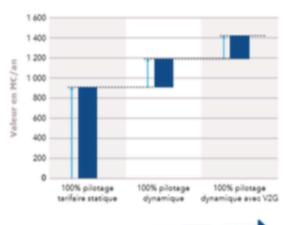
Market integration or bids granularity to enhance flexibility provision by batteries of electric vehicles

Olivier Borne^{a,*}, Yannick Perez^b, Marc Petit^a

^a GeePs, CNRS UMR 8507 CentraleSupélec, UPSud and UPMC, 91192 Gif-sur-Yvette, France
^b RITM Université Paris-Sud, and LGI, CentraleSupélec, 91192 Gif-sur-Yvette, France

For the Utility (TSO-DSO)

Example 1: TSO potential need for EV flexibility is large to manage Renewables


V2G value could be worth £3.5Bn/year in UK by 2040 (source: Innovate UK)

EV flexibility is > €1Bn/year market in France (source: RTE)

Figure 18. Gisement de valeur associée au pilotage dans le scénario Crescendo haut (variantes sur le développement du pilotage de la recharge, comparées à une situation sans aucun pilotage de la recharge)

Coûts d'équipement et de mise en œuvre croissants

BUT

Need regulatory adaptations

TSO and Evs (1)

Energy 113 (2016) 422-431

Financial shortfall for electric vehicles: Economic impacts of Transmission System Operators market designs

Paul Codani^{a,*}, Yannick Perez^{a, b}, Marc Petit^a

^a Group of Electrical Engineering Paris (GeePs), UMR CNRS 8507, CentraleSupelec, UPSud, UPMC, Gif-sur-Yvette, France
^b RITM Lab, University of Paris-Sud, Orsay, France

TSO and EVs (2)

Renewable and Sustainable Energy Reviews 81 (2018) 605-614

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Barriers to entry in frequency-regulation services markets: Review of the status quo and options for improvements

Olivier Borne^{a,1}, Klaas Korte^b, Yannick Perez^{c,d,*,1}, Marc Petit^{a,1}, Alexandra Purkus^b

^a GeePs, CNRS UMR 8507 CentraleSupélec, UPSud and UPMC, 91192 Gif-sur-Yvette, France

^b Department of Economics, Helm holtz Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany

^c Réseaux Innovation Territoire et Mondialisation Université Paris-Sud, 91400 Orsay, France

^d LGI CentraleSupélec, 3 rue Joliot Curie, 91192 Gif-sur-Yvette, France

Same issues Distribution grids

DSS are potential local provision of flexibility where and when it is needed But Tariff design issue

EVs and DSO

Energy Economics 83 (2019) 26-39

Contents lists available at ScienceDirect

Energy Economics

journal homepage: www.elsevier.com/locate/eneco

Network tariff design with prosumers and electromobility: Who wins, who loses?

Quentin Hoarau^{a, b,*}, Yannick Perez^{a, c}

^a RITM, Université Paris-Sud, Faculté Jean Monnet, Sceaux, France ^bClimate Economics Chair, Université Paris-Dauphine, Paris, France ^cLGI, CentraleSupélec, Gif-sur-Yvette, France

Regulation for DSS seems to be needed

- 1. We did not cover all the potential services...
- 2. But we think that we have evidence for Economics and technical rules adaptation on a case by case

Public policy for

1.Standardisation2. Regulation3. DSS definition

Communication standards

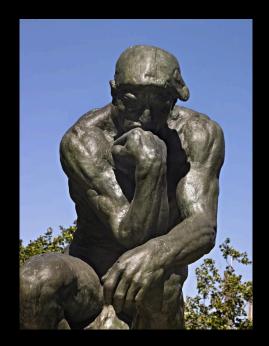
- Goal:« Plug and play »
 - "Meter war"
 - Standards are not adopted yet

Data collection and usages

- Who is doing what with the data (EV / EVSE / Networks / OEMs...) ?
- EU to decide data protection / use?

Reg : Rooming rules for charging

- Local level
- National level
- European Level
- Moving with an EV and charge it is an IT/ legal/ Economic challenge


Reg : Barriers to entry

Most Flex markets are today built for large players

Most revenues streams are still untapped

=> Network codes and market rules for Distributed Storage Solutions

Who EVs are going to help?

Energy Markets / grids / Behind the meter uses / Electrification of rural areas? Depends on Regulatory decisions and Economic evaluation country / country

- 1. EV and Energy market: Need to change the rules
- 2. EV and Transmission grid : Need to change the rules
- 3. EV and Distribution grid : Need to change the rules
- 1. Vehicle to buildings = VtoB : Out of regulators scope
- 2. Vehicle to Home = VtoH : Out of regulators scope
- 3. Vehicle to Load (electrification) = VtoL: Out of regulators scope

Using EVs to Provide Grid electric Services: Regulatory challenges

Yannick Perez

CentraleSupélec – Paris Vedecom Institute Yannick.perez@centralesupelec.f