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Abstract 12 

The Arabia - Eurasia convergence is accommodated across the Iranian plateau and surrounding 13 

mountain ranges. Strike-slip faults play significant roles in the current deformation of the Iranian plateau 14 

and were responsible for several moderate to large earthquakes, especially in east of Iran. The sinistral 15 

Dasht-e Bayaz fault shows conspicuous seismic and geological activities, while the role of the fault in the 16 

accommodation of active convergence is still debated. This paper focuses on the Pliocene-Quaternary to 17 

present-day states of stress in the region affected by the Dasht-e Bayaz fault. We applied the fault-slip 18 

inversion technique to both kinds of seismologic and geological fault slip data. The inversion results 19 

indicate a mean N045±5°E trending σ1 in the modern stress field, which agrees with the present-day 20 

tectonic regime (regional N050±05°E trending σ1) deduced from the inversion of earthquake focal 21 

mechanism data. The paleostress state is characterized by a N135±15°E trending regional mean σ1, with a 22 

transpressional stress regime; E-W faults of the region such as the Dasht-e Bayaz fault were reverse 23 

dextral in this paleostress field. We show that the shift in fault kinematics during the Pliocene-Quaternary 24 

times has not been restricted to northeastern parts of the Iranian plateau. The cross-cutting relationship 25 
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between active N-S dextral and E-W sinistral faults indicates a crosswise to conjugate fault arrangement 26 

in the middle and the eastern end of the Dasht-e Bayaz fault. Integrating our results at a larger regional 27 

scale, we present a kinematic model in which the region between Lut and Kopeh Dagh is divided by the 28 

Doruneh fault into two tectonic domains. In the northern domain, active convergence is taken up by the 29 

extrusion of fault-bounded crustal blocks while, in the southern domain the convergence is 30 

accommodated through crosswise strike-slip faulting accompanied by reverse/thrust faulting in confining 31 

wedges. 32 

 33 

1. Introduction 34 

The convergence between Arabia and Eurasia is responsible for current deformation in Iran. Nearly 35 

all convergence is accommodated across the Iranian plateau and surrounding mountain ranges such as 36 

Zagros, Alborz and Kopeh Dagh; the collision boundaries correspond approximately to the political 37 

borders of Iran. The Makran tectonic province is the surface expression of the active subduction of Arabia 38 

beneath the Iranian micro-continent (e.g., Walpersdorf et al., 2014; Burg, 2018).  39 

In the recent decades, different parts of the Arabia-Eurasia convergence zone were studied in detail; 40 

the pieces of the puzzle of this convergence are progressively fitting together. Numerous studies have 41 

attempted to describe the role of strike-slip faults in the active tectonics of the collision zone (e.g., 42 

Hessami et al., 2003; Karakhanian et al., 2004; Talebian and Jackson, 2004; Walker and Jackson, 2004; 43 

Regard et al., 2005, 2006; Authemayou et al., 2006; Meyer and Le Dortz, 2007; Shabanian et al., 2009a, 44 

2009b and 2012a; Molnar and Dayem, 2010; Farbod et al., 2011, 2016; Calzolari et al., 2015, 2016, 45 

2018). According to these studies, strike-slip faults play significant roles in the current deformation of the 46 

Iranian plateau and were responsible for several moderate to large earthquakes especially in east of Iran 47 

(e.g., Dasht-e Bayaz 31 August 1968, Koli-Buniabad 27 November 1979 and Zirkuh-Qayen 10 May 48 

1997). Since Pliocene (5.3-2.6 Ma), the dominant tectonic regime in the Iranian plateau and surrounding 49 

deformation belts has changed from compressional to strike-slip (Regard et al., 2005, 2006; Authemayou 50 
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et al., 2006; Shabanian et al., 2009a, 2009b, 2010; Farbod et al., 2011, 2016; Ghods et al., 2015; Tadayon 51 

et al., 2017, 2018; Taghipour et al., 2018). Even in thrust-fold domains such as the Zagros and Alborz 52 

belts, where the main way of accommodation of Arabia-Eurasia convergence is crustal shortening, the 53 

role of strike-slip faulting is determinant (e.g., Talebian and Jackson, 2004; Authemayou et al., 2006, 54 

2009). 55 

The role of major strike-slip faults such as the North Tabriz Fault in northwest Iran (e.g., Cisternas 56 

and Philip, 1997; Karakhanian et al., 2004; Ghods et al., 2015), the Main Recent Fault in Zagros 57 

(Tchalenko et al., 1974; Braud and Ricou, 1975; Ricou et al., 1977; Berberian, 1995; Talebian and 58 

Jackson, 2004), the Minab-Zendan-Palami fault zone at the Zagros – Makran transition (Regard et al., 59 

2005) and the Bakharden-Quchan fault system in Kopeh Dagh (Shabanian et al., 2009a, 2009b) as well as 60 

the faults that re-activate the Sistan Suture zone in the east of Iran (e.g., Vernant et al., 2004; Walker and 61 

Jackson, 2004) in accommodation of the Arabia-Eurasia convergence is nearly well-known. These strike-62 

slip faults act as block boundaries along which the blocks are moved in accordance with the overall 63 

deformation in the Arabia – Eurasia collision zone (e.g., Walpersdorf et al., 2006, 2014; Tavakoli et al., 64 

2008; Shabanian et al., 2009b; Mousavi et al., 2013; Ghods et al., 2015). 65 

Recent geodetic (e.g., Vernant et al., 2004; Reilinger et al., 2006; Mousavi et al., 2013; 66 

Walpersdorf et al., 2014) and geological studies (Shabanian et al., 2009a, 2009b, 2010, 2012b; Farbod et 67 

al., 2011, 2016) in NE Iran have revealed that active deformation is localized along block-bounding 68 

crustal faults. In Central Iran, GPS-derived velocity fields (Walpersdorf et al., 2014) and GPS block 69 

modeling (Reilinger et al., 2006; Walpersdorf et al., 2014) show that about 90 percent of the 5.7 mm/yr 70 

northward motion of the Lut block – Eurasia is transferred to the north of the E-W Doruneh fault (Fig. 1). 71 

To the north, the Bakharden-Quchan fault system takes up 4.1 - 4.6 mm/yr of this dextral faulting across 72 

the Kopeh Dagh Mountains (Shabanian et al., 2009a, 2009b, 2012b; Mousavi et al., 2013). In other 73 

words, this fault system accommodates 80% of Central Iran-Eurasia convergence (~5.1 mm/yr) north of 74 

37°N. In this tectonic context, there are other strike-slip faults such as the Doruneh and Dasht-e Bayaz 75 

faults which affect the Iranian plateau and are characterized by conspicuous seismic and/or geological 76 
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activities. Nevertheless, the role of these faults in the accommodation of the active convergence has been 77 

a matter of debate (e.g., Farbod et al., 2011, 2016; Nozaem et al., 2013; Calzolari et al., 2015, 2016, 2018; 78 

Tadayon et al., 2017 and 2018). Interestingly, these E-W faults are perpendicular to the N-S active block 79 

motions in the Lut and separate the N-S dextral strike-slip faults of the Lut borders (the Nayband and 80 

Sistan suture zone) to the south from the NW-trending structures of the Binalud and Kopeh Dagh 81 

deformation domains to the north (Fig. 1).  82 

Our understanding of the processes involved in the plate convergence improves progressively, but 83 

we still need to know more about (1) both the pattern and kinematics of deformation in each part of the 84 

convergence/collision zone and (2) the role of intracontinental crustal faults in the accommodation of this 85 

deformation within the plateau. During the last century, areas such as Dasht-e Bayaz, Tabas, and Bam that 86 

were considered as stable areas in the interior of rigid blocks have been affected by large destructive 87 

earthquakes occurring on mostly unknown faults (e.g., Walker et al., 2011; Berberian, 2014). After the 88 

destructive 1968 Mw 7.1 earthquake, for instance, the Dasht-e Bayaz area has been one of the most 89 

seismically active domains in Iran. Right after the Dasht-e Bayaz main shock in 1968, this area has been 90 

studied from different points of view. The first studies focused on mapping of the coseismic rupture and 91 

post-earthquake observations (e.g. Ambraseys and Tchalenko, 1969; Tchalenko and Ambraseys, 1970; 92 

Tchalenko and Berberian, 1975). Meanwhile, more recent studies have focused on the seismology and the 93 

active tectonics of Dasht-e Bayaz and surrounding areas in the context of Arabia-Eurasia convergence 94 

(Walker et al., 2004; Walker and Jackson, 2004; Walker et al., 2011). However, the main unanswered 95 

question regards the role of the E-W sinistral faults such as the Dasht-e Bayaz fault in accommodation of 96 

the NNE Arabia - Eurasia convergence (e.g., Vernant et al., 2004; Walpersdorf et al., 2014) between 97 

Central Iran and Eurasia. This question can be answered partly through an investigation of the temporal 98 

and spatial kinematic evolution of the Dasht-e Bayaz fault and its kinematic interaction with other major 99 

structures including the Sistan suture zone. It is also important to know whether the stress field in eastern 100 

Iran is due to the stress transfer from the Arabia – Central Iran collision, or is influenced by the geometry 101 

and relative motion of individual blocks in eastern Iran (e.g., Jentzer et al., 2017). 102 
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This paper especially focuses on the Pliocene-Quaternary to present-day states of stress (the last 5 103 

Ma) in the region affected by the Dasht-e Bayaz fault (Fig. 1); the paleo-tectonic evolution of the area is 104 

of course out of the scope of this study. We applied the inversion technique on both kinds of fault slip 105 

data as provided through focal mechanism of earthquakes and fault measurements in the field, with well-106 

known senses and relative chronologies. The level of consistency of our results has been discussed in the 107 

light of previous studies on the Cenozoic stress field of the Iranian plateau and surrounding deformation 108 

belts. We have then put our results in a larger framework, which we have reconstructed using available 109 

kinematic data and results from the east and northeast Iran. This has allowed us to discuss the possible 110 

interaction of the Dasht-e Bayaz fault with other active faults of the region. Finally, we have proposed a 111 

kinematic scenario to describe the role of strike-slip faulting in the accommodation of active convergence 112 

in ENE Iran.   113 

 114 

2. Geodynamic and seismotectonic framework 115 

According to geological investigations (e.g., Berberian et al., 1999; Walker and Jackson, 2004; 116 

Mayer and Le Dortz, 2007; Foroutan et al., 2014) and geodetic Global Positioning System (GPS) 117 

measurements (e.g., Vernant et al., 2004; Walpersdorf et al., 2014), the N-striking right-lateral faults in 118 

Central Iran, especially on both sides of the Lut block (Fig. 1), accommodate the northward motion of 119 

Central Iran relative to Eurasia (Helmand block in Afghanistan). The Distribution of historic records and 120 

instrumental earthquake epicenters, as well as the GPS velocity field show that the convergence is mainly 121 

accommodated along the block boundaries, while the interior of the blocks (e.g., Lut block) is almost 122 

rigid (e.g., Vernant et al., 2004; Walker and Jackson, 2004; Walpersdorf et al., 2014), with low rates of 123 

deformation. The crustal-scale dextral shear continues up to the latitude 34°N, north of which E-W left-124 

lateral faults like the Dasht-e Bayaz, Niazabad and Doruneh (further north) are present (Fig. 1). At this 125 

latitude, the change in geology is accompanied by a change in active faulting from the N-S dextral faults 126 

of the Sistan suture zone to a system mainly constituted by E-W sinistral strike-slip faults (e.g., Berberian 127 
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et al., 1999). The role of these crustal faults in the accommodation of active deformation perpendicular to 128 

the N-S dextral shear has been a matter of debate since, at least, thirty years ago (e.g. Jackson and 129 

McKenzie, 1984; Berberian et al., 1999; Walker and Jackson, 2004; Farbod et al., 2011, 2016; Aflaki et 130 

al., 2019). The recent works by Nozaem et al. (2013), Calzolari et al. (2015 and 2016) documented 131 

Neogene to Quaternary dextral strike-slip deformation along the NE-SW Kuh-e-Sarhangi and the E-W 132 

Kuh-e-Faghan faults and have revealed another complexity in the active kinematics of northwest Lut – 133 

Central Iran (Fig. 1). The objective of this part is a brief demonstration of the structural schema and the 134 

seismotectonic activity of an active fault network, with complex internal interactions; for this reason we 135 

only selected some of the most important and crucial seismic activities in the area without pointing out 136 

other subsidiary events that have not been assigned to particular faults.  137 

Active tectonic and seismological studies conducted in Dasht-e Bayaz and the surrounding areas 138 

documented that the active faults, responsible for numerous seismic shocks in the area, are temporally and 139 

mechanically in close interaction (e.g., Berberian et al., 1999; Walker et al., 2004; Walker et al., 2011). 140 

On 31 August 1968, a tremendous destructive earthquake (Mw 7.1) shocked the area and produced a 70 141 

km E-W coseismic rupture; the maximum coseismic displacement (4.5 m left-lateral and 2.5 m vertical) 142 

was measured in north of the Nimboluk plain (Tchalenko and Ambraseys, 1970; Tchalenko and 143 

Berberian, 1975). The formerly called Dasht-e Bayaz fault was renamed later as the western segment of a 144 

now longer Dasht-e Bayaz fault, subsequent to the reactivation of its 55 km length extension to the east. 145 

The eastern segment of the Dasht-e Bayaz fault with the same trend and straight geometry attracted 146 

attention after 27 November 1979 Mw 7.1 Koli-Buniabad earthquake, only 11 years after the Dasht-e 147 

Bayaz main shock (e.g., Berberian et al., 1999).  148 

The most remarkable seismic events occurred just 20 hours after the Dasht-e Bayaz main shock 149 

during the Ferdows earthquakes of 1st and 4th September 1968 (Mw 6.3 and Mw 5.5, respectively) about 150 

70 km west of the Dasht-e Bayaz village. The close proximity (or even overlap) between the domains of 151 

impact of the Dasht-e Bayaz and Ferdows earthquakes has prevented researchers from separating their 152 

field effects (e.g., Berberian, 2014). Several authors, based on field observations, suggested that the two 153 
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earthquakes occurred on the NW–trending Ferdows reverse fault (Figs. 1 and 2); the reverse focal 154 

mechanisms of the earthquakes were also compatible with this fault (see Berberian, 2014 and references 155 

therein). After 11 years and during less than one month, three other destructive earthquakes of Korizan 156 

(14.11.1979), Koli-Buniabad (27.11.1979 - e.g., Haghipour and Amidi, 1980) and Kalateh Shur 157 

(07.12.1979 - e.g., Haghipour and Amidi, 1980; Ambraseys and Melville, 1982) occurred along the 158 

northern part of the Abiz fault, the eastern segment of the Dasht-e Bayaz fault and at the intersection of 159 

the two faults, respectively. The Zirkuh earthquake of 1997 May 10 (Mw 7.2), caused by the northern 160 

segment of the NNW-striking Abiz fault (Fig. 1), has also been considered as the sequence of seismic 161 

events triggered by the Dasht-e Bayaz main shock on 31 August 1968 (e.g., Berberian et al., 1999). The 162 

125-km-long surface faulting which, with dextral strike-slip mechanism has occurred during the Zirkuh 163 

earthquake is known as the longest surface rupture associated with an Iranian earthquake (e.g., Berberian 164 

et al., 1999). This NNW-striking fault segment changes into a NNE-SSW strike (causative fault of the 165 

November 14, 1979 Korizan earthquake; see above) near the eastern end of the Dasht-e Bayaz fault and 166 

provides its dextral pair of a conjugate-like arrangement (see section 4; Fig. 3A). 167 

The 1968, 31 August earthquake of Dasht-e Bayaz is considered as a trigger for the reactivation of 168 

the east segment of the Dasht-e Bayaz fault, the Ferdows reverse fault zone and the Korizan fault, causing 169 

a sequence of earthquakes (e.g. the Zirkuh, Koli-Buniabad and Ferdows earthquakes). The 1968.09.11, 170 

1979.01.16 and 1997.06.25 events did not rupture the surface (e.g. Berberian et al., 1999). The 171 

1979.01.16 event showed NW-striking reverse faulting and 1997.06.25 event has produced both the 172 

possibilities of N-S right-lateral or E-W left-lateral faulting (Berberian et al., 1999). The calibrated 173 

relocations and the body-wave modeling of Walker et al. (2011) showed that the epicenter of the 174 

1979.01.16 earthquake is centered on an SW–dipping reverse fault. As for the 1997.06.25 event, Walker 175 

et al. (2011) also proposed that, through InSAR results, the rupture had occurred on the N–S trending 176 

dextral fault plane without the possibility to attribute it to any of the Boznabad or Pavak faults (Fig. 2).  177 

Based on this seismicity, it is concluded that the Dasht-e Bayaz and nearby faults are in close 178 

kinematic interaction to accommodate the active deformation of the area. This sequence of the Dasht-e-179 



8 

 

Bayaz, Ferdows and Zirkuh earthquakes (occurred between 1968 and 1997) presents one of the most 180 

remarkable examples of temporally clustered continental seismicity in the world (e.g., Berberian et al., 181 

1999; Walker et al., 2011). These consecutive destructive earthquakes could have been triggered by the 182 

31 August 1968 Dasht-e Bayaz main shock (e.g., Berberian et al., 1999 and references therein) and 183 

occurred along the faults with different kinematics.  184 

 185 

3. Methodology 186 

3.1. Inversion of fault-slip data 187 

Following the method proposed by Carey and Brunier (1974), determination of a deviatoric stress 188 

tensor from fault slip data is based on the stress-slip relationship described by Wallace (1951) and Bott 189 

(1959). Computer programs, developed for the inversion of fault slip data, compute a mean best fitting 190 

deviatoric stress tensor from a group of striated fault planes by minimizing the angular deviation (misfit 191 

angle) between the observed striation and the shear stress resolved on the fault plane (Carey and Brunier, 192 

1974, Carey; 1979; Angelier, 1990). The inversion results are revised and refined iteratively to reach the 193 

smallest misfit angle while involving the highest possible number of measured homogenous fault slip 194 

data. The meaningful process of stress determination (deviatoric reduced stress tensor) from both 195 

geological and seismological fault slip data is a delicate challenge requiring good quality of data, 196 

meticulous observations and data separation as well as adequate knowledge on both kinematics and 197 

mechanics of faulting (see Allmendinger et al., 1989; Shabanian et al., 2010; Hippolyte et al., 2012; 198 

Tranos, 2018). A blind use of abundant computer programs (whatever the software is used) seems very 199 

simple, but it would lead to mathematic results without geological significance (see Hippolyte et al., 2012 200 

and Tranos, 2018 for details). 201 

The method we used is principally invented (Carey and Brunier, 1974; Carey-Gailhardis and 202 

Mercier, 1987) for the analysis of multiphase heterogeneous fault slip datasets measured in natural fault 203 
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outcrops which contain a variety of new created and preexisting fault planes reactivated in distinct stress 204 

states. This method easily works with both new created conjugate fault pairs and preexisting faults with 205 

unknown geometric relationships and is independent of conjugate fault arrangements for resolving 206 

reduced stress tensors (see Carey-Gailhardis and Mercier, 1987 and 1992; Bellier and Zoback, 1995; 207 

Regard et al., 2005; Shabanian et al., 2010 for more details). As a main aspect of the program we have 208 

used (i.e., FCALC – Geodyn-Soft; Carey-Gailhardis and Mercier, 1987), there is no way for automatic 209 

separation of fault slip data and this job have to be done through detailed geological field observations 210 

and individual notes on the quality, reliability and chronological relationships (cross-cutting or 211 

overprinting) of the structural elements measured in the field, as well as mechanical compatibility of the 212 

fault slip data to the resolved stress tensor. Interestingly, the well-known misfit angle, which is an 213 

essential criterion for the computer software during the iteration and minimization processes, is the last 214 

parameter we consider for the analysis of a heterogeneous fault dataset. This considerably reduces the 215 

effect of geologically incompatible slip data in resolving a deviatoric stress tensor. This is simply because 216 

an apparently homogenous dataset (separated without reliable geological considerations) could be 217 

synthesized through optimizing the misfit angle distribution of the stress model and an arbitrary selection 218 

of data mainly based on this criterion. While, that dataset could comprise fault slip data which in reality 219 

belong to different tectonic regimes but apparently are compatible with an artificial mean stress tensor 220 

resolved from marginal data from those different datasets. Therefore, the misfit angle only shows the 221 

level of compatibility of data with a given stress model regardless its geological reliability! 222 

Principal inputs are fault-slip data from geological faults measured in the field or seismologically 223 

determined focal mechanism of earthquakes including attitudes (e.g., strike/dip/dip quadrant) of striated 224 

fault planes and associated striations with well-known sense of movement. As a great advantage, 225 

acquisition of field data is feasible almost everywhere and a careful inversion analysis of good quality 226 

fault slip data, with known chronological relationships, would lead to a reliable reconstruction of the 227 

kinematic history of an area (e.g., Angelier, 1984; Carey-Gailhardis and Mercier, 1992; Hippolyte et al., 228 

1993; Bellier and Zoback, 1995; Regard et al., 2005; Shabanian et al., 2010). The main outputs of this 229 
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method are orientations (trend and plunge) of principal stress axes σ1≥ σ2≥ σ3 (corresponding maximum, 230 

intermediate and minimum stresses, respectively) and “R= (σ2-σ1)/(σ3-σ1)”. This linear parameter (R) 231 

equals 1−φ, φ being another commonly used stress ratio (e.g., Angelier, 1979; Zoback, 1989; Ritz and 232 

Taboada, 1993), and describes relative stress magnitudes ranging from 0 to 1 (e.g., Carey and Brunier, 233 

1974; Mercier et al., 1991; Bellier and Zoback, 1995, Shabanian et al., 2010 and references therein). 234 

Different combinations of Andersonian stress arrangements (vertical principal stress axes of 1, 2 and 3 235 

for pure extensional, strike-slip and reverse faulting, respectively) and R values lead to various stress 236 

regimes responsible for different kinds of faulting (see Ritz and Taboada, 1993; Shabanian et al., 2010 for 237 

more details). We used the method originally proposed by Carey (1979); the results deduced from 238 

inversion of fault-slip data measured in individual sites along the Dasht-e Bayaz fault and nearby areas 239 

are presented in Table 1 (see Figs 3 and 9 for site locations). 240 

 241 

3.2. Relative chronology of fault slip data and data separation 242 

According to an important assumption accepted in fault kinematic inversion methods, a distinct 243 

stress tensor (σ1≥ σ2≥ σ3 and “R”) can create only one slip direction on a given fault plane. The 244 

complications of data separation are normally revealed when different sets of heterogeneous fault-slip 245 

data are collected from fault planes. Several generations of striae on a single fault plane are surely the 246 

result of changes in angular relationships between the fault plane and principal stress axes. Nevertheless, 247 

the nature of such changes could either be (1) due to temporal variations in the stress field or (2) could 248 

imply the rotation of the fault plane during deformation. In both cases, the chronology of striae is usually 249 

determined through the crosscutting relationships of striations and/or fault planes complemented by 250 

geological field observations. Except for some probable mistakes in measurements and individual cases of 251 

local rotations due to progressive deformation, the fault slip data are usually classified into homogenous 252 

sub-groups. In some of related studies, the automatic or semi-automatic methods have also been proposed 253 

or utilized to separate heterogeneous fault slip data (e.g., Nemcok and Lisle, 1995; Salvini and 254 
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Storti,1999; Fry, 1999; Rossetti et al., 2002; Shan et al., 2003; Tranos, 2015, 2018), however, in this study 255 

we preferred to take advantage of techniques concerning data separation based on geological observations 256 

and kinematic rules (see Shabanian et al., 2010). Figure 8 shows an example of this strategy which is 257 

based on crosscutting relationships, field observations and kinematic considerations. The 10 measurement 258 

sites were chosen in outcrops of different stratigraphic ages, ranging from Triassic to Quaternary (Figs 3 259 

and 10); almost half of the measurements (a total number of 170 fault slip data) were done on fault planes 260 

affecting Pliocene and Quaternary deposits (see Table 1). Relative chronologies of different generations 261 

of striations on a fault plane or in a outcrop has been determined based on the superposition of striations 262 

and/or crosscutting relationships between fault planes affecting the outcrop. In a given outcrop, usually, 263 

there are few fault planes showing direct chronological indicators for different generations of striations, 264 

while the majority of planes only express one direction of striation with unknown relative chronology (see 265 

Shabanian et al., 2010 for more details). In such the case, fault slip data of different generations have 266 

primarily been separated using the well-known relative chronologies observed in the field and then, other 267 

compatible fault planes with only one striation were added to each data set based on their kinematic and 268 

mechanical compatibilities with the data set, as well as the geological field notes on each fault plane 269 

(Fig. 8). The final chronology of the resolved deviatoric stress states (defined as paleo, intermediate or 270 

modern stresses) has been determined considering the age of youngest rock units affected by each stress 271 

state and chronological cross-relations between different stress tensors.  272 

Certain criteria should be met in order to determine reliable stress solutions (e.g. Etchecopar, 1984; 273 

Carey-Gailhardis and Mercier, 1992; Belier and Zoback, 1995; Shabanian et al., 2010): (1) we need at 274 

least 4 fault planes with different attitudes that are well-distributed in the space. A higher number of fault 275 

planes and a good spatial distribution will result in a more constrained stress solution, (2) the inversion 276 

results will theoretically be reliable when at least 80 percent of deviation angles are under 20°, that means 277 

a confidence level of 68 per cent in a Gaussian probability distribution (3) the measured fault planes must 278 

show good mechanical compatibility with the stress tensor solution. For instance, a set of transtensional 279 

faults cannot be explained by a compressional stress tensor even if output parameters of the tensor to be 280 
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excellent, (4) a reliable stress solution needs fault slip data of good quality; it greatly depends on the 281 

details of field observations, the tectonic history of the measurement site and user’s experiences of data 282 

measurement and inversion analysis. Considering these criteria, A, B and C were assigned to well-283 

constrained, constrained and poorly-constrained stress tensor solutions, respectively. For solutions from 284 

less than four well-distributed fault planes, we used a fixed solution (Bellier and Zoback, 1995) in which, 285 

one principal stress axis is fixed as vertical. In this study the quality of fixed solutions has been 286 

considered the same as C and they were marked as CF; the stress ratio “R” is not valid for this kind of 287 

solutions. 288 

According to the abovementioned method, the measured fault slip data were separated into three 289 

homogeneous groups of slip generations and were analyzed. This analysis has provided basic information 290 

for describing the last kinematic evolution of the Dasht-e Bayaz fault during the Pliocene and Quaternary 291 

times. We compared the pattern of kinematic changes along the Dasht-e Bayaz fault with similar studies 292 

in nearby regions in E and NE Iran (e.g. Shabanian et al., 2010; Farbod et al., 2011; Javidfakhr et al., 293 

2011; Jentzer et al., 2017; Tadayon et al., 2017), which has allowed us to place our results in a larger 294 

geodynamic scale (see the discussion). 295 

 296 

3.3. Inversion of earthquake focal mechanism data 297 

We determined the present-day state of stress in the Dasht-e Bayaz area through the inversion of 298 

focal mechanisms of medium to large (7.1>M>5.5) earthquakes applying the method described by Carey-299 

Gailhardis and Mercier (1987). These earthquakes have occurred between 1968 and 1997 comprising the 300 

Dasht-e Bayaz main shocks. We have only used focal mechanism solutions that had been relocated and 301 

modeled using body waves by Walker et al. (2004, 2011). With this method, we analyzed two orthogonal 302 

nodal planes for each earthquake focal solution taking into account that only one plane was reactivated 303 

during the earthquake due to the regional stress state. The final selection among each pairs of nodal planes 304 

can be done by (1) direct observation of the surface rupture of the earthquake, (2) seismological 305 
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investigations of the rupture process, (3) the spatial distribution of aftershocks and (4) the inverse 306 

computation by selecting the nodal plane that results in greater consistency with the regional stress field 307 

(Carey-Gailhardis and Mercier, 1987). For determining the regional state of stress, the importance of the 308 

main shocks (even a single datum) is significantly greater than that of the aftershocks because small 309 

earthquakes would probably reflect kinematic instabilities due to heterogeneous deformation and 310 

independent faulting in small-scale bodies (e.g. Carey-Gailhardis and Mercier, 1992). For some of the 311 

main shocks, we have direct information on the rupture geometry from field observations (Tchalenko and 312 

Ambraseys, 1970; Berberian et al., 1999). This serves as a reference for evaluating the compatibility (in a 313 

geometric sense) of other events using inverse computation. This method was successfully applied to 314 

determine the causative fault plane of the second event of August 2012 earthquake doublet (Mw 6.4, 6.2), 315 

that had occurred in the Ahar-Varzaghan complex fault system in NW Iran (see Ghods et al., 2015 and 316 

Momeni and Tatar, 2018). 317 

 318 

3.4. Active fault mapping 319 

During the four last decades, several studies have focused on different aspects of the Dasht-e Bayaz 320 

earthquake fault providing structural maps of the fault at different scales and at distinct aims (e.g., 321 

Tchalenko and Ambraseys, 1970; Tchalenko and Berberian, 1975; Walker et al., 2011). However, the 322 

specific scope of our study on kinematic aspects of the fault and its interaction with other neighboring 323 

main faults has led us to prepare a detailed fault map using the high resolution satellite images (Bing 324 

images in SAS Planet, http://sasgis.org; 1 m resampled pixel size) of the area. A simplified version of this 325 

map is shown in Figure 3, while the more detailed maps are centered on the fault terminations and 326 

intersection zones (Figs 4-7), where additional information are needed to describe the structural 327 

characteristics of the Dasht-e Bayaz fault. Thanks to our new fault mapping, we reinterpreted the 328 

structural relationships between the main fault and other structures interacting with from the eastern 329 

termination westwards along the Dasht-e Bayaz fault (see below). 330 
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 331 

4. Active tectonics and structure of the Dasht-e Bayaz fault 332 

The Dasht-e Bayaz fault is a 120-km-long sinistral fault in the north of the Lut block (Fig. 1). The 333 

E-W Dasht-e Bayaz fault, with an almost straight geometry, is a structural assemblage of several fault 334 

strands with different orientations ranging from N070°E to N110°E (e.g., Tchalenko and Ambraseys, 335 

1970; Fig. 3). This particular structural arrangement forms various contractional and extensional 336 

mesoscale structures and the associated morphotectonic landforms such as pull-apart basins, pressure 337 

ridges and en-echelon folds at different scales along the fault zone; the same structural patterns were 338 

seismically created during the 31 August 1968 Dasht-e Bayaz main shock (Tchalenko and Ambraseys, 339 

1970; Berberian et al., 1999). In addition to these variations in the fault geometry, the Dasht-e Bayaz fault 340 

is affected by N-S dextral faults which are in close interaction with the main fault (Figs 3 and 4).  341 

At the eastern end, the Dasht-e Bayaz fault intersects the NNE-striking Korizan segment of the 342 

Abiz fault (Fig. 3). As an important verified observation, north of 34°N, it is difficult to define any 343 

relative dominance for the N-S Korizan or the E-W Dasht-e Bayaz faults while south of this latitude, the 344 

N-S dextral faults are dominant and cut both the E-W sinistral and the NW-SE reverse faults of the region 345 

(e.g., Berberian et al., 1999). Near the village of Buniabad in the south of Kheybar Kuh-e Kuchek (i.e., 346 

Little Kheybar Mountain), these faults join together into a single ENE-WSW trend (Fig. 3). Farther 347 

northeast, however, the sinistral Niazabad fault runs parallel to the Dasht-e Bayaz fault and looks like a 348 

left-hand stepping segment in a larger E-W sinistral fault system (Fig. 1), which is apparently dominating 349 

the N-S dextral fault system of the Sistan suture. The northern parts of the Korizan fault are partly 350 

covered by eolian deposits, while the overall fault trace in the south of Buniabad village (Fig. 3) cuts the 351 

Quaternary alluvial fan surfaces. Our mapping of the intersection area shows a deforming wedge between 352 

the main traces of the Dasht-e Bayaz and Korizan faults (Fig. 3a); the conjugate arrangement of the main 353 

faults implies active contraction inside the wedge. Interestingly, N-S fault traces appear again in a 354 

discontinuous way in the northern side of the Dasht-e Bayaz fault trace, cutting through Kheybar Kuh-e 355 
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Kuchek. Except for a few places (see Walker et al., 2011), the N-S fault strands cut the bedrock and there 356 

is no way to evaluate their Quaternary activity. Nevertheless, systematic dextral geomorphic offsets of 357 

main streams along these faults could indicate their activity during, at least, the Pliocene time. 358 

Another structural node along the Dasht-e Bayaz fault occurs where it intersects with the N-S 359 

Mahyar fault (Fig. 4). In fact, the Mahyar fault (e.g. Berberian, 2014) separates the western and eastern 360 

earthquake segments of the Dasht-e Bayaz fault (ruptures of the 31 August 1968 and 27 November 1979 361 

earthquakes, respectively). Our detailed mapping of the intersection area (Fig. 4) shows that the cross-362 

cutting dextral Mahyar fault and the sinistral Dasht-e Bayaz fault form a typical crosswise (nearly 363 

orthogonal) fault arrangement in the middle part of the Dasht-e Bayaz fault trace. These coexisting faults 364 

have displaced each other in the sense of their movement of about 1.5 km (Figs 3 and 4). Following the 365 

opposite shear senses of the crosswise faults, double-coupled extensional and contractional domains have 366 

been formed in the quarters of this intersection. In the NW and SE extensional quarters, there are two 367 

relatively lowlands with an average elevation of 1300 m, while the adjacent NE and SW contractional 368 

quarters occupy higher areas with the average elevation of 1400 m (Fig. 4). The NE contractional quarter 369 

is occupied by nearly E-dipping reverse faults which join the main trace of the eastern Dasht-e Bayaz 370 

fault, southwards (Fig. 4). 371 

In the same area, around the Dasht-e Bayaz and Mahyar faults intersection zone (Fig. 4), different 372 

sets of dioritic and andesitic dikes have intruded in folded rocks of Jurassic to Eocene ages (Alavi Naini 373 

and Behruzi, 1983; Fauvelet and Eftekhar-Nezhad, 1991). Pliocene deposits cover these post folding 374 

dikes and define their stratigraphic age of post Eocene – pre Pliocene. We have mapped 379 dikes 375 

through the analysis of Bing Map (SAS Planet©) satellite images of the area. The clear crosscutting 376 

relationships of the dikes show three generations of which the oldest set (microdioritic dikes; 377 

Mohammadi Gharetapeh et al., 2014) is the most frequent, with a dominant orientation of N330±10°E 378 

(Fig. 4). Two younger minor populations of dikes (pyroxene andesitic with N345±15°E and N10±10°E 379 

preferred orientations) are less abundant in the area and clearly cut through the oldest generation where 380 

coexisted. 381 
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Our new mapping of the 1979 earthquake rupture reveals that the main trace of the coseismic 382 

rupture dies out westward into a N-S reverse fault zone, with a dextral component of faulting (Figs 4 383 

and 5). Other parallel reverse/thrust faults are observed in this quarter, but those haven’t been picked up 384 

by the coseismic rupture (Fig. 5). In contrast, the adjacent NW extensional quadrant hosts the extensional 385 

termination of the 1968 coseismic rupture (Fig. 5). In this area, the E-W trend of the 1968 rupture dies out 386 

eastwards into a NE-striking normal fault zone of which a 615-m-long array of surface rupture can be 387 

mapped in recent satellite images (Figs 4 and 5). The alignment of several SE-facing landslides (with 388 

fresh free-faces recognizable on images) along this part of the rupture is coherent with the extensional 389 

character of the rupture termination. 390 

Farther west, the Dasht-e Bayaz fault reaches an E-W, pull-apart basin (the Chah Deraz pull-apart 391 

basin), which possesses an elongated shape (~3900 m in length and ~870 m in width), with the length to 392 

width ratio of 4.5. The almond-shaped geometry of the pull-apart basin, in addition to its symmetric 393 

curved boundaries (Fig. 6) implies that the basin was formed in a releasing bend (e.g., Dooley and 394 

Schreurs, 2012) along the Dasht-e Bayaz fault. Considering the lack of Quaternary activity along the 395 

southern border of the basin and the coseismic reactivation of the northern master fault during the 31 396 

August 1968 earthquake (Fig. 6), we suggest that the pull-apart basin has entered a new stage of 397 

evolution, by a shift in active extension from the central part to the northwest margin of the basin (Fig. 6).  398 

Further to the west, the Dasht-e Bayaz fault controls the contact between Quaternary deposits and 399 

Mesozoic sedimentary rocks. In the north of Nimboluk plain, there are outcrops of Miocene marls 400 

armored by Quaternary deposits; the dense cultivation and human-made changes in the Quaternary 401 

surfaces, cut by the fault, precluded us from following the trace of the coseismic rupture. The detailed 402 

rupture maps of Tchalenko and Ambraseys (1970) and Tchalenko and Berberian (1975) show that about 403 

12 km westwards from the Chah Deraz pull-apart, the fault trace encounters another structural complexity 404 

(Fig. 7). After a 5-km-long en-echelon fracture zone, the main rupture trace turns southwest and continues 405 

to the west for ~20 km. This coseismic fault rupture (Mozdabad fault branch) crosses between Dasht-e 406 

Bayaz and the Khezri villages and, in the southwest of Mozdabad village, it joins the Ferdows reverse 407 
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fault array at the western flank of the Kuh-e Kamarkhid and Kuh-e Kalat mountains (Figs. 2 and 3). 408 

Interestingly, the main fault trace, visible in the geomorphology of Quaternary alluvial fans, can be 409 

directly traced to the west of the Chah Deraz segment, while only a small part of this Quaternary fault has 410 

been reactivated during the 1968 earthquake. This branch of the Dasht-e Bayaz geologic fault continues 411 

westwards for 13 kilometers, where it bends towards the northwest and joins the north dipping reverse 412 

faults in the middle of Kuh-e Kamarkhid (Fig. 2 and 7A). In that area, a series of en-echelon pressure 413 

ridges and folds have been formed due to a restraining curvature along the Dasht-e Bayaz fault (Fig. 7). 414 

In summary, our new detailed mapping of the Dasht-e Bayaz fault trace and the related structures 415 

(thanks to the available very high resolution satellite images and other facilities) reveals that the Dasht-e 416 

Bayaz fault is a complex fault zone in which several fault strands with different orientations and 417 

kinematics are actively interacting. In this context, N-S dextral and E-W sinistral faults play a significant 418 

role in both the structural pattern and active tectonic deformation along the main fault zone.  419 

 420 

5. Fault kinematics and states of stress in the Dasht-e Bayaz area 421 

5.1. Modern state of stress  422 

The analysis of the youngest group of fault slip data were measured in ten sites (Table 1, Figs 9 and 423 

11) including the last coseismic kinematics of the Dasht-e Bayaz fault (for example, sites 2, 5 and 6 in 424 

Figs 10a, 10e-f and 10h, respectively). Except for sites 4, 5b and 6, the maximum stress axis (σ1) has the 425 

average trend of N045±5°E (Fig. 13C) and the deviatoric stress tensors indicate a homogenous strike-slip 426 

stress field in the area including the Dasht-e Bayaz fault (Figs 9 and 11). The trend of the σ1 axis locally 427 

changes in sites 5b, 6 and 4, with an orientation of ~N070°E (see the section 6.1 for more details).  428 

To avoid local stress changes caused by structural rotations in fault zones and local stresses 429 

produced at structural complexities such as fault bends, fault relay zones and fault-bend terminations, we 430 

have analyzed together the youngest set of fault-slip data only from main fault planes (MFP) measured 431 
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over the study area (Figs 10 and 11). A main fault plain is the most prominent structure which controls 432 

overall deformation in a given outcrops (for instance, fault planes marked in Figs 10a, 10c, 10f- j) and is 433 

usually distinguished from other subsidiary fault planes in the outcrop during field measurements. The 434 

inversion analysis of such a particular data set leads to a mean regional stress state responsible for the 435 

reactivation of different main fault planes regardless their geographic location and structural setting. The 436 

resulting stress tensor specifies a mean regional strike-slip stress regime characterized by a N42±05°E σ1 437 

axis (Fig. 11). This regional mean σ1 axis is very close to the average orientation of N45±05°E for the σ1 438 

that we have independently obtained in 8 individual sites (Fig. 14C). Almost all the stress tensors (except 439 

for sites 5A, 6 and 7) were resolved from the analysis of strike-slip fault planes, with pitch angles less 440 

than 20° (Fig. 11), showing different dextral or sinistral dominant component of faulting in accordance 441 

with their orientation with respect to the principal stress axes (Fig. 11). This strike-slip character is also 442 

consistent with the regional mean stress tensor deduced from the inversion of main fault planes (MFP in 443 

Fig. 14) and is confirmed by the mean R value of ~0.54 for the tensors with Andersonian strike-slip 444 

arrangement (Fig. 11 and Table 1). Accordingly, a prominent pure strike-slip regime is representative for 445 

the modern stress field over the study area. 446 

 447 

5.2. Paleostress state 448 

 In 8 sites along the Dasht-e Bayaz fault, we have observed signatures of the oldest generation of 449 

fault slip data. These older data, which were naturally fewer than the younger data, were carefully 450 

differentiated and analyzed regarding both our field observations and cross-relation of different individual 451 

data in each site. For example, our filed observation in site 7 indicates the signature of two distinct 452 

deformation stages in Neogene deposits (Figs 8 and 12). A total number of 20 fault planes were measured 453 

in site 7. The SE-striking fault planes show an older dextral reverse kinematics (striation 1 in Fig. 8) 454 

overprinted by a younger pure reverse kinematics (striation 2 in Fig. 8). The younger fault slip data set is 455 

compatible with the modern stress state, while the older data set defines an older reduced stress tensor 456 
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characterized by a NW-trending maximum compression (Fig. 8C). E-W planes in this data set are 457 

oblique-slip dextral reverse faults (right-hand stereogram in Fig. 8C). 458 

In six of eight sites, which are well distributed over the study area, the oldest data sets comprise 459 

sufficient data to give independent deviatoric stress tensors (Figs 9 and 12; Table 1). These individual 460 

stress tensors represent a paleostress state characterized by a homogeneous N135±15°E trending mean σ1. 461 

As for the dominant stress regime, except for two stress tensors resolved for sites 6 and 7, the other 462 

tensors are fixed solutions, with less than four differently oriented fault planes (see the methodology 463 

section). In this case, the tensors cannot be used for determining the stress regime. However, the majority 464 

of fault planes analyzed in these paleostress tensors is oblique-slip with a dominant reverse component 465 

(Fig. 12) and are coherent with a transpressional stress regime as indicated by the B-Quality tensor 7 in 466 

Figure 12. In this paleostress regime, the E-W fault planes, which were measured on the earthquake fault 467 

trace of Dasht-e Bayaz or on other faults parallel to it, are oblique-slip reverse dextral faults and show a 468 

transpressional character (Fig. 8d).  469 

 470 

5.3. Intermediate state of stress 471 

In addition to these paleo and modern states of stress, the signature of an intermediate stress field 472 

was also measured in three sites along the Dasht-e Bayaz fault (Figs 8, 13; Table 1). This intermediate 473 

stress is characterized by a ~N009°E mean σ1 and a strike slip stress regime (Fig. 14B). However, the 474 

insufficient number of stress solutions for this stress state precludes us considering it as an independent 475 

regional stress field (see the discussion). 476 

 477 

5.3. The present-day state of stress deducted from inversion of earthquake focal mechanisms 478 

We have used 15 earthquake focal mechanisms that have been recorded in the Dasht-e Bayaz and 479 

nearby areas and have been modeled by Walker et al. (2004, 2011) using body wave modeling (Table 2). 480 

The final stress tensor was resolved through the inversion of fault slip data from several earthquakes 481 
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affecting a vast area around the Dasht-e Bayaz fault and is therefore representative of the present-day 482 

regional state of stress in the northern Lut block. This solution indicates a single strike-slip tectonic 483 

regime, which characterized by a regional N050±05°E trending σ1 (Fig. 15) responsible for the active 484 

deformation (whatever reverse or strike-slip fault mechanism) throughout the region. 485 

 486 

6. Discussion 487 

6.1. Regional versus local stress changes in the Dasht-e Bayaz and close vicinity 488 

In this study, the spatiotemporal changes in the state of stress were investigated through the inversion 489 

of fault slip data measured in ten sites along the Dasht-e Bayaz fault. Based on the inversion of 490 

independent sets of geologic fault slip data (a N045±05°E compression with strike-slip regime) and 491 

earthquake focal mechanisms (a single strike-slip tectonic regime, with a regional N050±05°E trending 492 

σ1), the present-day state of stress in the Dasht-e Bayaz area is characterized by a mean regional 493 

N050±05°E trending σ1 accommodated by strike-slip tectonics (Fig. 15). The consistency of these results 494 

reveals (1) the absence of remarkable change in the modern state of stress during the late Quaternary time, 495 

(2) the prevalence of a homogeneous stress field in the brittle crust (above the ~17 km depth of 496 

seismogenic layer) of the Dasht-e Bayaz region and (3) the lack of stress perturbation due to the activity 497 

of the Dasht-e Bayaz fault. 498 

The main strike-slip stress regime deduced along the eastern and middle parts of the Dasht-e Bayaz 499 

fault changes into a compressional stress regime at the western end of the fault (sites 6 and 7 in Figures 9 500 

and 11). These two distinct stress regimes are coherent with different structural settings of the resolved 501 

stress tensors. In fact, despite the strike-slip character of the fault that is clearly expressed along its 502 

eastern and central portions (e.g., Tchalenko and Ambraseys, 1970), the kinematics of the Dasht-e Bayaz 503 

fault changes to oblique-slip sinistral reverse at its western end. In this area, the strike-slip character of the 504 

Dasht-e Bayaz fault disappears near the NW-SE Ferdows thrust (Berberian, 1981 and 2014) where the E-505 
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W strike of the fault turns into NW. This change in strike is in accordance with the compressional stress 506 

regime obtained from site 7. As for site 6, it is inspected along a pressure ridge formed along a branch of 507 

the main fault. In that area, the fault branch locally accommodates the contractional deformation induced 508 

by left-lateral faulting along the main fault trend. In other words, this compressional stress regime 509 

expresses the local variation in regional stress at structural complexities along the fault. Besides these 510 

local changes, the paleostress state deduced from the oldest generation of fault slip data measured in 511 

Pliocene and older rock units is characterized by a N135±15°E trending mean σ1, with a transpressional 512 

stress regime. During the prevalence of this stress field, the E-W Dasht-e Bayaz fault was an oblique 513 

reverse dextral fault. 514 

In the kinematic analysis, an important issue is the possibility of structural rotations due to 515 

progressive deformation. Evaluating such a possibility, we have used arrays of dikes intruded in the 516 

folded strata of the area (section 4; Fig. 4). Aside for the amazing similarity in trends of the oldest 517 

generation of dikes (N330±10°E) and the paleo-1 we have obtained (σhmax = N315±15°E), the overall 518 

orientation of the dikes does not significantly vary along and across the strike of both the Mahyar and 519 

Dasht-e Bayaz faults (Fig. 4). The same orientations of the first set of dikes close to, and beyond the main 520 

fault traces indicates insignificant structural rotations due to the post injection strike-slip faulting. 521 

Therefore, in the absence of signs of gradual changes in geological markers like post Eocene dikes (see 522 

Figure 4), our results indicate a drastic change in the regional state of stress and in other words, a 523 

kinematic switch from dextral to sinistral faulting along the Dasht-e Bayaz fault during the Pliocene-524 

Quaternary time. Currently, the Dasht-e Bayaz main fault zone, reactivated on 31 August 1968, contains 525 

several roughly E-W fault strands characterized by a coseismic sinistral mechanism superimposing the 526 

older reverse dextral kinematics of the main fault (Figs 8, 11 and 12). 527 

 528 
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6.2. Late Cenozoic stress fields in the Iranian Plateau, Alborz and Kopeh Dagh mountains 529 

One of the most interesting issues concerning the accommodation of Arabia-Eurasian convergence 530 

in the Iranian plateau is the history of the evolution of stress regimes during Pliocene and Quaternary. 531 

Thanks to modern techniques, such as the inversion of focal mechanisms of earthquakes, our knowledge 532 

about the present-day state of stress has progressed. Whereas, there is still some ambiguity left concerning 533 

the interpretation of long-term changes in stress regime and the transition between successive stress 534 

regimes.  535 

Temporal changes in the stress field of the Alborz range, Kopeh Dagh Mountains and north of the 536 

Lut block, as well as northwest Iran have been reported by several authors (e.g., Tchalenko et al., 1974; 537 

Abbassi and Shabanian, 1999; Jackson et al., 2002; Allen et al., 2003; Guest et al., 2006; Zanchi et al., 538 

2006; Yassaghi and Madanipour, 2008; Abbassi and Farbod, 2009; Landgraf et al., 2009; Shabanian et 539 

al., 2010, 2012a; Farbod et al., 2011; Javidfakhr et al., 2011; Tadayon et al., 2017; Aflaki et al., 2018a, 540 

2018b). The rate and style of deformation in north and northeast Iran have significantly changed during 541 

the late Cenozoic (e.g., Ritz et al., 2006; Shabanian et al., 2009b, 2010). The systematic fault kinematics 542 

studies in these regions have shown that the late Cenozoic stress changes had been drastic (e.g., 543 

Shabanian et al., 2010; Javidfakhr et al., 2011)       544 

As for temporal changes, Tchalenko et al. (1974), during tectonic studies in the Tehran region, have 545 

noticed the possible occurrence of a post-Pleistocene change in the orientation of maximum horizontal 546 

compression (1) from NW to NE, based on the pattern of post Eocene dikes, the style of folding and 547 

faulting in the alluvial formations. In the same region, Abbassi and Shabanian (1999) have found three 548 

distinct states of stress and a clockwise rotation in the stress field through the inversion of fault slip data 549 

mostly measured in Pliocene-Quaternary alluviums. According to their research, the oldest stress field 550 

was characterized by a NW-trending 1 that has changed into a N-S and then, into a NE-directed 551 

maximum compression affecting late Pleistocene to Holocene alluviums. Another interesting research in 552 

west-central Alborz (Axen et al., 2001), has led to the attainment of the first chronological framework for 553 
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a major tectonic reorganization in the Alborz Mountains. They have reported a dextral transpressional 554 

movement along main faults parallel with the range (between 56 Ma and 7 Ma) before onset (ca. 3.4 Ma) 555 

of the modern sinistral faulting on these faults.  556 

In the Kopeh Dagh and Binalud mountains, the inversion of fault slip data measured in 39 sites 557 

revealed temporal clockwise changes in the state of stress since 3.6 Ma (Shabanian et al., 2010); those 558 

include the horizontal σ1 oriented N140±10°E, N180±10°E and N30±15°E for the paleo, intermediate and 559 

modern states of stress, respectively. Similar drastic temporal changes were reported in NNE Iran, 560 

including the eastern Alborz and western Kopeh Dagh mountains (Javidfakhr et al., 2011). The analysis 561 

of fault slip data in 48 sites led Javidfakhr et al. (2011) to characterize the three homogenous stress fields 562 

as the maximum horizontal stress σ1 orientated N135±20°E (paleostress), N185±15°E (intermediate) and 563 

N36±20°E (modern stress) in the transitional zone between the eastern Alborz and western Kopeh Dagh 564 

mountains. Farther south, Farbod et al. (2011) showed that a Pliocene-Quaternary older state of stress, 565 

with a σ1 orientated N150±20°E, was changed into a modern maximum compression of N45±15°E, 566 

responsible for the active sinistral kinematics along the Doruneh fault system. 567 

Other study reveals the same pattern of change in the stress field of northwest Iran (the Mianeh-568 

Mahneshan basin; Aflaki et al., 2018a). The NW-trending fold axes in the Upper Red Formation, folded 569 

at the end of Middle Miocene, have been overprinted by two younger generations of NE and NW trending 570 

folds in a time interval between Pliocene to Quaternary. The inversion results of fault slip data in this 571 

region affirm that a compressional paleostress regime (Pliocene-Quaternary), with a N138°E trending σ1, 572 

has affected the area before the dominance of the present-day NE-oriented compression. 573 

The recent study in the Sistan belt of eastern Iran (Jentzer et al., 2017), however, obtained three 574 

distinct deformation stages during late Cenozoic, including (1) an E-W (N087±5°E) direction of σ1 575 

probably in the Late Miocene, (2) a late Pliocene ENE-WSW (N059±8°E) direction of σ1 and (3) a late 576 

Pliocene to present-day maximum compression (N026±8°E). The same authors proposed that during the 577 

last ~10–5 Ma, the direction of compression has rotated about 60° counterclockwise in Sistan. The 578 

kinematics of this region, especially from the regional geologic and geodynamic points of view, is 579 
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debatable. However, there is no other similar study in the Sistan belt enabling a comparison and the 580 

evaluation of the accuracy of their results. 581 

In summary, even though several studies confirm the occurrence of drastic changes in the dynamics 582 

and consequently, in the kinematics of the north, east and northeastern Iran, these results are 583 

geographically sparse and need absolute age-based chronologies in order to drawing firm conclusions on 584 

the time of dominance and the geodynamic causes of the change in the context of the Arabia – Eurasia 585 

convergence. 586 

 587 

6.3. Integration of our results at the regional scale 588 

After presenting a brief history of the related studies on the evolution of Late Cenozoic stress state 589 

in the north, east and northeast of Iran, here, we put our results in a regional tectonic context in order to 590 

evaluate the consistency of the results with other similar studies in the north, northwest and west of the 591 

Dasht-e Bayaz area. 592 

The results of inversion on both geological and seismological fault slip data indicate the dominance 593 

of an active strike-slip tectonic regime characterized by a N45±05°E trending 1 in the Dasht-e Bayaz 594 

area. There is a good consistency between this stress regime and the modern state of stress with an 595 

average compression of N045°E reported along the Doruneh fault (Farbod et al., 2011). Farther north, 596 

Shabanian et al. (2010) reported a modern state of stress in the Kopeh Dagh and Allah Dagh-Binalud 597 

mountains (Fig. 15) characterized by a mean regional ~N030°E trending σ1 axis. According to the results 598 

of Javidfakhr et al. (2011), this modern state of stress prevails on the eastern Alborz and western Kopeh 599 

Dagh mountains (mean regional ~N036°E trending σ1 axis). Interestingly, the results mentioned above 600 

cover geological domains with different structural patterns, geological histories and active tectonics, 601 

while except for some local perturbations due to structural complexities, the modern state of stress 602 

remains homogenous throughout the region.  603 
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As for the intermediate stress regime in the Dasht-e Bayaz area, the related maximum horizontal 604 

compression obtained in two sites was oriented as ~N009°E. Despite the few number of these stress 605 

solutions, at a larger scale, our results are completely in accordance with other studies done in the 606 

northeast of Iran (N180±10°E - Shabanian et al., 2010; Javidfakhr et al., 2011). Although there is no 607 

report of intermediate state of stress by Farbod et al. (2011) along the Doruneh fault region, Tadayon et 608 

al. (2017) presented structural evidences for the prevalence of a penultimate N-S compression during the 609 

Plio-Quaternary time (see also Tadayon et al., 2018). 610 

We have obtained a compressional stress regime characterized by a N135±15°E trending mean σ1 611 

as paleostress state, indicating that the currently left-lateral Dasht-e Bayaz fault had been reverse right-612 

lateral during a certain period of time. As an example, the coseismic rupture of the 1968 earthquake cuts 613 

along the main fault trace at the northern border of the Chah Deraz pull-apart (Figs 3 and 6). In that area, 614 

S-shaped sigmoidal lenses within the fault core (Fig. 10d) indicate an older dextral component for the 615 

main fault. A similar paleostress state has been reported in the Kopeh Dagh and the transition zone 616 

between the Alborz and Kopeh Dagh mountains (N140±10°E trending σ1 - Shabanian et al., 2010; 617 

Javidfakhr et al., 2011). A close stress orientation (N150±20°E trending σ1) and structural configuration 618 

were also determined along the Doruneh fault (Farbod et al., 2011; see also Javadi et al., 2013, 2015; 619 

Tadayon et al., 2017 and 2018). It is worthy to note that farther west, along the Kuh-e Sarhangi and Kuh-e 620 

Faghan faults, Nozaem et al. (2013) and Calzolari et al. (2016 and 2018) have reported a NW-SE directed 621 

maximum compression which is responsible for dextral faulting along these faults during the Quaternary 622 

time and should not be compared to the paleostress 1 direction we are discussing here.  623 

The general consistency between the results on the kinematic history of the east, northeast and 624 

north of the Arabia-Eurasia collision zone (Abbassi and Shabanian, 1999; Abbassi and Farbod, 2009; 625 

Shabanian et al., 2010, 2012b; Farbod et al., 2011; Javidfakhr et al., 2011; Javadi et al., 2013, 2015; 626 

Aflaki et al., 2017; Tadayon et al., 2017, 2018; this study) implies a homogenous transfer of stress during 627 

different periods of time, regardless of the geodynamic boundaries. Our results confirm that the Zagros 628 

collision zone, and its hinterland domain were mechanically coupled during, at least, late Miocene-629 
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Quaternary times (e.g., Tadayon et al., 2018). Such kinds of systematic regional change in the late 630 

Miocene to present-day states of stress and kinematics of crustal-scale faults discard the possibility of 631 

systematic block rotations around vertical axes in the region between Dasht‐e‐Bayaz, Doruneh and Kopeh 632 

Dagh. 633 

Despite the coherency between our results and those obtained in the northern regions, the history of 634 

stress changes along the Dasht-e Bayaz fault differs from what is recently obtained along the Sistan 635 

Suture zone (Jentzer et al., 2017). Jentzer et al. (2017) presented different sets of fault slip data related to 636 

three successive stress states indicating an anticlockwise rotation in the direction of maximum 637 

compression from a Late Miocene E-W directed σ1 to a late Pliocene to present-day maximum 638 

compression directed N026±8°E (see the section 6.2 for more details). Their anticlockwise rotation 639 

pattern is contrary to the history we found around the Dasht-e Bayaz and Abiz faults. 640 

As for the age, there is no general consensus on the timing of the aforesaid changes in the stress 641 

state; for example, according to the morphotectonic analysis along the Mosha and Taleghan faults in 642 

Alborz, Ritz et al. (2006) suggested that the change from a N-S compression (compressional tectonic 643 

regime) to the present-day NNE-trending compression should have occurred between 1 and 1.5 Ma. 644 

Shabanian et al. (2012a) showed geological evidence for late Cenozoic volcanism (dikes and volcanic 645 

domes) coeval with the prevalence of the paleostress state (a NW trending maximum compression) in the 646 

transition zone between the Kopeh Dagh and Binalud mountains. The last phase of volcanism was dated 647 

at 2.4 Ma (Ar-Ar dating of dacitic volcanic domes) and subsequently, a volcanic dome has been right-648 

laterally displaced by the N-S Chakaneh Fault, reactivated in the modern stress state (Shabanian et al., 649 

2009b, 2012a). Accordingly, they proposed a maximum age of 2.4 Ma (close to the border of Pliocene 650 

and Quaternary) for the end of the paleostress prevalence. In the Mahneshan area (NW Iran; Fig. 15), 651 

Aflaki et al. (2018a) proposed that the last drastic change in the stress regime into the present-day stress 652 

state (a NE trending maximum compression) has taken place at the Pliocene-Quaternary boundary. 653 

Around the Doruneh fault (north of the Lut Block), however, Tadayon et al. (2018) suggested that the 654 

switch from an early NW-oriented σ1 to the penultimate N-S maximum compression has occurred at the 655 
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Miocene-Pliocene boundary (5-6 Ma) and this change has been the source of an important 656 

cooling/exhumation in the area. 657 

Nowadays, a drastic change in the Plio-Quaternary tectonic regime throughout the Iranian plateau 658 

and the surrounding deformation domains is a geological fact, thanks to different researches carried out 659 

during the last two decades (e.g., Abbassi and Shabanian, 1999; Regard et al., 2005; Shabanian et al., 660 

2010, 2012a; Javidfakhr et al., 2011; Farbod et al., 2011; Tadayon et al., 2017; Jentzer et al., 2017; Aflaki 661 

et al., 2018a). The regional extent of these similar changes in distant Pliocene-Quaternary stress fields 662 

clearly discards the possibility of block/stress rotation during progressive deformation. However, the 663 

possible causes of change in stress regime, especially in E and N of Iran, remains unclear. This change 664 

may be due to the onset of the northward subduction of the South Caspian Basin, and/or changes in the 665 

structural configuration or in the lithospheric characteristics of N and NE Iran during an evolving 666 

collisional convergence (Shabanian et al., 2012a). In other words, it may correspond to a major regional 667 

reorganization of the plate boundary, following the transition from an infant to a mature stage of 668 

continental collision (Tadayon et al., 2018). 669 

 670 

6.4. Tectonic scenario and kinematic model 671 

According to the model frequently applied in the east and northeast of Iran, originally proposed by 672 

Jackson and McKenzie, (1984), an uneven distribution of N-S right-lateral shear between Central Iran and 673 

Afghanistan and its westward decrease caused a clockwise rotation of fault bounded blocks north of 674 

~34°N (Walker et al., 2004; Walker and Jackson, 2004). The model tends to explain the structural 675 

features of the northern Lut block by the concept of clockwise rotation around vertical axes (for the basic 676 

assumptions of the model see Farbod et al., 2011). This block rotation model was questioned about its 677 

lack of ability in explaining the prominent curvature and the other complexities along the Doruneh Fault 678 

System (see Farbod et al., 2011 for detail). For example, Farbod et al. (2011), showed that to attain the 679 

present-day geometry of the DFS, the fault trace needs to rotate clockwise in the eastern part and 680 
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counterclockwise in the western part. It is noteworthy that structural deflections and internal deformation, 681 

due to local dragging or compression caused by faults or thrust zones, have usually been interpreted as 682 

systematic block rotations around vertical axes (e.g., Walker et al., 2004).  683 

The occurrence of pre‐Pliocene dextral faulting on E-W trends distributed across Central Iran (Javadi 684 

et al., 2013, 2015; Nozaem et al., 2013; Bagheri et al., 2016; Calzolari et al., 2016, 2018; Tadayon et al., 685 

2017) and the Quaternary kinematic shifts along the Doruneh and Dasht-e Bayaz faults (Farbod et al., 686 

2011; Javadi et al., 2015; this study), which clearly indicate a homogenous regional stress field 687 

distribution and coeval evolution of the intracontinental deformation in Central Iran, are not coherent with 688 

the block rotation model (see Tadayon et al., 2018 for discussion). The paleomagnetic data of Mattei et al. 689 

(2012) also do not show any systematic clockwise rotation over the Neogene in the region. The most 690 

recent study by Mattei et al. (2019) provides new paleomagnetic data on the Kopeh Dagh. They report 691 

that paleomagnetic rotations (the mean of 11.3±9.4° clockwise rotation) occurred in the Kopeh Dagh belt 692 

between ~6–4 Ma and ≈2 Ma, before the onset of the westward extrusion of the South Caspian Block. In 693 

their studies, Mattei et al. (2017 and 2019) also emphasize that their oroclinal model does not correspond 694 

to the present-day kinematics of the studied areas (Alborz and Kopeh Dagh) and the rotation was stopped 695 

before the onset of the present-day kinematics at ~2 Ma. 696 

In our tectonic scenario (Figs 16 and 17), right-lateral shear is considered as the main mechanism for 697 

the accommodation of the Arabia-Eurasia convergence, but it is not necessarily the case everywhere in E 698 

and NE Iran. As for the Lut block, the GPS velocity vectors show a northward (N013°E) block motion 699 

with respect to Eurasia (Walpersdorf et al., 2014). In the north of latitude of 34°N (corresponding to the 700 

E-trending Dasht-e Bayaz fault), the N-S right-lateral shear interrupts and does not continue to the north. 701 

Beyond this latitude, the convergence is mainly accommodated by crustal shortening across NW-trending 702 

reverse/thrust faults. The Ferdows reverse fault zone, the Jangal and Khaf thrust faults and the eastern 703 

reverse termination of the Doruneh fault (Farbod et al., 2011) as well as the restraining fault terminations 704 

in the southern flank of Binalud (Shabanian et al., 2012b) and the Fariman area (Aflaki et al., 2019) are 705 
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among the most important NW-striking reverse faults confirming our tectonic scenario in northeastern 706 

Iran.  707 

To the north and approximately at the latitude 36°N, the right-lateral shear gradually appears along 708 

the NE boundary of the Arabia – Eurasia collision zone and  involves the NNW-trending faults (instead of 709 

the N-S dextral faults to the south) going through the Kopeh Dagh Mountains. The distance between these 710 

two fault systems is occupied by a soft-linking restraining relay zone (Binalud-Fariman-Torbat-e Jam; 711 

Aflaki et al., 2019) in which the mechanism of faulting is preferably reverse to revers dextral, while 712 

farther north in the Kopeh Dagh, it is pure dextral strike-slip. In other words, the N-S right-lateral shear 713 

between Iran and Afghanistan that had been interrupted in the latitude 34° N (corresponding to the Dasht-714 

e Bayaz fault) is recuperated gradually around the latitude of ~36°N, but this time along the NW-trending 715 

faults and against the Turan platform instead of the Helmand block (Afghanistan). 716 

The integrated geological, seismological and InSAR investigations done by Aflaki et al. (2019), in 717 

the area affected by the 5th April 2017 Sefid Sang earthquake (Mw 6), showed that the dextral shear 718 

along the NNW-striking faults (i.e., Bakharden-Quchan and Hezar Masjed fault systems) is transferred 719 

southeast into WNW-striking transpressional terminations in the region between the Binalud Mountains 720 

and Doruneh fault (Fig. 17). The CMT and the first polarity solutions of the main shock and the two 721 

aftershocks of this seismic event, which occurred close to the southern termination of the Hezar Masjed 722 

fault system near the town of Fariman (Fig. 15), indicate a mainly reverse mechanism with a small dextral 723 

component (See Aflaki et al., 2019 for details). This event clearly reveals the dominance of reverse 724 

faulting in the southeastern end of Kopeh Dagh and the eastern termination of the Doruneh fault.  725 

In summary, we suggest that the outstanding changes in the structural pattern of these regions are the 726 

cause of a significant change in the accommodation mechanism of convergence. It means major fault 727 

zones in the E and NE Iranian regions guide and control lithospheric block motions and their related 728 

velocity fields. In the offset and/or overlapping areas of these major fault zones the convergence is 729 

accommodated by internal deformation and shortening through reverse/thrust faulting and active folding 730 
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(e.g., Farbod et al., 2011; Aflaki et al., 2019). For instance, the pure strike-slip Doruneh fault becomes a 731 

typical reverse fault at its eastern end parallel to the other NW-trending reverse faults such as Ferdows, 732 

Khaf and Jangal. In this context the role of E-W sinistral faults such as the Doruneh, Dasht-e Bayaz and 733 

Niazabad faults can be explained through their setting in the regional structural pattern. 734 

The Khaf and Jangal thrusts have been considered as probable sources for the Zuzan historical 735 

destructive earthquakes (Berberian, 2014) of 19 and 21 October of 1336 A.D., respectively. The 1 and 4 736 

September 1968 Ferdows earthquakes (MW 6.8 and MW 5.5) also indicate significant tectonic activity of 737 

these reverse fault zone. The study of magnetic foliation vertical and oblique to the bedding of post 738 

Miocene folds in the Ferdows fault zone (Rashid et al., 2015) suggests that a cleavage system, not visible 739 

at the outcrop scale, has been developed as a consequence of recent shortening related to the activity of 740 

this thrust zone. All these observations reveal that, in the northern Lut, the NW-trending reverse/thrust 741 

fault zones accommodates substantial portion of the active deformation perpendicular to their strikes. The 742 

E-W strike-slip faults such as the Dasht-e Bayaz and Niazabad faults therefore retain their complementary 743 

role in the crustal shortening between these thrust zones (Fig. 2). It is worth mentioning that our 744 

kinematic model generally describes the northeastern border of Arabia-Eurasia collision zone and clearly 745 

it does not include the distant regions such as the eastern Alborz and internal blocks of Central Iran. 746 

Summarizing all these observations on both the structural configuration and the present-day relative 747 

velocity field (Eurasia fixed) in east-northeast Iran, the Doruneh fault is a major boundary separating two 748 

distinct northern and southern domains (Fig. 16). Angular relationships between N-S dextral and E-W 749 

sinistral faults obviously change in these tectonic domains such that the northern domain is characterized 750 

by NNW-striking dextral and ENE-striking sinistral faults (e.g., Tchalenko and Berberian, 1975; 751 

Shabanian et al., 2009a, 2010; Javidfakhr et al., 2011), while, N-S dextral, E-W sinistral and NW-SE 752 

reverse/thrust faults are dominant in the southern domain. These different structural patterns lead to (1) 753 

the NNW extrusion of both Central Iran and western Kopeh Dagh towards the South Caspian Basin 754 

(Hollingsworth et al., 2006; Shabanian et al., 2009b) and (2) block translation and internal deformation 755 
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through crosswise strike-slip faulting accompanied by reverse/thrust faulting in confining wedge in the 756 

north and south of the Doruneh fault, respectively. 757 

The details of these different processes are shown in Figure 17. The process of wedge confining at 758 

the edges of north-going blocks (Fig. 17a; due to a NE-trending compression) allows accommodating the 759 

internal deformation not absorbed by the lithospheric scale northwards motion of Central Iran relative to 760 

Eurasia. The block adjustment requiring for the accommodation of this internal deformation is done 761 

through crosswise faulting along N-S dextral and E-W sinistral faults (Fig. 17b-d). The active crosswise 762 

pattern of the faults and the almost symmetrical deformation in the four quadrants around their 763 

intersection zones (Figs 4 and 17) indicate the same structural significance for the N-S and E-W faults. 764 

However, the simultaneous activity of these crosswise fault sets is mechanically impossible; therefore, the 765 

fault sets must be operating in sequence (e.g., Freund, 1974). The sequence of recent seismic activities, 766 

producing sinistral faulting along both the western and eastern segments of the Dasht-e Bayaz fault and 767 

right-lateral faulting in the south of this system, could confirm this interaction (see Berberian et al., 1999; 768 

Walker et al., 2011). This active crosswise faulting also leads to the development of contractional 769 

(reverse/thrust) fault zones perpendicular to the overall direction of Arabia – Eurasia convergence 770 

accommodating two northward and eastward components of the convergence (Fig. 17). 771 

We emphasize that this tectonic scenario is based on different geological and seismological 772 

observations (this study and the references cited above) on the eastern and northeastern boundaries of the 773 

Arabia – Eurasia convergence zone. We do not apply this scenario to kinematic complexities reported in 774 

other places in Central Iran. For example, dextral faulting along the Kuh-e Sarhangi and Kuh-e Faghan 775 

faults in the northwest margin of the Lut block (Nozaem et al., 2013; Calzolari et al., 2016 and 2018) has 776 

been explained as a consequence of an excess dextral shear generated in the intrafault block bordered by 777 

the Doruneh fault to the north and the Dasht-e–Bayaz fault to the south. In this context, the Ferdows 778 

reverse fault zone partly accommodates internal deformation of the intrafault block (Nozaem et al., 2013). 779 

At first glance to our tectonic scenario, one may make a similar conclusion by assuming a component of 780 
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westward extrusion for the northern block of the Dasht-e Bayaz fault. However, deducing such the 781 

conclusion needs detailed information on the difference of slip rates on the Doruneh and Dasht-e Bayaz 782 

faults as well as the contribution of the Ferdows reverse fault zone in the accommodation of this 783 

differential slip rate. 784 

7. Conclusion 785 

Our inversion analysis of fault kinematics data revealed signatures of three distinct stress fields in 786 

the Dasht-e Bayaz area during Plio-Quaternary. Before the onset of the active left-lateral faulting along 787 

the Dasht-e Bayaz fault, an old stress state characterized by a N135±15°E trending σ1 was responsible for 788 

the dextral transpressional movements. The consistency between the inversion results of both modern 789 

geological fault slip data and the earthquake focal mechanisms reveals: (1) the absence of remarkable 790 

change in the modern state of stress during the late Quaternary time, (2) the prevalence of a homogeneous 791 

stress field in the brittle crust (above the ~17 km depth of seismogenic layer) of the Dasht-e Bayaz region 792 

and (3) the lack of long-term stress perturbation due to the activity of the Dasht-e Bayaz fault. 793 

Our observations indicate that the kinematic changes during the Pliocene – Quaternary times have 794 

not been restricted to the northeastern part of the Iranian plateau. The general consistency between the 795 

results on the kinematic history of the east, northeast and north of the Arabia – Eurasia collision zone 796 

implies that a homogenous transfer of stress during, at least, late Miocene – Quaternary times, has taken 797 

place due to the mechanical coupling of the Zagros collision and its hinterland domains. 798 

We suggest that the region between Lut and Kopeh Dagh is divided by the Doruneh fault into two 799 

northern and southern distinct tectonic domains. The northern domain is characterized by the extrusion of 800 

fault-bounded blocks towards the north-northwest, while in the southern domain, the northward motion of 801 

the central Iranian blocks occurs through structural and kinematic interactions between N-S dextral, E-W 802 

sinistral and NW-striking reverse/thrust faults at the block boundaries without a need for symmetric block 803 

rotations around vertical axes. 804 
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Figures 1102 

 1103 

Figure 1. General tectonic map of the east and northeastern Iran. (A) The location of the study area 1104 

(blue rectangle) in the Arabia–Eurasia collision framework (after Shabanian et al., 2010). Grey arrows 1105 

and associated numbers represent Arabia–Eurasia plate velocities (mm/yr) after Reilinger et al. (2006). 1106 

Solid lines are boundaries of plates or major blocks. (B) GTOPO30 topographic image showing the 1107 

regional tectonic setting and the major active faults (red lines) in E and NE Iran. The study area of Dasht-1108 

e Bayaz is marked by the black dashed rectangle. Reverse/thrust faults are marked by small triangles 1109 

pointing to the fault hanging wall. The fault map is based on Hessami et al. (2003), Walker and Jackson 1110 

(2004), Shabanian et al. (2010), Farbod et al. (2011), Nozaem et al. (2013), Calzolari et al. (2015) and this 1111 

study.  1112 
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 1113 

Figure 2. Map of the major active faults around the Dasht-e Bayaz area. (A) Major fault zones and 1114 

their structural interactions in the area of interest. Focal mechanism solutions belong to the major 1115 

earthquakes of the study area (redrafted from waveform modeling of Walker et al., 2004 and 2011). (B) 1116 

LANDSAT ETM satellite overview (RGB, 541) of the area emphasizing the western termination of the 1117 

left-lateral Dasht-e Bayaz, Kabutarkuh and Avash faults.  1118 

  1119 
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 1120 

Figure 3. Simplified geological map of the Dasht-e Bayaz area based on published geological maps 1121 

of the area (Alavi Naini and Behruzi, 1983; Fauvelet and Eftekhar Nezhad, 1991). Fault traces were 1122 

extracted from satellite images complemented by field observations; we used Tchalenko and Berberian 1123 

(1975) maps for the co-seismic ruptures in the northern Nimboluk plain, which currently is under 1124 

cultivation.   1125 
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 1126 

Figure 4. Morpho-structural map of the central intersection zone along the Dasht-e Bayaz fault. (A) 1127 

Detailed fault map of the interaction zone of the Mahyar and the Dasht-e Bayaz faults. Solid black line is 1128 

geological fault; inferred fault is shown by dashed black line. Red solid line is the coseismic rupture of 1129 

the Dasht-e Bayaz 1968 (west of the Mahyar fault) and 1979 (east of the Mahyar fault) earthquakes. The 1130 

N-S dextral and E-W sinistral fault zones displaced each other in the sense of their movement of about 1131 

1.5 km; see Figure 17 for more details on the structural configuration of this zone. The lower right rose 1132 

diagram (rosette) indicates the frequency of orientations of post-folding dikes (cut by strike-slip faults) 1133 

concentrated around the intersection zone; note that the overall orientation of N330±10°E does not 1134 

significantly vary along the strike-slip faults. Two topographic profiles across the contractional (P1) and 1135 

extensional (P2) quadrants are shown.  1136 
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 1137 

Figure 5. Bing Map image (SAS.Planet© 2015-2017) centered on the western termination of the 1138 

East Dasht-e Bayaz fault. See Figure 3 for location. (A) Detailed fault map of the area. Solid white lines 1139 

are coseismic rupture traces and dashed white lines are geological faults not reactivated during the 1979 1140 

Dasht-e Bayaz earthquake. (B) Close-up view of the sinistral rupture that terminates in a NE-dipping 1141 

reverse segment. (C) Close-up view of the northern end of the reverse fault segment due to intersection 1142 

with a SW-trending sinistral segment.  1143 
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 1144 

Figure 6. SPOT image of the Chah Deraz pull-apart basin along the west Dasht-e Bayaz fault. (A) 1145 

the active trace of the fault passes at the northern margin of the basin, while the southern one is inactive. 1146 

(B) close-up view of the coseismic rupture (1968 Dasht-e Bayaz earthquke) at the northen margin of the 1147 

basin.   1148 
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 1149 

Figure 7. Tectonic features of the western portion of the west Dasht-e Bayz fault. (A) Shaded relief 1150 

image of the northern Nimboluk plain and structural map of this area including different fault branches of 1151 

the Dasht-e Bayaz fault. The hatched polygon shows areas involved in en-echelon folding and pressure 1152 

ridges. (B) and (C) SPOT image of the Northern Nimboluk plain. Fold axes shown as yellow lines. (D) 1153 

West looking photographs and reconstructed section across the Rahmatabad fault branch and associated 1154 

folding of Plio-Quaternary deposits in the footwall.  1155 
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 1156 

Figure 8. Distinct fault slips related to the modern and intermediate states of stress and a summary of 1157 

data separation strategy applied in this study. (A) SE looking field photograph a fault plane (site 7) that 1158 

includes two generations of striations and (B) a stereoplot of these striations. (1) and (2) refer to older and 1159 

younger relative chronologies, respectively, of the striations on the fault plane in the Neogene mudstone. 1160 

This site is along the western end of the Dasht-e Bayaz fault where it merges the Ferdows reverse fault 1161 

zone. (C) The schmidt lower hemisphere stereographic projection of the fault slip data measured in site 7. 1162 

(D) The lower hemisphere stereographic projection of the fault slip data measured in site 3. The middle 1163 

diagram is non-separated data set including all fault slip data. (1) and (2) refer to the older and younger 1164 

relative chronology of the striations. The stereograms (1) and (2) indicate relative chronology of two 1165 

distinct sets of data. The relative chronology of striations is according to cross-cutting relationships 1166 

observed on fault planes (colored as red). This strategy is applied to other sites for separation of fault slip 1167 

data into homogenous data sets.  1168 
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 1169 

Figure 9. Reconstruction of the Plio-Quaternary stress fields in the Dasht-e Bayaz area, the base is ASTER image (RGB, 321). Direction of 1170 

Maximum horizontal stress axis (σ1) for different stress fields showing dominant stress regimes including strike-slip, compressional and 1171 

extensional deducted from inversions of fault kinematics data in each sites (see Table 2).  (A) Modern state of stress (B) Intermediate state of 1172 

stress (C) Paleostress state of stress.    1173 
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 1174 

Figure 10. Field photographs of some of sites we have inspected for the measurement of fault 1175 

slip data along the Dasht-e Bayaz fault. (a) Site 2 at the northern margin of the Chah Deraz pull-apart 1176 

basin. (b) A northwards view of the fault plane and the associated sinistral striation in site 2. (c) 1177 

general view of the Dashte- Bayaz earthquake rupture to the west of the intersection zone. (d) 1178 

structural evidence of an ancient dextral faulting along the main trace of the Dasht-e Bayaz fault in the 1179 

Chah Deraz pull-apart basin. (e) and (f) fault plane and striation of the fault measured along the 1180 

coseismic rupture. (g) An outcrop of the northern continuation of the Korizan fault in site 1. (h) The 1181 

reverse-sinistral fault trace in Neogene deposits in site 6. (i) a fault plane with two distinct generation 1182 

of striations in site 10. (j) a metric scale sinistral fault plane along the main fault zone in site 9. 1183 
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 1184 

Figure 11.  Lower hemisphere stereograms of fault slip data with inversion results of the modern 1185 

state of stress presented in Table 1. Fault planes and measured slip vectors (arrows on fault 1186 

planes) are plotted. Large arrows outside stereograms represent the direction of minimum (σ3, 1187 

divergent, white arrows) and maximum (σ1) horizontal stress axes. Histograms show 1188 

distribution of deviation angles between the measured and calculated slip vectors (e.g., 1189 

Bellier and Zoback, 1995). Numbers on top left of stereograms refer to site marked in Figure 9 as 1190 

well as in Table 1. MFP refers to result of inversion of major fault plane data. 1191 
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 1192 

Figure 12. Lower hemisphere stereograms of fault slip data with inversion results of the 1193 

paleostress state presented in Table 1. Numbers on top left of stereograms refer to site marked in 1194 

Figure 9 as well as in Table 1. The stereograms indicated by asterisk are the “fixed” solutions (Bellier 1195 

and Zoback, 1995) for fault data populations comprised of less than four well-distributed fault 1196 

directions. See the caption of Figure 11 for stereoplot descriptions. 1197 

  1198 
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 1199 

Figure 13. Lower hemisphere stereograms of fault slip data with inversion results of the 1200 

intermediate state of stress presented in Table 1. Numbers on top left of stereograms refer to site 1201 

marked in Figure 9 as well as in Table 1. See the caption of Figure 11 for stereoplot descriptions. 1202 

  1203 
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 1204 

Figure 14. Lower hemisphere stereograms showing statistical analysis of the preferred direction 1205 

of the maximum horizontal stress axis (σ1) corresponding to (A) paleostress state (N135 ±15°E), (B) 1206 

intermediate state of stress (N009±10°E) and (C) modern state of stress (N45±05°E); all calculated in 1207 

PBT axes method (Marrett and Allmendinger, 1990; Allmendinger et al., 2013). Blue and red arrows 1208 

indicate the mean direction of σ1 and σ3, respectively.  1209 

  1210 
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 1211 

Figure 15. Stress map of the Iranian plateau and surrounding mountain belts. (A) SHmax 1212 

orientations deriving from some of earthquake focal mechanisms in the Iranian plateau created by 1213 

online stress map creator: http://www.world-stress-map.org/casmo/ (see Heidbach et al., 2016 and 1214 

references therein). Abbreviation is: TF, thrust faulting; SS, strike-slip; NF, normal faulting; U, 1215 

unknown; B, Binalud; KD, Kopeh Dagh; EA, eastern Alborz; WA, western Alborz; MT, Meshkan 1216 

transition zone; F, Fariman town; SB, Sistan belt; Za, Zagros; M, Mosha; T, Taleghan; MM, 1217 

Mahneshan - Mianeh . Different tectonic regimes are characterized by different symbol colors. NF 1218 

and NS data is printed in red, SS data in green, and TF and TS data in blue. Data with an unknown 1219 

regime is printed in black. (B) Our inversion results (N050±05°E trending σ1) showing the present-1220 

day state of stress in Dasht-e Bayaz area, source parameters were used from instrumentally recorded 1221 

earthquakes that have been modeled using body waves (Walker et al., 2004), see the caption of Table 1222 

2 for more details. We put into practice inversion of focal mechanisms by using moderate to large 1223 

earthquakes (7.1>M>5.7) and employing the method proposed by Carey-Gailhardis and Mercier 1224 

(1987). 1225 

http://www.world-stress-map.org/casmo/
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 1226 

Figure 16. A brief explanation of our model about the northern Lut block and the southern 1227 

Kopeh Dagh domain. (A) Up to latitude 34° N the majority of convergence is accommodated by right-1228 

lateral shear between Iranian plateau and fixed Eurasia. To the north of latitude 34° N, an interruption 1229 

in right-lateral shear takes place and in the absence of right-lateral shear, convergence is 1230 

accommodated by reverse/thrust faulting. (B) Schematic model emphasizing the role of separated 1231 

thrust zones, as confining wedges at the termination of N-S dextral fault, in accommodation of the 1232 

Arabia-Eurasia convergence. See text for more information. 1233 

 1234 

 1235 

 1236 

 1237 
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 1238 

Figure 17. Details on the processes involved in the accommodation of Lut – Eurasia 1239 

convergence in the NE and E Iranian regions. (A) The process of wedge confining at the edges of 1240 

north-going blocks and the associated secondary sinistral faulting along E-W faults such as the Dasht-1241 

e Bayaz and Niazabad. The overall N013°E direction of Lut – Eurasia motion (Walpersdorf et al., 1242 

2014) is mainly taken up by lithospheric N-S dextral shear translating the southern tectonic domain 1243 

(STD) northwards. Shortening at the opposing edges of the main blocks (STD against ER) is 1244 

accommodated through reverse faulting in a restraining relay zone (RRZ in “A”; Farbod, 2012; Aflaki 1245 

et al., 2019), while internal deformations due to sub-block adjustments is taken up by crosswise 1246 

dextral and sinistral faulting accompanied by contractional deformation at their terminations (CW, 1247 

confining wedge); BBFS, Bakharden – Binalud fault system; DF, Doruneh fault; DBF, Dasht-e Bayaz 1248 

fault. (B) And (C) Site-scale examples for the evolution of crosswise faulting; (B) illustrates the initial 1249 

stage of crosswise faulting and (C) shows the structural configuration of crosswise dextral and 1250 

sinistral faults after development of contractional quadrants. “TL” is the length of the main thrust fault 1251 

zone developed perpendicular to the compression and is proportional to the amount of dextral (DD) 1252 

and sinistral (SD) displacements of the main crosswise fault traces. (D) The intersection zone between 1253 

the Dasht-e Bayaz and Mahyar faults; note to the analogy between this structural configuration and 1254 

the typical crosswise faulting illustrated in (C). Such kind of kinematic interaction accommodates the 1255 

overall convergence oblique to the faults without a need for rotations of faults and blocks around 1256 

vertical axes. 1257 
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Table 1 

The fault kinematic inversion results characterizing the Pliocene-Quaternary stress regimes in the Dasht-e Bayaz area. 

Site Long. Lat. Paleostress   Modern Stress   Intermediate Stress Lithology Age 

  (°E) (°N) Stress axis(trend/plunge) R N Q Rm Stress axis(trend/plunge) R N Q Rm Stress axis(trend/plunge) R N Q Rm   

      σ1 σ2 σ3           σ1 σ2 σ3           σ1 σ2 σ3             

1 59.807 34.013 152/00 62/00 295/90 0.595 4 CF C   28/03 293/61 119/29 0.51 10 B S - - - - - - - Andesite Paleo-Eocene 

2 59.101 34.041 120/01 210/01 345/89 0.500 4 CF C   53/05 157/70 321/19 0.47 12 A S - - - - - - - Sandstone Triassic 

3 58.931 34.048 - - - - - - -   40/11 176/75 308/10 0.55 8 A S 357/9 250/60 92/28 0.44 6 C S Conglomerate Quaternary 

4 59.248 34.026 127/00 303/90 37/00 0.327 4 CF S  240/15 43/75 149/04 0.43 12 A S  - - - - - - - Andesite Paleo-Eocene 

5A 58.977 34.043 - - - - - - -   218/03 116/76 308/14 0.66 12 A S - - - - - - - Conglomerate Quaternary 

5B 58.977 34.043 - - - - - - -   256/01 354/83 166/07 0.714 8 A S - - - - - - - Conglomerate Quaternary 

6 58.738 34.028 119/05 212/28 19/62 0.452 4 C C   73/06 343/01 241/84 0.23 14 B C 20/15 112/07 227/74 0.12 6 A C Conglomerate Pliocene 

7 58.561 34.017 161/06 252/12 46/76 0.696 5 B C   230/02 320/05 124/85 0.78 14 A C - - - - - - - Conglomerate Pliocene 

8 59.281 34.032 - - - - - - -   41/07 279/76 133/11 0.96 10 A S - - - - - - - Tuff Paleocene 

9 59.168 34.027 - - - - - - -   40/07 232/82 130/2 0.530 14 A S - - - - - - - Dolomite Triassic 

10 59.274 34.028 120/00 210/00 354/90 0.6 5 CF C   217/00 103/89 307/01 0.624 15 A S - - - - - - - Limestone Paleocene 

Note: Site numbers and their geographic coordination refer to Figure 9. The results of inversion of fault slip data are including trend and plunge of principal stress axes (σ1, 

σ2, σ3 (matching maximum, intermediate and minimum stress axes, respectively) and stress ratio “R= (σ2-σ1) / (σ3-σ1)” shows the relative stress magnitude. N, number of 

fault slip data involved in stress calculations; Rm points out to stress regimes: C, compressional; S, strike-slip; Q indicates the quality of stress tensors: A, well-constrained; 

B, constrained; C, poorly-constrained solutions. CF quality represents data sets consist of less than four spatially well-distributed fault slip data, for this kind of data sets  a 

“fixed” solutions (Bellier and Zoback, 1995) is used, in which the principal stress axes were fixed to lie in horizontal and vertical planes. In site 5, two deviatoric stress 

tensors (5A and 5B) were obtained.  
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Table 2 

Earthquake source parameters used in the focal mechanism inversion. 

Date Time (UTC) Y X Depth (km) Magnitude (Mw) Strike Dip Rake Reference 

1968.08.31 10:47 34.068 59.018 17 7.1m 254 84 5 5 

1968.08.31 10:47 34.068 59.018 10 6.4 320 70 90 5 

1968.09.01 07:27 34.099 58.155 9 6.3 115 54 85 3 

1968.09.04 23:24 34.042 58.244 9 5.5 148 56 81 3 

1968.09.11 19:17 34.031 59.472 6 5.6 78 90 16 1 

1976.11.07 04:00 33.836 59.171 8 6.0m 84 79 12 1,4 

1976.11.07 04:00 33.836 59.171 10 

 

67 52 -7 1 

1979.01.16 09:50 33.961 59.501 11 6.5m 293 34 46 1,4 

1979.01.16 09:50 33.961 59.501 13 

 

257 88 5 1 

1979.11.14 02:21 34.017 59.78 10 6.6m 160 89 -177 1,4 

1979.11.14 02:21 34.017 59.78 6 

 

85 85 1 1 

1979.11.27 17:10 34.056 59.769 8 7.1m 261 82 8 5 

1979.12.07 09:24 34.13 59.889 10 5.9 113 84 21 1 

1997.05.10 07:57 33.88 59.815 13 7.2 156 89 -160 2 

1997.06.25 19:38 33.972 59.459 8 5.7 181 87 170 2 

 

Note: In this research we used the source parameters of instrumentally recorded earthquakes in the Dasht-e Bayaz 

region that have been modeled by Walker et al. (2004) with body wave methods. References are the same as they 

used in their modeling, including: (1) Baker (1993), (2) Berberian et al. (1999), (3) Walker et al. (2003), (4) 

Jackson (2001) and (5) Walker et al. (2004). An (m) after of some of Mw means a multiple event. For more 

information see Table 1 of Walker et al. (2011). 
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