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Abstract

We consider building predictors when the
data have missing values. We study the
seemingly-simple case where the target to
predict is a linear function of the fully-
observed data and we show that, in the pres-
ence of missing values, the optimal predictor
may not be linear. In the particular Gaussian
case, it can be written as a linear function of
multiway interactions between the observed
data and the various missing-value indica-
tors. Due to its intrinsic complexity, we study
a simple approximation and prove general-
ization bounds with finite samples, highlight-
ing regimes for which each method performs
best. We then show that multilayer percep-
trons with ReLU activation functions can be
consistent, and can explore good trade-offs
between the true model and approximations.
Our study highlights the interesting family
of models that are beneficial to fit with miss-
ing values depending on the amount of data
available.

1 Introduction

Increasing data sizes and diversity naturally entail
more and more missing values. Data analysis with
missing values has been extensively studied in the
statistical literature, with the leading work of Rubin
(1976). However, this literature (Little and Rubin,
2002; van Buuren, 2018; Josse et al., 2019a) does not
address the questions of modern statistical learning.
First it focuses on estimating parameters and their
variance, of a distribution –joint or conditional– as in
the linear model (Little, 1992; Jones, 1996). This is
typically done using either likelihood inference based
on expectation maximization (EM) algorithms (Demp-
ster et al., 1977) or multiple imputation (van Buuren,

2018). Second, a large part of the literature only
considers the restricted “missing at random” mech-
anism (Rubin, 1976) as it allows maximum-likelihood
inference while ignoring the missing values distribu-
tion. “Missing non at random” mechanisms are much
harder to address, and the literature is thin, focusing
on detailed models of the missingness for a specific
application such as collaborative filtering (Marlin and
Zemel, 2009) or on missing values occurring only on
few variables (Kim and Ying, 2018). Statistical esti-
mation often hinges on parametric models for the data
and the missingness mechanism (except, for example,
Mohan and Pearl, 2019). Finally, only few notable ex-
ceptions study supervised-learning settings, where the
aim is to predict a target variable given input variables
and the missing values are both in the training and the
test sets (Zhang et al., 2005; Pelckmans et al., 2005;
Liu et al., 2016; Josse et al., 2019b). Machine-learning
techniques have been extensively used to impute miss-
ing values (Lakshminarayan et al., 1996; Yoon et al.,
2018). However imputation is a different problem from
predicting a target variable and good imputation does
not always lead to good prediction (Zhang et al., 2005;
Josse et al., 2019b).

As surprising as it sounds, even the linear model, the
simplest instance of regression models, has not been
thoroughly studied with missing values and reveals un-
expected challenges. This can be explained because
data with missing values can be seen mixed continu-
ous (observed values) and categorical (missing-values
indicators) data. In comparison to decision trees for
instance, linear models are less well-equipped by de-
sign to address such mixed data.

After establishing the problem of risk minimization in
supervised-learning settings with missing values, the
first contribution of this paper is to develop the Bayes
predictor under common Gaussian assumption. We
highlight that the resulting problem of linear model
with missing values is no longer linear. We use these
results to introduce two approaches to estimate a pre-
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dictor, one based directly on the Bayes-predictor ex-
pression, which boils down to performing one linear
model per pattern of missing values, and one derived
from a linear approximation, which is equivalent to im-
puting missing values by a constant and concatenat-
ing the pattern of missing values to the imputed de-
sign matrix. We derive new generalization bounds for
these two estimates, therefore establishing the regimes
in which each estimate has higher performance. Due
to the complexity of the learning task, we study the
benefit of using multilayer perceptron (MLP), a good
compromise between the complexity of the first ap-
proach and the extreme simplicity of the second one.
We show its consistency with enough hidden units. Fi-
nally, we conduct experimental studies that show that
the MLP often gives the best prediction and can ap-
propriately handle MNAR data.

2 Problem setting

Notation (Missing values). Throughout the paper,
missing values are represented with the symbol na sat-
isfying, for all x ∈ R?, na · x = na and na · 0 = 0.

Let us consider∗ a data matrix xn ∈ Rn×d and a re-
sponse vector yn ∈ Rn, such as

xn =


9.1 8.5
2.1 3.5
6.7 9.6
4.2 5.5

, yn =


4.6
7.9
8.3
4.6

 .

However, only the incomplete design matrix zn is avail-
able. Letting R̃ = R ∪ {na}, the incomplete design

matrix zn belongs to R̃n×d. More precisely, denoting
by mn ∈ {0, 1}n×d the positions of missing entries in
zn (1 if the entry is missing, 0 otherwise), zn can be
written as zn = xn � (1−mn) + na�mn, where � is
the term-by-term product. In summary, the observed
data are given by

zn =


9.1 8.5
2.1 na

na 9.6
na na

 , mn =


0 0
0 1
1 0
1 1

 , yn =


4.6
7.9
8.3
4.6

 ,

and are supposed to be n i.i.d. realizations of generic
random variables Z,M, Y .

Notation (Observed indices). For all values m of a
mask vector M , obs(m) (resp. mis(m)) denote the
indices of the zero entries of m (resp. non-zero). For
instance, if z = (3.4, 4.1, na, 2.6), then m = (0, 0, 1, 0),
mis(m) = {2} and obs(m) = {0, 1, 3}.
∗Writing conventions used in this paper are detailed in

appendix A.

Throughout, the target Y depends linearly on X, that
is, there exist β0 ∈ R and β ∈ Rd such that

Y = β0 + 〈X,β〉+ ε, where ε ∼ N (0, σ2). (1)

A natural loss function in the regression framework is
the square loss ` : R× R→ R+ defined as `(y, y′) =
(y − y′)2. The Bayes predictor f? associated to this
loss is the best possible predictor, defined by

f? ∈ argmin
f :R̃d→R

R(f), (2)

where

R(f) := E[`(f(Z), Y )].

Since we do not have access to the true distribution of
(X,Z,M, Y ), an estimate f̂ is typically built by min-
imizing the empirical risk over a class of functions F
(Vapnik, 1992). This is a well-studied problem in the
complete case: efficient gradient descent-based algo-
rithms can be used to estimate predictors, and there
are many empirical and theoretical results on how to
choose a good parametric class of functions F to con-
trol the generalization error. Because of the semi-
discrete nature of R̃, these results cannot be directly
transposed to data with missing values.

3 Optimal imputation

The presence of missing values makes empirical risk
minimization –optimizing an empirical version of (2)–

untractable. Indeed, R̃d is not a vector space, there-
fore incapacitating gradient-based algorithms. Hence,
solving (2) in presence of missing values requires a spe-
cific strategy.

Imputing by an optimal constant The simplest
way to deal with missing values is to inject the incom-
plete data into Rd. The easiest way to do so is to use
constant imputation, i.e. impute each feature Zj by a
constant cj : the most common choice is to impute by
the mean or the median. However, it is also possible
to optimise the constant with regards to the risk.

Proposition 3.1 (Optimal constant in linear model).
The imputation constants (c?j )j∈J1,dK optimal to mini-
mize the quadratic risk in a linear model can be eas-
ily computed by solving a linear model with a design
matrix constructed by imputing X with zeros and con-
catenating the mask M as additional features (see Ap-
pendix A).

In an inferential framework, Jones (1996) showed that
constant imputation leads to regression parameters
that are biased compared to parameters on the fully-
observed data. We differ from Jones because our aim is
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prediction rather than estimation. Indeed, minimizing
a prediction risk with missing values is different from
recovering the behavior without missing values (Josse
et al., 2019b). Nevertheless, the strategy of replacing
missing values with a constant does not lead to Bayes-
consistent predictors in the general setting, and even
under a Gaussian assumption as shown in Section 4.
In the general case, the problem can be illustrated by
the following example which shows that the model is
no longer linear when values are missing.

The best predictor need not be linear

Example 3.1 (Non-linear submodel). Let Y = X1 +
X2 + ε, where X2 = exp(X1) + ε1. Now, assume that
only X1 is observed. Then, the model can be rewritten
as

Y = X1 + exp(X1) + ε+ ε1,

where f(X1) = X1 + exp(X1) is the Bayes predictor.
In this example, the submodel for which only X1 is
observed is not linear.

From Example 3.1, we deduce that there exists a large
variety of submodels for a same linear model. In fact,
the submodel structures depend on the structure of
X and on the missing-value mechanism. Therefore,
an extensive analysis seems unrealistic. Below, we
show that in the particular case of Gaussian gener-
ative mechanisms submodels can be easily expressed,
hence the Bayes predictor for each submodel can be
computed exactly.

4 Bayes predictor

We now derive the expression of E[Y |Z] under Model

(1) with missing values (Z ∈ R̃d), as it gives the Bayes-
optimal predictor for the square loss (Bishop, 2006).

The Bayes predictor can be written as

f?(Z) = E [Y | Z]

= E
[
Y | M,Xobs(M)

]
=

∑
m∈{0,1}d

E
[
Y |Xobs(m),M = m

]
1M=m.

This formulation already highlights the combinatorial
issues: as suggested by Rosenbaum and Rubin (1984,
Appendix B), estimating f?(Z) may require to esti-
mate 2d different submodels.

As shown by Example 3.1, controlling the form of f?

requires assumptions on the conditional relationships
across the features Xj . To ground our theoretical
derivations, we use the very common pattern mixture
model (Little, 1993), with Gaussian distributions:

Assumption 4.1 (Gaussian pattern mixture model).
The distribution of X conditional on M is Gaussian,
that is, for all m ∈ {0, 1}d, there exist µm and Σm
such that

X | (M = m) ∼ N (µm,Σm).

A particular case of this distribution is the case where
X is Gaussian and independent of M .

Proposition 4.1 (Expanded Bayes predictor). Under
Assumption 4.1 and Model (1), the Bayes predictor f?

takes the form

f?(Z) = 〈W, δ〉, (3)

where the parameter δ ∈ Rp is a function of β,
(µm)m∈{0,1}d and (Σm)m∈{0,1}d , and the random vari-

able W ∈ Rp is the concatenation of j = 1, . . . , 2d

blocks, each one being(
1M=mj

, Xobs(mj)1M=mj

)
.

An interesting aspect of this result is that the Bayes
predictor is a linear model, though not on the original
data matrix X. Indeed, W and δ are vectors composed
of 2d blocks, for which only one block is “switched on”
– the one corresponding to the observed missing pat-
tern M . Elements of W of this block are the observed
values for X and elements of δ of the same block are
the linear coefficients corresponding to the observed
missingness pattern. Equation (3) can thus be seen as
the concatenation of each of the 2d submodels, where
each submodel corresponds to a missing pattern.

The Bayes predictor can also be expressed in a second
way, as shown in Proposition 4.2.

Proposition 4.2 (Factorized Bayes predictor). We
have

f?(Z) =
∑
S⊂J1,dK

ζS0 +

d∑
j=1

ζSj (1−Mj)Xj

∏
k∈S

Mk,

(4)

where the parameter ζ ∈ Rp is a function of δ. In
addition, one can write

Y = f?(Z) + noise(Z),

with noise(Z) = ε + <
√
TMΞ, βmis(M) >, and Ξ ∼

N (0, Id), where TM = Var
(
Xmis(M)|Xobs(M),M

)
and

√
denotes the square root of a positive definite sym-

metric matrix.

Expression (4) is a polynome of X and cross-products
of M . As such, it is more convenient than expression
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(3) to compare to simpler estimates, as it can be trun-
cated to low-order terms. This is done hereafter. Note
that the multiplication (1−Mj)Xj means that missing
terms in Xj are imputed by zeros.

Proofs of Proposition 4.1 and 4.2 can be found in the
Appendix B. Thanks to these explicit expressions, the
Bayes risk can be computed exactly as shown in Ap-
pendix C. The value of the Bayes risk is extensively
used in the Experiments (Section 7) to evaluate the
performance of the different methods.

The integer p in equation (3) is the total number of
parameters of the model which can be calculated by
considering every sublinear model:

p =

d∑
k=0

(
d

k

)
× (k + 1) = 2d−1 × (d+ 2). (5)

Strikingly, the Bayes predictor gathers 2d submodels.
When d is not small, estimating it from data is there-
fore a high-dimensional problem, with computational
and statistical challenges. For this reason, we intro-
duce hereafter a low-dimensional linear approximation
of f?, without interaction terms. Indeed, the expres-
sion in Proposition 4.1 is not linear in the original fea-
tures and their missingness, but rather entails a com-
binatorial number of non-linearly derived features.

Definition 4.1 (Linear approximation). We define
the linear approximation of f? as

f?approx(Z) = β?0,0 +

d∑
j=1

β?j,01Mj=1 +

d∑
j=1

β?jXj1Mj=0

f?approx(Z) is a linear function of the concatenated vec-
tor (X,M) where X is imputed by zeros, enabling a
study of linear regression with that input. Note that
this approximation is the same as defined in Proposi-
tion 3.1.

5 Finite sample bounds for linear
predictors

The above expression of the Bayes predictor leads to
two estimation strategies with linear models. The first
model is the direct empirical equivalent of the Bayes
predictor, using a linear regression to estimate the
terms in the expanded Bayes predictor (Proposition
4.1). It is a rich model, powerful in low dimension,
but it is costly and has large variance in higher dimen-
sion. The second model is the approximation of the
first given in Definition 4.1. It is has a lower approx-
imation capacity but also a smaller variance since it
contains fewer parameters.

For the theoretical analysis, we focus in this Section on
the risk between the estimate and the Bayes predictor
f?(Z). We thus consider the new framework below to
handle our analysis.

Assumption 5.1. We have Y = f?(Z) + noise(Z) as
defined in Section 4, where noise(Z) is a centred noise
conditional on Z and such that there exists σ2 > 0 sat-
isfying V[Y |Z] ≤ σ2 almost surely. Besides, assume
that ‖f?‖∞ < L and Supp(Z) ⊂ [−1, 1]d.

For all L > 0 and for all function f , we define the
clipped version TLf of f at level L by, for all x,

TLf(x) =

{
f(x) if |f(x)| ≤ L
L sign(f(x)) otherwise

5.1 Expanded linear model

The expanded linear model is well specified, as the
Bayes predictor detailed in Proposition 4.1 belongs to
the model.

Theorem 5.1 (Expanded model). Grant Assumption
5.1. Let fβ̂expanded

be the linear regression estimate for

the expanded model (see Proposition 4.1) computed via
Ordinary Least Squares (OLS). Then, the risk of its
predictions clipped at L satisfies

R(TLfβ̂expanded
) ≤ cmax{σ2, L2}2d−1(d+ 2)(1 + log n)

n

+ σ2.

Additionally, let M = {m ∈ {0, 1}d,P[M = m] > 0}
be the set of all possible missing patterns and assume
that there exists α ∈ (0, 1] such that |M| = α2d. Then,
there exists a constant c > 0, such that for all n large
enough,

R(TLfβ̂expanded
) ≥ σ2 +

2dc1
n+ 1

.

The proof is provided in Appendix D. Theorem 5.1
implies that the excess risk of the linear estimate of
the expanded model is of order O(2d/n) which grows
exponentially fast with the original dimension of the
problem.

5.2 Constant imputation via linear
approximation

Theorem 5.2 (Linear approximation model). Grant
Assumption 5.1. Let fβ̂approx,L

be the linear regression

estimate for the approximated model (Definition 4.1),
computed via OLS. Then, the risk of its predictions
clipped at L satisfies

R(TLfβ̂approx
) ≤ σ2 + cmax{σ2, L2}2d(1 + log n)

n

+ 64(d+ 1)2L2
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The proof is provided in Appendix D. A direct conse-
quence of Theorem 5.2 is that the excess risk of the lin-
ear approximation of f? (Definition 4.1) isO(d2+d/n).

Comparing this upper bound to the one obtained for
the expanded model, we see that the risk of the ex-
panded model is lower than that of the approximated
model when

n� 2d

d

Therefore, the expanded model is only useful for very
small data set (large n, small d), but for data sets
of reasonable size, the linear approximation may be
preferred. Nevertheless, as detailed in Section 6, mul-
tilayers neural nets can be used as a compromise be-
tween both approaches. This will be exemplified by
experiments in Section 7.

6 Multilayer perceptron

6.1 Consistency

Theorem 6.1 (MLP). Assume that the Bayes pre-
dictor takes the form described in proposition 4.1, and
that the support of X is finite. A MLP i) with one hid-
den layer containing 2d hidden units, ii) ReLU activa-
tion functions iii) which is fed with the concatenated
vector (X(1−M),M), is Bayes consistent.

The complete proof of Theorem 6.1 is given in
Appendix E, but we provide here the main ideas. The
activation for each hidden unit is a linear function of a
design matrix constructed by imputing X with zeros
and concatenating with the mask M . Thus, just like
for the optimal imputation problem of Proposition
3.1, the weights of the linear function can be seen
as either regular linear regression weights for the
observed variables or learned imputation constants
for the missing ones. In the context of a MLP with
2d hidden units, we have 2d such linear functions,
meaning that each hidden unit is associated with
one learned imputation vector. It turns out, as
shown in the proof, that it is possible to choose the
imputation vector of each hidden unit so that one
hidden unit is always activated by points with a given
missing-values pattern m but never by points with
another missing-values pattern m′ 6= m. As a result,
all points with a given missing-values pattern fall
into their own affine region, and it is then possible to
adjust the weights so that the slope and bias of each
affine region equals those of the Bayes predictor.

The number of parameters of a MLP with one hidden
layer and 2d units is (d + 1)2d+1 + 1. Compared to
the expanded Bayes predictor which has (d + 1)2d−1

parameters, this is roughly 4 times more. This comes
from the fact that the MLP does not directly estimate
the slope and bias of a linear model per missing-values
pattern. First, for each affine region associated to a
missing-values pattern, it estimates a slope for all vari-
ables, and not only for the observed ones. This doubles
the number of parameters to be estimated. Second, it
also needs to estimate the imputation constants for
each hidden unit (or equivalently missing-values pat-
tern) which again doubles the number of parameters
to be estimated. As a result, the MLP should require
more samples than the expanded Bayes predictor to
achieve the Bayes rate. However, as we discuss below
the parametrization of the MLP provides a natural
way to control the capacity of the model. By contrast,
there is no such easy and natural way to control the
capacity of the expanded Bayes predictor.

6.2 Trading off estimation and
approximation error.

The prediction function of a MLP with one hidden
layer and nh hidden units is a piecewise affine function
with at most

∑d
j=0

(
nh

j

)
regions (Pascanu et al., 2013).

Thus, choosing nh = d, we obtain 2d affine regions, so
potentially one per missing-value pattern. However,
the slopes and biases of these affine regions are not
independent, since they are linear combinations of the
weights associated to each hidden unit. Yet, if the
data-generating process has more regularities, 2d dif-
ferent slopes may not be necessary to approximate it
well. Varying the number of hidden units nh thus ex-
plores an interesting tradeoff between model complex-
ity –which comes at the cost of estimation error– and
approximation error, to successfully address medium
sample sizes problems.

7 Empirical study

We now run an empirical study to illustrate our theo-
retical results, but also to explore how the different
bias-variance trade-offs of the various models intro-
duced lead to different prediction errors depending on
the amount of data available. The code to reproduce
the experiments in available on GitHub †.

7.1 Experimental settings

Simulation models The data (X,M) is generated
according to three different models. Two of them are
instances of Assumption 4.1 while the third one is
a classical Missing Non At Random (MNAR) model
(Little and Rubin, 2002).

†https://github.com/marineLM/linear predictor missing
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mixture 1 The first model assumes that the data is
generated according to Assumption 4.1 with only
one Gaussian component shared by all missing-
values patterns. This boils down to a classical
Missing Completely At Random (MCAR) setting,
where X ∼ N (X|µ,Σ) and missing values are in-
troduced uniformly at random, independent of X.

mixture 3 The second model assumes that the data
is generated according to Assumption 4.1 with
three Gaussian components. Each missing-values
pattern is associated to one of the three Gaussian
components in such a way that each component
is associated with the same number of missing-
values patterns.

selfmasking The last model assumes that the data
is generated according to a single Gaussian, and
that missing values are introduced according to
a probit model parametrized by λ and µ0 as
P (M = 1|Xj) = Probit(λj(Xj−µ0)). This model
allows to increase the proability of introducing
missing values when the variable increases (or de-
creases), hence the denomination selfmasking. It
is a classical instance of a Missing Non At Random
(MNAR) problem. Estimation in MNAR settings
is notoriously difficult as most approaches, such
as EM, rely on ignoring –marginalizing– the un-
observed data which then introduces biases.

For the three models, covariances for the Gaussian dis-
tributions are obtained as BB>+D where B ∈ Rd×b d2 c
is drawn from a standard normal distribution and D is
a diagonal matrix with small positive elements to make
the covariance matrix full rank. This gives covariance
matrices with some strong correlations.

For mixture 1 and mixture 3, missing values are intro-
duced in such a way that each missing-values pattern
in equiprobable. For selfmasking, the parameters of
the probit function are chosen so that the missing rate
for each variable is 25%.

The response Y is generated by a linear combination
of the input variables as in Equation 1. Note that
to generate Y , we use the complete design matrix X
(without missing values). In these experiments, the
noise ε is set to 0 and the regression coefficients β, β0
are chosen equal to β0 = 1 and β = (1, 1, . . . , 1).

Estimation approaches For these three simulation
scenarios, we compare four approaches:

ConstantImputedLR: optimal imputation method
described in Proposition 3.1 The regression is per-
formed using ordinary least squares.

EMLR: EM is used to fit a multivariate normal
distribution for the p + 1-dimensional random
variable (X1, . . . , Xp, Y ). Denoting by µ =
(µX , µY ) ∈ Rp+1 the estimated mean and by
Σ the estimated covariance matrix (with blocks
ΣXX ∈ Rp×p, ΣXY ∈ Rp×1, and ΣY Y ∈ R), the
predictor used is:

E
{
Y |Xobs(M),M

}
= µY +

ΣY,obs(M)Σ
−1
obs(M)

(
Xobs(M) − µobs(M)

)
as can be obtained from the conditional Gaussian
formula. Since EM directly estimates β, µ and Σ,
it only has to estimate

(d+ 1) + d+
d(d+ 1)

2
=
d(d+ 5)

2
+ 1

parameters, while ExpandedLR needs to estimate
2d−1(d + 2) parameters. However, while this
method is Bayes consistent in MAR (and a for-
tiori MCAR) settings, it is not expected to per-
form well otherwise.

MICELR: Multivariate Imputation by Chained
Equations (MICE) is a widely used and effec-
tive conditional imputation method. We used the
IterativeImputer of scikit-learn which adapts
MICE to out-of-sample imputation.

ExpandedLR: full linear model described in Propo-
sition 4.1. When the number of samples is small
compared to the number of missing-values pat-
terns, it may happen that for a given pattern,
we have fewer samples than parameters to esti-
mate. For this reason, we used ridge regression on
the expanded feature set, and the regularization
parameter was chosen by cross-validation over a
small grid of values (10−3, 1, 103). The data is
standardized before fitting the model.

MLP: Multilayer perceptron with one hidden layer
whose size is varied between and 1 and 2d hidden
units. The input that is fed to the MLP is (X,M)
where X is imputed with zeros and M is the mask.
Rectified Linear Units (ReLU) were used as acti-
vation functions. The MLP was optimized with
Adam, and a batch size of 200 samples. Weight
decay was applied and the regularization parame-
ter chosen by cross-validation over a small grid of
values (10−1, 10−2, 10−4). The data is standard-
ized before fitting the model.

When referring to a MLP in the figures, we use the
notation MLP Wx where x is a value indicating the
number of units used. For an experiment in dimen-
sion d, MLP Wx refers to a MLP with x× 2d hidden
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Figure 1: Learning curves Train and test R2 scores (respectively in dotted and in plain lines) as a function
of the number of training samples, for each data type. Experiments were carried out in dimension d = 10. The
curves display the mean and 95% confidence interval over 5 repetitions. The black horizontal line represents the
Bayes rate (best achievable performance). Figure 3, in the supp. mat. gives a box plot at n = 75 000.
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Figure 2: Learning curves varying the dimensionality for the MLPs and ExpandedLR. For a given number
of features d, the number of hidden units used is 2d for mixture 1 and self-masked and 0.5× 2d for mixture 3.

units for mixture 3, or a MLP with x× d hidden units
for MCAR and MNAR. The reason why we use this
notation is because to achieve the same performance
level for different dimensions, we must use a number
of hidden units that is proportional to 2d or to d ac-
cording to the data type (See Appendix F.2). In the
experiments, we test three different hidden layer sizes,
to compare low, medium and high capacities.

All models are compared to the Bayes rate computed
in Appendix C whenever possible, i.e. for mixture 1
and mixture 3. In all experiments, datasets are split
into train and test set (75% train and 25% test) and
the performance reported is the R2 score of the pre-
dictor on the test set (or the difference between the R2
score of the predictor and that of the Bayes predictor).

7.2 Results

Mixture 1 and Mixture 3 We first focus on the
data types satisfying Assumption 4.1, i.e, mixture 1
and mixture 3, since the theory developed in this paper
applies for these cases.

Figure 1 (a and b) presents the learning curves for the
various methods, as the number of samples increases
from 103 to 105 (5×105 for mixture 3 ) and the dimen-
sion is fixed to d = 10. First of all, this figure experi-
mentally confirms that ExpandedLR and the MLP are
Bayes consistent. With enough samples, both methods
achieve the best possible performance. It also confirms
that ExpandedLR cannot be used in the small n large
d regime. Indeed, between 10, 000 and 20, 000 sam-
ples are required for ExpandedLR to reach acceptable
performances.

Overall, the learning curves (Figure 1) highlight three
sample size regimes. We have a small sample size
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regime (n < 1, 000) where EM is the best option.
Indeed, EM is Bayes consistent for mixture 1, as ex-
pected when the data is MCAR. For mixture 3, which
does not satisfy the MAR assumptions, EM performs
badly but is not worse than the other methods in the
small sample size regime. It is slightly better than
ConstantImputedLR which still remains a reasonable
option in this regime. MICELR follows the behavior
of EM with slightly worse performance.

For n > 30, 000 in MCAR and n > 10, 000 in mixture
3, we are in a large sample size regime where Expand-
edLR is an excellent choice, with performances on par
or better than those of the MLP. The observation of
small and large sample regimes support the theoretical
analysis of Section 5. The fact that ExpandedLR out-
performs the MLP for a larger sample range in mixture
3 (n > 10, 000) compared to mixture 1 (n > 30, 000)
is explained by the fact that, to reach a given perfor-
mance, the MLP needs fewer parameters in mixture 1
than in mixture 3, and thus fewer samples.

Finally, for 1, 000 < n < 10, 000 or 1, 000 < n <
30, 000, we have a last regime where the MLP should
be the preferred option, since it outperforms both Con-
stantImputedLR and ExpandedLR. It shows that for
medium size samples, it is possible to adapt the width
of the hidden layer to reach a beneficial compromise
between estimation and approximation error. This is
particularly useful since many real datasets fall into
this medium size sample regime.

Figure 2 demonstrates that the sample complexity
is directly related to the number of parameters to
learn. In particular, it shows that ExpandedLR re-
quires around 15 samples per parameter to achieve
the Bayes rate (whatever the dimension). Since in di-
mension 10, the number of parameters of this model is
2d−1(d+2) = 6144, we need 15×2d−1(d+2) ≈ 100, 000
samples to achieve the Bayes rate and around 10, 00
samples to achieve a reasonable performance. By com-
parison, the MLP requires as many samples per pa-
rameter as ExpandedLR but it needs not have as
many parameters as ExpandedLR to perform well.
For example in figure 1 (mixture 1 ), MLP W1 has
2d(d + 1) + 1 = 111 parameters, which suffice to ob-
tain good performances.

Self-masked (MNAR) Self-masked (MNAR) does
not satisfy Assumption 4.1. Therefore under this data
generating scheme, the expression of the Bayes predic-
tor derived in earlier sections is not valid, and Expand-
edLR and the MLP with 2d hidden units need not be
Bayes consistent. Self-masking, where the probabil-
ity of missingness depends on the unobserved value, is
however a classical missing-values mechanism, and it is
useful to assess the performance of the different meth-

ods in this setting. As shown in the right panel of Fig-
ure 1, the MLP outperforms all other methods for this
data type. This reflects the versatility of this method,
which can adapt to all data generating schemes. Ex-
pandedLR caps at a performance close to that of Con-
stantImputedLR, which highlights the dependence of
this method on Assumption 4.1. Imputation, explicit
with MICE or implicit with EM, performs poorly. This
is expected as in MNAR it does not ground good pre-
diction (Josse et al., 2019b).

8 Discussion and conclusion

We have studied how to minimize a prediction error on
data where the response variable is a linear function of
a set of partially observed features. Surprisingly, with
these missing values, the Bayes-optimal predictor is no
longer a linear function of the data. Under Gaussian
mixtures assumptions we derive a closed-form expres-
sion of this Bayes predictor and used it to introduce a
consistent estimation procedure of the prediction func-
tion. However, it entails a very high-dimensional es-
timation. Indeed, our generalization bounds –to our
knowledge the first finite-sample theoretical results on
prediction with missing values– show that the sam-
ple complexity scales, in general, as 2d. We therefore
study several approximations, in the form of constant
imputation or a multi-layer perceptron (MLP), which
can also be consistent given a sufficient number of hid-
den units. A key benefit of the MLP is that tuning its
number of hidden units enables reducing model com-
plexity and thus decreasing the number of samples re-
quired to estimate the model. Our experiments indeed
show that in the finite-sample regime, using a MLP
with a reduced number of hidden units leads to the
best prediction. Importantly, the MLP adapts natu-
rally to the complexity of the data-generating mech-
anism: it needs fewer hidden units and less data to
predict well in a missing completely at random situa-
tion.

Our approach departs strongly from classical missing-
values approaches, which rely on EM or imputation
to model unobserved values. Rather, we tackle the
problem with an empirical risk minimization strat-
egy. An important benefit of this approach is that
it is robust to the missing-values mechanism, unlike
most strategies which require missing-at-random as-
sumptions. Our theoretical and empirical results are
useful to guide the choice of learning architectures in
the presence of missing-values: with a powerful neural
architecture, imputing with zeros and adding features
indicating missing-values suffices.
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Supplementary materials – Linear predictor on linearly-generated data
with missing values: non consistency and solutions

A General remarks and proof of Proposition 3.1

A.1 Notation: letter cases

One letter refers to one quantity, with different cases: U is a random variable, while u is a constant. Un is a
(random) sample, and un is a realisation of that sample. uj is the j-th coordinate of u, and if J is a set, uJ
denotes the subvector with indices in J .

A.2 Gaussian vectors

In assumption 4.1, conditionnally to M , X is Gaussian. It is useful to remind that in that case, for two subsets
of indices I and J , conditional distributions can be written as

XI |(XJ ,M) ∼ N (µMI|J ,Σ
M
I|J ) (6)

with {
µMI|J = µMI + ΣMIJ (ΣMJJ )−1(XJ − µMJ )

ΣMI|J = ΣMII − ΣMIJ (ΣMJJ )−1(ΣMIJ )T.

In particular, for all pattern m, for all k ∈ mis(m),

E
[
Xk

∣∣ M = m,Xobs(m)

]
= µmk + Σmk,obs(m)

(
Σmobs(m)

)−1 (
Xobs(m) − µmobs(m)

)
.

A.3 Proof of Proposition 3.1

Solving a linear regression problem with optimal imputation constants c? = (c?j )j∈J1,dK can be written as

(β?, c?) ∈ argminβ,c∈RdE


Y −

β0 +

d∑
j=1

βj
(
Xj1Mj=0 + cj1Mj=1

)2


⇐⇒(β?, c?) ∈ argminβ,c∈RdE


Y −

β0 +

d∑
j=1

βjXj1Mj=0 +

d∑
j=1

βjcj1Mj=1

2
 ,

where the terms Xj1Mj=0 is equal to the variable Xj , imputed by zero if Xj is missing and βjcj is the linear
coefficient associated to the variable 1Mj=1. Therefore, the linear regression coefficient β? = (β?j )j∈J1,dK and
the optimal imputation constants c? = (c?j )j∈J1,dK can be solved via the linear regression problem with inputs
(Xj)j∈J1,dK, (1Mj=1)j∈J1,dK where the first set of d coefficients are the (β?j )j∈J1,dK and the second set of coefficients
are equal to (β?j c

?
j )j∈J1,dK.
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B Bayes estimate and Bayes risk

Proof of Proposition 4.1.

E[Y |Z] = E[β0 + βTX | Z]

= E[β0 + βTX | M,Xobs(M)]

= β0 + βT
obs(M)Xobs(M) + βT

mis(M) E[Xmis(M) | M,Xobs(M)]

where, by Equation 6,

E[Xmis(M) | M,Xobs(M)] = µMmis(M) + ΣMmis(M),obs(M)

(
ΣMobs(M)

)−1 (
Xobs(M) − µMobs(M)

)
.

Hence,

E[Y |Z] = β0 + βT
mis(M)

(
µMmis(M) − ΣMmis(M),obs(M)

(
ΣMobs(M)

)−1
µMobs(M)

)
+

(
βT
obs(M) + βT

mis(M) ΣMmis(M),obs(M)

(
ΣMobs(M)

)−1)
Xobs(M)

= δMobs(M),0 +
(
δMobs(M)

)T
Xobs(M),

by setting

δMobs(M),0 = β0 + βT
mis(M)

(
µMmis(M) − ΣMmis(M),obs(M)

(
ΣMobs(M)

)−1
µMobs(M)

)
δMobs(M) = βobs(M) + βT

mis(M) ΣMmis(M),obs(M)

(
ΣMobs(M)

)−1
.

Therefore, E[Y |Z] takes the form,

E[Y |Z] =
∑

m∈{0,1}d

[
δmobs(m),0 +

(
δmobs(m)

)T
Xobs(m)

]
1M=m

= 〈W, δ〉.
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Proof of Proposition 4.2. The polynomial expression is given by

E[Y |Z] =
∑

m∈{0,1}d
1M=m ×

δm0 +

d∑
j=1

1j∈obs(m)δ
m
j Xj


=

∑
m∈{0,1}d

d∏
k=1

(
1− (Mk −mk)2

)
×

δm0 +

d∑
j=1

(1−Mj)δ
m
j Xj


=

∑
m∈{0,1}d

d∏
k=1

(1−Mk −mk + 2Mkmk)×

δm0 +

d∑
j=1

(1−Mj)δ
m
j Xj


=

∑
m∈{0,1}d

∑
S1 t S2 t S3
tS4 = J1, dK

(−1)|S2|+|S3|2|S4|
∏

k3 ∈ S3,
k4 ∈ S4

mk3mk4

∏
k2 ∈ S2,
k4 ∈ S4

Mk2Mk4 ×

δm0 +

d∑
j=1

(1−Mj)δ
m
j Xj


(where S1 t S2 t S3 t S4 is a partition of J1, dK)

=
∑

S1 t S2 t S3
tS4 = J1, dK

(−1)|S2|+|S3|2|S4|
∑

m ∈ {0, 1}d
obs(m) ⊂ Sc

3 ∩ S
c
4

1×
∏

k2∈S2,k4∈S4

Mk2Mk4 ×

δm0 +

d∑
j=1

(1−Mj)δ
m
j Xj



=
∑

S1 t S2 t S3
tS4 = J1, dK

∏
k2∈S2,k4∈S4

Mk2Mk4 ×

(−1)|S2|+|S3|2|S4|
∑

m ∈ {0, 1}d
obs(m) ⊂ Sc

3 ∩ S
c
4

δm0 +

d∑
j=1

(1−Mj)δ
m
j Xj




=
∑

S1 t S2 t S3
tS4 = J1, dK

∏
k2∈S2,k4∈S4

Mk2Mk4 ×

ζS2,S3,S40 +

d∑
j=1

(1−Mj)ζ
S2,S3,S4
j Xj



=
∑

S2 t S4 ⊂ J1, dK

∏
k2∈S2,k4∈S4

Mk2Mk4 ×
∑

S1 t S3 = (S2 t S4)c

ζS2,S3,S40 +

d∑
j=1

(1−Mj)ζ
S2,S3,S4
j Xj


(reindexing S = S2 t S4)

=
∑

S ⊂ J1, dK

∏
k∈S

Mk ×

ζS0 +

d∑
j=1

(1−Mj)ζ
S
j Xj

 .

Finally, the expression of noise(Z) results from

Xmis(M)|Xobs(M),M = m ∼ N (µM , TM )

where the conditional expectation µM has been given above and

TM = Σmis(M) − Σmis(M),obs(M)

(
Σobs(M)

)−1
Σobs(M),mis(M).

C Bayes Risk

Proposition C.1. The Bayes risk associated to the Bayes estimator of proposition 4.1 is given by

E
[
(Y − f?(Z))

2
]

= σ2 +
∑

m∈{0,1}d
P(M = m)Λm,
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with

Λm =
(
γmobs(m)

)T
Σmobs(m)γ

m
obs(m) + βT

mis(m)Σ
m
mis(m)βmis(m) − 2

(
γmobs(m)

)T
Σmobs(m),mis(m)βmis(m)

+
(
γmobs(m),0

)2
+

((
γmobs(m)

)T
µmobs(m)

)2

+
(
βT
mis(m)µ

m
mis(m)

)2
+ 2γmobs(m),0

(
γmobs(m)

)T
µmobs(m)

− 2γmobs(m),0β
T
mis(m)µ

m
mis(m) − 2

(
γmobs(m)

)T
µmobs(m)β

T
mis(m)µ

m
mis(m),

where γmobs(m) is a function of the regression coefficients on the missing variables and the means and covariances
given M .

Proof of Proposition C.1.

E
[
(E[Y |Z]− Y )

2
]

= E

[(
δMobs(M),0 +

(
δMobs(M)

)T
Xobs(M) − β0 − βTX − ε

)2
]

= E

[(
δMobs(M),0 − β0 +

(
δMobs(M) − βobs(M)

)T
Xobs(M) − βT

mis(M)Xmis(M) − ε
)2
]
.

By posing
γMobs(M),0 = δMobs(M),0 − β0 = βT

mis(M)

(
µMmis(M) − ΣMmis(M),obs(M)

(
ΣMobs(M)

)−1
µMobs(M)

)
γMobs(M) = δMobs(M) − βobs(M) = βT

mis(M) ΣMmis(M),obs(M)

(
ΣMobs(M)

)−1
,

one has

E
[
(E[Y |Z]− Y )

2
]

= E

[(
γMobs(M),0 +

(
γMobs(M)

)T
Xobs(M) − βT

mis(M)Xmis(M) − ε
)2
]

=
∑

m∈:{0,1}d
P(M = m) · E

[(
γmobs(m),0 +

(
γmobs(m)

)T
Xobs(m) − βT

mis(m)Xmis(m) − ε
)2

∣∣∣∣∣ M = m

]

=
∑

m∈:{0,1}d
P(M = m) ·

[
σ2 + Var

((
γmobs(m)

)T
Xobs(m) − βT

mis(m)Xmis(m)

∣∣∣∣ M = m

)

+

(
γmobs(m),0 +

(
γmobs(m)

)T
E
[
Xobs(m)

∣∣M = m
]
− βT

mis(m)E
[
Xmis(m)

∣∣M = m
])2

]
= σ2 +

∑
m∈:{0,1}d

P(M = m) Λm

D Proof of Theorem 5.1 and Theorem 5.2

Theorem 11.3 in Györfi et al. (2006) allows us to bound the risk of the linear estimator, even in the misspecified
case. We recall it here for the sake of completeness.

Theorem D.1 (Theorem 11.3 in Györfi et al. (2006)). Assume that

Y = m(X) + ε,
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where ‖m‖∞ < L and V[ε|X] < σ2 almost surely. Let F be the space of linear function f : [−1, 1]d → R. Then,
letting m̃n be the linear regression estimate mn clipped at ±L, we have

E[(m̃n(X)−m(X))2] ≤ cmax{σ2, L2}d(1 + log n)

n
+ 8 inf

f∈F
E[(f(X)−m(X))2],

for some universal constant c.

Proof of Theorem 5.1. Since Assumptions of Theorem 11.3 in Györfi et al. (2006) are satisfied, we have

E[(m̃n(X)−m(X))2] ≤ cmax{σ2, L2}p(1 + log n)

n
+ 8 inf

f∈F
E[(f(X)−m(X))2],

Since the model is well-specified, the second term is null. Besides,

E[(Y − fβ̂expanded,L
(Z))2] ≤ E[(Y − f?(Z))2] + E[(f?(Z)− fβ̂expanded,L

(Z))2]

≤ σ2 + cmax{σ2, L2}p(1 + log n)

n
,

which concludes the proof since the full linear model has p = 2d−1(d+ 2) parameters.

To address the second statement of Theorem 5.1, recall that in our setting, the dimension d is fixed and does
not grow to infinity with n. Let M = {m ∈ {0, 1}d,P[M = m] > 0} and, for all m ∈ M, Nm = |{i : Mi = m}|.
Note that, the estimator in Theorem 5.1 is nothing but |M| linear estimators, each one being fitted on data
corresponding to a specific missing pattern m ∈ M. Thus, according to Tsybakov (2003), we know that, there
exists constants c1, c2 > 0, such that, for each missing pattern m ∈M, we have the lower bound,

E[(Y − TLfβ̂expanded
(Z))2|M = m,Nm] ≥ σ2 + c1

d+ 1− ‖m‖0
Nm

1Nm≥1 + c21Nm=0.

Taking the expectation with respect to Nm ∼ B(n,P[M = m]) and according to Lemma 4.1 in Györfi et al.
(2006), we have, for all m ∈M,

E[(Y − TLfβ̂expanded
(Z))2|M = m] ≥ σ2 + c1

2(d+ 1− ‖m‖0)

(n+ 1)P[M = m]
+ c2(1− P[M = m])n.

Consequently,

R(TLfβ̂expanded
) =

∑
m∈M

E[(Y − TLfβ̂expanded
(Z))2|M = m]P[M = m]

≥ σ2 +
2c1
n+ 1

∑
m∈M

(d+ 1− ‖m‖0) + c2
∑
m∈M

(1− P[M = m])nP[M = m]

≥ σ2 +
2c1|M|
n+ 1

+ c2(1− min
m∈M

P[M = m])n.

By assumption, there exists a constant c, such that, for all n large enough, we have

R(TLfβ̂expanded
) ≥ σ2 +

2dc

n+ 1
.

Proof of Theorem 5.2. As above,

R(fβ̂approx,L
) ≤ σ2 + E[(f?(Z)− fβ̂approx,L

(Z))2]

≤ σ2 + cmax{σ2, L2}2d(1 + log n)

n
+ 8E[(f?(Z)− fβ?

approx
(Z))2].
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To upper bound the last term, note that, for any βapprox we have

E[(f?(Z)− fβapprox
(Z))2]

= E

[
β0,0,approx +

d∑
j=1

β0,j,approx1Mj=1 −
∑

m∈{0,1}d
β?0,m,expanded1M=m

+
(
β1,approx −

∑
m∈{0,1}d

β?1,m,expanded1M=m

)
X1

+ . . .+
(
βd,approx −

∑
m∈{0,1}d

β?d,m,expanded1M=m

)
Xd

]2
.

Using a triangle inequality, we have

E[(Wβ?full −Xapproxβapprox)2]

≤ (d+ 1)E

[
β0,0,approx +

d∑
j=1

β0,j,approx1Mj=1 −
∑

m∈{0,1}d
β?0,m,expanded1M=m

]2

+ (d+ 1)

d∑
j=1

E

[(
βj,approx −

∑
m∈{0,1}d

β?j,m,expanded1M=m

)
Xj

]2

Now, set for all j, β0,j,approx = 0 and for all j = 1, . . . , d,

βj,approx = E

 ∑
m∈{0,1}d

β?j,m,expanded1M=m


and also

β0,0,approx = E

 ∑
m∈{0,1}d

β?0,m,expanded1M=m

 .
Therefore, for this choice of βapprox,

E[(Wβ?full −Xapproxβapprox)2]

≤ (d+ 1)V

[ ∑
m∈{0,1}d

β?0,m,expanded1M=m

]
+ (d+ 1)‖X‖2∞

d∑
j=1

V
[ ∑
m∈{0,1}d

β?j,m,expanded1M=m

]
≤ 8(d+ 1)2‖f?‖2∞.

Finally, by definition of β?approx, we have

E[(f?(Z)− fβ?
approx

(Z))2] ≤ E[(f?(Z)− fβapprox
(Z))2]

≤ 8(d+ 1)2‖f?‖2∞.

Finally,

R(fβ̂approx,L
) ≤ σ2 + cmax{σ2, L2}d(1 + log n)

n
+ 64(d+ 1)2L2,

since ‖f?‖∞ ≤ L, according to Assumption 5.1.
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E Proof of Theorem 6.1

Let W (1) ∈ R2d×2d be the weight matrix connecting the input layer to the hidden layer, and W (2) ∈ R2d the

matrix connecting the hidden layer to the output unit. Let b(1) ∈ R2d be the bias for the hidden layer and
b(2) ∈ R the bias for the output unit. With these notations, the activations of the hidden layer read:

∀k ∈ J1, 2dK, ak = W
(1)
k,. (X,M) + b

(1)
k

Splitting W (1) into two parts W (X),W (M) ∈ R2d×d, the activations can be rewritten as:

∀k ∈ J1, 2dK, ak = W
(X)
k,. X +W

(M)
k,. M + b

(1)
k

Case 1: Suppose that ∀k ∈ J1, 2dK, ∀j ∈ J1, dK, W (X)
k,j 6= 0.

With this assumption, the activations can be reparametrized by posing Gk,j = W
(M)
k,j /W

(X)
k,j , which gives:

∀k ∈ J1, 2dK, ak = W
(X)
k,. X +W

(X)
k,. �Gk,.M + b

(1)
k

= W
(X)
k,obs(M)Xobs(M) +W

(X)
k,mis(M)Gk,mis(M) + b

(1)
k

and the predictor for an input (x,m) ∈ Rd × {0, 1}d is given by:

y(x,m) =

2d∑
k=1

W
(2)
k ReLU(a

(1)
k ) + b(2)

=

2d∑
k=1

W
(2)
k ReLU(W

(X)
k,obs(m)xobs(m) +W

(X)
k,mis(m)Gk,mis(m) + b

(1)
k ) + b(2)

We will now show that there exists a configuration of the weights W (X), G, W (2), b(1) and b(2) such that
the predictor y is exactly the Bayes predictor. To do this, we will first show that we can choose G and b(1)

such that the points with a given missing-values pattern all activate one single hidden unit, and conversely, a
hidden unit can only be activated by a single missing-values pattern. This setting amounts to having one linear
regression per missing-values pattern. Then, we will show that W (X) and W (2) can be chosen so that for each
missing-values pattern, the slope and bias match those of the Bayes predictor.

One to one correspondence between missing-values pattern and hidden unit In this part, W (X),
W (2) and b(2) are considered to be fixed to arbitrary values. We denote by mk, k ∈ J1, 2dK, the possible values
taken by the mask vector M . There is a one-to-one correspondence between missing-values pattern and hidden
unit if G and b(1) satisfy the following system of 22d inequations:

∀x ∈ supp(X), ∀k ∈ J1, 2dK,

 W
(X)
k,obs(mk)

xobs(mk) +W
(X)
k,mis(mk)

Gk,mis(mk) + b
(1)
k ≥ 0 (7)

W
(X)
k,obs(m′)xobs(m′) +W

(X)
k,mis(m′)Gk,mis(m′) + b

(1)
k ≤ 0 ∀m′ 6= mk (8)

i.e., missing-values pattern mk activates the kth hidden unit but no other missing-values pattern activates it.

Hereafter, we suppose that the support of the data is finite, so that there exist M ∈ R+ such that for any
j ∈ J1, dK, |xj | < M . As a result, we have:∣∣∣W (X)

k,obs(mk)
xobs(mk)

∣∣∣ ≤M ∑
j∈obs(mk)

∣∣∣W (X)
k,j

∣∣∣
≤M | obs(mk) | max

j∈obs(mk)

∣∣∣W (X)
k,j

∣∣∣
= Kk | obs(mk) |
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where we define Kk = M max
j∈obs(mk)

∣∣∣W (X)
k,j

∣∣∣. We also define I
(1)
k ∈ R such that:

∀j ∈ mis(mk), W
(X)
k,j Gk,j = I

(1)
k (9)

Then satisfying inequation (7) implies satisfying the following inequation:

∀k ∈ J1, 2dK, − | obs(mk) |Kk + |mis(mk) | I(1)k + b
(1)
k ≥ 0 (10)

Similarly, we define a quantity I
(2)
k ∈ R which satisfies:

∀j ∈ obs(mk), W
(X)
k,j Gk,j = I

(2)
k (11)

A missing-values pattern m′ 6= mk differs from mk by a set of entries J ⊆ mis(mk) which are missing in mk but
observed in m′, and a set of entries L ⊆ obs(mk) which are observed in mk but missing in m′. We will call a pair
J ⊆ mis(mk), L ⊆ obs(mk) such that | J ∪ L | 6= 0 a feasible pair. With these quantities, satisfying inequation
8 implies satisfying the following inequation:

∀k ∈ J1, 2dK, ∀(J ,L) feasible, (| obs(mk) |+ | J | − |L |)Kk + (|mis(mk) | − | J |) I(1)k + | L | I(2)k + b
(1)
k ≤ 0 (12)

Thus, by (10) and (12), a one to one correspondence between missing-values pattern and hidden unit is possible

if there exists I
(1)
k , I

(2)
k , b

(1)
k such that:

∀k ∈ J1, 2dK,

{
|mis(mk) | I(1)k + b

(1)
k ≥ | obs(mk) |Kk

|mis(mk) | I(1)k + b
(1)
k ≤ − | obs(mk) |Kk − (| J | − |L |)Kk + | J | I(1)k − |L | I

(2)
k ∀(J ,L) feasible

(13)

Because b
(1)
k can be any value, this set of inequations admits a solution if for any feasible (J ,L):

| obs(mk) |Kk < − | obs(mk) |Kk − (| J | − |L |)Kk + | J | I(1)k − |L | I
(2)
k

⇐⇒ 2 | obs(mk) |Kk + (| J | − |L |)Kk < | J | I(1)k − |L | I
(2)
k

⇐⇒


−2| obs(mk |Kk

| L | +Kk > I
(2)
k if | J | = 0

2| obs(mk |Kk

| J | +Kk < I
(1)
k if | L | = 0

I
(1)
k > Kk + | obs(mk) |Kk

| J | and I
(2)
k < Kk − | obs(mk) |Kk

| L | otherwise

Satisfying these inequalities for any feasible (J ,L) can be achieved by choosing:

I
(1)
k > (1 + 2 | obs(mk |)Kk (14)

I
(2)
k < (1− 2 | obs(mk |)Kk (15)

To conclude, it is possible to achieve a one to one correspondence between missing-values pattern and hidden
unit by choosing G and b(1) such that for the kth hidden unit:

I
(1)
k > (1 + 2 | obs(mk |)Kk by 9 and 14

I
(2)
k < (1− 2 | obs(mk |)Kk by 11 and 15

b
(1)
k satisfies 13

(16)

Equating slopes and biases with that of the Bayes predictor We just showed that it is possible to
choose G and b(1) such that the points with a given missing-values pattern all activate one single hidden unit,
and conversely, a hidden unit can only be activated by a single missing-values pattern. As a consequence, the
predictor for an input (x,mk) ∈ Rd × {0, 1}d is given by:

y(x,mk) =

2d∑
h=1

W
(2)
h ReLU(W

(X)
h,obs(mk)

xobs(mk) +W
(X)
h,mis(mk)

Gh,mis(mk) + b
(1)
h ) + b(2)

= W
(2)
k

(
W

(X)
k,obs(mk)

xobs(mk) +W
(X)
k,mis(mk)

Gk,mis(mk) + b
(1)
k

)
+ b(2)
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For each missing-values pattern, it is now easy to choose W
(X)
k,obs(mk)

and W (2) so that the slopes and biases

of this linear function match those of the Bayes predictor defined in proposition 4.1. Let βk ∈ R| obs(mk) | and
αk ∈ R be the slope and bias of the Bayes predictor for missing-values pattern mk. Then settingW

(2)
k

(
W

(X)
k,mis(mk)

Gk,mis(mk) + b
(1)
k

)
+ b(2) = αk

W
(2)
k W

(X)
k,obs(mk)

= βk
(17)

equates the slope and bias of the MLP to those of the bias predictor.

Construction of weights for which the MLP is the Bayes predictor We have shown that achieving a
one to one correspondence between missing data pattern and hidden units involves satisfying a set of inequations
on the weights (16), while equating the slopes and biases to those of the Bayes predictor involves another set
of equations (17). To terminate the proof, it remains to be shown that the whole system of equations and
inequations admits a solution.

We start by working on the one-to-one correspondence system of inequations (16). Let ε > 0 be a parameter.
Inequations (14) and (15) are satisfied by choosing:

I
(1)
k = (1 + 2 | obs(mk |)Kk + ε (18)

I
(2)
k = (1− 2 | obs(mk |)Kk − ε (19)

According to the second inequation in (13), b
(1)
k is upper bounded as:

b
(1)
k ≤ − | obs(mk) |Kk − |mis(mk) | I(1)k − (| J | − |L |)Kk + | J | I(1)k − |L | I

(2)
k

This inequation can be simplified:

b
(1)
k ≤ − | obs(mk) |Kk − |mis(mk) | I(1)k + | J | (I(1)k −Kk) + | L | (Kk − I(2)k )

= − | obs(mk) |Kk − |mis(mk) |+ | J | (2 | obs(mk) |Kk + ε) + | L | (2 | obs(mk) |Kk + ε)

The smallest upper bound is obtained for | J ∪ L | = 1 which gives:

b
(1)
k ≤ | obs(mk) |Kk − |mis(mk) |+ ε

According to the first inequation in (13), b
(1)
k is also lower bounded as:

b
(1)
k ≥ | obs(mk) |Kk − |mis(mk) | I(1)k

A valid choice for b
(1)
k is the mean of its upper and lower bounds. We therefore choose to set:

b
(1)
k = | obs(mk) |Kk − |mis(mk) | I(1)k +

ε

2
(20)

To summarise, we can restate the conditions for one to one correspondence as:

ε > 0 (21)

I
(1)
k = (1 + 2 | obs(mk |)Kk + ε (22)

I
(2)
k = (1− 2 | obs(mk |)Kk − ε (23)

b
(1)
k = | obs(mk) |Kk − |mis(mk) | I(1)k +

ε

2
(24)
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We now turn to the slopes and biases equations (17). Replacing b
(1)
k in the bias equation by its value in (24) we

get:

W
(2)
k

(
W

(X)
k,mis(mk)

Gk,mis(mk) + b
(1)
k

)
+ b(2) = αk

⇐⇒W
(2)
k

(
|mis(mk) | I(1)k + b

(1)
k

)
+ b(2) = αk

⇐⇒W
(2)
k

(
| obs(mk) |Kk +

ε

2

)
+ b(2) = αk

Putting together the one to one correspondence conditions, the slope and biases equations as well as the variable
definitions, we get a set of 8 equations and 1 inequation:

ε > 0 (25)

I
(1)
k = (1 + 2 | obs(mk |)Kk + ε (26)

I
(2)
k = (1− 2 | obs(mk |)Kk − ε (27)

b
(1)
k = | obs(mk) |Kk − |mis(mk) | I(1)k +

ε

2
(28)

W
(2)
k

(
| obs(mk) |Kk +

ε

2

)
+ b(2) = αk (29)

W
(2)
k W

(X)
k,obs(mk)

= βk (30)

Kk = M max
j∈obs(mk)

∣∣∣W (X)
k,j

∣∣∣ (31)

∀j ∈ mis(mk), W
(X)
k,j Gk,j = I

(1)
k (32)

∀j ∈ obs(mk), W
(X)
k,j Gk,j = I

(2)
k (33)

One can verify that this system of inequations has a solution. Indeed, choose W
(X)
k,obs(mk)

proportional to βk so

that equation (30) can be verified. This imposes a value for W
(2)
k via (30) and a value for Kk via (31). In turn,

it imposes a value for ε via (29): ε = 2
(
αk − b(2) −W (2)

k | obs(mk) |Kk

)
. The value obtained for ε is positive

if we choose b(2) sufficiently negative. Note that there is one single value of b(2) for all units so b(2) should be

chosen by considering all units. Then Kk and ε impose I
(1)
k and I

(2)
k via (26) and (27). Kk, ε and I

(1)
k impose

b
(1)
k via (28). Finally W

(X)
k,. , I

(1)
k and I

(2)
k impose G via (32) and (33).

Case 2: Suppose that ∃k ∈ J1, 2dK, ∃j ∈ J1, dK : W
(X)
k,j = 0.

Recall that the proof which shows that we can achieve a one to one correspondence between missing-values

pattern and hidden unit relies on the assumption that ∀k ∈ J1, 2dK, ∀j ∈ J1, dK, W (X)
k,j 6= 0. However, if there is a

slope βk of the Bayes predictor such that its jth coefficient is 0, then we must choose W
(X)
k,j = 0 to achieve Bayes

consistency. In such a case, we need to extend the one to one correspondence proof to the case where an entry

of W
(X)
k,j can be zero. It turns out to be easy.

In this case, we cannot pose Gk,j = W
(M)
k,j /W

(X)
k,j . Let Zk ⊆ J1, dK be the set of indices such that ∀j ∈

Zk, W (X)
k,j = 0. The whole reasoning exposed in case 1 still holds if we replace obs(m) by obs(m) \ Zk and

mis(m) by mis(m) \ Zk.

F Complementary figures

F.1 Comparison at n = 75 000

Figure 3 gives a box plot view of the behavior at n = 75 000. It is complementary to the learning curves, though
it carries the same information.
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Figure 3: Prediction accuracy R2 score for the 3 data types with n = 75, 000 training samples and in dimension
d = 10. The quantities displayed are the mean and standard deviation over 5 repetitions.
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Figure 4: Performance of the one hidden layer MLP as a function of its number of hidden units
For the mixtures of Gaussians, the performance is given as the difference between the R2 score of the MLP and
that of the Bayes predictor. For each dimension d, multiple MLPs are trained, each with a different number of
hidden units given by q × d for mixture 1 and self-masked, q × 2d for mixture 3. 75,000 training samples were
used for Mixture 1 and Self-masked and 375,000 for Mixture 3.

F.2 Experiments on growing MLP’s width

Figure 4 shows the performance of the MLP in the various simulation scenarios as a function of the number of
hidden units of the networks. In each scenario, the number of hidden units is taken proportional to a function
of the input dimension d:

mixture 1 : nh ∝ d

mixture 3 : nh ∝ 2d

selfmasked : nh ∝ d

These results show that the number of hidden units needed by the MLP to predict well are a function of the
complexity of the underlying data-generating mechanism. Indeed, for the mixture 1, the MLP only needs nh ∝ d
while the missing values are MCAR, and therefore ignorable. For selfmasked, the challenge is to find the right
set of thresholds, after which the prediction is relatively simple: the MLP also needs nh ∝ d. On the opposite,
for mixture 3, the multiple Gaussians create couplings in the prediction function; as the consequence, the MLP
needs nh ∝ 2d.
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