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ABSTRACT 19 

Apatite fission-track and (U-Th)/He thermochronometry have been applied to investigate the 20 

long-term topographic evolution of the French Massif Central. Located in the foreland domain of the 21 

Alpine and Pyrenean mountain belts, the French Massif Central presents enigmatic topographic 22 

features, reaching ~1700 m a.s.l. and ~1000 m of relief, that did not originate from Alpine 23 

compressional nor from extensional tectonics. The age of the present-day topography, the timing of 24 

its formation, and the underlying processes remain debated. Our new thermochronological data come 25 
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from the eastern flank of the massif, where sampling profiles run from the high-elevation region 26 

down to the Rhône river valley floor with a total elevation profile of 1200 m. Age-elevation 27 

relationships,  mean track-length distributions and thermal modeling indicate a two-steps cooling 28 

history: (i) a first exhumation event, already detected through previously-published 29 

thermochronology data, with an onset time during Mid-Cretaceous; and interestingly (ii) a more 30 

recent Cenozoic phase that is resolved from our data, with a likely post-Eocene onset. This second 31 

erosional event is associated with relief formation and valley incision probably induced by a long 32 

wavelength domal uplift supported by mantle upwelling.  33 

 34 

1. INTRODUCTION 35 

Many mountain belts on Earth are not associated with convergent domains and crustal 36 

shortening. These kind of intraplate, uncommon orogens are characterized by low seismic activity, 37 

slow deformation rate and by a typical long wavelength geomorphological pattern with slowly-38 

eroding high-elevated plateaus and erosion mainly focused along their margins (e.g. Stanley et al., 39 

2013; Scotti et al., 2014). The Massif Central in France is a striking example of such a non-40 

convergent mountain; it is located away from the European-African plate boundary and was not 41 

involved in its Cenozoic convergence. It is nowadays a prominent topographic feature reaching up to 42 

1700 m a.s.l. (Fig. 1) with a low-relief and high-elevation landscape bordered by incised fluvial 43 

valley (up to 1000 m of relief) (Fig. 1b and 1c), but the processes responsible for the creation and 44 

persistence of this relief have not been clearly elucidated yet.  45 

Insights on the geodynamics of the Massif Central may come from the reconstruction of the 46 

timing, rates and amount of the relief growth. Different scenarios can be postulated for the origin of 47 

its topography, spanning from (1) a long-lasting persistence of a Hercynian range underwent to a 48 

slow erosion-induced isostatic uplift or (2) a recent topographic rejuvenation hypothesis, which is 49 

supported by many geomorphological evidences, such as recent river incision, a non-monotonic 50 
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uplift, multiple levels of perched surfaces (Seranne et al., 2001; Olivetti et al., 2016) as well as a 51 

complex history of burial and exhumation phases highlighted by thermochronology (Barbarand et al., 52 

2001; Peyaud et al., 2005; Gautheron et al., 2009). In the framework of this rejuvenated topography 53 

hypothesis, the age and mechanism for the regional uplift are yet not explicitly defined and could 54 

encompass different phases such as a post-Miocene uplift event induced by the Messinian salinity 55 

crisis (Clauzon 1982), a Miocene uplift phase triggered by mantle upwelling or an Oligocene event 56 

associated to rifting and opening of the Liguro-Provencal Basin (Seranne et al., 2001; Faccenna et al., 57 

2010) (Fig. 1a). 58 

The actual timing and mechanism for the formation of the topography of the Massif Central, 59 

thus, is still unclear but the general current interpretation implies a contribution of a mantle upwelling 60 

leading in turn to volcanic activity that deeply shaped the landscape of the massif since the Miocene 61 

(i.e. Michon and Merle, 2001). Numerous geophysical campaigns were carried out in the nineties that 62 

highlighted a seismic low velocity zone 300 to 150 km deep, high heat flux and negative Bouguer 63 

gravity anomaly (Granet et al., 1995; Sobolev et al., 1997). All these observations are consistent with 64 

the interpretation of a shallow mantle and thus potential mantle contribution to the late-stage 65 

topographic evolution of the Massif Central.  66 

Although several studies have reported evidence for river incision throughout the massif (see 67 

Seranne et al., 2001 for instance), an attempt to reconstruct a large-scale and long-term topography 68 

evolution of the massif is lacking. To address this topic, we performed a new thermochronological 69 

study based on apatite (U-Th)/He and fission-track analysis and implemented them with literature 70 

data (Barbarand et al., 2001; Gautheron et al., 2009). Sampling has been performed along the eastern 71 

margin of the Massif Central, from the high-elevation surfaces to the bottom of the Rhône valley, in 72 

order to cover the entire margin profile (total elevation transect of 1200 m). The eastern margin of the 73 

massif should have recorded the signal of the erosion induced by the uplift of the entire massif 74 
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because the long persistence of the Rhône river formed a stable regional base level for erosion 75 

processes.    76 

  77 

2. GEOLOGICAL SETTING 78 

2.1 Tectonic history 79 

The French Massif Central is mainly composed by rocks associated with the Hercynian 80 

orogeny (Devonian to Late Carboniferous), dominated by granites and high-grade metamorphic rocks 81 

with subordinate mafic and ultramafic rocks and Late Paleozoic sedimentary covers (Chantraine et 82 

al., 2003) (Fig. 2a). Paleozoic rocks are overlain by thin Triassic continental sandstones and by 83 

Triassic to Cretaceous mainly carbonate sediments that characterize the sedimentation of the entire 84 

northern margin of the Tethys basin. During late Cretaceous, the Pyrenean orogeny involved mainly 85 

the southern portion of the massif, and reactivated Paleozoic structures with mainly strike slip 86 

kinematics (Blès et al., 1989). 87 

The Oligocene rifting event, recognized in the whole Western and Central Europe, involved 88 

mainly the northern and eastern part of the massif, producing north-south elongated basins marked by 89 

several hundreds of meters, locally up to 1-2 km, of marine to lacustrine sediments (Limagne, 90 

Roanne, Bresse and Valence basins) (Fig. 2a-b). Along the southern margin of the Massif, the 91 

European Oligocene rifting event overlapped with the opening of the Gulf of Lion that induced 92 

extensional tectonics along reactivated Paleozoic features such as the Nimes and Cévennes faults 93 

(Fig. 2a-b).     94 

The long-lasting volcanic history of the Central Massif starts back to the early Cenozoic and it 95 

evolved in three stages (Michon and Merle 2001 and references therein): (i) a pre-rift Paleocene 96 

phase, with limited magmatic production, (ii) a rift-related phase found in the northern part of the 97 

massif only and (iii) the main phase from ~27 Ma to the Quaternary. During this last phase, the major 98 

magmatic activity occurred from middle Miocene (~15 Ma) to the Quaternary with a climax between 99 
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9 and 6 Ma when the volume of erupted magma was much larger than during any other magmatic 100 

event in this area. The erupted magmas are sub-alkaline to alkaline intraplate-type lavas (Lustrino 101 

and Wilson, 2007).   102 

Alpine orogeny only marginally affected the Massif Central and although the Alpine frontal 103 

thrusts are nowadays only a few tens of kilometers to the east, no evidence of Alpine deformation is 104 

reported within the crystalline basement of the massif (Blés et al., 1989). 105 

 106 

2.2 Long-term history of vertical movements in the Massif Central  107 

The early Triassic topography of the Massif, at the end of the Hercynian orogenic cycle, is 108 

supposed to be characterized by low elevations, limited relief and marginal plains (Le Griel, 1988) 109 

bordered by marine basins that hosted carbonate sedimentation (Curnelle and Dubois, 1986). 110 

Hercynian basement should have been close to the base level during the whole Jurassic, without 111 

evidence of a prominent topography capable to produce large fluvial system and clastic sediments 112 

(Le Griel, 1988). Contrastingly, an important phase of surface uplift and consequent crustal 113 

exhumation occurred during the Cretaceous, based on low temperature thermochronological data 114 

(Barbarand et al., 2001; Peyaud et al., 2005; Gautheron et al., 2009) and stratigraphic constraints 115 

(Curnelle and Dubois, 1986). This mid-Cretaceous exhumation is coeval with opening of the Bay of 116 

Biscay and slightly predates the emersion of the “Ithsme Durancien”, an aerially exposed E-W 117 

elongated area emerged during the Cenomanian that led to the formation of large bauxite deposits. 118 

Emersion of the “Ithsme Durancien” is associated to a NE-SW directed extensional tectonic regime, 119 

that produced the formation of the Vocontian Basin to the north and South Provence Basin to the 120 

south (Tavani et al., 2018 and references therein). During lower Cretaceous, topography of the 121 

southern Massif Central should have been characterized by long wavelength of ~500 km and 122 

moderate amplitude 300-500 m (Wyns and Guillocheau, 1999) produced by far field response to the 123 

Pyrenean orogeny. Cretaceous low topography is suggested also by the limited clastic sedimentation 124 
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within the subsiding marine basins, such as the Grand Causse, coeval with the exhumation of the 125 

Cévennes and Ardèche regions (Barbarand et al., 2001; Gautheron et al., 2009). 126 

During the Paleocene, large portions of the south-eastern massif, located south of the Cévennes 127 

Fault, were emerged as a consequence of the Pyrenean compression, while there are no significant 128 

evidence of Pyrenean activity farther north, and the topography should have been limited to few 129 

hundred meters high (Séranne et al., 2002 and references therein).      130 

Numerous stratigraphic evidences suggest that during the lower Eocene a large portion of the 131 

Massif Central was close to sea level. Marine clays and evaporitic deposits are described in the Velay 132 

region, in the central part of the massif (Girod et al., 1979; Rey, 1971; Turland, et al., 1994), while 133 

the sedimentation in the Bresse basin recorded a marine communication with the Valence basin and 134 

the Mediterranean Sea (Sissingh, 1998). In the southern part of the massif, marine deposits are 135 

described in the Ales basin (Alabouvette and Cavelier, 1984). 136 

The Oligocene rifting produced deep grabens mainly in the northern massif, that hosted up to 137 

two-three thousand meters of sediments (Limagne basin), characterized by lacustrine-continental 138 

facies with regular marine incursions. Oligocene rifting induced medium to high crustal thinning 139 

(between 5 and 25%) but not associated to a large emission of volcanic products (Michon and Merle, 140 

2001). The lack of Oligocene thermochronological cooling age also suggests that there were no 141 

significant  exhumation event (Fig. 2c; Barbarand et al., 2001; Peyaud et al., 2005; Gautheron et al., 142 

2009).  143 

In the center of the massif (Margeride and Velay regions), geometric relationship between river 144 

incision and volcanic flows allowed to constrain multiple river incision events between 10 Ma and 7 145 

Ma attesting an uplift phase of the order of 200-300 m (Michon, 2000 and references therein; Goër 146 

and Etienne, 1991; Augendre, 1997; Defive and Cantagrel, 1998) while in the Causse region 147 

(southern massif) the incision of the Tarn river was active already at 13 Ma (Ambert, 1994). In 148 

general, the Miocene to present incision history of the most of the Massif Central area is focused in a 149 
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10 to 5 Ma minor phase (13 to 7) followed by a major phase of river incision, evaluated at around 150 

400 m, suggesting an important and coeval uplift event (Etienne, 1970; Defive and Cantagrel, 1998; 151 

Michon, 2000; Séranne et al., 2002). This second phase of uplift has been recently detected by river 152 

profile analysis and cosmogenic nuclides derived denudation rates along the eastern margin of the 153 

massif, and has been consistently evaluated to be of the order of 300 to 400 m (Olivetti et al., 2016). 154 

            155 

2.3 Thermochronological data 156 

Previous thermochronological studies focused along the south and south-eastern portions of the 157 

Massif Central (Fig. 2c). The Ardèche and Cévennes areas, where the relief is greater, have been 158 

investigated through apatite fission track (AFT) by Barbarand et al. (2001) and through (U-Th)/He 159 

(AHe) method performed on the same samples by Gautheron et al. (2009). The positive correlation 160 

between age and elevation both for AHe and AFT data has been interpreted as a consequence of 161 

long-lasting exhumation since 130 Ma (apparent exhumation rate of between 0.013 and 0.022 162 

km/Myr), leading to slow cooling through the apatite Partial Annealing Zone (PAZ) and the He 163 

Partial Retention Zone (PRZ).  164 

Samples from Cévennes and Ardèche regions yielded AFT and AHe ages spanning between 165 

~130 Ma to 45 Ma, and thermal modeling suggests an exhumation event started at about 130±10 Ma 166 

(Barbarand et al., 2001). A very similar thermal history is proposed by Peyaud et al. (2005) using 167 

AFT ages (spanning between 147 Ma and 77 Ma) and vitrinite reflectance data for the region of the 168 

Rouergue and Montagne Noire (Fig. 2c). Apart from this well-defined pre-Cenozoic thermal 169 

histories, in the Cévennes mountains (Saint Guiral Liron profile) Barbarand et al. (2001) observed a 170 

characteristic shape of the mean track length (MTL) vs AFT age relationship, where the  youngest 171 

and oldest ages display relatively long mean track lengths while the intermediate ages have shorter 172 

track lengths. Such a relationship (“boomerang” shape) is likely the consequence of a period of 173 

thermal annealing, affecting a set of samples to various degrees, followed by a discrete cooling event 174 



 8 

(Green, 1986; Omar et al., 1989). The oldest ages represent shallower, cooler rocks preserving most 175 

of their tracks and previous thermal histories, while intermediate ages (the middle “concave-up” 176 

section) represent rocks that resided a long time within the PAZ whose tracks were more severely 177 

shortened. The timing of the cooling event is recorded by “deepest” youngest samples provided that 178 

they have MTLs of the order of 14 µm (i.e. they were at paleotemperatures > c. 110°–125°C prior to 179 

the last phase of cooling), otherwise they provide just an upper limit to this timing. In the dataset of 180 

Barbarand et al. (2001), the younger part of the “boomerang” pattern is less well defined and the 181 

youngest sample display an age of 45±2 Ma accompanied by a MTL of 12.9±0.2 µm. Additional data 182 

are thus required to further elucidate the recent exhumation history of the Massif and its relationship 183 

with topographic evolution mechanisms. 184 

  185 

3. METHODS 186 

In a context of ancient, slowly-eroding orogen, thermochronological methods with low-closure 187 

temperatures assure greater probability to detect any recent topographic rejuvenation. For that 188 

purpose, we mainly used apatite (U-Th)/He dating for its low closure temperature (40-120 °C; 189 

Gautheron et al., 2009; Flowers et al., 2009; Djimbi et al., 2015) complemented by some AFT data 190 

(closure temperature of 110 °± 10° C; Green and Duddy, 1989) for a subset of samples to expand the 191 

time window of investigation. Samples have been collected following tens of km long profiles along 192 

the eastern flank of the massif with as large as possible differences in elevation, from the low-relief 193 

high-elevation surface down to the bottom of the Rhône valley following the classical sampling 194 

strategy used for plateau margin studies (i.e. Persano et al., 2001). Analytical protocols for apatite 195 

(U-Th)/He and AFT analysis adopted in this study follows Mahéo et al. (2013) and Balestrieri et al. 196 

(2001), respectively, and  the corresponding procedures are presented in the appendix.  197 

Rock cooling history has been investigated by inverse and forward numerical modeling using 198 

QTQt and Hefty software (Gallagher, 2012; Ketcham, 2005). QTQt software has been used for 199 
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inverse modeling, where observed AFT and AHe data such as spontaneous, induced and horizontal 200 

confined tracks, apatite crystal dimension, amount of Uranium, Thorium and measured age, are 201 

inverted to find the Temperature-time  (T-t) paths compatible with the data. Hefty software has been 202 

used in forward method, where a T-t path is proposed following some specific 203 

topographic/exhumation scenarios and the synthetic AFT age and track length distribution are 204 

produced and then compared to observed data.  205 

The Ketcham et al. (2007) annealing model and the radiation damage accumulation and annealing 206 

model  of Gautheron et al. (2009) have been applied for AFT and AHe data, respectively. 207 

 208 

4. RESULTS 209 

4.1  Thermochronological data 210 

Twelve bedrock samples of granite and high-grade metamorphic rocks have been collected 211 

along the eastern side of the Massif Central (Fig. 3). Single-crystal apatite (U-Th)/He dating 212 

(afterward referred to AHe) was performed on all samples and where possible five replicates were 213 

performed (Table 1). Some replicates present older ages in comparison to others inside the same 214 

samples, reflecting variable grain size, damage content created during alpha decay, chemical 215 

composition, and complex diffusion processes (Shuster et al., 2006; Flowers et al., 2009; Gautheron 216 

et al., 2009; Gautheron et al., 2013; Recanati et al., 2017). AFT dating and track-length 217 

measurements were performed on 5 samples (Table 2). In general, the ages show a positive 218 

correlation with elevation (Fig. 3), and the regression of the age-elevation yields an apparent 219 

exhumation rate of 0.038 km/Myr.  220 

The northern profile is composed of 4 samples collected from elevation between 471 m and 221 

1366 m asl, along the southern flank of the St. Etienne valley. The valley is around 25-km wide and 222 

the horizontal distance of our sampling profile is 12 km for a total elevation difference of 700 m (Fig. 223 

3). Single-grain AHe ages span from 58 to 131 Ma. 5 grains have been dated for the lower three 224 
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samples, while the uppermost sample yields only a single-grain age of 131 Ma. Two AFT ages from 225 

the highest and lowermost samples show ages of 93±4 Ma (vo-14, 1136 m asl) with a long MTL of 226 

13.9±0.1 µm (100 measured tracks) and 78±5 Ma (vo-16, 471 m asl) with a MTL of value of 227 

12.7±0.2 µm (51 measured tracks), respectively. 228 

The southern profile is composed of 7 samples from an elevation of 195 m to 922 m, along a 229 

horizontal distance of about 40 km starting from the low-relief upland surface to the Rhône river and 230 

for a total difference in elevation of about 900 m. Single-grain AHe  ages span from 40 to 134 Ma. 231 

The three lowermost samples (vo-1, vo-2, vo-3) have similar single-grain AHe ages with many 232 

young ages (between 94 and 40 Ma) consistently with their low elevations. Two samples at 350 m 233 

(vo-4) and 220 m (vo-3) of elevation, respectively, have been dated by AFT and yielded ages of 80±4 234 

Ma with MTL of 12.9±0.2 µm (100 measured tracks) and 68±4 Ma accompanied by an MTL of 235 

13.3±0.2 µm (100 measured tracks).  236 

Three samples have been collected along a transect in between the two profiles (vo-18, vo-19, 237 

vo-21) with single-grain AHe ages spanning between 40 and 129 Ma. Sample vo-21 is the lowermost 238 

sample collected in this study and shows a high dispersion in single-grain AHe ages, nevertheless 239 

two replicates have young ages of 40 Ma and 50 Ma. The corresponding AFT age is 74±4 Ma with 240 

MTL of 13.3±0.1 µm (100 measured tracks).   241 

 242 

4.2 Thermal modeling 243 

The spread of the AHe ages reflects the effective Uranium content (eU, defined as U + 0.235 × 244 

Th), the grain size (sphere equivalent radius Rs) and the thermal history (e.g. Gautheron et al., 2009). 245 

eU content is highly variable between the apatite crystals (Table 1) but within the same sample it is 246 

often positively correlated with the ages suggesting an important control on age dispersion by 247 

radiation damage effect (Fig. S1). This age tendency is similar to what obtained by Gautheron et al. 248 

(2009) for samples collected some tens of km southward: the age overlap between the two AFT and 249 
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AHe thermochronometers is proposed to reflect the level of radiation damage and the thermal history. 250 

In case of reheating or long stay in the He partial retention zone (PRZ), a high level of α-recoil 251 

damage can remarkably move the He PRZ towards higher temperatures ranging up to 120 °C, 252 

making the closure temperature for the AHe system close to that one of the AFT system (Gautheron 253 

et al., 2009).  254 

To evaluate the thermal evolution of individual samples, taking into account both the influence 255 

of the α-recoil damage and grain size for the AHe system and AFT data, we performed 1D thermal 256 

modeling using the QTQt software (Gallagher, 2012). Figure 4 shows the results of the modeling for 257 

the southern profile, using AFT ages plus MTLs and AHe ages with radiation damage model for He 258 

diffusion (Gautheron et al., 2009) with the timing of the Cretaceous limestones as the only external 259 

stratigraphic constraint.  260 

Thermal history of vo-14 (the uppermost sample) has been modeled in three different ways, in 261 

order to evaluate the role of He data and stratigraphic constraint on the inverse modeling: with He 262 

data (Fig. 4a), without He data (Fig. 4b) and without stratigraphic constraint (red lines in Fig. 4b). 263 

Thermal histories with He data are remarkable similar than those without He data (probably due also 264 

to limited number of AHe-dated grains), suggesting that general modeling path are mainly controlled 265 

by the AFT ages and MTL while the He data contribute to better define the paths. For this sample, 266 

the Mesozoic stratigraphic constraint does not modify the post-100 Ma thermal histories, suggesting 267 

that a Mesozoic burial under the Triassic and Jurassic sediments is not constrained by 268 

thermochronological data for the uppermost sample.   269 

For the low-elevation samples the general thermal history shows a similar trend, with a faster 270 

cooling phase from 120-100 Ma and 70-50 Ma followed by a less well-defined evolution suggesting 271 

a slow cooling and a long persistence around 50-40 °C until present-day.  272 

It is noteworthy that the He data for the lowermost samples (vo-3 and vo-21, Figs. 2d,e) 273 

substantially constrain the thermal history, that resulting consistent between each other. The highly-274 
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dispersed He data of the vo-4 sample (ranging from 89 Ma to 65 Ma), prevent their use in the 275 

modeling and the Cenozoic T-t path cannot be precisely defined (Fig. 2f).   276 

  277 

5. DISCUSSION  278 

5.1 Regional distribution of the thermochronological ages  279 

The episodes that shaped the topography of the Massif Central are unclear because of the 280 

limited available time constraints for tectonic deformation events and geomorphological markers. 281 

The margin of the massif records a long morphogenesis history (see Seranne et al. 2001 and 282 

references therein), evolving under general slow erosion rates confirmed also by our new 283 

thermochronological data preserving the record of the Cretaceous exhumation and a probable 284 

evidence of Cenozoic imprinting (discussed below). In order to trace the feeble tectonic signal in the 285 

thermochronological data, here we compare our data set to the published data of Barbarand et al. 286 

(2001) and Gautheron et al. (2009). In particular, we found three common characteristics that we 287 

consider diagnostic for the reconstruction of the tectonic history: i) uppermost samples show AFT 288 

and AHe Cretaceous ages and long MTLs; ii) non-monotonic trend of the MTL with age and 289 

elevation, showing a general decrease from high elevation/old age toward intermediate elevations and 290 

eventually a slightly increase for the lowermost and youngest samples (Fig. 5); iii) large differences 291 

in AHe and AFT ages for a limited difference in elevation between the uppermost and lowermost 292 

samples.  293 

 The AFT age and MTL of our uppermost sample (vo-14; 93±8 Ma and MTL of 13.9 μm), 294 

located at 1136 m asl, are consistent with samples n°20 (105±6 Ma, MTL of 13.76 μm at 1500 m) 295 

from Cévennes and with sample n°8 (119±4 Ma, MTL of 13.71μm at 1185 m) from Ardèche regions 296 

reported in Barbarand et al. (2001). Also the single-grain AHe ages of our vo-14 and n°20 Cévennes 297 

samples overlap, being between 88 and 120 Ma. These ages confirm the proposed interpretation of 298 

Barbarand et al. (2001) and Peyaud et al. (2005) about a relatively fast and widely diffuse Cretaceous  299 
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erosion phase probably induced by the regional uplift associated with the Pyrenean Rifting event. 300 

Initiation of this phase could have been around 120±10 Ma as derived by the thermal modeling of our 301 

data, which is consistent with Barbarand et al. (2001). The observed regional variations could reflect 302 

along margin changes in tectonic evolution which will be discussed below.  303 

The relationship of MTL with elevation and ages is similar in all the three regions of Cévennes, 304 

Ardèche and our study area (called NE margin); the MTLs tend to decrease from the high elevation 305 

to about 600-400 m, then they tend to slightly increase from 400 m to the bottom of the profile (Fig. 306 

5). This trend is highlighted by the 2
nd

 order polynomial regression curves (calculate with age vs 307 

elevation transposed in horizontal and then vertically rotated). The same trend is observed in the 308 

MTL vs AFT ages (Fig. 5d) where the age pattern assumes a typical concave-up “boomerang” shape 309 

that is classical observed in the passive continental margins (Green 1986; Gallagher and Brown 310 

1999). Although the overall geodynamics evolution of the eastern Central Massif is very different 311 

from a continental margin, we remark the similarity in term of erosional style that could reflect 312 

comparable tectonic and geomorphological evolutions.   313 

In the classical interpretation of these boomerang shapes for continental margins (Gallagher 314 

and Brown 1999; Wildman et al., 2018), the upper samples preserve the erosional history of the pre-315 

modern margin formation, in our case the Cretaceous Pyrenean rifting (blue area in Fig. 5a, b, c), 316 

while the lower samples record the evolution of the modern escarpment. In our case, the ages of the 317 

low-altitude samples do not precisely constrain the onset of margin erosion, because exhumation was 318 

not enough to expose samples from below the PAZ, as confirmed by MTLs that do not exceed the 14 319 

μm. From these ages, we can only propose a minimum age for the margin erosional history that 320 

should be younger than 45 Ma, i.e. the youngest AFT age accompanied by a MTL of 12.91 µm 321 

(Barbarand et al., 2001). On the basis of the thermal modeling, we propose that the MTLs are more 322 

sensitive to temperature and that the track length distributions may also record feeble changes in 323 

cooling rate even for temperatures above the PAZ.  324 
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In order to propose a topographic evolutionary model consistent with the patterns of the 325 

thermochronological data, we tested possible thermal histories using HeFTy forward modeling 326 

(Ketcham  et al., 2005). In the forward modeling approach, we tuned the T-t paths to obtain the AFT 327 

age and MTL distribution as similar as possible to the published data. The aim of this approach is to 328 

verify the hypothesis that eastern margin of the Central Massif recorded the signal of the Cenozoic 329 

uplift. Our approach of forward modeling is justified first by the absence of the single-grain AHe age 330 

and Dpar measurement from the published data, and second, because we are interested to verify if a 331 

proposed erosional history of the margin is consistent with individual sample data. In Figure 6 we 332 

show a swath profiles running perpendicular to the Cévennes (Barbarand et al., 2001) and in Figure 7 333 

a similar profile along the NE margin (our study area) with reported the values of MTLs.  334 

Along the Cévennes profile (Fig. 6), we choose seven samples from Barbarand et al. (2001) 335 

(n°20, 21, 22, 25, 26, 27 and 28) showing the AFT ages and track-length distributions considered as 336 

representative of the regional trend discussed in Figure 5. Thermal history of low elevation sample 337 

n°27 and n°21 (Fig. 6), showing 12.30 and 12.91 µm of MTL and AFT age of 51±2  and 45±2 Ma 338 

respectively, are consistent with a limited amount of burial during Cretaceous (up to ~96°C), a stable 339 

or slow exhumation since about 90 Ma and an increase in cooling rate starting at ~40 Ma from 340 

temperature of ~80°C. In these sample the Cretaceous phase left a weak signal because the sample 341 

was likely deep enough to not clearly record this erosion event. Sample n°22 and n°26 of Barbarand 342 

et al. (2001) are located more in the interior and should have recorded the passage of the Cenozoic 343 

erosional wave some Myr later due to the westward moving of the erosion from the base level to the 344 

margin top. Samples 22 and 21 seem very close in figure 6 because projected, and they are ~10 km 345 

far. Shorter MTLs of the sample n°22 and n°26 are consistent with this model of westward 346 

propagating erosion wave, with a longer residence in the PAZ and a younger onset of exhumation. 347 

This increase in cooling rate starts when the sample n°22 and n°21 are at ~70°C and consequently the 348 

age record a mixed age with trace of the pre-Cenozoic history. Samples n°25 and n°28 show old 349 
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cooling age, due to effect of the Cretaceous erosion event that was not enough important to bring the 350 

samples in surface, such as suggested by short MTL (very short for n°28). The last cooling is 351 

therefore induced by the Cenozoic event, concerning the cooling from ~60°C, that for this samples is 352 

younger due to progression of the erosive wave.  353 

The uppermost sample, n°20 (Barbarand et al., 2001) shows fast cooling rate starting about 120 354 

Ma while the pre-Cretaceous history is totally reset and not constrained (dashed lines in the modeling 355 

of n°20). Sample n°20 does not record any evidence for Cenozoic erosion because, after the 356 

Cretaceous phase, it was already near surface temperatures. Alternative thermal histories exist for 357 

each sample, but they do not explain the whole data along the profile and the relationship between 358 

MTL, elevation and age.   359 

Now, we also verify if for the NE margin (our study area), the hypothesized Cenozoic erosion 360 

of the margin is consistent with the thermal histories of the individual samples. The NE margin, 361 

consistently with Cévennes data, shows a regular boomerang trend with long MTL on top, a decrease 362 

in the middle elevation and a slightly increase at the bottom. The trend is observable although few 363 

data are available (Fig. 5c).  364 

Along the NE margin profile (Fig. 7), we integrated data from two published samples (n°1, n°2, 365 

Barbarand et al., 2001) with new AFT and AHe data. We followed the same approach than for the 366 

Cévennes profile, and we used forward modeling to find a T-t path as similar as possible to the 367 

obtained AFT ages and track length distribution (blue in Fig. 7). In a second step, we compare the 368 

forward modeling path with the inversion modeling obtained with QTQt software (shown in Fig. 4).        369 

Differently from the Cévennes profile, in the NE margin the lowermost samples vo-3 and vo-21 370 

show MTLs longer than the lowermost samples of Cévennes and Ardèche regions. The T-t path 371 

proposed for the samples vo-3 show a deeper burial (~110°C) during the Mesozoic followed by a 372 

cooling until shallow crustal level corresponding to 50° C, when they resided for ~20 Myr before 373 

being eroded since 40 to 30 Ma. Interestingly this proposed history is consistent with the inverse 374 
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thermal history proposed by QTQt software using also the AHe ages (colored paths in Fig. 7). 375 

Sample vo-4 provides shorter MTL consistent with a longer persistence at temperatures ~50° C and a 376 

younger cooling event since ~30 Ma. Although the two samples (vo-3 and vo-4) are quite close, the 377 

distance of ~5 km is considered enough to explain the difference of the MTL as being the result of 378 

the progressive propagation of the erosion wave that had reached the most internal sample some Myr 379 

later.  Considering the distance of ~5 km between the two samples we can imagine that the 380 

propagation rate of the erosive wave is of the order of ~0.5 km/Myr that is consistent with 381 

escarpment retreat rate found in many continental margins (Braun, 2018).  382 

The most internal samples (n°2 and n°1 of Barbarand et al., 2001) were not completely reset 383 

during the Cretaceous burial and preserve the heritage of the old exhumation histories. Moreover, 384 

sample n°2 being a Triassic sandstone, it further support a limited post-sedimentation erosion. In 385 

general, their short MTLs are not consistent with a Cenozoic event suggesting a regularly slow 386 

cooling. A very slight change in cooling rate at about 30 Ma can be proposed in sample n°1 only.   387 

  Another evidence supporting a Cenozoic exhumation exists such as the positive correlation of 388 

the age-elevation relationship (AER) (Fig. 3). Isotherms are influenced by topography in function of 389 

the topographic wavelength, relief amplitude and by isotherm depths (Stüwe et al., 1994; Braun, 390 

2002; Foeken et al., 2007) so that below wide valleys (wavelengths >20-40 km) shallower isotherms 391 

tend to be parallel to the surface. A sampling profile along a valley flank of more than 10-20 km long 392 

with less than 1 km of difference in elevation, such as the case of Massif Central, is expected to yield 393 

a poor correlation between age and elevation (Braun, 2002). The observed positive correlation in the 394 

AER of the AFT and AHe data from the Massif Central suggests that relief was formed after these 395 

samples cooled below their closure temperature.   396 

 397 

5.2 Cretaceous Pyrenean rifting  398 
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The Cévennes, Ardèche and NE margin (our study) areas were part of the western margin of 399 

the Southeast France Basin during the Cretaceous. This sedimentary basin developed on European 400 

crust since the Triassic in response to Alpine Tethys rifting. Barbarand et al. (2001) interpreted the 401 

mid-Cretaceous AFT cooling ages as a general erosional event produced by an uplift commonly 402 

referred to as the “Durance Uplift” event that involved the Southeast (SE) France Basin and probably 403 

associated to the opening of the Gulf of Biscay. Here, we propose that mid-Cretaceous 404 

thermochronological ages not only recorded the “Durance Uplift” event, but that they might reflect a 405 

specific evolution of the Southeast Basin.  406 

The Southeast Basin was initially NE-SW elongated in the Triassic to Middle Jurassic, being 407 

parallel to the northern Tethyan paleo-margin, while since the Late Jurassic the structural trend 408 

became E-W. Mid-Cretaceous corresponds to a phase of deep reorganization in the SE France basin 409 

geometry, associated to a general north-south directed extensional tectonic that lead to the formation 410 

of coeval “isthmus Durancien” and the formation of the two separate basins, the Vocontian basin in 411 

the north and the South Provence in the south. It is possible that the erosional event, recorded in the 412 

thermochronological data, was induced by the margin uplift at the transition between a subsiding and 413 

extending continental domain in the east (the Vocontian Basin) and the Massif Central domain to the 414 

west.   415 

In the Barremian (129 to 125 Ma) the westward portion of the Vocontian trough was close to 416 

the Ardèche area, while in the Albian (~110 to 100 Ma) the Vocontian trough expanded southwards, 417 

toward the Cévennes, and northwards toward the NE margin (our study area) (Curnelle and Dubois, 418 

1986). The younger ages found in the uppermost samples in the Cévennes and in our study area (~90 419 

to 120 Ma) with respect to the older Ardèche samples (~110 to 130 Ma), might reflect the non-420 

synchronous uplift of the margin that progressively followed the basin subsidence.  421 

In such a scenario, the NE-SW oriented margin of the Massif Central was oblique with respect 422 

to the general N-S directed sense of extension, producing a possible transtensional tectonic regime. 423 
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The thickness of removed crust of several km, along the margin is indeed compatible with a 424 

mechanism of erosion of a transtensional uplifted rift shoulder similar to what is observed in modern 425 

continental margins. Such geodynamics context is similar to propositions for oblique continental 426 

margin, such as the Transantarctic Mountains (Wilson 1995).  427 

The importance of the mid-Cretaceous extensional phase, associated to the Bay of Biscay - 428 

Pyrenean rift, is highlighted by large geological evidence in the SE basin and recently found also in 429 

the Western Alps (Tavani et al., 2018 and references therein).        430 

 431 

5.3 Cenozoic uplift 432 

The hypothesis of a Cenozoic age for the eastern Massif Central topography is supported by 433 

thermal and topographic evolution derived from our and published data. The “boomerang” trend of 434 

the MTL-age and MTL-elevation relationships (Fig. 5) are the most convincing evidence for a 435 

Cenozoic uplift-induced erosion of the margin, that is supported by the thermal inverse and forward 436 

modeling.  437 

The massif margin may be considered as a smaller scale analogue to an elevated continental 438 

passive margin, with comparable erosional pattern due to a regressive erosion wave moving from the 439 

bottom to the top following a Cenozoic uplift phase. The base level is represented by the Rhône river 440 

that contributed to maintain the main valley floor at the same elevation during the Cenozoic. The 441 

limited amount of erosion coupled with the general eastward tilting of the Cretaceous formations and 442 

no evidence for faulting suggest a topographic evolution similar to a downwarp model of a 443 

continental shoulder evolution (Ollier and Pain, 1997). This model implies a long wavelength flexure 444 

of the lithosphere, which produces a margin topography characterized by a broad monocline with a 445 

very low gradient (see Gallagher and Brown 1998; Wildman et al., 2018). In the case of the Massif 446 

Central, no Cenozoic extensional rifting domain is invoked to produce the uplift, but such an 447 

erosional model is consistent with a long wavelength topographic growth induced by mantle 448 
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upwelling, providing a remarkable consistency with the deep and localized present-day high 449 

temperature anomaly imaged by seismic tomography (Granet et al., 1995; Faccenna et al., 2014) and 450 

the long-term surface evolution. Volcanism is another evidence for mantle involvement during 451 

topographic growth, with the first activity attested about 30 Ma and an effusive acme since 15 Ma 452 

(Michon and Merle, 2001). 453 

The age onset for the uplift is not well constrained by our thermochronology data. The 454 

Cenozoic event recognized in the MTL regional distribution and supported by forward modeling 455 

should have occurred after ca. 45 Ma (AFT age of the youngest sample in the Cévennes area, 456 

Barbarand et al., 2001) although it remains difficult to precisely constrain because of limited erosion 457 

and dispersed AHe ages. Lutetian (48 to 40 Ma) marine deposits have been described in several 458 

basins located in the middle of the massif, such as the Puy Basin (Seranne et al., 2001; Michon, 2000 459 

and references therein) testifying that margin uplift occurred not before ~40 Ma (Fig. 8a).  460 

Between late Eocene and Oligocene, some portions of the Massif Central have been involved in 461 

two regional extensional events: the European rifting and the opening of the Gulf of Lion. The 462 

European rifting is associated to localized crustal extension within individual basins, such as Bresse 463 

basin, while a coeval uplift and erosional event at regional scale has been never described. The 464 

amount of uplift and volcanic activity in Massif Central are much higher than in other analogue 465 

massifs (e.g. Vogelsberg mountains, Rhine and Bohemian massifs), suggesting the contribution of 466 

other processes. The opening of Gulf of Lion (30 to 16 Ma) (Fig. 8c) corresponds to an important 467 

tectonic phase that reactivated Paleozoic structures such as the Nimes fault and in general deeply 468 

reshaped the western Mediterranean plate organization (Séranne et al., 1995). The onset of the 469 

margin uplift could have been started at the beginning of this re-organization event. 470 

The Massif Central plume in the early Miocene probably interacted with the Ionian subduction 471 

system that contributed to continuously nourishing the mantle upwelling and flow. The contribution 472 

of the Ionian subduction in the Massif Central volcanism has been already proposed (Barruol and 473 
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Granet 2002; Faccenna et al., 2010) and also supported by seismic anisotropy (Faccenna et al., 2014; 474 

Salimbeni et al., 2018) that imaged well the northwest-southeast directed mantle counter-flow 475 

induced by Ionian slab retreat during the opening of Gulf of Lion (Fig. 8c). The interaction of the 476 

Massif Central mantle plume with the slab retreat induced counter-flow could have caused the greater 477 

volcanism, the higher total elevation and the long-term slow surface uplift evolution of the Massif 478 

Central. 479 

The amount of exhumation and of margin uplift is also uncertain; if we consider the thermal 480 

modeling consistent with a progressive westward erosion of the margin (Figs. 6-7) we can observe 481 

that samples cooled by ~40° C during the last 30-40 Ma, corresponding to a removal of about 1 km 482 

of crustal thickness (assuming a geothermal gradient of 30°/km). These numbers allow to propose 483 

exhumation (and uplift) rate ranging from 0.025 to 0.033 mm/yr (Fig. 8c) which is comparable with 484 

modern basin-averaged cosmogenic denudation rates reported in the area (about 0.04 mm/yr, Olivetti 485 

et al., 2016), suggesting that a large portion of the slowly-eroding landscape underwent a constant 486 

process of erosion during the last 40 Myr. Other portions of the landscape are eroding slightly faster 487 

(cosmogenic denudation rate of 0.07 mm/yr), suggesting that uplift might have further increased and 488 

it is probably still active today. The more recent higher denudation rates are consistent with the 489 

inferred uplift rate from the elevation of a Pliocene marine-continental transition deposits found 490 

along the Rhône valley, at 200 m asl (Peage de Roussillon village, Fig. 3)(Aguilar et 1989).  491 

 492 

6. Conclusions 493 

Our new thermochronological study from the eastern margin of the French Massif Central, 494 

along with literature data, permits to reconstruct the long-term evolution of long-wavelength 495 

topography. A two-step history has been recorded in the regional data trends:  i) a first mid-496 

Cretaceous exhumation phase ii) a second, newly-recognized, Cenozoic erosional phase affecting the 497 

newly-formed margin with onset time likely after the Eocene. For this Cenozoic phase, we envisage a 498 
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domal uplift of the area at least partly due to mantle upwelling with the formation of a long 499 

wavelength flexure at the margin and subsequent erosion of the scarp. The total amount of erosion is 500 

limited, such that AHe and AFT ages exposed by the erosional wave, do not record the onset of the 501 

phase but released mixed ages. On the contrary, AFT, track-length data and thermal modeling permit 502 

to record the signal of a post-50 Ma event of erosion induced by a progressive westward regressive 503 

erosion starting at the eastern margin of the massif.  504 

   505 

Acknowledgements  506 

Research and post-doctoral allocation of V.O. were funded by EDF (Electricité De France) 507 

through the SIGMA research program (SeIsmic Ground Motion As-sessment). This work is also a 508 

contribution of the ECCOREV research federation and Labex OT-Med (ANR-11-LABX-0061) 509 

funded by the French Government “Investissements d’Avenir” program of the French National 510 

Research Agency (ANR) through the A*MIDEX project (ANR-11-IDEX-0001-02). P.G.V. 511 

acknowledges support from Swiss National Science Foundation (SNSF) grant PP00P2_170559. 512 

 513 

Appendix 514 

A1. Apatite Thermochronology  515 

The apatite grains were recovered from the collected samples following standard crushing, 516 

sieving, washing, magnetic, and heavy liquid separation. 517 

 A1.1. Apatite Uranium-Thorium/Helium Thermochronology  518 

The AHe analyses were carried out at the Paris-Sud University. Euhedral apatites were picked 519 

using a cross polarized binocular microscope. Most grains had a minimum diameter of 90 μm and 520 

were inclusion free to avoid effects of He-implanting from inclusions or excess loss of He during 521 

decay due to a large surface/volume ratio (Farley, 2000). The grain dimensions were measured for 522 

calculation of the alpha-ejection (Ft) correction factor after Farley et al. (1996), and single grains 523 
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were packed in Nb-tubes for U-Th/He measurement. For each sample up to five aliquots were 524 

prepared for analysis in order to ensure sample age reproducibility. The concentration of 
4
He was 525 

determined by the 
3
He isotope dilution and measurement of the 

4
He/

3
He ratio through a quadrupole 526 

mass spectrometer. Apatite samples were heated for 5 min at 11 Amps with a 960 nm diode laser for 527 

degassing. Each sample was reheated and measured to ensure that all gas was extracted in the first 528 

run. U, Th concentrations were obtained by isotope dilution using an inductively coupled plasma 529 

mass spectrometer.  530 

A1.2. Apatite Fission Track thermochronology (AFT)  531 

Apatite grains were mounted in epoxy resin, ground, and polished to expose internal mineral 532 

surfaces. Etching with 5 N HNO3 at room temperature for 20 s revealed spontaneous fission tracks 533 

intersecting the apatite surface. Samples were covered with a uranium free muscovite external 534 

detector and irradiated with thermal neutrons at the LENA (Laboratorio Energia Nucleare Applicata) 535 

Triga Mark II reactor of the Pavia University, Italy. Induced fission tracks in the external detector 536 

were revealed by etching the mounts in 40% HF at room temperature for 40 min. The fission tracks 537 

were counted by the first author under a nominal magnification of 1250X on a Zeiss Axioskop 538 

equipped with a Kinetek automatic stage at the CNR-IGG Fission-Track laboratory. The Trackkey 539 

4.2 Program was used for all AFT age calculations procedures (Dunkl, 2002). A chi-square (χ2) test 540 

is carried out on the AFT single-grain age in order to test the homogeneity of data (Galbraith, 1981). 541 

The probability of (χ2) is calculated for each sample; if P(χ2) > 5% then the sample is assumed to be 542 

homogenous (Galbraith and Laslett, 1993).  543 

 544 
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Figure captions 667 

Figure 1. (a) Topographic setting and main tectonic features of the West Mediterranean sea. (b) 668 

Topography of the French Massif Central, and (c) filtered topography at 50 km wavelength. The 669 

locations of two swath profiles are shown. (d) Maximum, minimum and mean topography along the 670 

two profiles, the yellow lines correspond to the 50km filtered topography. 671 

 672 

Figure 2. (a) Geological map of the French Massif Central. (b) Main tectonic events and 673 

corresponding vertical crustal movements. (c) Age-elevation relationships from literature data and 674 

apparent exhumation rate from linear regression. Locations are shown on the map.  675 

 676 

Figure 3. (a) Topographic map showing the sampling location and thermochronological ages. 677 

(b) Age-elevation relationship of the AFT and single grain AHe ages from this study and from 678 

Barbarand et al., 2001 (two samples) .   679 

 680 

Figure 4. Time-temperature history paths obtained from QTQt inverse thermal modeling of the 681 

AFT and AHe data. For each model, the comparison of the modeled vs obtained data are shown (note 682 

the onset in elevation between AHe replicates is only for visual clarity). For details of the different 683 

statistical models, see Gallagher (2012).    684 

 685 

Figure 5. Mean track length (MTL) against elevation for the (a) Cévennes and (b) Ardèche 686 

literature data and for the (c) new data. The blue zones represent samples which recorded the old and 687 

fast erosional history only (mid Cretaceous phase), the white zones represents samples which 688 

recorded a slow erosion since the Cretaceous, and the green zones represent samples that could have 689 

recorded a slightly faster Cenozoic erosion. (d) AFT and MTL relationships for the new (pink) and 690 
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literature data showing a possible boomerang trend given by the slight increasing MTLs in the 691 

younger samples.   692 

 693 

Figure 6. Mean track length regional distribution along the EW swath profiles of the Cévennes. 694 

In the inserted boxes: the grey lines show the modelled time-temperature histories compatible with 695 

the published data of MTL and AFT ages, whose values are reported in black; histogram shows the 696 

distribution of the measured track length from published data (Barbarand et al., 2001); red curve 697 

represents the track length probability distribution from forward modeling; in red the modelled MTL 698 

and AFT age are reported.       699 

 700 

Figure 7. Mean track length regional distribution along the EW swath profiles of the NE margin 701 

(our study area). In the inserted boxes: the grey lines show the modelled time-temperature histories 702 

compatible with the published data of MTL and AFT ages, whose values are reported in black; 703 

histogram shows the distribution of the measured track length from published data (Barbarand et al., 704 

2001); red curve represents the track length probability distribution from forward modeling; in red 705 

the modelled MTL and AFT age are reported. For the new data, the inverse modeling is shown (given 706 

in Figure 4).  707 

 708 

Figure 8. Summary of the Cenozoic vertical movement history deduced by 709 

thermochronological data and geological constraints. (a) A possible landscape after the Cretaceous 710 

uplift and before the Cenozoic rejuvenation. (b) A first event of Cenozoic regional uplift inducing a 711 

lithospheric flexures and a downwarped margin. (c) A second event of uplift, maybe slightly faster, 712 

and recorded in the increased denudation rates and river incision. (d) Comparison of the long-term 713 

erosion rate from thermal modeling of the thermochronological data with the short-term denudation 714 
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rate from cosmogenic nuclides and with the uplift rate from marine deposits (Olivetti et al., 2016). 715 

The main geological events are shown.    716 

 717 

Table 1 Apatite (U-Th-Sm)/He data 718 

Notes: crystal weight has been determined using the Ca content. eU: effective uranium, Rs: 719 

equivalent spherical radius:  FT is the α-ejection correction after Ketcham et al., (2011). 720 

 721 

Table 2 Apatite fission-track data    722 

Notes - Ages determined by external detector method using a zeta value for dosimeter CN5 ζ = 360 ± 723 

11 (referred to Fish Canyon Tuff and Durango apatite standards, Hurford, 1990). El (m): sample 724 

elevations in metres; ρd, ρi: standard and induced track densities measured on mica external 725 

detectors; ρs: spontaneous track densities on internal mineral surfaces, track densities are given in 726 

105 tracks cm-2; nd, ni and ns: number of tracks on external detectors and on mineral surfaces; ng: 727 

number of counted mineral grains; P(χ2): (χ2) probability (Galbraith, 1981); Central age calculated 728 

using TRACKKEY program (Dunkl, 2002); Lm: mean length of confined tracks length distribution ± 729 

standard error, s.d.: standard deviation, nTINTs: number of measured lengths; only TINTs (tracks 730 

reached by the etching because they intercept a surface track, Bhandari et al., 1971) were measured, 731 

as recommended by Ketcham (2005). Dpar: mean etch pit diameter parallel to the c-axis and number 732 

of total measured Dpar for sample; Samples were irradiated in the Lazy Susan facility of the Triga 733 

Mark II reactor of the LENA, University of Pavia (Italy). 734 
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Sample Elevation Length Width Tickness Weight Rs FT 4He U Th
m asl μm μm μm mg μg ncc/g ng ng

VO-1A 203 158 111 88 3.0 52.8 0.76 1.90E+05 0.1449 0.0184
VO-1B 203 164 115 109 3.8 57.0 0.78 6.11E+05 0.3896 0.0608
VO-1C 203 184 105 80 3.3 52.2 0.73 3.64E+05 0.2197 0.0448
VO-1D 203 283 175 135 11.2 76.5 0.81 2.75E+05 0.5424 0.0592
VO-1E 203 287 164 138 13.1 84.0 0.83 6.01E+05 0.7814 0.1644
VO-2A 217 193 119 89 4.2 57.7 0.75 5.02E+05 0.3290 0.1131
VO-2B 217 199 124 112 5.3 63.2 0.77 1.10E+06 0.6824 0.0524
VO-2D 217 195 101 98.7 3.8 54.7 0.77 1.02E+06 0.5078 0.0380
VO-2E 217 187 102 95.1 3.6 54.1 0.76 1.04E+06 0.4932 0.1161
VO-3A 213 156 137 117 6.0 64.2 0.81 1.40E+05 0.1280 0.0451
VO-3B 213 103 131 99 3.3 53.0 0.78 1.45E+05 0.0675 0.0466
VO-3C 213 161 125 123 5.7 62.4 0.80 2.07E+05 0.1704 0.0514
VO-3D 213 156 95 88 3.1 49.6 0.74 1.87E+05 0.0936 0.1205
VO-3E 213 162 121 108 5.0 59.7 0.79 2.90E+05 0.1791 0.0820
VO-4A 323 147 84 71 2.1 43.5 0.71 6.76E+05 0.0578 0.0165
VO-4B 323 122 75 70 1.5 39.2 0.68 7.13E+05 0.0552 0.0363
VO-4C 323 185 91 89 2.9 49.9 0.72 5.45E+05 0.1194 0.0408
VO-4D 323 99 78 68 1.3 37.8 0.80 4.85E+05 0.0544 0.0389
VO-4E 323 133 76 67 1.6 39.8 0.68 1.66E+06 0.0868 0.0458
VO-4F 323 117 103 66 1.6 42.5 0.72 5.68E+05 0.0737 0.0120
VO-6D 725 299 112 104 8.2 63.8 0.79 1.04E+04 0.0061 0.0126
VO-7A 463 188 115 99 4.2 58.2 0.76 7.43E+05 0.3318 0.0293
VO-7B 463 146 125 103 3.5 56.2 0.75 7.60E+05 0.2379 0.0580
VO-7C 463 229.5 156 153 10.0 78.7 0.82 1.05E+06 0.7732 0.0548
VO-7D 463 170 113 105 3.8 56.8 0.75 7.13E+05 0.3033 0.0324
VO-7E 463 225 132 117 8.3 68.8 0.81 6.93E+05 0.5608 0.0299
VO-8A 928 178.5 99 87 3.7 52.0 0.73 1.37E+06 0.5384 0.0331
VO-8B 928 129.5 97 78 2.4 46.6 0.70 9.63E+05 0.2490 0.2053
VO-8C 928 90.5 105 97 2.2 46.0 0.75 1.43E+06 0.2961 0.7912
V0-8D 928 131 110 78 2.2 47.8 0.71 1.83E+06 0.4559 0.0263
VO-8E 928 168.5 119 81 3.4 53.9 0.74 1.07E+06 0.3492 0.1198

VO-12A 556 137 134 117 5.1 61.3 0.80 1.76E+04 0.0118 0.0152
VO-12B 556 139.5 112 99 3.7 54.2 0.77 2.16E+05 0.0951 0.0501
VO-12C 556 198 92 75 3.3 48.9 0.71 3.24E+05 0.1327 0.1178
VO-12D 556 221.5 105 97 5.3 57.5 0.77 2.25E+05 0.1307 0.1351
VO-12E 556 296.5 220 202 24.2 106.5 0.88 3.74E+04 0.1174 0.0123
VO-14A 1123 164.5 114 100 3.6 55.9 0.75 4.64E+05 0.1645 0.1425
VO-14B 1123 138 119 114 4.3 57.5 0.76 229389.5 0.105 0.052
VO-14C 1123 151 117 75 3.5 51.7 0.73 4.94E+05 0.1387 0.0234
VO-14D 1123 132 126 89 3.8 54.6 0.74 3.24E+05 0.1101 0.0325
VO-14E 1123 137 108 76 2.9 49.1 0.75 4.93E+05 0.1227 0.0216
VO-15D 1358 102 77 62 0.9 36.0 0.62 4.19E+05 0.0300 0.0263
VO-16A 461 129.5 111 103 3.5 53.4 0.74 1.97E+05 0.0955 0.0415
VO-16B 461 215.5 154 108 9.2 71.6 0.80 2.09E+05 0.2279 0.0222
VO-16C 461 132 116 82 3.2 51.5 0.73 2.13E+05 0.0872 0.0273
VO-16D 461 339 145 110 13.5 76.2 0.82 2.71E+05 0.4718 0.0087
VO-16E 461 131.5 106 98 3.2 51.8 0.73 1.75E+05 0.0780 0.0164
VO-18A 392 114.5 106 94 2.7 49.4 0.72 7.93E+05 0.2031 0.0331
VO-18C 392 191.5 129 98 6.1 62.4 0.79 4.95E+05 0.3280 0.0593
VO-18D 392 163 141 98 5.8 62.4 0.77 7.28E+05 0.4390 0.0596
VO-18E 392 171 141 115 6.8 66.4 0.81 8.85E+05 0.5434 0.0595
VO-19A 366 107.5 109 83 2.4 47.6 0.75 3.66E+05 0.0694 0.0089
VO-19D 366 122.5 95 80 2.3 45.9 0.73 6.35E+05 0.1474 0.0064
VO-19E 366 131.5 118 73 3.0 49.6 0.75 5.53E+05 0.1786 0.0548
VO-21A 120 164.5 116 106 4.8 58.5 0.78 2.02E+05 0.1475 0.1407
VO-21C 120 145 125 115 4.9 59.9 0.79 3.18E+05 0.1541 0.0491
VO-21D 120 123.5 116 89 3.2 51.9 0.76 4.53E+05 0.1428 0.0466
VO-21E 120 134.5 116 96 3.7 54.2 0.77 6.38E+04 0.1243 0.0518



Sm U Th Sm eU Th/U Unc. Age C. Age Unc. notes
ng ppm ppm ppm ppm ppm/ppm Ma Ma

0.4871 48 6 160 49 0.1 30.7 40.4 ± 3
0.6328 103 16 168 107 0.2 47.0 60.2 ± 5
0.5287 68 14 163 71 0.2 42.2 57.8 ± 5
0.9372 48 5 84 50 0.1 45.1 55.7 ± 4
0.8537 59 13 65 62 0.2 78.6 94.7 ± 8
0.4954 78 27 117 84 0.3 48.5 64.6 ± 5
0.6282 128 10 118 130 0.1 68.7 89.2 ± 7
0.5302 135 10 141 137 0.1 61.3 79.6 ± 6
0.5212 139 33 147 147 0.2 59.3 78.0 ± 6
0.8863 21 7 147 23 0.4 47.4 58.5 ± 5
0.6280 20 14 189 24 0.7 47.3 60.6 ± 5
0.9439 30 9 167 32 0.3 51.4 64.2 ± 5
0.5276 31 40 173 40 1.3 37.9 51.2 ± 4
0.6574 36 16 131 40 0.5 58.9 74.5 ± 6
0.4836 27 8 228 29 0.3 117.8 166.0 ± 13
0.4268 37 24 285 43 0.7 86.2 126.8 ± 10
0.6976 41 14 239 44 0.3 63.6 88.3 ± 7
0.3905 44 31 312 51 0.7 51.3 64.2 ± 5
0.4778 54 28 295 60 0.5 141.7 208.5 ± 17 Inclusion?
0.5477 47 8 347 48 0.2 60.9 84.6 ± 7
0.0044 1 2 1 1 2.1 77.3 97.9 ± 8
0.6625 78 7 156 80 0.1 74.9 98.6 ± 8
0.6312 69 17 182 73 0.2 85.7 114.2 ± 9
1.0563 77 5 106 79 0.1 108.7 132.6 ± 11
0.6915 80 9 182 82 0.1 70.9 94.5 ± 8
0.8527 68 4 103 69 0.1 82.8 102.2 ± 8
0.5148 147 9 140 149 0.1 76.1 104.2 ± 8
0.4758 103 85 197 124 0.8 63.4 90.6 ± 7
0.3463 137 366 160 225 2.7 52.6 75.9 ± 6 Th/U*
0.4391 206 12 199 209 0.1 71.4 100.6 ± 8
0.5245 103 35 155 112 0.3 78.6 106.2 ± 8
0.0665 2 3 13 3 1.3 46.6 58.2 ± 5
0.5543 26 14 150 29 0.5 59.2 76.9 ± 6
0.5158 40 35 154 48 0.9 53.9 75.9 ± 6
0.5916 25 26 112 31 1.0 58.5 76.0 ± 6
0.4020 5 1 17 5 0.1 60.5 68.8 ± 6
0.6241 46 40 174 56 0.9 67.8 90.4 ± 7
0.566 24 12 131 27 0.5 67.3 88.5 ± 7

0.6221 40 7 180 42 0.2 95.6 130.9 10 Inclusion?
0.5949 29 9 158 31 0.3 83.0 112.1 9 Inclusion?
0.5170 43 8 180 45 0.2 89.5 119.3 10 Inclusion?
0.2553 32 28 272 39 0.9 81.4 131.3 ± 11 Inclusion?
0.4857 28 12 140 30 0.4 52.1 70.4 ± 6
0.7986 25 2 87 25 0.1 66.1 82.6 ± 7
0.4266 27 9 133 29 0.3 57.9 79.3 ± 6
0.9091 35 1 67 35 0.0 62.9 76.7 ± 6
0.4362 24 5 136 26 0.2 54.3 74.4 ± 6
0.5100 75 12 188 78 0.2 82.2 114.1 ± 9
0.6557 54 10 108 57 0.2 71.8 90.9 ± 7
0.5943 76 10 103 79 0.1 76.2 98.9 ± 8
0.7449 80 9 110 82 0.1 88.3 109.0 ± 9
0.4405 29 4 181 29 0.1 96.8 129.1 ± 10
0.5270 66 3 234 66 0.0 78.7 107.8 ± 9
0.6085 60 18 204 64 0.3 70.0 93.3 ± 7
0.6161 31 30 129 38 1.0 43.1 55.3 ± 4
0.6263 31 10 128 34 0.3 75.3 95.3 ± 8
0.5776 45 15 182 48 0.3 75.6 99.5 ± 8
0.5491 34 14 150 37 0.4 75.2 97.6 ± 8



MASSIF CENTRAL 

Sample 
 

El. 
 

d n
d
 s n

s
 i n

i
 ng P(

2
) 

Central 

Age±1 
U Lm±1σ s.d. 

 
n Dpar s.d. 

 (m)        (%) (Ma) (g/g) (m) (m)  (m)  

vo-3 213 3.55 2086 14.7 1498 13.8 1400 20 1.6 68.2±3.8 46.1 13.6±0.2 1.7 
 

101 1.8(94) 0.5 

vo-4 323 3.53 2074 
16.4 

 
1154 

13.0 
 

914 20 19.9 79.6±4.4 43.4 12.8±0.2 1.7 
 

78 2.5(87) 1.1 

vo-14 1123 3.59 2112 20.0 1505 13.7 1033 20 80.2 93.2±4.4 45.0 13.9±0.1 1.5 
 

100 1.9(117) 0.3 

vo-16 461 3.50 2061 
12.07 

 
855 

10.1 
 

855 20 71.1 75.0±4.0 33.7 12.8±0.3 1.3 
 

26 2.3(86) 0.6 

vo-21 120 3.57 2099 16.5 1072 14.2 923 20 8.3 74.4±4.5 47.6 13.5±0.1 1.5 
 

100 1.3(124) 0.3 

 
Notes - Ages determined by external detector method using a zeta value for dosimeter CN5 ζ = 360 ± 11 (referred to Fish Canyon Tuff and Durango apatite standards, Hurford, 1990). El (m): sample 
elevations in metres; ρd, ρi: standard and induced track densities measured on mica external detectors; ρs: spontaneous track densities on internal mineral surfaces, track densities are given in 10

5
 tracks 

cm
-2

; nd, ni and ns: number of tracks on external detectors and on mineral surfaces; ng: number of counted mineral grains; P(2
): (2

) probability (Galbraith, 1981); Central age calculated using 

TRACKKEY program (Dunkl, 2002); Lm: mean length of confined tracks length distribution ± standard error, s.d.: standard deviation. Dpar: mean etch pit diameter parallel to the c-axis for age grains; 
Dpar: mean etch pit diameter parallel to the c-axis and number of total measured Dpar for sample; Samples were irradiated in the Lazy Susan facility of the Triga Mark II reactor of the LENA, University 
of Pavia (Italy). 
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