Natália R Vilas Boas

Philippe R B Devloo

Omar Durán
email: oduran@unicamp.br

A CUDA accelerated numerical integration of elastoplastic finite elements residuals

Keywords: Finite Element Assembly, Residual Numerical Integration, Elastoplasticity, CUDA

Finite Element Method (FEM) is a numerical technique to approximate partial differential equations. It has been widely used to approximate solutions of physical problems in different fields of research. The numerical simulation challenging engineering problems with small error require fine meshes and leads to high computational cost. To overcome this difficulty parallel computing is becoming a mainstream tool.

Among the techniques available to improve the performance of this type of computational application is the execution of the algorithm using Graphics Processing Unit (GPU) programming. Although GPU was originally developed for graphics processing, it has been used in the last years as a general purpose machine with high parallelism power through the availability of libraries such as CUDA or OpenGL.

The purpose of this research is to develop an efficient algorithm for the evaluation of the finite element residual. We target the approximation of an elastoplastic problem with associative plasticity but will show that the approach can be extended to other fields and problems. The presented strategy to calculate the residual relies on several computational ingredients such as gather and scatter operations, sparse matrix multiplication, and a parallel coloring procedure for the assembly process. The verification of the nonlinear approximated solution includes comparison with regular CPU implementation in terms of numerical results and execution efficiency. For residual computations of elastoplasticity, the GPU outperforms the CPU by a factor of up to 10 (details of the architecture of the platform tests are given in the paper).

Introduction

The Finite Element Method (FEM) is one of the most important numerical techniques to find approximate solutions of partial differential equations (PDEs). According to Becker [START_REF] Becker | Finite elements[END_REF], the finite element method defines a systematic way for constructing basis functions to approximate the solution of PDEs.

The underlying idea is that these functions can be defined piecewise over subregions of the domain called finite elements. The polynomial order of the function over each element can be arbitrary. Bhavikatti [START_REF] Bhavikatti | Finite element analysis[END_REF] states that although FEM has been originally developed for approximating problems of structural mechanics, it is now widely used as a technique for solving complex problems in different fields of engineering: civil, mechanical, nuclear, biomedical, geomechanical, and others. Problems in many of these fields can lead to high computational demand.

Most computer codes are written to be executed sequentially: a problem is split into instructions and these instructions are executed one after the other. In these cases, the performance improvement depends on the advance in CPU efficiency: the software can achieve a significant speedup as each new generation of processors is introduced. However, Kirk and Wen-Mei [START_REF] Kirk | Programming massively parallel processors: a hands-on approach[END_REF] highlight that since 2003 a stagnation of performance improvement of general applications has been observed due to the fact that high energy consumption and heat dissipation limit the increase of the clock frequency. Therefore the industry offers a new approach: to increase the number of cores inside each processor.

According to Kirk and Wen-Mei [START_REF] Kirk | Programming massively parallel processors: a hands-on approach[END_REF], this new approach has a huge impact on the software developer community, including those that use the finite element method. In turn, Zhang and Shen [START_REF] Zhang | GPU-based implementation of finite element method for elasticity using CUDA[END_REF] state that parallel computing in high-performance computers has gradually become a mainstream tool for dealing with large and detailed numerical problems in FEM analysis. Many parallel algorithms to finds approximation using FEM were developed in parallel computers. However, they may require a large number of CPUs to achieve high speed.

Graphics Processing Units (GPUs) were originally developed for image and video processing. Due to the market demand for high-quality real-time graphics in computer applications, these processors have undergone a high technological advancement. For example, Kirk and Wen-Mei [START_REF] Kirk | Programming massively parallel processors: a hands-on approach[END_REF] state that in electronic gaming application one needs to render scenes at a resolution of 60 frames per second. According to Micikevicius [START_REF] Micikevicius | 3d finite difference computation on gpus using cuda[END_REF], a GPU consists of a set of multiprocessors where each multiprocessor has its own stream processors and shared memory. All multiprocessors of a GPU have access to global device memory and memory latency is hidden if thousands of threads are executed concurrently. The main difference between GPU and CPU is that CPUs may be efficient with a small number of threads per core whereas GPUs achieve higher performance when thousands of threads are executed concurrently.

Because of the technological advancement of GPUs, researchers who wanted to improve the performance of their applications started to explore their use for non-graphical applications. This trend became known as General-Purpose computing on the GPU (GPGPU). Since then, GPU has been used for numeric simulation of problems in fields of science and engineering. According to Zhang and Shen [START_REF] Zhang | GPU-based implementation of finite element method for elasticity using CUDA[END_REF], methods that use GPU's powerful computing resource to accelerate finite element analysis have naturally emerged in the last few years. Among the steps of the finite element calculation for the approximation of solutions of boundary value problems, the evaluation of the elementary stiffness matrix and residual vector, as well as the assembly process of the linear system are the most time-consuming processes in terms of both memory and runtime.

Previous studies on implementing finite element computations for elasticity problems obtained the following results. Zhang and Shen [START_REF] Zhang | GPU-based implementation of finite element method for elasticity using CUDA[END_REF] implement a code to approximate elasticity problems in two and three dimensions using FEM with GPU. The authors use a coloring method to perform the assembly of the global operators. The tests are conducted on a platform composed of an Intel Core 2 Duo E7400 processor and an NVIDIA Geforce GT 430. A speedup of 7x is achieved for approximations in two space dimensions and 10x for three dimensional elements. The linear system solution acceleration of 3.5x and 6x are obtained for two and three-dimensional simulations, respectively.

Mafi [START_REF] Mafi | GPU-based Parallel Computing for Nonlinear Finite Element Deformation Analysis[END_REF] uses a GPU-based parallel computing approach to perform real-time analysis of soft objects deformation through a non-linear approximation using FEM. The author uses a coalesced data structure to compute FEM matrices in GPU. The computation time of the matrices evaluation reaches a speedup of 28x in an NVIDIA Geforce GTX 470 when compared to a sequential CPU implementation with an Intel Core i7-3770 processor.

Cecka et al. [START_REF] Cecka | Assembly of finite element methods on graphics processors[END_REF] introduce multiple strategies for finite element operators assembly. The authors present how to properly use global, shared, and local memory according to the polynomial order of the finite element discretization. The experimental setup consists of an NVIDIA GeForce 8800 GTX and a Intel Core 2 Quad CPU Q9450 processor. The assembly process reaches a speedup of 35x to the double-precision single-core CPU version for linear and quadratic polynomial orders.

Macio l et al. [START_REF] Macio L | 3d finite element numerical integration on gpus[END_REF] use GPU programming to accelerate the numerical integration of the elementary contributions from Laplace's equation in a 3D domain discretized in prismatic elements. Due to small resources available for a single thread for GPU architectures, the authors propose a GPU implementation of numerical integration based on the assumption that a single finite element corresponds to a single threadblock and these individual threads calculate sets of an element contribution. The platform test consists of an NVIDIA GeForce 8800GTX and an AMD X2 processor. The speedup varies from 3.5x to 20x depending on the approximation order. Dziekonski et al. [START_REF] Dziekonski | Finite element matrix generation on a gpu[END_REF] implement a technique to generate the operators arising from computational electromagnetics analysis through the finite element method. The results are obtained from tests conducted in an NVIDIA Tesla C2075 and an Opteron 6174. The authors present a serie of optimizations to perform the numerical integration, such as the use of shared memory in order to avoid the time-consuming writing and reading to and from the global memory. The authors present speedups of 81x and 19x over an optimized single and multi-threaded CPU-only implementations, respectively.

In this work a strategy is proposed to compute the finite element residual vector for a nonlinear elasticity problem. The strategy is applied to the simulation of an elastoplastic problem through a FEM simulation of a wellbore under internal and external stresses, as well as an initial stress represented by a hydrostatic pre-stress. The proposed technique for computing the residual vector relies on pre-computing and storing constant data in an aligned data structure and perform GPU parallelized operations to evaluate the global operators.

The data structure developed to obtain high parallel performance on the GPU also accelerated the CPU computations. Therefor the GPU's performance is not only compared with an equivalent CPU code, but also with a classical assembly process of a traditional finite element simulation. Since this work focus on the numerical integration of the residual, the tangent matrix is approximate as the elastic stiffness matrix to compute the iterative solution. Thus, a Modified Initial Stiffness method presented by Thomas [START_REF] Thomas | An improved accelerated initial stress procedure for elasto-plastic finite element analysis[END_REF] is implemented to speed up the convergence.

The paper is organized as follows. Section 2 presents the problem statement. In section 3 the classical discretization and notation for FEM are presented. Section 4 documents the adopted data structure to solve the problem. Section 5 presents a CUDA C++ implementation and GPU resources used in this research. In section 6 the numerical results are described. Finally, in section 7 the conclusions of this research effort are presented.

Statement of the problem

Denoting Ω as the domain for the PDE problem in R 2 with boundary ∂Ω = ∂Ω D ∪ ∂Ω N . Where D and N stand for the boundary with Dirichlet and Neumann data, respectively. The governing equations for the elastoplastic deformation consist of three parts: a conservation law; a constitutive equation; and boundary conditions. div (σ(x)) = 0 x ∈ Ω (1)

u(s) = u D (s) s ∈ ∂Ω D (2) σ(s) • n = t(s) s ∈ ∂Ω N (3)
where σ [MPa] is the Cauchy stress, u [m] represents the displacement vector, t [MPa] is the normal traction over ∂Ω N and n is the outward normal.

Following the classical work on elastoplastic simulations with finite elements presented by de Souza Neto et al. [START_REF] De Souza Neto | Computational methods for plasticity: theory and applications[END_REF], the deformation tensor is decomposed in elastic deformation ε e and plastic deformation ε p , Under the assumption of small deformation, the total strain tensor is expressed as:

ε = ε e + ε p
ε (u) = 1 2 ∇u + ∇ t u . (5)
The decomposition of the strain tensor in elastic and plastic deformation will be defined subsequently.

Elastoplastic constitutive modeling

A body that undergoes elastic deformation is characterized by the complete recovery of its undeformed configuration upon removal of the applied loads. In this case the deformation depends only on the load applied to the body. Irreversible deformations occur if a body is subjected to a loading cycle beyond its elastic limit. In this case the deformation will be formally split in elastic and plastic deformations. The elastic limit for the stress is also known as the yield stress. A large number of engineering materials, such as metals, concrete, rocks, clays, and soils in general, may be modeled as plastic under a wide range of circumstances of practical interest. The study of these materials is described by an incremental stress strain relation. The basic items are: strain tensor increment decomposition; elastic constitutive law; yield criterion; and plastic flow rule.

In this work, it is adopted the Mohr-Coulomb criterion as the constitutive relationship for plasticity.

Also, the material model is assumed to be perfectly plastic, that is, the yield stress level does not depend in any way on the degree of plastification. Thus, the elastoplastic constitutive modeling can be presented as:

δε = δε e + δε p (6)
δε p = δγN (σ) (7)
δσ = 2µδε e + λtr(δε e)I (8)

δγ • δΦ(σ) ≡ 0 (9
)
where Φ(σ) is the yield surface and N (σ) = ∂Φ ∂σ defines the direction of plastic deformation. Considering Mohr-Coulomb criterion the yield surface can be described as follows:

Φ(σ) = (σ max -σ min) + (σ max + σ min) sin φ -2c cos φ (10
)
where c [MPa] is the cohesion and φ [•] is the frictional angle.

Finite element approximation and notation

Consider a geometrical partition T h = {Ω e } of the region Ω by convex elements Ω e with boundaries ∂Ω e . The index h stands for the maximum diameter of the elements Ω e . The following functional space is required:

H 1 (Ω) = v ∈ L 2 (Ω) : ∇v ∈ L 2 (Ω) . (11)
The classical one-field weak statement for the mechanical problem is defined in (8) and formulated as:

Find u ∈ V = v ∈ H 1 (Ω) , v| ∂Ω D = 0 such that: Ωe∈T h Ωe σ (ε (u)) • ε (v) dV = Ωe∈∂Ω N ∂Ω N t • vdS ∀ v ∈ V. (12)
The discrete version of the weak statement is obtained by considering finite-dimensional space V h ⊂

V with H 1 -conforming finite elements (i.e. that require the continuity of functions over the element interfaces). The discrete version of the weak statement is:

Find u h ∈ V h such that: Ωe∈T h Ωe σ h (ε h (u h)) • ε h (v h) dV = Ωe∈∂Ω N ∂Ω N t • v h dS ∀ v h ∈ V h . (13
)
Define N as the number of degree of freedom:

u h = N i=1 u i φ i . (14)
The incremental form of the weak statement above leads to the definition of the following residual expression:

R = R σ + R l (15)
where:

R σ = Ωe∈T h Ωe σ h (ε h (u h)) • ε h (v h) dV ∀ v h ∈ V h (16)
R l = - Ωe∈∂Ω N ∂Ω N t • v h dS ∀ v h ∈ V h . (17)

Matrix form of the finite element problem

The iterative process to approximate Eq. (13) is:

Find δ u ∈ R N such that: Kδ u = -R, K ∈ R N ×N , R ∈ R N . (18
)
The variable δ u represents the finite element increment that will be added to the approximation u h .

The matrix K can be either the global jacobian matrix or a secant matrix K ≈ K. This paper focuses on accelerating the computation of the residual vector. The K matrix used is the elasticity stiffness matrix.

The vector R is the global residual, and is computed as the assembly of numerically integrated element residuals.

The assembly process representing the construction of K and R is written as:

K = Ne e=1 K e and R = Ne e=1 R e . (19
)
Using the notation introduced in Zienkiewicz [START_REF] Zienkiewicz | The finite element method[END_REF], the evaluation of K e is written as:

K e = Ωe B t e DB e = npe k=1 ω k |J k |B t e (ξ k) D (ξ k) B e (ξ k) . (20)
And the evaluation of R e is given by the integral expression:

R e = Ωe B t e σ e = npe k=1 ω k |J k |B t e (ξ k) σ e (ξ k) (21)
where: for a two-dimensional element.

B e (ξ k) =      ∂φ1 ∂x 0 ∂φ2 ∂x 0 . . .
The local stress-strain and strain-displacement relationship are:

σ e = D (ξ k) ε e e (23
)
δ ε e = B e (ξ k) δ u e .

(24)

The symbols used in this paper are described in Table 1: The integration rule weight at integration point k j k The jacobian of the transformation at integration point k σ e

The strain vector in Voigt notation at integration point k ε e The strain vector in Voigt notation at the integration point k Classical Assembly. The most simple algorithm is to serially assemble each element matrix and then sum the contribution of (K e , R e) to the global matrix using a scatter/add operation into the global matrix and vector (K, R). In an iterative process where the global stiffness K is kept fixed only the load vector R e needs to be assembled into R. Algorithm 1 illustrates this assembly process.

This algorithm has the following characteristics:

• Initialize the global matrices (K, R) with zero;

• Perform the assembly element by element;

• It does not take advantage of the constant data present during the evaluation of (20) and (21).

• It uses little memory resources.

• The algorithm can be executed in parallel by coloring the elements and assemble all the elements belonging to a single color simultaneously. Each color is processed in sequence. This strategy is adopted when the CPU and GPU performance are analyzed in the forthcoming sections.

Algorithm 1 Classical assembly process.

1: K ← 0 N ×N and R ← 0 N 2: for k ← 1 to N e do 3:
Compute R e = Ωe B t e σ e

4:

Compute K e = Ωe B t e DB e 5:

for i ← 1 to N e do 6:

i dest = connectivity(i, k) 7:
// Elementary vector gather-scatter

8:
R (i dest) += R e (i)

9:
for j ← 1 to N e do 10:

j dest = connectivity(j, k) 11:
// Elementary matrix gather-scatter 12:

K (i dest , j dest) += K e (i, j)

13:
end for 14:

end for 15: end for 4. Computing the residual vector using integration point contributions Laouafa and Royis [START_REF] Laouafa | An iterative algorithm for finite element analysis[END_REF] developed the UDA (Unstructured Displacement Approach) algorithm for assembling the tangent matrix and residual vector. The basic idea of UDA is to perform operations on an integration point basis. The algebraic problem presented in (18) can be rewritten as:

Compute the product of the global matrix with δ u ∈ R N as:

Kδ u + R l = Bt Ŵ D B δ u = -R σ + R l , R σ ∈ R N , R l ∈ R N (25
)
where B is a sparse matrix of size N σ × N transforming the global solution vector δ u to the values of the strain values at the integration points ε1 .

δ ε = Bδ u, B ∈ R Nσ×N , δ ε ∈ R Nσ . (26
)
The matrix D is the constitutive operator transforming the integration point strains into integration point stresses:

σ = D (δ ε + ε) , D ∈ R Nσ×Nσ , σ ∈ R Nσ . (27
)
The residual vector R σ can be computed as:

R σ = Bt Ŵ σ (28
)
where Ŵ is the diagonal matrix representing the weights associated with the integration points.

The size N σ corresponds to the sum Ne e=1 np e n σ where np e is the number of integration points for each element and n σ is the number of components of the stress tensor in Voigt notation (in two dimensions is equal 3). Some important observations can be made about the expressions in (25) and (28):

• Once the geometrical partition and the polynomial order are assigned to every element, the global arrays B and Ŵ are constant during the finite element computations, i.e. they only have to be evaluated once;

• The construction of B involves overlapping information corresponding to common degree of freedom leading and can only be constructed in parallel if element coloring is used.

• The diagonal matrix Ŵ contains the weight of the integration point multiplied by the determinant of the jacobian of the geometric map at each integration point;

• The construction of the operator Bt Ŵ D B is implemented in two stages: first at element level

B t
e W e DB e for computing the element residual R e and then assembling the element residuals.

The adopted path

In this research we explore the potential of accelerating the residual vector presented in (28) by constructing a block oriented storage pattern B ∈ R Nσ× N . The matrix B is block-diagonal and corresponds to a scattered version of B. Each block of this matrix corresponds to an element e strain-displacement matrix (Be) which in turn is a stack of np e local strain-displacement matrices of e:

δ ε = BS c δ u, B ∈ R Nσ× N , δ ε ∈ R Nσ (29)
where S c stands for the scatter operation taking the mesh degrees of freedom to elementwise degrees of freedom.

The term Rσ ∈ R N can be expressed as:

Rσ = S c t Bt Ŵ σ. (30)
S c t is a gather operation and represents the assembly process of a color subset. For details about gather and scatter operations the reader can be referred to He et al. [START_REF] He | Efficient gather and scatter operations on graphics processors[END_REF].

Computational issues for the adopted strategy. The strategy adopted to calculate the residual integration R σ is provided below. The preprocessing components are listed as:

1. Parallel construction for B and Ŵ and their proper indexation for computing the required matrix operations;

2. Parallel construction of the global connectivity;

3. A Greedy-like coloring algorithm to assign colors to the elements. We implemented the general ideas documented in Lecat et al. [START_REF] Lecat | Exact methods for the minimum sum coloring problem[END_REF].

Residual integration. The constitutive Mohr-Coulomb return mapping algorithm is implemented as documented in de Souza Neto et al. [START_REF] De Souza Neto | Computational methods for plasticity: theory and applications[END_REF]. The multiplication presented in (29) is performed. Then, the computation of (27) is performed integration point by integration point in parallel. Formerly, the expression (30) is performed as global matrix multiplication leading to the residual component Rσ . Finally, to obtain R σ a series of gather, saxpy and scatter operations are performed per colored set to reduce Rσ into R σ . Because its low cost the linear residual R l is assembled once by means of Algorithm 1.

Algorithm 2 shows the main steps performed during the numerical integration of R σ .

Algorithm 2 Residual assembly process. Add color contribution R σ + = R c 12: end for

13: Compute R = R σ + R l

A CUDA C++ implementation

The preprocessing components presented in section 4 were computed using the NeoPZ environment, which is a C++ open-source library for the development of finite element simulations. The coloring algorithm was implemented in C++ language. In order to compare the performance of GPU and CPU, Algorithm 2 was implemented in both C++ and CUDA languages. The integration of the GPU code using CUDA using two C++ classes: the first is responsible for wrapping CUDA API calls to manage memory transfers from CPU to GPU (and vice-versa), and the latter is responsible for encapsulating the kernels and CUDA libraries functions calls.

The operations used in Algorithm 2 are scatter, gather and saxpy operations and matrix-vector multiplication. Several matrix storage patterns to perform matrix-vector multiplications were tested.

The most efficient CUDA library turned out to be the cuSPARSE library which implements the matrix vector multiplication using a compressed row storage pattern. A second approach which performance results are documented in this paper is to work with each element block in parallel. In this case is constructed a kernel responsible to perform parallel operations where each thread is assigned to one elementary matrix-vector multiplication. The concept of kernel is defined soon.

The gather and scatter operations in the GPU are also implemented in the cuSPARSE library. According to NVIDIA [START_REF]cusparse library[END_REF], this library contains a set of basic linear algebra subroutines used for handling sparse matrices. For the saxpy operations the cuBLAS library was used. This library is an implementation of BLAS (Basic Linear Algebra Subprograms) for NVIDIA GPUs. Both cuSPARSE and cuBLAS are part of NVIDIA GPU-accelerated libraries. These libraries provide highly-optimized functions and are expected to perform 2x-10x faster than CPU-only alternatives. Every GPU architecture has its own configuration of number thread blocks, shared memory and memory-bandwidth. The libraries developed by NVIDIA use a different optimization strategy for each architecture which means that their use guarantees an optimum performance of the kernels calls independent of the GPU accelerator card.

The CUDA programming model introduced by NVIDIA supports CPU and GPU execution of an application. Kernels are instructions executed in the GPU by a number of threads. Cecka et al. [START_REF] Cecka | Assembly of finite element methods on graphics processors[END_REF] affirms a warp is a set of 32 threads within a thread block, while a thread block consists of a set of threads running concurrently that communicate through barrier synchronization and shared memory.

To achieve the maximum performance of a kernel execution in the GPU, it is desired to maximize the parallel execution, i.e., to maximize the number of active threads in the GPU during the execution of a kernel. However, Mafi [START_REF] Mafi | GPU-based Parallel Computing for Nonlinear Finite Element Deformation Analysis[END_REF] highlights three main factors that may limit better performances: registers, shared memory in a thread block and number of threads per thread block.

Numerical Results

The numerical results are presented in two subsections organized as follow: A series of executions were performed to evaluate the performance in time for CPU and GPU versions of the presented algorithms, and also for the in-house residual integration named as neoPZ; A Quasi-Newton iterative solver of the elastoplastic problem in (13) is presented and it takes advantage for the fast numerical integration of the residual expression in [START_REF] Lecat | Exact methods for the minimum sum coloring problem[END_REF] and nonlinear acceleration method presented in Sloan et al. [START_REF] Sloan | Accelerated initial stiffness schemes for elastoplasticity[END_REF].

The elastoplastic problem associated with a circular domain representing a wellbore region with prescribed Neumann considers constitutive behavior with the physical conditions presented in Fig. 2.

The internal pressure p int = σn • n is applied in the wellbore walls, while an external normal stress σ = σn • n is applied over the external boundary. A hydrostatic pre-stress σ 0 is the initial stress. The set of geometrical partitions T h for different refinement levels are presented in Table 2. The material properties used for the numerical results are presented in Table 3. For each configuration presented in Table 2 were made 5 executions both in CPU and GPU. The comparison between GPU and CPU parallel code is essential to verify if a GPU implementation is necessary. The performance analysis takes into account the execution time of the algorithms presented.

N T h | l=1 T h | l=2 T h | l=3 T h | l=4 T h | l=5 p =
The results presented corresponds to the average of the executions made. The performance results for both approaches are presented for the CPU and GPU.

The first approach assigns the global scattered strain-displacement matrix as a sparse matrix using a compressed row storage pattern and perform a single sparse matrix-vector multiplication. The CPU's implementation uses BLAS library, while the GPU's uses cuSPARSE library. The second approach consists of evaluating the elementary residual contributions performing elementary matrix-vector multiplications in parallel. In this case, the parallelization in the CPU in done with Thread Building Blocks, a widely used C++ template library for task parallelism. Also, the matrix-vector multiplications are performed with BLAS. The parallelization in the GPU is performed through a kernel responsible to assign one elementary matrix-vector multiplication per thread.

Sparse matrix storage pattern

Figure 3 shows the execution time of the residual construction for both CPU and GPU for the set of configuration presented in Table 2 using the first approach. It is observed that GPU's performance is slightly the same of CPU's for partition T h | l=1 with linear polynomial order. A speedup of 1.5x and 3.0x is noticed for quadratic and cubic polynomial orders, respectively. The GPU parallelism becomes evident with the refinement of the mesh. For geometric partition T h | l=5 and linear polynomial order, GPU's performance reaches a speedup of 7.1x. For geometric partition T h | l=4 with quadratic and cubic polynomial orders, a speedup of 7.2x and 9.0x is noticed. Figure 6 shows the execution time of the residual construction for GPU and the in-house classical residual integration neoPZ using the second approach. As well as the first approach, GPU's performance is better than the classical assembly process provided by the in-house residual integration. For geometric partition T h | l=1 with linear, quadratic and cubic polynomial the graphics shows speedups of 34.0x, 11.4x and 6.8x. For geometric partition T h | l=5 and linear polynomial order, a speedup of 47.6x is noticed.

Geometric partition T h | l=4 with quadratic and cubic polynomial orders presents speedups of 8.6x and 3.1x, respectively.

Solving an elastoplastic problem

Seeking for a faster and simple solution of the elastoplastic problem the initial stiffness method IS is adopted with the nonlinear acceleration presented by Sloan et al. [START_REF] Sloan | Accelerated initial stiffness schemes for elastoplasticity[END_REF]. These two methods are summarized as follows and it is important to highlight that the tangent matrix K is evaluated under the classical assembly process presented in Algorithm 1.

Initial Stiffness (IS) method. The main idea for IS or elastic stiffness method is to construct and approximate the tangent matrix K ≈ K as the elastic stiffness matrix to compute the iterative solution.

The process is performed by a computation of a single K assembly and factorized only once.

The method can be cast into the following steps:

1. Perform a single K assembly;

2. Decompose K;

Compute Newton correction δ u

k-1 = -K-1 R u k-1 ; 4. Perform a Newton update of u k = u k-1 + δ u k-1 ;
5. Perform 3 to 4, till the residue norm reaches the desired tolerance. i.e. R u k ≤ .

On one hand, the main advantage of this strategy is that a single iteration is fast and stable, it is aligned with a fast algorithm for numerical integration of the residual in [START_REF] Lecat | Exact methods for the minimum sum coloring problem[END_REF]. On the other hand, the rate of convergence for the algorithm is deficient, especially when the plastic area is considerable extended or arrow. Thus, to accelerate the convergence it is applied the Modified IS method based on the Thomas nonlinear acceleration method presented by Thomas [START_REF] Thomas | An improved accelerated initial stress procedure for elasto-plastic finite element analysis[END_REF] and Sloan et al. [START_REF] Sloan | Accelerated initial stiffness schemes for elastoplasticity[END_REF].

Modified IS method. This method use two subsequent states or u k and y k . Denoting the Newton update y k :

y k = u k-1 + δ u k-1 . (31)
Let be δ u * = -K-1 R y k and the new update state defined as follows:

u k = y k + ω k-1 δ u * (32)
where the factor ω is the so-called acceleration factor [START_REF] Sloan | Accelerated initial stiffness schemes for elastoplasticity[END_REF], defined as:

ω k = ω k-1 + δ u k-1 • δ u * δ u k-1 • δ u k-1 . (33)
This method requires a single assembly, and two linear solve and two function evaluations per update.

Because of the fast numerical integration of (15), the reasonable augment of the number of residual evaluations does not lead to any large impact on overall computational times. Figure 7 shows the accelerated effect on the convergence against the conventional IS method for partition T h | l=3 , fewer iterations were required to reach the same stop criterion. No kind of instability was observed during the iterative solution process. It is important to remark that by increase the polynomial degree the IS method suffers from a slow of convergence due to the arrow plasticity area around the wellbore region (blue line).

Conclusions

This paper describes an approach for finite element residual numerical integration in CUDA for elastoplastic problems. This approach differs from the classical assembly process once constant data is computed only once and is stored globally. The presented structure allows the use of parallelism since the elementary contributions are independent. The matrix-vector multiplications presented by the steps of the residual evaluation are explored in two different approaches. The first uses a compressed row storage pattern to perform the operation. The second approach works with each element block in parallel. For this research, the residual computation using the first approach reaches a speedup of 25.0x for a cubic polynomial order refined mesh when compared to the classical assembly and 9.0x when compared to an analogous parallel code executed in the CPU. However, the second approach has no advantages for GPU's performance. CPU's performance overcomes GPU's in 1.9x for a cubic polynomial order refined mesh. When compared to the in-house implementation, the achieved speedup is 3.1x, which corresponds to 12.4% of the reached speedup with the first approach. A important point to highlight about the performance of the first approach is the use of a library developed by NVIDIA, since they are specialized for each architecture. After all elementary contributions of the residual are computed, the assembly of the global operator is made using gather and scatter operations. Finally, a Modified Initial Stiffness method is applied. This method allows the construction of the global matrix only once under the classical assembly strategy and takes advantage of the inexpensive residual numerical integration process to achieve the desired convergence in a very efficient manner.

.

 The stress σ is a function of the elastic part of the deformation tensor. σ (u) = 2µε e + λ tr(ε e)I in Ω (4) where λ [MPa] and µ [MPa] are the first and second Lamé constants.

Figure 1 :

 1 Figure 1: Representation of Be.

1: R ← 0 N 2 : 3 : 5 : 6 :σ ← σ e 7 : end for 8 : 9 : 10 :

 235678910 Scatter δ u ← δ u Compute ε = B δ u 4: for k ← 1 to np do // Parallel execution Compute σ e (ξ k) = D (ξ k) ε e (ξ k) Concatenate Compute Rσ = Bt Ŵ σ for c ← 1 to nc do // Serial execution Gather R c ← Color subset Rσ 11:

Figure 2 :

 2 Figure 2: Wellbore region geometry with physical conditions, coarse mesh partition T h | l=1 , and zoom in internal boundary.

Figure 3 :Figure 4

 34 Figure 3: Residual construction performance for CPU and GPU (sparse storage pattern)

Figure 4 :Figure 5

 45 Figure 4: Residual construction performance for GPU and neoPZ (sparse storage pattern)

Figure 5 :

 5 Figure 5: Residual construction performance for CPU and GPU (blocks storage pattern)

Figure 6 :

 6 Figure 6: Residual construction performance for GPU and neoPZ (blocks storage pattern)

Figure 7 :

 7 Figure 7: Convergence history for the vertical wellbore problem with p = {1, 2, 3}.

Table 1 :

 1 List of symbols.

	Symbol	Description
	(•) e	The element e
	D (ξ k) ∈ R nσ×nσ	The local constitutive matrix
	B e (ξ k) ∈ R nσ×Ne The local strain-displacement matrix
	δ u e ∈ R Ne	The degrees of freedom of element e
	N e	The number of elements
	n σ	The number of fluxes components
	np	The number of integration points
	nc	The number of colors
	N e	The number of degrees of freedom of element e
	np e	The number of integration points of element e
	ω k	

Table 2 :

 2 Set of geometrical partitions T h for different refinement levels.

Table 3 :

 3 Material properties used for numerical simulations. The numerical experiments were conducted in the High-Performance Computing Laboratory and Immersive and Interactive 3D Environment for Scientific Visualization for Petroleum Production cluster (Galileu) at University of Campinas (UNICAMP). The cluster provides two processors Intel R Xeon R E5-2630 v3 @ 2.40 GHz, 64 [Gb] memory and 8 cores each processor. The graphic processor is an NVIDIA Tesla K40m with 12 [Gb] global memory and 2880 CUDA cores. It has 3.5 compute capability, 15 multiprocessors and 48 [Kb] shared memory per thread block.

	Parameter	Symbol [unit]	Value
	Internal pressure	p int [MPa]	-40
	External stress	σ [MPa]	-49.99375
	Hydrostatic stress	σ 0 [MPa]	-50
	Internal radius	r int [m]	0.1
	External radius	r ext [m]	4.0
	Young's modulus	E [MPa]	2000.0
	Poisson's ratio	ν	0.2
	Cohesion	c [MPa]	5.0
	Friction	φ [•]	20
	6.1. Performance analysis		

Table 2

 2

using the second approach. GPU's performance is slightly the same of CPU's for partitions T h | l=1 to T h | l=4 with linear polynomial order. For geometric partition T h | l=5 GPU's performance has speedup of 1.7x when compared to CPU's. However, CPU's performance overcomes GPU's for quadratic and cubic orders. For geometric partition T h | l=4 with quadratic and cubic polynomial, CPU is faster than GPU 1.2x and 1.9x, respectively.

Preprint submitted to Advances in Engineering Software December 19, 2019

Laouafa and Royis [13] do not specify the storage pattern of B nor do they explore parallel efficiency.

Acknowledgements

The authors thankfully acknowledge financial support from ANP (Brazilian National Agency of Petroleum, Natural Gas and Biofuels), grant 2014/00090-2.