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Introduction

Cam-Clay models of critical state soil mechanics are widely applied in various geotechnical applications involving numerical modeling and analysis of soil structure [START_REF]Proceedings of the Second International Conference on the Future of ASEAN (ICoFA) 2017[END_REF]. The original Cam-Clay (OCC ) model was presented by Roscoe et al. [START_REF] Roscoe | Yielding of clays in states wetter than critical[END_REF], Schofield & Wroth [START_REF] Schofield | Critical state soil mechanics[END_REF], and the modified Cam-Clay (MCC )

Email address: Corresponding author: manouchehr.sanei@gmail.com (Manouchehr Sanei) Preprint submitted to Computers and Geotechnics February 3, 2020 model was developed by Roscoe & Burland [START_REF] Roscoe | On the generalized stress-strain behaviour of wet clay[END_REF]. The general features of Cam-Clay models include pressure sensitivity, hardening and softening responses and demand a small number of material parameters which can be directly obtained from conventional laboratory tests [START_REF] Borja | A constitutive model for the stress-strain-time behaviour of 'wet' clays[END_REF]. In particular, the popularity of the MCC model is due to its simplicity and capability to represent the actual behavior of soils [START_REF] Borja | Cam-clay plasticity, part 1: Implicit integration of elasto-plastic constitutive relations[END_REF].

The MCC model depends essentially on two invariants (P and Q). The extension of the MCC model to three-invariant by introducing the Lode's angle β was proposed by Alawaji et al. [START_REF] Alawaji | Implicit integration in soil plasticity under mixed control for drained and undrained response[END_REF]. The extended model was represented as the generalized Cam-Clay (GCC ) model [START_REF] Perić | On the analytical solutions for the three-invariant cam clay model[END_REF]. The MCC model requires five material parameters, while the GCC model demands six parameters [START_REF] Perić | On the analytical solutions for the three-invariant cam clay model[END_REF].

The implementation of the MCC model in finite element demands the use of numerical integration algorithms for presenting the incremental evolution of stresses and hardening parameters [START_REF] Borja | Cam-clay plasticity, part 1: Implicit integration of elasto-plastic constitutive relations[END_REF]. Within the last decade, various integration algorithms have been proposed and categorized within two techniques: explicit and implicit. The implicit algorithms have become predominant because of their efficiency and robustness.

Throughout the years, Borja and his co-authors developed an implicit integration for MCC model by considering either a linear elastic predictor [START_REF] Borja | Cam-clay plasticity, part 1: Implicit integration of elasto-plastic constitutive relations[END_REF] or a nonlinear elastic predictor [START_REF] Borja | Cam-clay plasticity, part II: Implicit integration of constitutive equation based on a nonlinear elastic stress predictor[END_REF], and later extended the MCC model from the infinitesimal to finite strain [START_REF] Borja | Cam-clay plasticity part III: Extension of the infinitesimal model to include finite strains[END_REF]. In addition, many integration algorithms have been proposed for MCC model, such as documented in [START_REF] Borja | Cam-clay plasticity, part IV: Implicit integration of anisotropic bounding surface model with nonlinear hyperelasticity and ellipsoidal loading function[END_REF][START_REF] Borja | Cam-clay plasticity. part v: A mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media[END_REF][START_REF] Krabbenhoft | Computational cam clay plasticity using second-order cone programming[END_REF][START_REF] Rezania | On the stress update algorithm of an advanced critical state elasto-plastic model and the effect of yield function equation[END_REF].

The numerical integration scheme of elastoplastic constitutive models is described in the reference book [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF] where the numerical approach is based on the two main steps: the elastic trial step and a subsequent return-mapping scheme. The convergence rate of the iterative method for solving nonlinear elastoplastic equations is strongly dependent on the choice of variables to represent the residual vector. It can be enhanced by representing the elastoplastic equations in terms of the principal stresses [START_REF] Cecílio | An improved numerical integration algorithm for elastoplastic constitutive equations[END_REF].

In the present paper, we propose an innovative numerical scheme of the plastic corrector step for MCC model. The scheme is developed by introducing an additional dependence for MCC model on the Lode's angle β and representing the MCC model from two-invariant P -Q space to the rotated principal stress (three-invariant) space. Then, we consider a distance function in the rotated Haigh-Westergaard space that should be minimized, in order to compute plastic deformation from closed point projection. The proposed scheme is probably more efficient due to the expression of the yield surface within a Haigh-Westergaard cylindrical coordinates [START_REF] Chen | Plasticity for Structural Engineers[END_REF] and the application of the rotated Haigh-Westergaard space [START_REF] Cecílio | An improved numerical integration algorithm for elastoplastic constitutive equations[END_REF].

The proposed approach for the MCC model is verified by comparing the numerical results of MCC model with analytical solutions provided by Perić & Ayari [START_REF] Perić | On the analytical solutions for the three-invariant cam clay model[END_REF], Perić [START_REF] Perić | Analytical solutions for a three-invariant cam clay model subjected to drained loading histories[END_REF]. The implementation of the present study is done in the NeoPZ library [START_REF] Devloo | PZ: An object oriented environment for scientific programming[END_REF], which is an object-oriented scientific computational environment, providing a framework for developing finite element algorithms [START_REF] Devloo | Object oriented tools for scientific computing[END_REF].

Elastoplastic constitutive model

A nonlinear elastoplastic constitutive model is described by the theory of elastoplasticity, when a material undergoes an irreversible deformations after some specific loading conditions. The total strain tensor is decomposed into two parts as follows [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]:

= e + p ( 1 
)
where e is the elastic component and p is the plastic component. The elastic part is reversible and the plastic part represents a permanent deformation, and it is related to the history of irreversible deformations [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]. Once a displacement increment

• u is determined, the relationship between strain and displacement under the infinitesimal strain theory is defined as:

• = 1 2 ∇ • u + ∇ T • u (2) 
The elastoplastic deformation can be as a result of various microstructural changes and it can be described by the set of internal damage variables [START_REF] Hayakawa | An irreversible thermodynamics theory for elastic-plastic-damage materials[END_REF]:

χ i ; i = 1, 2, ... ( 3 
)
where χ i may be scalars, vectors, or higher rank tensors. With reference to the internal variables, the Helmholtz free energy is defined as in [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF]:

F = F ( e , χ i ) (4)
From the point of view of thermodynamics, the free energy can be decomposed into elastic F e ( e ) and plastic F p (χ i ) part. By differentiating the elastic part of free energy F e and substituting the result into the Clausius-Duhem inequality, the expression of stress is written as [START_REF] Hayakawa | An irreversible thermodynamics theory for elastic-plastic-damage materials[END_REF]:

σ = ρ ∂F e ∂ e ( 5 
)
where ρ and σ are the mass density and the stress tensor, respectively. Moreover, the thermodynamic conjugate force A i is represented by:

A i = ρ ∂F p ∂χ i (6)
The elastoplastic deformation is mathematically described by four fundamental axioms as follows [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]:

Elastic law. The elastic law can be presented by two types of constitutive behaviors: linear and nonlinear elasticity. The linear elasticity is described as [START_REF] Rudnicki | Fluid mass sources and point forces in linear elastic diffusive solids[END_REF]:

σ = 2µ ˙ e + λtr ( ˙ e ) I (7) 
where µ and λ are the Lame coefficients and σ is the effective stress increment. In many cases the Cam-Clay elastoplastic model is applied to poroelastic materials. In this case the elastoplastic behavior is determined by the value of the effective stress whose relation with the total stress is given by σ t = σ -αpI and in which p is the pore pressure and α is the Biot coefficient. The nonlinear stress-strain relationship presented in this paper relates only to the effective stress. No mention to the Biot model will be made in this paper.

Yield criterion. Describes the elastic limit and the plastic part through a plasticity yield function Φ = Φ (σ, A), where A = ρ∂F p /∂χ is the hardening thermodynamic force and χ is the internal damage variable.

The plasticity function assumes negative values in the elastic part and null values in the plastic part [START_REF] Kossa | Exact stress integration schemes for elastoplasticity[END_REF]. γ is the plastic multiplier. The flow rule is called associative if the plastic potential function equals to yield function, namely Ψ = Φ. For the associative case, the direction of strain rate is the outward normal to yield surface, whereas for non-associative flow rule it is the gradient of plastic potential surface [START_REF] Davis | Plasticity and Geomechanics[END_REF]. It is required to mention that the MCC model is an associative plasticity model.

Hardening law. Specifies how the internal damage variable

. χ = .
γH evolves, in which, H (σ, A) = -∂Ψ/∂A is the hardening modulus.

Modified Cam-Clay elastoplasticity model

The modified Cam-Clay MCC includes four key ingredients: (i) the elastic law, (ii) the yield function, (iii) the flow rule, and (iv) the hardening (softening) law. These four components are defined using the following stress invariants [START_REF] Krabbenhoft | Computational cam clay plasticity using second-order cone programming[END_REF]:

P = - 1 3 (σ 1 + σ 2 + σ 3 ) (8) Q = 1 2 (σ 1 -σ 2 ) 2 + 1 2 (σ 2 -σ 3 ) 2 + 1 2 (σ 3 -σ 1 ) 2 1 2 (9) 
where P is the effective mean stress [MPa], Q is the von Mises equivalent stress [MPa], and σ 1 , σ 2 , and σ 3 are the principal of effective stresses [MPa].

Note that P is positive in compression while the general sign conventions are maintained for the Cauchy stress.

Elastic law of modified Cam-Clay

In soil mechanics, the MCC model is based on the nonlinear elasticity law that can be linearized (as expressed in the equation ( 7)) whenever the change of mean effective stress is sufficiently small [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]. The elastic law of MCC establishes a nonlinear relation between the hydrostatic stress (i.e. P) and the volumetric deformation. For the shear stress, two flavours of constitutive relations are commonly used [START_REF] Systémes | Abaqus/Standard Userś Manual[END_REF]: First, by establishing a constant shear modulus G [MPa] and Second, by establishing the Poisson's ratio ν as a constant (in this case G depends on the bulk modulus).

• First. The nonlinear elastic law for the constant shear modulus is:

σ -σ • = 2G ( ed -• ed ) -(P cc ( ev ) -P o ) I (10) 
• Second. The nonlinear elastic law for the constant Poisson's ratio is:

σ -σ • = 2G (P cc ( ev )) ( ed -• ed ) -(P cc ( ev ) -P o ) I (11) 
where the shear modulus for the constant Poisson's ratio is:

G (P cc ( ev )) = 3K(P cc ( ev )) (1 -2ν) 2 (1 + ν) ( 12 
)
where σ • The elastic volumetric strain ev is:

ev = tr ( e ) (13) 
The elastic deviatoric strain tensor ed is given by:

ed = e - 1 3 tr ( e ) I (14) 
The constitutive law for the Cam-Clay effective mean stress P cc ( ev ) is [START_REF] Ferreira | DIANA Finite Element Analysis, Userś Manual[END_REF]:

P cc ( ev ) = -p t + (P • + p t ) exp - 1 + e • C e ( ev -• ev ) ( 15 
)
where e • is the initial void ratio, C e is the recompression index, • ev is the initial elastic volumetric strain, and p t is the tensile strength [MPa].

The initial mean effective stress P • is represented based on the initial conditions. For a zero tensile strength P • > 0 is required because the MCC constitutive model is generally applied to problems with non-zero initial stresses [START_REF] Systémes | Abaqus/Standard Userś Manual[END_REF].

The Bulk modulus K(P cc ( ev )) [MPa] in equation ( 60) is computed as:

K(P cc ( ev )) = - dP cc ( ev ) d ev ( 16 
)
leading to

K( ev ) = K(P cc ( ev )) = 1 + e • C e (P cc ( ev ) + p t ) (17) 
In order to implement the MCC model, it is required to present the elastic tangent operator. The elastic tangent operator C is derived from the derivative of the effective stress tensor in equation [START_REF] Alawaji | Implicit integration in soil plasticity under mixed control for drained and undrained response[END_REF] with respect to elastic strain tensor. Here, an elastic tangent operator is presented separately for constant shear modulus and constant Poisson's ratio, as:

• The elastic tangent operator for constant shear modulus is:

C = ∇ e σ = 2G I 4 + K( ev ) - 2 3 G I ⊗ I (18) 
• The elastic tangent operator for constant Poisson's ratio is:

C = ∇ e σ = 2G (P cc ( ev )) I 4 + 3K( ev ) ν 1 + ν I ⊗ I ( 19 
)
where ⊗ is the tensor product operator, I is the second-order identity tensor, and I 4 is the 4th-order identity tensor.

• Comparing the elastic tangent operator with the tangent for linear elasticity:

C = ∇ e σ = 2G I 4 + λ I ⊗ I (20) 
one can easily identify the equivalent elasticity parameters for a given state of stress or strain.

Yield function of modified Cam-Clay

The yield function of the MCC model (Fig. 1) is defined as [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]:

Φ (P, Q, a) = P -p t + a b a 2 + Q M a 2 -1 ( 21 
)
where M is the ratio between the two radii of the MCC ellipse, a is the radius of the ellipse along the effective mean stress axis [MPa]. The parameter b is:

b =    1 ζ if P ≥ p t -a if P < p t -a ( 22 
)
where ζ is the material constant which modifies the radius of the second half of the ellipse on the compressive side of hydrostatic axis. If ζ = 1, the yield locus becomes an ellipse with radii a and M a, respectively, along P and Q.

The dashed line in Fig. 1 is named the critical state line. The parameter M is the slope of the critical state line and the area to its right is the supercritical region (Dry, softening) and the area to its left is the subcritical region (Wet, hardening). The critical state line is given by: 

Q = M P (23)

Flow rule of modified Cam-Clay

The plastic flow rule is described by postulating associativity, [START_REF] Krabbenhoft | Computational cam clay plasticity using second-order cone programming[END_REF] as:

. p = . γ ∂Φ ∂σ (24)

Hardening law of modified Cam-Clay

The hardening law of MCC model is classified as hardening when the yield surface expands (Q < M P ), and softening when the surface shrinks (Q > M P ) and it undergoes no further changes when Q = M P [START_REF] Borja | Cam-clay plasticity part III: Extension of the infinitesimal model to include finite strains[END_REF].

The hardening law is expressed by writing the yield surface parameter (a) as a function of hardening variable (χ). For many plasticity compressible materials, the hardening variable χ is corresponds to the plastic volumetric strain pv , namely χ ≡pv , in which pv = tr ( p ). The hardening law can be defined by a piecewise linear form or an exponential form [START_REF] Systémes | Abaqus/Standard Userś Manual[END_REF]. The linear form of hardening law is given in terms of preconsolidation pressure p c [MPa],

as follows [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]:

p c (χ) ≡ (1 + ζ) a (χ) -p t ( 25 
)
The exponential form of the hardening law is written by replacing a (χ) in equation ( 25), as follows [START_REF] Ferreira | DIANA Finite Element Analysis, Userś Manual[END_REF]:

a (χ) ≡ a (-pv ) = a • exp - (1 + e • ) C p -C e pv -• pv ( 26 
)
where a • is the initial value of the hardening parameter, C p is the compression index.

• pv and pv are the initial and current plastic volumetric strain, respectively.

Yield function of generalized modified Cam-Clay

The MCC model is generally implemented by a numerical integration of two invariant [START_REF] Perić | Analytical solutions for a three-invariant cam clay model subjected to drained loading histories[END_REF]. Inspired by the articles [START_REF] Alawaji | Implicit integration in soil plasticity under mixed control for drained and undrained response[END_REF][START_REF] Foster | Implicit numerical integration of a three-invariant, isotropic/kinematic hardening cap plasticity model for geomaterials[END_REF], to control the plastic surface format, we consider a generalized modified Cam-Clay (GMCC ) model by introducing an additional dependence on the Lode angle β. To convert the MCC model in equation ( 21) from P -Q space to Haigh-Westergaard space, the invariant stress's are expressed as:

P = -I 1 3 Q = √ 3 J 2 (27) 
The GMCC model is defined by considering the invariant stress's in equation [START_REF] Ferreira | DIANA Finite Element Analysis, Userś Manual[END_REF] and applying the Lode's angle β as follows:

Φ I 1 , J 2 , a, β = -I 1 3 -p t + a b a 2 + √ 3 Γ(β) √ J 2 M a 2 -1 (28) 
Here the factor Γ(β) is given by:

Γ(β) = 1 2 [(1 + sin (3β)) + 1 ψ (1 -sin (3β))] (29) 
where, ψ has the range from 7/9 to 9/7. The MCC model refers to ψ = 1, such that, Γ(β) = 1.

Hardening law associated with generalized modified Cam-Clay

The MCC model is an associative plasticity model where the hardening modulus and flow relation can be related as: γN, the relationship for the hardening variable at the plastic correction step can be expressed as:

H = -tr (N ) (30 
• χ = • γ H = - • γ tr (N ) = -tr • p = - • pv (31)
Then, the incremental plastic volumetric strain while applying the implicit Euler method can be represented by:

∆ pv = ∆I 1 3 K( ev ) (32) 
where the evaluation of plastic volumetric strain is defined through equations ( 26), as follow:

pv (a) = • pv + C e -C p 1 + e • ln a a • (33) 
This derivation will permit the elimination of ∆γ as a variable in returnmapping step.

Numerical integration algorithm for the elastoplastic model

The numerical integration is divided into two main steps: the elastic trial step and the plastic corrector step (or return-mapping algorithm). If the elastic trial state lies within the elastic domain or on the yield surface, the solution is accepted. Otherwise, if the trial stress in the first step fails to verify the plastic admissible condition, it is projected onto the yield surface by the return-mapping algorithm [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF].

Incremental elastoplastic constitutive problem (general setting)

The incremental constitutive model is presented by applying an implicit Euler method. It is formed by giving the elastic deformation n-1 e , the plastic deformation n-1 p , and the hardening variable χ n-1 at a (pseudo) time step t n-1 , and also given a prescribed incremental strain tensor ∆ for the time interval [t n-1 , t n ] in order to find the following system of algebraic equations at a time-step t n [START_REF]Computational Plasticity[END_REF][START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]:

n e = n-1 e + ∆ -∆γ N (σ n , A n ) χ n = χ n-1 + ∆γ H (σ n , A n ) ( 34 
)
for the unknowns n e , χ n and incremental of plastic multiplier ∆γ, it is restricted to the Kuhn-Tucker conditions [START_REF] Borja | Plasticity[END_REF], as:

∆γ ≥ 0, Φ (σ n , A n ) ≤ 0, ∆γ Φ (σ n , A n ) = 0 ( 35 
)
where

σ n = ρ ∂F e ∂ e | n A n = A n (χ n ) = ρ ∂F p ∂χ | n ( 36 
)
and

N (σ n , A n ) = ∂Ψ ∂σ | n H (σ n , A n ) = -∂Ψ ∂A | n (37)
Solving the elastoplastic problem occurs in two steps. the return-mapping algorithm is applied and a set of nonlinear equations needs to be solved [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]:

n e = n e trial -∆γ N (σ n , A n ) χ n = χ n trial + ∆γ H (σ n , A n ) ∆γ > 0, Φ (σ n , A n ) = 0 (38)
Once the solution n e has been calculated, the plastic strain at a load-step t n can be computed as:

n p = n-1 p + ∆ -∆ e (39)
For the particular case of modified Cam-clay model :

χ n = -n pv σ n = σ( n e ) Ψ(σ n ) = Φ(σ n , χ n ) H(σ n , A n ) = tr(N (σ n , χ n )) (40)

Plastic return-mapping in rotated principal stress

In order to present a simplified procedure to improve integration scheme for MCC model, a numerical integration algorithm provided by [START_REF] Cecílio | An improved numerical integration algorithm for elastoplastic constitutive equations[END_REF] for DiMaggio & Sandler [START_REF] Dimaggio | Material model for granular soils[END_REF] elastoplastic model is used. The proposed scheme is implemented by using the closest point projection in the rotated principal stresses. In this algorithm, instead of using the six stress components for the representation of the stress state at a point, an alternative representation of the stress is used composed of the principal stresses σ = [σ 1 , σ 2 , σ 3 ] T . The principal stresses are then rotated to the Haigh-Westergaard stress space.

σ * = [σ * 1 , σ * 2 , σ * 3 ]
T is used for the stress representation in the Haigh-Westergaard stress space. The definition of the constitutive model in the rotated principal variables is simpler and computationally more efficient to implement. The coordinate system of rotated principal variables is similar to the decomposition used in [START_REF] Borja | Plasticity[END_REF][START_REF] Lainé | Nonlinear isotropic constitutive laws: choice of the three invariants, convex potentials and constitutive inequalities[END_REF].

Haigh-Westergaard stress space

The stress tensor σ [MPa] sorted in descending order σ 1 > σ 2 > σ 3 can be written as a function of the hydrostatic stress, deviatoric stress, and Lode's angle (ξ, ρ, β) [START_REF] Chen | Plasticity for Structural Engineers[END_REF], as:

σ =    σ 1 σ 2 σ 1    =      1 √ 3 ξ + 2 3 ρ cos (β) 1 √ 3 ξ + 2 3 ρ cos β -2π 3 1 √ 3 ξ + 2 3 ρ cos β + 2π 3      (41) ξ = I 1 √ 3 ρ = √ 2J 2 β = 1 3 cos -1 3 √ 2 2 J 3 J 3/2 2 (42)
The above expression is valid for the β ∈ 0, π 3 . I 1 , J 2 , and J 3 are the first invariant of the stress tensor, the second and third deviatoric stress tensor, respectively. I 1 , J 2 , and β are defined as:

I 1 = σ 1 + σ 2 + σ 3 J 2 = 1 3 [σ 2 1 + σ 2 2 -σ 2 σ 3 + σ 2 3 -σ 1 (σ 2 + σ 3 )] β = 1 3 arccos (2σ 1 -σ 2 -σ 3 )(σ-2σ 2 +σ 3 )(σ 1 +σ 2 -2σ 3 ) 2[σ 2 1 +σ 2 2 -σ 2 σ 3 +σ 2 3 -σ 1 (σ 2 +σ 3 )] 3/2 (43) 
The relationship between principal stresses and principal strains is expressed as:

=    1 2 3    = (D HW ) -1    σ 1 σ 2 σ 3    (44) 
where

D HW =      K + 4G 3 K -2G 3 K -2G 3 K -2G 3 K + 4G 3 K -2G 3 K -2G 3 K -2G 3 K + 4G 3      (45) 
where K [MPa] and G [MPa] are the Bulk and the shear modulus, respectively.

Rotated Haigh-Westergaard space

The tensor of stress σ [MPa] can be represented in terms of a rotated

Haigh-Westergaard (RHW). The RHW of stress

σ * = [σ * 1 , σ * 2 , σ * 3 ] T is defined as:    σ * 1 σ * 2 σ * 3    = R    σ 1 σ 2 σ 3    (46) 
where

R =     1 √ 3 1 √ 3 1 √ 3 2 3 -1 √ 6 -1 √ 6 0 1 √ 2 -1 √ 2     (47) 
The invariant stresses I 1 and J 2 and Lode's angle β in the rotated space can be computed as: The relationship between stress and strain in the rotated Haigh-Westergaard space is:

I 1 = √ 3σ * 1 J 2 = σ * 2 2 +σ * 2 3 2 β = arctan (σ * 3 /σ * 2 ) (48) 
   δ * 1 δ * 2 δ * 3    = (D RHW ) -1    δσ * 1 δσ * 2 δσ * 3    (49) 
where

D RHW =    3K 0 0 0 2G 0 0 0 2G    (50) 
where K and/or G for nonlinear elasticity are a function of ev .

Incremental elastoplastic constitutive problem in RHW space

The incremental associative elastoplastic problem can be interpreted using a distance minimization of the trial stress to the admissibility surface in the RHW space [START_REF] Armero | On the formulation of coloset point projection algorithms in elastoplasticity-part i: The variational structure[END_REF][START_REF] Perez-Foguet | On the formulation of closest-point projection algorithms in elastoplasticity-part ii: Globally convergent schemes[END_REF]. The admissibility surface for a given variable 

χ is S * (χ) = {σ * : Φ * (σ * , A (χ) = 0)},
where the flow direction N * is:

N * ,n = ∂Φ * (σ * ,n , A (χ n )) ∂σ * (52) 
and the hardening modulus H * is:

H * ,n = - ∂Φ * (σ * ,n , A (χ n )) ∂A ( 53 
)
Considering that the direction N * ,n is orthogonal to the surface S * (χ), the inner product of a variation of δσ * along the tangent plane at σ * ,n ∈ S * (χ n ) should satisfy the following orthogonality relationship:

0 = (δσ * , * ,n trial - * ,n ) = δσ * , D -1 RHW (σ * ,n trial -σ * ,n ) = δσ * , σ * ,n trial -σ * ,n RHW ( 54 
)
where σ * ,n is the projected point in S * (χ n ). Define the internal product for vectors a * and b * in the RHW space as:

a * , b * RHW = a * , D -1 RHW b * (55) 
The equation ( 54) is a distance function which shows minimizing the distance induced by the RHW internal product of the trial stress to the admissibility surface. The distance function for nonlinear elasticity can be written as:

d (a * , b * ) := (a * 1 -b * 1 ) 2 3K( ev ) + (a * 2 -b * 2 ) 2 2G( ev ) + (a * 3 -b * 3 ) 2 K( ev ) 1/2 (56)
where the function K( ev ) depends on the elastic volumetric strain and the function G( ev ) depends on the flavour of the elastic constitutive law (i.e. G constant or ν constant). It means:

G( ev ) =    G constant : ν constant : G G ( ev ) = 3K(Pcc( ev ))(1-2ν) 2(1+ν) (57)
The projected point, which minimizes the aforementioned distance function is computed as:

σ * ,n = min σ * ,n ∈S * (χ n ) d (σ * ,n
trial , σ * ,n )

Solution of the incremental return-mapping step

In the RHW space, a stress point on the yield surface depends on three parameters as:

S * (χ n ) = {σ * ,n (r 1 , r 2 , χ n ) : (r 1 , r 2 , χ n ) ∈ I} (58) 
where the internal damage parameter χ n is included to define the position of the surface and the other two parameters r 1 and r 2 which determine the position of a point on the surface. The square distance of a given σ * ,n trial , to a point on the surface σ * ,n (r 1 , r 2 , χ n ) ∈ S * (χ n ) is defined as:

δ (σ * ,n trial ; r 1 , r 2 , χ n ) = (d (σ * ,n trial , σ * ,n (r 1 , r 2 , χ n ))) 2 (59) 
where d(•) is defined in equation (56).

Given the trial elastic strain * ,n trial and internal variable χ n trial = χ n-1 , the quantity of σ * ,n trial is computed as:

σ n trial = σ n-1 trial +2G( n ev ) n ed trial -2G( n-1 ev ) n-1 ed trial -(P cc ( n ev )-P cc ( n-1 ev )) I (60)
The relation between a stress increment and a strain increment for the Cam-clay nonlinear elasticity in the rotated Haigh-Westergaard space as documented in equation ( 50) is:

D RHW ( ev ) =    3K( ev ) 0 0 0 2G( ev ) 0 0 0 2G( ev )    (61) 
where the expression for G( ev ) depends on the flavour of the nonlinear elastic law. It is required to mention that the Bulk modulus and shear modulus in equation ( 61) are the functions of elastic volumetric strain that are belong to trial stress tensor. Then, in the rest of paper, the following notations are applied.

       K trial = K( ev trial ) G trial = G( ev trial ) (62) 
After computing the quantity of σ * ,n trial , the stress σ * ,n (r 1 , r 2 , χ n ) ∈ S * (χ n ) at a time-step t n is computed by minimizing the distance of σ * ,n trial to the admissibility surface S * (χ n ), as follows:

∂δ(σ * ,n trial ;r 1 ,r 2 ,χ n ) ∂r 1 = 0 ∂δ(σ * ,n trial ;r 1 ,r 2 ,χ n ) ∂r 2 = 0 χ n -χ n-1 -∆γH * (r 1 , r 2 , χ n ) = 0 * ,n e trial - * ,n e -∆γN * (r 1 , r 2 , χ n ) = 0 (63)
For the particular case of modified Cam-clay model, the system of equations (63) when considering the equation ( 31), can be simplified as:

∂δ(σ * ,n trial ;r 1 ,r 2 ,χ n ) ∂r 1 = 0 ∂δ(σ * ,n trial ;r 1 ,r 2 ,χ n ) ∂r 2 = 0 χ n -χ n-1 + n pv -n-1 pv = 0 (64)
which is a system of equation of three equations in three unknowns.

The generalized modified Cam-Clay in the RHW space

The GMCC surface in the RHW space as shown in Fig. 3 where F (a) is defined by the following expression:

F (a) = M -p t (2 a b + p t ) √ 3 b Γ (β) (66)

Numerical integration algorithm for generalized modified Cam-Clay

The minimization of RHW square distance from σ * ,n trial to a point σ * ,n ∈ S * h (a) for GMCC model is presented for linear and nonlinear elasticity. In the rest of paper, for the simplicity of notation, we will use the notation σ * trial = σ * ,n trial and σ * ,n = σ * . Using the definition (65), the RHW square distance for nonlinear elasticity is:

d 2 (σ * trial , σ * ) = σ * trial,1 - 3(a+a b cos(θ)) √ 3 2 3K trial + σ * trial,2 -cos(β) √ 2F (a) sin(θ) Γ (β) 2 2G trial + σ * trial,3 -sin(β) √ 2F (a) sin(θ) Γ (β) 2 2G trial := δ h (σ * trial ; θ, β, a) ( 67 
)
where the expression for G trial depends on the flavor of the nonlinear elastic law.

The third relation of equation ( 64) by considering the equation ( 32) can be written as:

I 1 (σ * trial ) -I 1 (σ * ) = 3K trial [ pv (a trial ) -pv (a)] (68) 
The equation ( 68) is applied to update simultaneously the position of the yield surface which is defined by the variable a. In the RHW space, the invariant I 1 (σ * ) is expressed by:

I 1 (σ * ) = I 1 (θ, a) = 3 (a + a b cos (θ)) (69) 
Define a residual associated with the position of the cap:

res (θ, a) = [I 1 (σ * trial ) -I 1 (θ, a)] -3K trial [ε pv (a trial ) -ε pv (a)] = 0 (70)
The projected point on the Cam-clay surface as a function of a trial and σ * trial can be obtained by computing a and σ * proj ∈ S * h (a) which minimizes the RHW distance to σ * trial . The point is found by applying Newton's method to find the values of θ, β, and a such that:

R h =      ∂δ h( σ * trial ;θ,β,a) ∂θ ∂δ h( σ * trial ;θ,β,a) ∂β res (θ, a)      =    0 0 0    (71) 
The procedure to solve the system of equations, derivative of the projected stresses, and the derivation of elastoplastic tangent operator for this GMCC model is documented in the Appendices A, B, and C.

Numerical results

To verify the implementation of GMCC model, we compare the numerical results of our implementation with the analytical solution provided by Perić [START_REF] Perić | Analytical solutions for a three-invariant cam clay model subjected to drained loading histories[END_REF] for infinitesimal strain assumption. The analytical solutions are presented separately for volumetric and deviatoric behavior of the material.

The volumetric behavior

The rate of volumetric strain is obtained from its nonlinear elasticity and hardening rule. Then, by integrating the rate over a finite time increment, the analytical expressions for volumetric elastic strain and plastic strain are derived as:

ev = • ev + 1 1 + e • ln P P • -C e (72) pv = • pv + 1 1 + e • ln   P P • M 2 + η2 M 2 + η2 • C e -C p   ( 73 
)
where η is the modified stress ratio and defines as:

η = η g η = Q P (74)
In the case of a conventional triaxial compression, the function g is equal to 1.0. The superscript ( • ) refers to the initial condition herein.

A total volumetric strain is:

v = • v + 1 1 + e • ln   P P • -C p M 2 + η2 M 2 + η2 • C e -C p   (75) 
By considering a stress path in P -Q space, with a slope k = k g, in which k = Q/P , the total volumetric strain is expressed as:

v = • v + 1 1 + e • ln   k -η• k -η -C p M 2 + η2 M 2 + η2 • C e -C p   (76) 
Note that in the case of conventional triaxial test k = 3.0.

The deviatoric behavior

By integrating the rate of deviatoric strain over a finite time increment, the analytical expressions for generalized shear elastic strain and plastic strain are obtained as:

eq = • eq + 1 1 + e • ln    k - η k -η• -C e k 3 ω g    (77) pq = • pq -2C i M (1+e • ) arctan η M -arctan η• M + 1 1+e • ln M -η M -η• C i k M (M-k) M +η M +η• C i k M (M+ k) k-η k-η• 2C i k k2 -M 2 (78) 
where

C i = (C p -C e ) g ω = 3(1-2ν) 2(1+ν) (79) 
A total generalized shear strain is:

q = • q -2C i M (1+e • ) arctan η M -arctan η• M + 1 1+e • ln M -η M -η• C i k M (M-k) M +η M +η• C i k M (M+ k) k-η k-η• 2C i k k2 -M 2 -C e k 3 ω g (80)
The axial and radial strains in a triaxial test can be calculated from volumetric and generalized shear strains as follows:

a = 1 3 v + q r = 1 3 v -1 2 q
(81)

Verification of the implementation

The consolidated-drained triaxial test documented in [START_REF] Rocscience | Rocscience users manual[END_REF] is reproduced.

In this test, the sample is first consolidated under hydrostatic pressure and thus sheared by applying additional axial load. The material parameters that were used in this test are listed in Table 1. The test is on a normally consolidated clay sample which involves elastoplastic loading, a behavior that considers hardening. The stress paths, initial and final yield surfaces for softening and hardening part of this test is shown in Fig. 4. The performance of this test is done in two examples. First by giving the constant shear modulus and second by considering the constant Poisson's ratio. 

ψ 1 P • 0.2 M P a p • c 0.2 M P a Q • 0.0 M P a

Verification for constant shear modulus

For the following triaxial test, all the subfigures in the Fig. 5 presents a comparison for the GMCC model implementation with the results calculated from an analytical solution (see in the Appendix D), displaying the verification of the implementation for constant shear modulus. 

Verification for constant Poisson's ratio

All the subfigures in the Fig. 7 

Conclusions

An innovative description for the modified Cam-Clay plasticity model is developed. The description allows to contemplate the dependence on the Lode's angle. The modified Cam-Clay usually described in the P -Q space is reformulated using the rotated Haigh-Westergaard space. By doing so the plastic return-mapping amounts to closest point projection to the yield surface as a function of a only three independent parameters. The advantage of the new scheme for the modified Cam-Clay is its compactness and numerical efficiency. The Newton method applied to the minimization of a convex function which leads to fast convergence and improved numerical stability.

The average number of iterations required for convergence is less than 5. and the corresponding tangent matrix is:

J h =       ∂ 2 δ h( σ * trial ;θ,β,a) ∂θ 2 ∂ 2 δ h( σ * trial ;θ,β,a) ∂β ∂θ ∂res(θ,a) ∂θ ∂ 2 δ h( σ * trial ;θ,β,a) ∂θ ∂β ∂ 2 δ h( σ * trial ;θ,β,a) ∂β 2 ∂res(θ,a) ∂β ∂ 2 δ h( σ * trial ;θ,β,a) ∂θ ∂a ∂ 2 δ h( σ * trial ;θ,β,a) ∂β ∂a ∂res(θ,a) ∂a       (85) 

Appendix B: Derivative of project stresses with respect to trial stresses

The chain rule for the hardening surface S * h is:

∂σ proj ∂σ trial = ∂σ proj ∂ (θ, β, a) ∂ (θ, β, a) ∂σ trial (86)
By taking the derivative of the RHW square distance as:

R h = 0 (87) 
And applying the Taylor expansion on it, which is:

∂R h ∂σ trial δσ trial + ∂R h ∂ (θ, β, a) δ (θ, β, a) + O (σ trial , θ, β, a) = 0 (88) 
By rearranging it: 

∂ (θ, β, a) ∂σ trial = - ∂R h ∂ (θ, β, a) -1 ∂R h ∂σ trial (89) ∂ (θ, β, a) ∂σ trial = -(J h ) -1 ∂R h ∂σ trial (90) ∂R h ∂σ trial =     ∂ 2 δ h ∂θ ∂σ 1 ∂ 2 δ h ∂β ∂σ 1 ∂∆a ∂σ 1 ∂ 2 δ h ∂θ ∂σ 2 ∂ 2 δ h ∂β ∂σ 2 ∂∆a ∂σ 2 ∂ 2 δ h ∂θ ∂σ 3 ∂ 2 δ h ∂β ∂σ 3 ∂∆a ∂σ 3     (91 
The variation of the eigenvectors between σ proj and σ trial is represented by a rotation and its inclusion in the tangent matrix can be demonstrated.

The detail of the rotation can be found in [START_REF] Cecílio | An improved numerical integration algorithm for elastoplastic constitutive equations[END_REF].

Appendix C: Derivation of elastoplastic tangent operator

The elastoplastic tangent operator is derived from the derivative of the projected stress tensor with respect to the elastic strain tensor and it is defined by the chain rule as follows:

D ep = ∂σ proj ∂ e = ∂σ proj ∂σ trial ∂σ trial ∂ e ( 93 
)
By straightforward derivation, the elastoplastic tangent operator can be written as:

∂σ proj ∂ e = ∂σ proj, i ∂σ trial, j (x i ⊗ x i ) ⊗ (x j ⊗ x j ) C (94)
The matrix form of elastoplastic tangent operator is:

∂σ proj ∂ e δ e = ∂σ proj, i ∂σ trial, j (x i ⊗ x i ) ⊗ (x j ⊗ x j ) C δ e ( 95 
)
where C is the elastic tangent operator. To compute elastic tangent operator for constant Poisson's ratio in equation ( 18), it is required to consider the following remark:

Remark 1: The Bulk modulus in equation ( 17) is a function of the elastic volumetric deformation. Inspired by the article [START_REF] Borja | Cam-clay plasticity, part 1: Implicit integration of elasto-plastic constitutive relations[END_REF], to prevent a nonconservative model for constant Poisson's ratio in which energy may not be conserved, we propose to maintain the Bulk modulus constant during the time interval [t n-1 , t n ] and between timesteps is updated.

Appendix D: Triaxial test on a normally consolidated clay sample

The triaxial test results are presented for effective mean stress, von Mises stress, elastic volumetric strain, plastic volumetric strain, volumetric strain, generalized shear elastic strain, generalized shear plastic strain, generalized shear strain, preconsolidation pressure, and Bulk modulus, in order to verify the modified Cam-Clay model. The results are expressed separately for case of constant shear modulus and case of constant Poisson's ratio, as follows:

Triaxial test: results for case of constant shear modulus 

Flow rule.

  Assumes the existence of a plastic potential function Ψ = Ψ (σ, A), which specifies how the plastic deformation tensor p evolves in the plasticity process . p = . γN, in which N (σ, A) = ∂Ψ/∂σ is the flow direction and .

Fig. 1 .

 1 Fig. 1. Modified Cam-Clay MCC model, yield surface [15].

  ) by considering the above property and the definition of incremental plastic deformation . p = .

  First a an elastic response is computed (i.e. elastic predictor), where ∆γ = 0 leading to the elastic trial stress. n e trial = n-1 e + ∆ , and internal variables χ n trial = χ n-1 . σ n trial and Φ (σ n trial , A n trial ) are computed as a function of n e trial . If Φ (σ n trial , A n trial ) ≤ 0, the elastic response is a valid solution and the elasto plastic variables are updated from the trial values (• ) n := (• ) n trial . Otherwise,

Fig. 2 .

 2 Fig. 2. Transformation of the principal stresses to the rotated Haigh-Westergaard stresses.

  where Φ * (σ * , A) is the yield function. The expression of the return map in the RHM space corresponding to equation (38) is: * ,n e trial - * ,n e = ∆γN * ,n χ n trial -χ n = -∆γ H * ,n

  is formed by two parts. There is one softening part S * s (Green color) and one hardening part S * h (Red color). The implementation of the return map to any of these surfaces is similar and the only difference is related to the quantity of b, where b = 1.0 for softening part and b = ζ for the hardening part. Therefore, only the return mapping to the hardening part of GMCC in the RHW space is discussed.

Fig. 3 .

 3 Fig. 3. Yield surface represented in the RHW stress space: softening part S * s with green color and hardening part S * h with red color.

Fig. 4 .

 4 Fig. 4. The normally consolidated-drained triaxial test: stress paths, initial and final yield surfaces for softening and hardening part in the P -Q space.

Fig. 5 .

 5 Fig. 5. Comparison between the numerical results of the GMCC model for constant shear modulus with the analytical solution provided by Perić [18]. Relation between axial strain and von Mises stress (top-left), relation between volumetric strain and effective mean stress (top-right), relation between volumetric plastic strain and preconsolidation pressure (middle-left), relation between effective mean stress and Bulk modulus (middle-right), relation between effective mean stress and von Mises stress (bottom-left), and relation between axial strain and volumetric strain (bottom-right).

Fig. 6 (

 6 Fig. 6 (left) shows the evolution of the residual normal when solving the nonlinear systems of equations to project σ * trial on S * h (a) for the GMCC model with constant shear modulus, illustrating that the number of iterations required for convergence is less than 5. A typical 3D profile of the GMCC model for constant shear modulus is shown in Fig. 6 (right).

Fig. 6 .

 6 Fig. 6. (Left) Residual norm per iteration for each load step for the GMCC model with constant shear modulus; (Right) The generalized modified Cam-Clay plasticity yield function for constant shear modulus in which the arrow with a blue color shows the evolution of elastoplastic model.

  illustrates a comparison for the GMCC model implementation with the results calculated from an analytical solution (see in the Appendix D), demonstrating the verification of the implementation for constant Poisson's ratio.

Fig. 7 .

 7 Fig. 7. Comparison between the numerical results of the GMCC model for constant Poisson's ratio with the analytical solution provided by Perić [18]. Relation between axial strain and von Mises stress (top-left), relation between volumetric strain and effective mean stress (top-right), relation between volumetric plastic strain and preconsolidation pressure (middle-left), relation between effective mean stress and Bulk modulus (middle-right), relation between effective mean stress and von Mises stress (bottom-left), and relation between axial strain and volumetric strain (bottom-right).

Fig. 8 (

 8 Fig. 8 (left) displays that the evolution of the residual normal when solving the nonlinear systems of equations to project σ * trial on S * h (a) for the GMCC model with constant shear modulus, showing that the number of iterations required for convergence is less than 5. A typical 3D profile of the GMCC model for constant Poisson's ratio is shown in Fig. 8 (right).

Fig. 8 .

 8 Fig. 8. (Left) Residual norm per iteration for each load step for the GMCC model with constant Poisson's ratio; (Right) The generalized modified Cam-Clay plasticity yield function for constant Poisson's ratio in which the arrow with a blue color shows the evolution of elastoplastic model.

  where the expression for G trial depends on the flavour of the nonlinear elastic law. And, res (θ, a) = [I 1 (σ * trial ) -I 1 (θ, a)] -3K trial [ pv (a trial )pv (a)] = 0 (83) h( σ * trial ;θ,β,a) ∂θ ∂δ h( σ * trial ;θ,β,a) ∂β res (θ, a)

Table 1 .

 1 Material parameters for clay[START_REF] Rocscience | Rocscience users manual[END_REF].

	Parameter	Value
	G (Shear modulus) 20 M P a
	ν (Poisson's ratio)	0.3
	M	1.2
	C e	0.0077
	C p	0.066
	e •	0.438

  )

	∂σ proj ∂ (θ, β, a)	=	   	∂σ 1 ∂θ ∂σ 2 ∂θ ∂σ 3	∂σ 1 ∂β ∂σ 2 ∂β ∂σ 3	∂σ 1 ∂a ∂σ 2 ∂a ∂σ 3	   
				∂θ	∂β	∂a	

Table 2 .

 2 Triaxial results for case of constant shear modulus.

	No.	P	Q	ev	pv	v	eq	pq	q	a	r	pc	K
	Unit	[MPa]	[MPa]									[MPa]	[MPa]
	1	0.2	0.	-0.00382	0.	-0.00382	0.	0.	0.	-0.00127	-0.00127	0.2	52.3
	2	0.207	0.0204	-0.00395	-0.00169	-0.00564	0.00034	0.000123	0.000462	-0.00234	-0.00165	0.208	54.08
	3	0.214	0.0407	-0.00408	-0.00381	-0.00789	0.000679	0.000563	0.00124	-0.00387	-0.00201	0.219	55.85
	4	0.22	0.0611	-0.00419	-0.00627	-0.0105	0.00102	0.0014	0.00242	-0.00591	-0.00228	0.232	57.63
	5	0.227	0.0815	-0.00431	-0.00896	-0.0133	0.00136	0.00268	0.00404	-0.00846	-0.0024	0.247	59.41
	6	0.234	0.102	-0.00442	-0.0118	-0.0162	0.0017	0.00445	0.00615	-0.0116	-0.00233	0.265	61.18
	7	0.241	0.122	-0.00453	-0.0147	-0.0193	0.00204	0.00672	0.00876	-0.0152	-0.00204	0.284	62.96
	8	0.248	0.143	-0.00464	-0.0177	-0.0223	0.00238	0.00953	0.0119	-0.0194	-0.00149	0.305	64.73
	9	0.254	0.163	-0.00474	-0.0207	-0.0254	0.00272	0.0129	0.0156	-0.0241	-0.000651	0.327	66.51
	10	0.261	0.183	-0.00484	-0.0236	-0.0284	0.00306	0.0169	0.02	-0.0295	0.000506	0.351	68.29
	11	0.268	0.204	-0.00494	-0.0265	-0.0314	0.0034	0.0216	0.025	-0.0355	0.00202	0.376	70.06
	12	0.275	0.224	-0.00504	-0.0293	-0.0344	0.00374	0.0271	0.0308	-0.0423	0.00395	0.402	71.84
	13	0.281	0.244	-0.00513	-0.0321	-0.0372	0.00407	0.0335	0.0375	-0.0499	0.00636	0.429	73.61
	14	0.288	0.265	-0.00522	-0.0348	-0.04	0.00441	0.041	0.0454	-0.0587	0.00936	0.457	75.39
	15	0.295	0.285	-0.00531	-0.0374	-0.0427	0.00475	0.0499	0.0547	-0.0689	0.0131	0.487	77.17
	16	0.302	0.306	-0.0054	-0.0399	-0.0453	0.00509	0.0609	0.0659	-0.0811	0.0179	0.517	78.94
	17	0.309	0.326	-0.00548	-0.0424	-0.0479	0.00543	0.0746	0.0801	-0.096	0.0241	0.548	80.72
	18	0.315	0.346	-0.00557	-0.0448	-0.0503	0.00577	0.0931	0.0989	-0.116	0.0327	0.58	82.49
	19	0.322	0.367	-0.00565	-0.047	-0.0527	0.00611	0.121	0.127	-0.144	0.0458	0.612	84.27
	20	0.329	0.387	-0.00573	-0.0493	-0.055	0.00645	0.176	0.182	-0.201	0.0728	0.645	86.05
						29							

Table 3 .

 3 Triaxial results for case of constant Poisson's ratio.

	No.	P	Q	ev	pv	v	eq	pq	q	a	r	pc	K
	Unit	[MPa]	[MPa]									[MPa]	[MPa]
	1	0.2	0.	-0.00382	0.	-0.00382	0.	0.	0.	-0.00127	-0.00127	0.2	52.3
	2	0.207	0.0204	-0.00395	-0.00169	-0.00564	0.000277	0.000123	0.000399	-0.00228	-0.00168	0.208	54.08
	3	0.214	0.0407	-0.00408	-0.00381	-0.00789	0.000544	0.000563	0.00111	-0.00374	-0.00208	0.219	55.85
	4	0.22	0.0611	-0.00419	-0.00627	-0.0105	0.000804	0.0014	0.0022	-0.00569	-0.00239	0.232	57.63
	5	0.227	0.0815	-0.00431	-0.00896	-0.0133	0.00106	0.00268	0.00374	-0.00816	-0.00255	0.247	59.41
	6	0.234	0.102	-0.00442	-0.0118	-0.0162	0.0013	0.00445	0.00575	-0.0112	-0.00253	0.265	61.18
	7	0.241	0.122	-0.00453	-0.0147	-0.0193	0.00154	0.00672	0.00826	-0.0147	-0.00229	0.284	62.96
	8	0.248	0.143	-0.00464	-0.0177	-0.0223	0.00177	0.00953	0.0113	-0.0187	-0.00179	0.305	64.73
	9	0.254	0.163	-0.00474	-0.0207	-0.0254	0.00199	0.0129	0.0149	-0.0234	-0.00101	0.327	66.51
	10	0.261	0.183	-0.00484	-0.0236	-0.0284	0.00221	0.0169	0.0191	-0.0286	0.0000824	0.351	68.29
	11	0.268	0.204	-0.00494	-0.0265	-0.0314	0.00242	0.0216	0.024	-0.0345	0.00153	0.376	70.06
	12	0.275	0.224	-0.00504	-0.0293	-0.0344	0.00263	0.0271	0.0297	-0.0412	0.0034	0.402	71.84
	13	0.281	0.244	-0.00513	-0.0321	-0.0372	0.00283	0.0335	0.0363	-0.0487	0.00574	0.429	73.61
	14	0.288	0.265	-0.00522	-0.0348	-0.04	0.00303	0.041	0.044	-0.0573	0.00867	0.457	75.39
	15	0.295	0.285	-0.00531	-0.0374	-0.0427	0.00322	0.0499	0.0532	-0.0674	0.0123	0.487	77.17
	16	0.302	0.306	-0.0054	-0.0399	-0.0453	0.00341	0.0609	0.0643	-0.0794	0.017	0.517	78.94
	17	0.309	0.326	-0.00548	-0.0424	-0.0479	0.0036	0.0746	0.0782	-0.0942	0.0232	0.548	80.72
	18	0.315	0.346	-0.00557	-0.0448	-0.0503	0.00378	0.0931	0.0969	-0.114	0.0317	0.58	82.49
	19	0.322	0.367	-0.00565	-0.047	-0.0527	0.00395	0.121	0.125	-0.142	0.0448	0.612	84.27
	20	0.329	0.387	-0.00573	-0.0493	-0.055	0.00412	0.176	0.18	-0.198	0.0716	0.645	86.05

Acknowledgements

The authors M. Sanei, O. Durán, P.R.B. Devloo thankfully acknowledge financial support from ANP-Brazilian National Agency of Petroleum, Natural Gas and Biofuels (ANP-PETROBRAS) (grant 2014/00090-2). P.R.B. Devloo also acknowledges financial support from FAPESP, Brazil -Fundação de Amparo à Pesquisa do Estado de São Paulo, Brazil (grant 2017/15736-3), and from CNPq -Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant 310369/2006-1).

Appendix

Appendix A: Procedure for solving the elasto plastic return map

It is done by representing the RHW square distance separately for linear and nonlinear elasticity:

The RHW square distance for nonlinear elasticity is:

2