

La science pour la santé _____ ____ From science to health

Comprendre le fonctionnement cérébral : Apports de l'Imagerie

Michel Dojat

michel.dojat@inserm.fr

Imager le cerveau

- Signaux chimiques (neuromédiateurs)
- Signaux électriques et magnétiques
- Variations métaboliques et hémodynamiques
 - Consommation O₂, Glucose, emission Chaleur, H₂O, CO₂
- Cerveau = 2% du poids, 25% de consommation totale de glucose
- 12-15% du débit cardiaque, 20 % de la consommation totale d'O2 !!!

Des techniques variées ...

🌵 Inserm

RESEARCH TOPICS AND EXPERIMENTAL APPROACHES

/ Fundamental neurosciences

Cytoskeleton, Intracellular traffic, Synaptic plasticity, Mechanisms studied in normal and pathological conditions (neurobiological diseases, neurodegenerative diseases, myopathies)

/ Pre-clinical and clinical research

Developing tools and concepts Close links with networks such as GREEN, Neuropsynov, NeuroCoG...

Innovative technologies and treatments

Multidisciplinary approaches including human social sciences, and methodological developments (optogenetics, reconstruction of neural networks, electrophysiology...)

Le 21ème siècle sera neuroscientifique ou ne sera pas ...

Il y a plus à comprendre dans un chapitre de l'idiot de Dostoïevski que dans les données cumulées de toutes les IRM du monde — car L'idiot de Dostoïevski résume des millénaires d'expérience mieux que tous les métaarticles des chercheurs en neuroscience.

2019 France Culture Aurélien Bellanger

MRI Prínciple

Un peu d'ordre ...

Un signal spécifique ...

🌵 Inserm

Imager en 3D : Encoder la position par la fréquence

 $w(x) = \gamma [B_0 + xG_x]$

Un équipement très technique

[Hornak 1996]

9.4 T petit animal

Des Images contrastées

Des modalités non invasives ...

Des modalités non invasives ...

🌐 Inserm

Anatomie Computationnelle

Quantification automatique - Tissus & Structures

Quantification automatique – Tissus & Structures

Détecter des formes atypiques

Sujets Sains : 2944

[Coupé HDR 2019]

Détecter des formes atypiques

Sujets Sains : 2944

Patients Alz-MCI: 3262

[Coupé HDR 2019]

Détecter des zones atypiques

Winner of the AI data challenge R JFR 2019 pixyl.ai

Trauma

Automatique

Manuel

Comparer les solutions

Challenge

Miccai 2016

Commowick, O. et al. Nature Scientific Reports, 2018

Diffusion Tensor Imaging

9.4T

$$FA = \sqrt{\frac{3}{2}} \sqrt{\frac{(\lambda_1 - \overline{\lambda})^2 + (\lambda_2 - \overline{\lambda})^2 + (\lambda_3 - \overline{\lambda})}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$
$$MD = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3}$$
$$RD = \frac{\lambda_2 + \lambda_3}{2}$$
$$AD = \lambda_1,$$

I. Uszynski PhD 2018

Towards an Murin brain fiber bundle atlas

C57BI6 mouse brain

Pathological model: xxx KO

Master 2019 D. Alves Rodrigues de Souza

Anterior Commissure Global diminution

Fornix

DTI du système visuel chez l'homme - I

Control

Coll A. Attye

DTI du système visuel chez l'homme - II

Passera et al HBM 2019

Functional Imaging

Principle

Fox and Raichle (1986), PNAS

Blood Oxygen Level Dependent Contrast-I

-Développement de la séquence EPI : Schmitt et all SMRM 1991
- Functional Brain Imaging basé sur EPI Kwong et al. 1992 PNAS Ogawa PNAS 1992

Blood Oxygen Level Dependent Contrast - II

Blood Oxygen Level Dependent Contrast - III

Technique non-invasive & indirecte

Activité neuronale

Imagerie par effet BOLD

Technique non-invasive & indirecte

Activité neuronaleImagerie par effet BOLDCouplage neuro-vasculaire mal connu😒1 voxel = 3x3x3mm³ = 5.5 106 neurones, 1010 synapses, 22 Km dendrites, 220 km d' axones !!![Friston Science 2009]

Le signal est faible et dépend de nombreux facteurs (vascularisation, pathologie, conditions de mesure, instrumentation ...)

Une expérience en vision

3T MR

Fonctional

Structural

sagittal

Recherche les zones activées

Le système visuel humain

Some examples

Rétinotopie-I

[Tootell et al, J Neurosci 8:1531 1988]

Rétinotopie-II

[Tootell et al, J Neurosci 8:1531 1988]

Rétinotopie-II

[Tootell et al, J Neurosci 8:1531 1988]

Rétinotopie-II

[Schuett J Neurosci 22:6549 2002]

Retinotopie chez l'homme

Water color effect

Water color effect

Method: Multi-Voxel Pattern Analysis (MVPA) from fMRI data.

Results

Conclusion

- Filling-in is best classified and best correlate with appearance by dorsal areas V3A & V3B/KO
- Uniform chromaticity by ventral areas hV4 & LO
- Feedback modulation from V3A to V1 and LO for filling-in
- Feedback from LO modulating V1 and V3A for uniform chromaticity

InnoBíoPark

Recherche translationelle : Un bon exemple

Recherche translationelle : Un bon exemple

Recherche translationelle: Un bon exemple

Translational research: a nice example, Parkinson Disease

To the patient bedside ...

Objectifs : détection au plus tôt + personalisation de la thérapie

Outils : Neuropsychologie – Neurologie – Ophtalmologie - IRM - EyeTracking – DATscan – TMS/EEG

Objectifs : détection au plus tôt + personalisation de la thérapie

Outils : Neuropsychologie – Neurologie – Ophtalmologie - IRM - EyeTracking – DATscan – TMS/EEG

Des difficultés

CLINICAL REVIEW

Desperately seeking grey matter volume changes in sleep apnea: A methodological review of magnetic resonance brain voxel-based morphometry studies Sébastien Celle ^{a, b, *}, Chantal Delon-Martin ^{c, d}, Frédéric Roche ^{a, D}, Jean-Claude Barthélémy ^{a, b}, Jean-Louis Pépin ^{d, e}, Michel Dojat ^{c, d}

RESEARCH ARTICLE

Magnetic resonance imaging does not reveal structural alterations in the brain of grapheme-color synesthetes

 1 2 3 4 5 6 7 8 9 10 11 12 13 etc

 Lundi Mardi Marcial Jeudi Vendredi Samedi Dimanche

 A D E G J L N P Q Y Z

 ا آ ط ض ص ش س ژ ز ر ذ د خ ح چ ج ث ت ب ب آ المح

Michel Dojat¹*, Fabrizio Pizzagalli^{1°}, Jean-Michel Hupé²

Multivariate pattern analysis of fMRI data for imaginary and real colours in grapheme-colour synaesthesia

Mathieu J. Ruiz, Dirichel Dojat, Dirichel Hupé doi: https://doi.org/10.1101/214809 we have not found any evidence of the involvement of the cortical colour network in the subjective experience of synaesthetic colours.

Des difficultés

CLINICAL REVIEW

Desperately seeking grey matter volume changes in sleep apnea: A methodological review of magnetic resonance brain voxel-based Sébastien Celle ^{a, b, *}, Chantal Delon-Martin ^{c, d}, Flécer morphometry studies Michel Doiat ^{c, d} Jean-Claude Barthélémy^{a, b}, Jean-Louis Pépin stique RESEARCH ARTICLE Magnetic resonance imaging structural alterations in the brain of grapheme-color synesthetes Michel Dojat1*, Fabrizie Pizzagalli1°, Jean-Michel Hope Multivariate pattern analysis of data for we have not found any evidence imaginary and real colours of grapheme-colour synaesthesia of the involvement of the cortical colour network in the subjective experience of Mathieu I. Ruiz, D Nichel Dojat, D Jean-Michel Hupé synaesthetic colours. doi: https://doi.org/10.1101/214809

Toujours plus ...

🌵 Inserm

NN in Radiology

- PubMed 2013-18 ("DL" or "CNN") and ("image" or "imaging" or "radiology")
- 744 art. 180 relevant

Multi-layer network

https://www.tensorflow.org/

🌐 Inserm

Convolutional NN

CNN: a framework for modelling human vision?

Natural "CNN"

- Gabor filter
- Local features

- Hierarchical model
- Several areas (layers)
- Receptive field sizes increasing

- Max pooling

CNN as a model of the visual system ...

- ✓ Receptive field
- Hierarchical model
- Max pooling

[Dojat Lavoisier ed. 2017]

CNN as a model of the visual system ...

Hallucinations

[Ffytche 2007 Dial Clin Neurosc]

DeepDream.com

michel.dojat@inserm.fr

🌵 Inserm