
HAL Id: hal-02464393
https://hal.science/hal-02464393v1

Submitted on 13 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SLU FOR VOICE COMMAND IN SMART HOME:
COMPARISON OF PIPELINE AND END-TO-END

APPROACHES
Thierry Desot, François Portet, Michel Vacher

To cite this version:
Thierry Desot, François Portet, Michel Vacher. SLU FOR VOICE COMMAND IN SMART HOME:
COMPARISON OF PIPELINE AND END-TO-END APPROACHES. IEEE Automatic Speech
Recognition and Understanding Workshop, Dec 2019, Sentosa, Singapore, Singapore. �hal-02464393�

https://hal.science/hal-02464393v1
https://hal.archives-ouvertes.fr


SLU FOR VOICE COMMAND IN SMART HOME: COMPARISON OF PIPELINE AND
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ABSTRACT

Spoken Language Understanding (SLU) is typically per-
formed through automatic speech recognition (ASR) and
natural language understanding (NLU) in a pipeline. How-
ever, errors at the ASR stage have a negative impact on the
NLU performance. Hence, there is a rising interest in End-to-
End (E2E) SLU to jointly perform ASR and NLU. Although
E2E models have shown superior performance to modular
approaches in many NLP tasks, current SLU E2E models
have still not definitely superseded pipeline approaches.

In this paper, we present a comparison of the pipeline
and E2E approaches for the task of voice command in smart
homes. Since there are no large non-English domain-specific
data sets available, although needed for an E2E model, we
tackle the lack of such data by combining Natural Lan-
guage Generation (NLG) and text-to-speech (TTS) to gener-
ate French training data. The trained models were evaluated
on voice commands acquired in a real smart home with sev-
eral speakers. Results show that the E2E approach can reach
performances similar to a state-of-the art pipeline SLU de-
spite a higher WER than the pipeline approach. Furthermore,
the E2E model can benefit from artificially generated data to
exhibit lower Concept Error Rates than the pipeline baseline
for slot recognition.

Index Terms— Spoken language understanding, auto-
matic speech recognition, natural language understanding,
ambient intelligence, voice-user interface

1. INTRODUCTION

Spoken Language Understanding (SLU) systems typically
consist of a pipeline of automatic speech recognition (ASR)
and natural language understanding (NLU) modules. For
a slot-filling task, ASR output transcriptions are fed to the
NLU module for slot and intent extraction. The NLU model
is trained on clean transcriptions whereas erroneous ASR
transcriptions reduce the SLU performance. Although the
pipeline approach is widely adopted, there is a rising interest
for end-to-end (E2E) SLU which combines ASR and NLU
in one model, avoiding the cumulative ASR and NLU errors

This work is part of the VocADom project founded by the French Na-
tional Agency (Agence Nationale de la Recherche / ANR-16-CE33-0006).

of the pipeline approach [1, 2]. The main motivation for
applying E2E SLU is that word by word recognition is not
necessary to infer slots and intents and that the ASR phoneme
dictionary and language model (LM) become optional. E2E
SLU systems are deep recurrent neural networks (RNN) that
can be learned on GPUs to train directly from a large amount
of speech data. Large amounts of domain-specific data are
difficult to acquire, limiting the applicability of E2E to new
domains.

In this paper, we compare pipeline and E2E SLU for
voice command in smart homes. The E2E model is trained
on transcriptions enriched with symbols representing intents
and slots. We show that, contrary to the pipeline approach,
intents and slots can be inferred directly from the raw speech
input, using a small training data set. The contributions of this
paper are: 1) the first work on E2E SLU for voice command
in domestic environments; 2) a comparison of a pipeline and
E2E SLU model; 3) experiments performed with realistic
non-English test and synthetic training data. Both approaches
are positioned with respect to the state-of-the-art in Section 2
and are outlined in Section 3. We tackle the lack of domain-
specific data by using Natural Language Generation (NLG)
and text-to-speech (TTS) to generate French voice command
training data. An overview of these processes and data sets
is given in Sections 3 and 4. Section 5 presents the results
of experiments using real smart home voice commands for
the SLU pipeline baseline and E2E approaches followed by a
discussion, conclusion and outlook on future work.

2. RELATED WORK

A typical SLU pipeline approach is sequential and is com-
posed of an ASR and NLU module. The ASR output hypothe-
ses from the speech utterance are fed into the NLU model
aiming to extract the meaning from the input transcription. In
this paper, SLU is seen as a slot-filling task for prediction of
the speaker’s intent and entity labels (slots) in a spoken utter-
ance [3]. The main issue of the state-of-the art pipeline SLU
approaches is to address the cascading error effect between
the ASR and the NLU module. Such sequential approaches
used confidence measures and N-best lists to decrease the
errors accumulated over the ASR and NLU modules. For
instance, weighted voting strategies combining ASR output



confidence measures and N-best list hypotheses were used in
a NER task [4] to take uncertainty into account. A named en-
tity (NE) label was considered correct if it occurred in more
than 30% of the n-best candidates. Another method is to learn
NLU models on noisy ASR output transcriptions. In [5], man-
ual and ASR output transcriptions with word ASR confidence
measures were used for a NER task, to learn a support vector
machine-based (SVM) NE recognition system.

More recently, acoustic word embeddings for ASR error
detection were trained through a convolutional neural net-
work (CNN) based ASR model to detect erroneous words [6].
Output of this ASR model was fed to a conditional random
fields (CRF) model and an attention-based RNN NLU model.
The CRF outperformed the RNN approach and the concept
error rate (CER) decreased further by integrating confidence
measures. If most previous approaches for SLU focused on
tuning the ASR model or using N-best hypotheses, other work
[7] modified the ASR dictionary and language model to di-
rectly generate transcriptions with NE labels. This led to a
significant increase of slot recognition.

Only recently SLU was conceived as a parallel or joint
processing of the ASR and NLU tasks. These E2E approaches
integrated deep neural networks (DNN) inferring intents di-
rectly from audio MFCC features training a sequence-to-
sequence (seq2seq) model on clean and noisy speech data
[8], but did not outperform the pipeline approach. In [9] the
Baidu Deep Speech ASR system [10] was trained on NE
annotated transcriptions. The training set was increased by
performing NER on a large speech data set and exhibited
a better identification of slot labels than a pipeline system.
Although E2E model performances are promising, pipeline
models are still highly competitive. Furthermore training data
augmentation, is a key factor for bringing E2E SLU to perfor-
mances equivalent or superior to pipeline SLU performances.
Generation of training data using TTS was shown to be useful
for ASR [11]. Gadde et al. used an ASR E2E convolutional
NN model with connectionist temporal classification (CTC)
and reported optimal ASR performances with 50% synthetic
and 50% natural speech data in the acoustic model. This
review of related work shows that the E2E SLU field needs
more research effort indicating that training data generation
seems to be crucial. This aspect is developed in section 5.2.

3. PIPELINE AND E2E SLU METHODS

3.1. Pipeline SLU

The ASR component of our pipeline SLU is based on the hy-
brid HMM-DNN Kaldi tool using speaker adapted features
from the Gaussian mixture model (GMM) [12]. The nnet2
version was used to benefit from multiple GPUs [13]. Its out-
put transcriptions are fed to an NLU module.

State-of-the-art NLU CRF models [14] and also DNN-
based models [15, 16, 17, 18] approach the NLU problem as a

sequence labeling task. This means that the training data must
be aligned to associate each word to a slot label as in the BIO
NE labeling scheme. In spite of its efficiency in a pure NLU
context, this type of alignment cannot be assumed for pipeline
and E2E SLU when input data consists of spontaneous speech
with disfluencies that often cause ASR deletion and insertion
errors. Hence a robust NLU sub-part is needed that can han-
dle those and is trainable with unaligned labels. Therefore
we used a sequence generation approach to make the train-
ing become independent from aligned data. Using unaligned
data provides the flexibility to infer slot labels from imperfect
transcriptions. Hence, in this work, the NLU module was a
seq2seq attention-based model 1.

Although our seq2seq NLU model is close to the one of
Liu et al. [17] showing high performances on a voice com-
mand task using aligned data [19], it should learn to associate
several words to one slot label without aligned data. For
instance, from ”Turn on the light” (Allume la lumière) the
model generates the sequence intent[set device],
action[turn on], device[light], without speci-
fying the slot associated with the definite article. An aligned
approach however predicts two labels for the sequence ”the
light”, one label for the article and another for the noun as
parts of the same named entity. Furthermore, perfect ASR is
not necessary for training the NLU model. In the (erroneous)
ASR hypothesis transcription ”turn on light” for the refer-
ence transcription ”turn on the light”, the information about
the slots action and device , is still available.

3.2. E2E SLU

The E2E approach is based on ESPnet [20]. It integrates the
KALDI data preparation, extracts Mel filter-bank features,
and combines Chainer and PyTorch deep learning tools [21,
22]. The default PyTorch encoder is a pyramidal subsam-
pling bi-LSTM (BLSTM) [23] given T-length speech feature
sequence o1:T to extract feature sequence h1:T ′ as,

h1:T ′ = BLSTM(o1:T ), (1)

where T ′ < T due to subsampling. The chainer back-end
supports CNNs. Mapping from acoustic features to character
sequences is performed by a hybrid multitask learning that
combines CTC [24] and an attention-based encoder-decoder.
The attention mechanism allows a more flexible alignment,
which focuses on the important features and character se-
quences whereas the ASR alignment is monotonic. A trade-
off hybrid CTC and attention-based approach finds a balance
between attention and CTC.

logphyb(yn|y1:n−1, h1:T ′) = α logpctc(yn|y1:n−1, h1:T ′)

+ (1− α) logpatt(yn|y1:n−1, h1:T ′),

(2)

1https://gricad-gitlab.univ-grenoble-alpes.fr/getalp/seq2seqpytorch



where yn is a hypothesis of output label at position n given
y1:n−1 and the encoder output h1:T ′ . The score combination
(logphyb) for the hybrid CTC/attention architecture, with at-
tention patt and CTC pctc log probabilities is performed dur-
ing beam search. The weight α can be set manually in order to
give more importance to attention or CTC. A character RNN
language model can be provided for the decoding. The log
probability plm of the RNN LM can be fused with the CTC
attention hybrid output by:

logp(yn|y1:n−1, h1:T ′) = logphyb(yn|y1:n−1, h1:T ′)

+ β logplm(yn|y1:n−1).
(3)

Since ESPnet models the ASR task at the character level,
our approach to predict NLU concepts from the input signal
was inspired by [9]. The output target of the ESPnet process
was speech transcriptions augmented with characters (e.g., @,
#. . . ) symbolizing the intent and slot labels of the utterance,
described in section 5.2.

4. DATA

In spite of the development of voice based IoT devices, there
is a lack of domain-specific speech data, especially for non-
English languages. This problem was tackled with the auto-
matic generation of a domain-specific synthetic speech train-
ing corpus. To evaluate the method, two French voice com-
mand data sets were collected in real smart homes (section
4.2) and are available to the community [25, 26].

4.1. Data augmentation using artificial data generation

Although the current trend for data augmentation is to use
constrained RNN language models [27], these still need a
set of initial sentences for bootstrapping and it is difficult to
make them generalize to unseen concepts. For that reason we
used standard expert-based NLG [28]. The corpus genera-
tor of Desot et al. [19] produced training data automatically
labeled with intents and slots. It was built using the open
source NLTK python library to which feature-respecting top-
down grammar generation was added. Semantic constraints
prohibit the production of nonsensical utterances.

Its semantics were developed around an existing smart
home Amiqual4Home2. Intents consist of four general cat-
egories: contact which allows the user to place a call; set
to change the state of objects in the smart home; get to query
the state of objects and properties of the world at large (open
question); and check to check the state of an object (closed
question). A complete overview of intents is presented in ta-
ble 1.

Eight different basic slot labels were defined: the action
to perform, the device to act on, the location of the
device or action, the person or organization to be

2https://amiqual4home.inria.fr

contacted, a device component, a device setting and
the property of a location, device, or world. Variations on
these basic slot labels occur. Each generated voice command
is composed of a keyword used to activate the Smart Home.
Most keywords (such as “Ichefix”) are proper nouns of at
least 3 syllables long to enable sufficient duration for detec-
tion. ”Ichefix call a doctor” will activate the Smart Home
whereas ”Call a doctor” should not trigger any reaction.
More than 77k semantically annotated voice commands were
automatically produced for training purpose, with a total of
17 different slot labels and 7 different intent classes.

4.2. Collection of realistic data sets

Evaluation of voice command SLU requires real data. Hence,
we used the VocADom@A4H corpus [26] with about twelve
hours of audio signal3. It was acquired in realistic conditions
in the Amiqual4Home smart home. More than 150 sensors
and actuators were set to acquire speech, to control light, set
the heating etc. Eleven participants uttered voice commands
while performing daily activities for about one hour. Out-of-
sight experimenters reacted to participants’ voice commands
following a wizard-of-Oz strategy to add naturalness to the
corpus. Speech data was semi-automatically transcribed and
resulted in 6,747 utterances, annotated with intents and slots.
The small SWEET-HOME corpus, with distant voice com-
mands collected in another smart home [25] was also used.

Finally, we used ESLO2 corpus utterances (126h) of con-
versational French speech [29] to model the none intent.
Similar to VocADom@A4H and SWEET-HOME corpora, it
contains frequent disfluencies. From the ESLO2 data, sen-
tences which were unrelated to voice command intent were
extracted (i.e. None intent). By using an n-gram model
learned on the artificial corpus, sentences with domain spe-
cific vocabulary were selected. These utterances were man-
ually filtered and only out of domain utterances were kept in
order to collect none intent training data. Table 2 summa-
rizes the statistics for the artificial (Artif.), VocADom@A4H
(VocADom.), Sweet-Home and Eslo2 corpora. The Vo-
cADom@A4H corpus was used as test corpus in all the
experiments (unless otherwise specified).

5. EXPERIMENTS AND RESULTS

5.1. Pipeline SLU baseline approach

Baseline ASR transcriptions were generated using Kaldi. We
wanted to evaluate the impact of conversational speech in the
training data, similar to the conversational style of the Vo-
cADom@A4H test data. That is why two acoustic models
were compared: a first model without and a second model
with ESLO2 speech data. The first one was trained on 90%
of the corpora ESTER1 (100h) and 2 (100h), REPERE (60h),

3https://vocadom.imag.fr



Table 1. Artificial corpus (Artif.) and VocADom@A4H (Real.): Examples and Frequency of intents
Intent Example (English) (French) Frequency

Artif. Real.
Contact Call a doctor Appelle un médecin 567 114
Set device Open the window Ouvre la fenêtre 63,288 2178
Set device property Decrease the TV volume Diminue le volume de la télé 7290 9
Set room property Decrease the temperature Diminue la température 3564 21
Check device Is the window open? Est-ce que la fenêtre est ouverte? 2754 284
Get room property What’s the temperature? Quelle est la température 9 3
Get world property What’s the time? Quelle heure est-il? 9 3
None The window is open La fenêtre est ouverte - 4135

Table 2. Comparison of the corpora used for SLU
Parameters Artif. VocADom. Sweet-Home Eslo2
utterances 77,481 6747 1412 161,699
words 187 1462 480 29,149
intents 7 8 6 1
slot labels 17 14 7 -

ETAPE (30h), SWEET-HOME (2.5h), BREF120 (120h) [30],
VOIX-DETRESSE (0.5h) [31] and CIRDOSET (2h) [32], the
remaining 10% being kept as development (DEV) set. For
the second one, we added 90% of the speakers of 126 hours
of ESLO2 speech data [29] to the first training corpus, 10%
being added to the first DEV set. The division into train
and DEV set was based on random speaker selection without
speaker overlap between the training corpus and DEV set.

The ASR dictionary consisted of 305k phonetic transcrip-
tions of words based on the BD-LEX lexicon [33] to which
phonetic variants were added with the LIA grapheme-to-
phoneme conversion tool LIA Phon [34]. For decoding, we
used a domain-specific 3-gram LM, based on the artificial
corpus combined with the SWEET-HOME corpus. A generic
LM was trained on 3,323M words, using EU bookshop,
TED2013, Wit3, GlobalVoices, Gigaword, Europarl-v7, Mul-
tiUN, OpenSubtitles2016, DGT, News Commentary, News
WMT, LeMonde, Trames and Wikipedia. The final LM re-
sulted from an interpolation of the specific LM (weight = 0.6)
with the generic LM (weight = 0.4).

The acoustic features are MFCC that were used to train
a speaker-dependent triphone GMM model with speaker
adapted transformation linear maximum likelihood regres-
sion (SAT+fMLLR). The final model was a hybrid HMM-
DNN, mapping the transformed fMLLR characteristics to the
corresponding HMM states. Word error rates (WER) in Ta-
ble 3 show that the fMLLR and HMM-DNN models with the
ESLO2 data outperform the acoustic models without it. The
WER is slightly superior than a recent study using a similar
approach for French voice command recognition in a smart
home [35].

The NLU seq2seq model was a bi-directional LSTM en-

coder and decoder. Input words were first passed to a 300-unit
embedding layer. The encoder and decoder were each a sin-
gle layer of 500 units. Adam optimizer was used with a batch
size of 10, using gradient clipping at a norm of 2.0. Dropout
was set to 0.2 and training continued for 10,000 steps with a
learning rate of 0.0001. Input sequence length was set to 50
and output sequence length to 20. Beam search of size 4 was
used.

The training data was 90% of the combined semantically
annotated data sets : artificial, SWEET-HOME and the fil-
tered ESLO2 utterances without intent; the remaining 10%
being the DEV set. The test data was the VocADom@A4H
corpus. Both sets are described in section 4. Similar to [6] we
report NLU performances on the VocADom@A4H test set
using the concept error rate (CER) for slot labels. Intent clas-
sification is evaluated using the F1-score. As the NLU prob-
lem is designed as a sequence generation task using unaligned
data, the type of errors differs from a sequence labeling task
with aligned data as used in [19]. Typical errors using aligned
data are substitutions whereas with unaligned data, frequent
deletions and insertions occur. In [36] the CER is defined as
the ratio of the sum of deleted, inserted and confused concepts
w.r.t. a Levenshtein-alignment for a given reference concept
string. We calculated the CER in a similar way, but we did
not take the label sequence order into account since a refer-
ence sequence action, device provides the same infor-
mation as a hypothesis device, action.

Evaluation metrics for intent and slot label level on Vo-
cADom@A4H are shown in table 4. Results analysis shows
a strong tendency towards none intent predictions due to the
majority none intent class (unweighted manual). A modifi-
cation of the weight assignment in the cross entropy loss func-

Table 3. ASR performance (WER %) on test set
Model VocADom@A4H
SAT+fMLLR 29.44
SAT+fMLLR (+ESLO2) 27.99
HMM-DNN 23.3
HMM-DNN (+ESLO2) 22.9



tion of the NLU model handled this imbalanced data prob-
lem. This was calculated on the complete training data and
the resulting class weights were summed per batch. The total
sum was multiplied with the cross entropy loss calculated per
batch following equation (4).

weight class i =
total instances

instances class i
(4)

This method improved performances (weighted man-
ual). NLU performances for intent prediction on the Vo-
cADom@A4H ASR output (weighted ASR) are slightly
worse as compared to the manual transcription predictions
(weighted manual), and significantly worse for slot predic-
tions.

5.2. SLU E2E approach

For the E2E experiments, we used ESPnet default settings.
The encoder was a very deep convolutional neural network
(VGG) followed by six bidirectional (BLSTM) layers with
320 units. The decoder was a single LSTM layer with 300
units. The attention-CTC multi-task learning weight was set
to 0.5. The optimizer was Adadelta with a batch size of 30.
Training continued for 20 epochs. Beam size of 20 was used
for decoding. This section reports the performance of ESPnet
on an ASR task followed by an SLU task.

In [11] an E2E deep convolutional NN model using CTC
was trained for an ASR task, on a natural speech data set aug-
mented with synthetic speech. The synthetic data combined
with the natural speech data with an optimal ratio has proven
to be beneficial to the ASR performance. To compensate
the lack of a large amount of domain-specific speech train-
ing data, we applied a similar technique. The speech data set
used for the ASR module of the pipeline SLU approach (sec-
tion 5.1) is also the training data for the E2E SLU approach
(real data in Table 5) but is augmented with TTS data. To
that end synthetic speech was generated on the complete ar-
tificial corpus using the open source French female SVOX
voice and represents 14.67% of the resulting total acoustic
model speech data4. As a preparatory phase for the SLU task,
the ASR model was trained to evaluate the impact of the syn-
thetic speech in the training data and to estimate the DNN
parameters.

Table 5 reports the results on the VocADom@A4H test
set. The first raw of the table (real data) exhibits a far
worse WER as compared to the baseline Kaldi ASR model
(trained on real speech data only). However, decoding using
a character-based LM created with the same data as used
for the pipeline ASR LM (section 5.1) improved the WER
(real data+LM) while the addition of the TTS generated data
(real data+LM+TTS) provided another significant improve-
ment. Although far from perfect, the results obtained on our
DEV set (25.7% WER) are comparable to those obtained by

4https://launchpad.net/ubuntu/+source/svox

Ghannay et al. [9] on their DEV set (20.70% WER) using the
Baidu Deep Speech E2E ASR system.

To perform E2E SLU, we injected the intent and slot la-
bel symbols (section 4.1) into the clean transcriptions of the
524k (553.9 hours of speech) training data utterances as used
for the E2E ASR. In this way the 14% of artificial data and
7% of the real speech data (without intent) sentences were en-
riched with slot and intent symbols. The symbolic slot label
annotations were bootstrapped from the artificial data to the
utterances in the training data without intent. In the sentence
”The light is switched off” (La lumière est éteinte), the slot
label for ”The light” is device. For none intent sentences
without voice command, no symbolic intent annotation was
inserted. Due to space limitation, we do not present the com-
plete overview of symbols. Table 6 provides an example of
the voice command ”VocADom switch on the light”, symbol-
ically annotated with intent and slot labels.

To study the impact of the synthetic data on the SLU
experiments, different proportions of TTS generated speech
were used in the training data for the VocADom@A4H test
set. The character-based LM was generated using the training
data with the intent and slot labels injected as symbols. The
first row in Table 7 recalls the best baseline pipeline perfor-
mance from Table 4. The second row shows E2E SLU per-
formance with a model trained on the artificial speech data
(artificial only) composed of only 81.25 hours of speech. The
last row presents the results using the complete training data
(complete) with the character based LM for decoding. These
results show that the pipeline approach is by far superior to
the E2E approach. However, this difference is partially due
to the none intent class being over-represented in the com-
plete data set. Imbalanced data for the pipeline SLU was dealt
with using a weighted learning scheme of the pipeline. In
the E2E case we handled this with sub-sampling. The none
intent class instances were decreased leaving only 11k utter-
ances with a none class label for training. On top of that 1k
sentences were moved from the test set to the training set to
evaluate the impact of increased real domain-specific data in
the speech base. This resulted in a data set of 84.69 hours of

Table 4. Pipeline performances (%) on VocADom@A4H
Model Intent Slot

F1-score CER
unweighted manual 76.95 42.67
weighted manual 85.51 33.78
weighted ASR 84.21 36.24

Table 5. ESPnet ASR performances on VocADom@A4H
Model WER (%)
real data 53.5
real data+LM 50.6
real data+LM+TTS 46.5



Table 6. Intent and slot label symbols for E2E SLU
Intent
@ VocADom switch on the light @

set device
Slot labels
VocADom ˆswitch onˆ }the light}

action device

speech with a portion of 94.39% artificial data.
For a fair comparison the pipeline SLU ASR and NLU

modules were retrained with the same reduced data. Per-
formance of the pipeline SLU baseline and E2E SLU on
this small training data set with a small portion of domain-
specific real data is reported in Table 8. It shows significantly
improved E2E intent and slot label prediction performances.
On top of that it supersedes the baseline pipeline approach.
The maximal E2E SLU performance was reached using an
attention-CTC multi-task learning weight of 0.5. For the
pipeline ASR (Kaldi) a WER of >90% was exhibited, show-
ing a too large distance between test and artificial training
data acoustic features. However, with an E2E ASR (ES-
Pnet) training on the same reduced data a WER of 60.6%
was obtained. With the ESPnet ASR transcriptions as input
the NLU subcomponent did not outperform the E2E SLU
(baseline and E2E SLU in Table 8). This shows that the E2E
approach made better use of a reduced amount of data and
that high ASR performance is not mandatory for an E2E SLU
approach.

Table 7. E2E SLU performances (%) on VocADom@A4H
Train Hours (%) TTS Intent Slot
set of speech in train F1-score CER
baseline 472.65 0 84.21 36.24
artifical only 81.25 100 35.94 56
complete 553.9 14.67 47.31 51.87

Table 8. E2E SLU performances (%) with VocADom@A4H
subset (1k.) in training and sub-sampling

Train Hours (%) TTS Intent Slot
set of speech in train F1-score CER
baseline 84.69 94.39 61.35 35.62
E2E SLU 84.69 94.39 70.21 26.17

6. DISCUSSION

E2E SLU is only partially dependent on ASR performance.
Pearson’s correlation coefficient between the E2E ASR model
WER in Table 5 (real data+LM+TTS) and the E2E SLU
model CER in Table 7 (complete) on the test set shows a

low correlation (r = 0.33). This is confirmed by signifi-
cantly higher E2E SLU than E2E ASR performances on the
reduced small data set (E2E SLU in Table 8). Intent and
slot label prediction benefits from a well-balanced attention-
CTC multi-task learning. The desired ASR alignment is
monotonic, but less needed for slot and especially for in-
tent prediction. The attention mechanism combined with the
bi-LSTM allows a more flexible alignment, which focuses
on the important parts (the slot and intent label symbols) in
the sequence and models long-term dependencies, necessary
for intent prediction. However morphological ASR errors
such as the imperative mood, e.g ”turn off” (éteins), being
substituted by the indicative mood, ”turns off” (éteint) de-
creased E2E SLU performances. One third of the intents in
the test set have an imperative mood verb. Different from the
pipeline ASR performance with a lexicon, frequent E2E ASR
(without lexicon) errors occur for the keyword proper noun
predictions (10% of the total ASR errors). These are par-
tially due to mispronunciations in the artificial speech data.
Moving a small portion of real domain-specific data to the
training data reduced these types of errors. Imbalanced data
was handled with a weighting majority class strategy in the
cross entropy loss function of the pipeline SLU NLU module.
In the E2E SLU model, data sub-sampling of the majority
classes was applied to the training data. The improved E2E
SLU performances on the resulting reduced data (Table 8) as
compared to the lower E2E ASR performances (60.6% WER)
demonstrate the feasibility of E2E SLU with far from perfect
ASR transcriptions. This is possible with an optimal ratio
between natural and artificial speech in a small unaligned
training data set.

7. CONCLUSION AND FUTURE WORK

Our E2E SLU best model obtains a 70.21% F1-score for in-
tent prediction, and outperforms the SLU pipeline approach
for slot prediction with a CER of 26.17% using a small train-
ing data set. This study shows that E2E SLU is feasible
with scarce domain-specific data, portable to new domains,
combining NLG and TTS augmentation with far from perfect
ASR. These aspects have not been investigated in the closest
related work to ours [8, 9]. E2E SLU is a promising way
to reach equivalent or higher performances than a pipeline
approach. Further work to achieve this, includes multi-task
[9], transfer and curriculum learning with models trained on
similar or larger domain-specific data sets.
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