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Checking the soundness of cyclic induction reasoning for first-order logic with inductive definitions
(FOL1p) is decidable but the standard checking method is based on an exponential complement
operation for Biichi automata. Recently, we introduced a polynomial checking method whose most
expensive steps recall the comparisons done with multiset path orderings.

We describe the implementation of our method in the CYCLIST prover. Referred to as E-
CYCLIST, it successfully checked all the proofs included in the original distribution of CYCLIST.
Heuristics have been devised to automatically define, from the analysis of the proof derivations, the
trace-based ordering measures that guarantee the soundness property.

Introduction. Cyclic pre-proofs for the classical first-order logic with inductive predicates (FOLp)
have been extensively studied in [2,3L5]. They are finite sequent-based derivations where some terminal
nodes, called buds, are labelled with sequents already occurring in the derivation, called companions.
Bud-companion (BC) relations, graphically represented as back-links, are described by an induction
function attached to the derivation, such that only one companion is assigned to each bud, but a node can
be the companion of one or several buds. The pre-proofs can be viewed as digraphs whose cycles, if any,
are introduced by the BC-relations.

It is easy to build unsound pre-proofs, for example by creating a BC-relation between the nodes
labelled by the sequents from a stuttering step. The classical soundness criterion is the global trace
condition. Firstly, the paths are annotated by traces built from inductive atoms occurring on the lhs of the
sequents in the path, referred to as inductive antecedent atoms (1AAs). Then, it is shown that, for every
infinite path p in the cyclic derivation of a false sequent, there is some trace following p such that all
successive steps starting from some point are decreasing and certain steps occurring infinitely often are
strictly decreasing w.r.t. some semantic ordering. We say that a progress point occurs in the trace when a
step is strictly decreasing. A proof is a pre-proof if every infinite path has an infinitely progressing trace
starting from some point.

The standard checking method [3]] of the global trace condition is decidable but based on an exponen-
tial complement operation for Biichi automata [[8]. It has been implemented in the CYCLIST prover [4]]
and experiments showed that the soundness checking can take up to 44% of the proof time. On the
other hand, we presented in [9}{10] a less costly, polynomial-time, checking method. The pre-proof to be
checked is firstly normalized into a digraph & consisting of a set of derivation trees to which is attached
an extended induction function. The resulting digraph counts the companions among its roots, as well as
the root of the pre-proof to be checked. Also, all infinite paths in the pre-proof, starting from some point,
can be reconstructed by concatenating root-bud paths (rb-paths) in &. Finally, a sufficient condition for
ensuring the global trace condition is to show that every rb-path from the strongly connected components
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(SCCs) of & has a trace that satisfies some trace-based ordering constraints. Therefore, in theory, if the
soundness of some pre-proof can be validated with the new method, it can also be validated with the
standard one.

Implementation. Our method has been integrated in the CYCLIST release labelled as CSL-LICS14,
by replacing the standard checking method. The result was called E-CYCLIST. CYCLIST builds the
pre-proofs using a depth-first search strategy that aims at closing open nodes as quickly as possible.
Whenever a new cycle is built, model-checking techniques provided by an external model checker are
called to validate it. If the validation result is negative, the prover backtracks by trying to find another
way to build new cycles. Hence, the model checker may be called several times during the construction
of a pre-proof.

Here is how our method works. Firstly, the pre-proof is normalized to a digraph <. To each root r
from &, the method attaches a measure .# (r) consisting of a multiset of IAAs of the sequent labelling
r, denoted by S(r). One of the challenges is to find the good measure values that satisfy the trace-based
ordering constraints. A procedure for computing these values is given by Algorithm ]

Algorithm 1 GenOrd(.2?): to each root r of 7 is attached a measure .# (r)
for all root r do
M(r):=0
end for
for all rb-path r — b from a non-singleton SCC do
if there is a trace between an IAA A of S(b) and an IAA A’ of S(r) then
add A to .# (rc) and A’ to .# (r), where rc is the companion of b
end if
end for

At the beginning, the value attached to each root is the empty set. Then, for each rb-path from a
cycle, denoted by r — b, and for every trace along r — b, leading some IAA of S(r) to another IAA of
S(b), we add the corresponding IAAs to the values of r and the companion of b, respectively. Since the
number of rb-paths is finite, Algorithm I] terminates.

Algorithm[I)may compute values that do not pass the comparison test for some non-singleton SCCs
that are validated by the model checker. For this case, we considered an improvement consisting of the
incremental addition of IAAs from a root sequent that are not yet in the value of the corresponding root r.
Since the validating orderings are trace-based variants of multiset extension orderings, such an addition
does not affect the comparison value along the rb-paths starting from r. On the other hand, it may affect
the comparison tests for the rb-paths ending in the companions of . This may duplicate some [AAs from
the values of the roots from the rb-paths leading to these companions. The duplicated IAAs have to be
processed as any incrementally added IAA, and so on, until no changes are performed.

Table [T]illustrates some statistics about the proofs of the conjectures considered in Table 1 from [4]],
using inductive predicates as N, E, O, and Add, referring to the naturals, even and odd numbers, as
well as the addition on naturals. All inductive predicates but p are defined in [4)]. The proofs have
been checked with the standard as well as our method. The [AAs are indexed in CYCLIST to facilitate
the construction of traces; the way they are indexed influences how the pre-proofs are built. Different
indexations for a same conjecture may lead to different proofs (see the statistics for the second and third
conjectures). The column labelled ‘Time-E’ presents the proof time measured in milliseconds by using
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our method. Similarly, the ‘Time’ column displays the proof time when using the standard method, while
‘SC%’ shows the percentage of time taken to check the soundness by the model checker. ‘Depth’ shows
the depth of the proof, ‘Nodes’ the number of nodes in the proof, and ‘Bckl.’” the number of back-links
in the proof. The last column gives the number of calls for pre-proof validations. The proof runs have
been performed on a MacBook Pro featuring a 2,7 GHz Intel Core i7 processor and 16 GB of RAM. It
can be noticed that, by using our method, the execution time is reduced by a factor going from 1.43 to 5.

Theorem Time-E Time SC% Depth Nodes Bckl. Queries
O1x+ Nox 2 7 61 2 9 1 3
EixV Oyxt N3x 4 11 63 3 19 2 6
EixVOix+ N3x 2 9 77 2 13 2 6
Nixt OyxV Esx 3 7 52 2 8 1 4
Nix ANay = Q1 (x,y) 297 425 40 4 19 3 665
Nix = Add; (x,0,x) 1 5 76 1 7 1 4
le/\Nzy/\Add3(x,y,z) F Nz 8 14 38 2 8 1 16
Nix ANy ANAdd3(x,y,z) - Add) (x, sy, sz7) 15 22 32 2 14 1 14
NixANyy = Ry (x,y) 266 484 48 4 35 5 759
Nix ANy b= pi(x,y) 597 ? ? 4 28 3 2315

Table 1: Statistics for proofs checked with the standard and our method.

The last conjecture was not tested in [4] and refers to the 2-Hydra example [1]. A pre-proof of
it, reproduced in Figure [T} can also be generated by CYCLIST, as shown in Figure @] Unfortunately,
CYCLIST was not able to validate it using the standard method, the missing figures being denoted by ?.

(a)Nx,Ny F pxy (a)Nx,Ny t pxy (a)Nx,Ny = pxy
Nsz,Nz & pszz Nsu,Nut psuu Nx',Nut px'u
NOF pl0  Nsz,Nz+ pssz0 Nsu,Nut pOssu  Nsu,Nx',Nut psx'ssu N
+ p00 Nx'+ psx'0 N NO,Nx = px1 Nsu,Nx,Nut pxssu .

Nx '+ px0

Nx,Ny' F pxsy’ N
(a)Nx,Ny = pxy g

Figure 1: The Berardi and Tatsuta’s cyclic pre-proof of the 2-Hydra example.

It also may occur that the proposed measure values, as shown in Figure [5|for a non-optimised proof
of 2-Hydra, may not pass some comparison tests that succeed with the standard method, even when using
the improved version of Algorithm Indeed, this happened while proving Njx A Nay - R(x,y). Luckily,
the prover backtracked and finally found the same pre-proof as that originally built with CYCLISTE]

We detail now how our method has been applied for validating the 2-Hydra pre-proof from Figure 4]

The 2-Hydra case. The 2-Hydra problem is a particular case showing the termination of the battle
between Hercules and Hydra [6] when Hydra has at most two heads that hang on the top of necks of

IThe source code of the implementation and the examples can be downloaded at https://members.loria.fr/
SStratulat/files/e-cyclist.zip


https://members.loria.fr/SStratulat/files/e-cyclist.zip
https://members.loria.fr/SStratulat/files/e-cyclist.zip

4 E-CYCLIST: Implementation of an Efficient Validation of FOLp Cyclic Induction Reasoning

different lengths. Hercules prevails if either Hydra has 1) no heads at all, or ii) the length of the first neck
is 1 unit and it has lost the second head (i.e., the length of the neck is 0), or iii) the length of the second
neck is 1 unit, as in Figure[2]

i) ii) i)

Figure 2: The cases when Hercules wins.

Hercules can cut the Hydra’s necks according to the following rules. If both necks have strictly
positive lengths, then Hercules can cut them such that the first neck is shorter by 1 unit and the second
by 2 units (see the case iv in Figure [3). If Hydra has already lost one of the heads and the neck of the
other head has a length [ of at least 2 units, the first head will have a neck of length / — 1 units and the
second head a neck of length / — 2 units (see the cases v and vi in Figure 3).

=

iv) V) vi)

1

D>

§

Figure 3: The cases when Hercules cuts the necks of Hydra.

Next, we introduce the notations, the specification of the inductive predicates, the inference rules,
then explain the pre-proof from Figure [ Contrary to the pre-proof from Figure [T} the CYCLIST pre-
proof is horizontally indented by the level of nodes. The nodes are numbered and labelled by sequents
where the comma (,) is replaced on the lhs of the sequents by the conjunction connector (/).
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The axioms defining the inductive predicates N and p are:

p(0,0) p(x,y) = p(s(x),s(s(y)))
= N(0) = p(s(0),0) p(s(y),y) = p(0,s(s(y)))
N(x) = N(s(x)) = p(x,5(0)) p(s(x),x) = p(s(s(x)),0

The applied inference rule for each sequent is pointed out at the end of the sequent.

(N L.Unf) [n,n;] generates the nodes n; and n, by choosing an IAA of the form N(¢). If 7 is a
variable, ¢ will be replaced by 0 and s(z), where z is a fresh variable. For the second instantiation, the
IAA is replaced by N(z). This represents a progres point. If t is of the form s(z’), the original sequent is
reduced to another sequent by replacing the chosen IAA N(s(¢')) with N(¢).

(p R.Unf) [n] produces the node n resulting from the replacement of the consequent atom from the
sequent labelling n with the condition of some axiom defining p and whose conclusion matches the atom.

(Id) and (Ex Falso) delete trivial conjectures. (Weaken) (resp., (Subst)) [n] is the LK’s weakening
(resp., substitution) rule [[7] whose premise labels n. Finally, (Backl) [n] shows that the current node is a
bud for the companion r.

@: N_1(x) /\ N_2(y) |- p_1(x,y) (N L.Unf.) [1,2]
1: N_1(x) /\ N_3(@) |- p_1(x,@) (N L.Unf.) [3,4]
3: N_3(@) /\ N_4(@) |- p_1(e,0) (p R.Unf.) [5]
5: N_3(8) /\ N_4(@) |- T (Id)
4: N_1(y) /\ N_3(@) /\ N_&(s(y)) |- p_1(s(y),@) (N L.Unf.) [6,7]
6: s(y)=0 /\ N_1(y) /\ N_3(@) /\ N_5(s(y)) |- p_1(s(y),@) (Ex Falso)
7: N_1(y) /\ N_3(@) /\ N_4(y) /\ N_5(s(y)) |- p_1(s(y),@) (N L.Unf.) [8,9]
8: N_1(@) /\ N_3(@) /\ N_5(s(@)) /\ N_é(@) |- p_1(s(@),@) (p R.Unf.) [10]
10: N_1(@) /\ N_3(@) /\ N_5(s(@)) /\ N_6(@) |- T (Id)
9: N_1(s(z)) /\ N_3(@) /\ N_4(z) /\ N_5(s(s(z))) /\ N_é(s(z)) |- p_1(s(s(z)),@) (p R.Unf.) [11]
11: N_1(s(z)) /\ N_3(®) /\ N_4(z) /\ N_5(s(s(z))) /\ N_6(s(z)) |- p_1(s(z),z) (Weaken) [12]
12: N_1(s(z)) /\ N_2(z) |- p_1(s(z),z) (Subst) [13]
13: N_2(x) /\ N_2(y) |- p_1(x,y) (Backl) [@]
2: N_1(x) /\ N_2(z) /\ N_3(s(z)) |- p_1(x,s(z)) (N L.Unf.) [14,15]
14: N_2(z) /\ N_3(s(z)) /\ N_4(@) |- p_1(e,s(z)) (N L.Unf.) [16,17]
16: N_3(s(@)) /\ N_4(@) /\ N_5(@) |- p_1(e,s(®)) (p R.Unf.) [18]
18: N_3(s(@)) /\ N_4(@) /\ N_5(8) |- T (Id)
17: N_2(y) /\ N_3(s(s(y))) /\ N_4(@) /\ N_5(s(y)) |- p_1(@,s(s(y))) (p R.Unf.) [19]
19: N_2(y) /\ N_3(s(s(y))) /\ N_4(@) /\ N_5(s(y)) |- p_1(s(y),y) (Weaken) [20]
20: N_1(s(y)) /\ N_2(y) |- p_1(s(y),y) (Subst) [21]
21: N_1(x) /\ N_2(y) |- p_1(x,y) (Backl) [@]
15: N_1(y) /\ N_2(z) /\ N_3(s(z)) /\ N_&(s(y)) |- p_1(s(y),s(z)) (N L.Unf.) [22,23]
22: N_1(y) /\ N_3(s(@)) /\ N_&(s(y)) /\ N_5(@) |- p_1(s(y),s(@)) (p R.Unf.) [24]
24: N_2(y) /\ N_3(s(@)) /\ N_&4(s(y)) /\ N_5(@) |- T (Id)
23: N_1(y) /\ N_2(w) /\ N_3(s(s(w))) /\ N_4(s(y)) /\ N_5(s(w)) |- p_1(s(y),s(s(w))) (p R.Unf.) [25]
25: N_1(y) /\ N_2(w) /\ N_3(s(s(w))) /\ N_4(s(y)) /\ N_5(s(w)) |- p_1(y,w) (Weaken) [26]
26: N_1(y) /\ N_2(w) |- p_1(y,w) (Subst) [27]
27: N_1(x) /\ N_2(y) |- p_1(x,y) (Backl) [@]

Figure 4: The screenshot of the 2-Hydra pre-proof generated by CYCLIST.

The pre-proof from Figure ] is already normalized and has one non-singleton SCC with three rb-
paths.

Our validity method is based on properties to be satisfied locally, at the level of rb-paths. An rb-
path r — b is valid if b is “smaller” than r w.r.t. a trace-based multiset extension relation. This relation
guarantees the existence of traces following each infinite path p, built from the concatenation of the traces
defined for the rb-paths along p. The definitions for the standard and trace-based multiset extension are:



6 E-CYCLIST: Implementation of an Efficient Validation of FOLp Cyclic Induction Reasoning

o (standard multiset extension) B <,,,; A if there are two finite multisets X and Y such that B =
(A-X)WY,X#0andVy €Y, Ix € X,y < x holds.

o (trace-based multiset extension) b is “smaller” than r if, after pairwisely deleting the IAAs linked
by a non-progressing trace along r — b (the resultis X and Y as above), X #@andVye Y, dxe X
such that there is a progressing trace along r — b between x and y.

In Figure [5] we summarize the result of the application of the improved version of Algorithm [I] to
a non-optimized version of the pre-proof from Figure {] for which the node 27 was denoted as 28. The
found measure of the root is the multiset of its IAAs indexed by 2 and 1, i.e., {Na(x),N;(y) }.

Measures proposed for the roots in cycles:
e: [2, 1]
Checking the link of IAAs from buds to roots:

28 to @: | 1 —> 1 [true 1| 2 —> 2 [true ] ==> true

21 to @: | 1 -> 2 [true 1] 2 —> 2 [true ] ==> true

13 to ©: | 1 —> 1 [true 1| 2 -> 1 [true ] ==> true
The proof has succeeded

Figure 5: The E-CYCLIST validation of the 2-Hydra pre-proof from Figure 4]

In Figure 5] for each rb-path, i -> j denotes that there is a trace linking the root IAA indexed by j to
the bud TAA indexed by i, [true ] means that the trace is progressing, and ‘===> true’ informs that
the rb-path is valid, as follows:

1. 0to 28 (27 in Figure |)); the possible traces following this path are: [N (x),N;(x),Ni(y), N1 (y),
Ni(y), N1 (y), Ni(x)] and [N (y), Na(2), N2 (2), Na(w), Na(w), Na (w), N2 (¥)],

2. 0to 21; the possible traces are: [N2(y),Na(z),N2(z),Na(y),Na(y),N2(y),N2(y)] and
[N2(y), Na(2), Na(2), N5 (s(v)) Ns (s(y)), N (s(v)), N1 (x)], and

3. 0to 13; the possible traces are: [N (x), Ny (x),Ni(y),N1(y),Ni(s(z)),Ni(s(z)),Ni(s(z)), Ny (x)] and
[N1(x), N1 (x), Na(s(3)), Na(y), Na(2), Na (2), Na(2), Na ()]

All the above traces are progressing, where the underlined IAAs correspond to progress points. By
definition, these rb-paths are valid and conclude that the 2-Hydra pre-proof is a proof, by using arguments
as in [9,/10].

Conclusions and future work. We have implemented in CYCLIST a more effective technique for val-
idating FOLp cyclic pre-proofs which allows to speed up the proof runs by 5. Besides its polynomial
time complexity, an important factor for its efficiency is the lack of the overhead time required to com-
municate with external tools. In practice, our method can validate pre-proofs that cannot be validated by
the CSL-LICS14 release of CYCLIST. Even if we do not have yet a clear evidence, we strongly believe
that this also holds for the other way around, as this might have happened for the Nyx A Ny - R(x,y)
example.

The considered pre-proof examples are rather small. We intend to test our method more extensively
and on cyclic pre-proofs from domains other than FOLp, e.g., separation logic.
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