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Abstract

The aim of this paper is to fast and robustly estimate the positions and velocities from the measured
noisy accelerations for a class of dynamical systems modelled by a set of second order linear differential
equations. The obtained estimators can be applied to a large number of on-line practical applications in noisy
environment. For this purpose, the generalized modulating functions method recently developed for state
and derivative estimation is adopted. First, the considered equations are transformed such that the matrix
associated to the position vector is lower triangular. Then, the generalized modulating functions method
is applied to obtain exact algebraic integral formulas for the positions and velocities using a recursive way.
These formulas can give fast estimations using sliding integration windows. Second, computation schemes
are provided to construct the required generalized modulating functions. These functions depend on design
parameters such as the length of sliding windows, which can be chosen using an error bound to minimize
the noise error contributions. Finally, the accuracy and robustness of the proposed method are illustrated
in numerical simulations.

Keywords: Non-asymptotic fast estimation; Generalized modulating functions method; Design parameter
selection; Noise error analysis.

1. Introduction

In mechanical engineering, the vibration caused by the machine itself and the external environment
excitation usually affects its reliability and service life. In order to overcome this problem, one solution is to
design a closed-loop controller based on the position and velocity of the machine [1]. However, due to the
limitation of sensor assembly, only the acceleration can be measured in most cases, and the measurement
is usually corrupted by noise. Since many mechanical systems are modelled by a set of second order linear
differential equations [1, 2, 3], one idea is to provide robust estimation for the position and velocity from
the acceleration measurement based on the system model. Moreover, fast estimation is useful for on-line
operation. Recently, some works were developed for such estimations in [4, 5, 6]. The estimators proposed
in [4, 5] were obtained by applying some algebraic operations: multiplication by tn and multiple integration
from 0 to t. Hence, a sliding integration window was not considered. This can produce large estimation
errors when t increases (Indeed, there exists an optimal value of the length of integration window). Moreover,
undesired initial values were not eliminated in [4]. In [6], the estimator was proposed using a more general
way by considering modulating functions and a sliding integration window. Indeed, the algebraic operations
applied in [4, 5] correspond to a class of modulating functions of polynomial type. Consequently, the
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modulating functions method is considered in this paper, but with a different kind of modulating functions
than [6].

Modulating functions method was originally introduced by Shinbrot [7] for identification of continuous-
time systems [8, 9, 10]. Very recently, an innovative idea was presented in [11], which extended the modu-
lating functions method to state estimation for a class of time-varying linear systems with unknown input.
Then, on the one hand, the generalized modulating functions were later applied in a series of works to design
fractional order differentiators for integer order linear systems in [12], and for fractional order linear systems
in [13, 14, 15].On the other hand, by relaxing the modulating function conditions, one-sided modulating
functions were applied to estimate the initial and fractional derivative values for a class of linear systems in
[16]. Independently, another kind of one-sided modulating functions were applied to estimate the state for a
class of nonlinear systems in [17], and to estimate the velocity and position from the measurement of accel-
eration in [6]. Let us recall that the estimators proposed by the modulating functions method in previous
works are non-asymptotic thus useful for fast estimation in on-line applications, and robust to corrupting
noises, thanks to the obtained algebraic integral formulas [18, 19]. Thus, the modulating functions method
is promising for solving more problems.

Having the previous ideas in mind, the aim of this paper is to extend the modulating functions method
to design fast and robust estimators using measured noisy accelerations for the positions and velocities of a
class of dynamical systems modelled by a set of second order linear differential equations. Exact algebraic
integral formulas for the positions and velocities will be provided. The obtained estimators can be applied
to a large number of on-line practical applications in noisy environment. Comparing to existing works, the
contributions of this work can be given as follows:

1. Different from the previously mentioned estimators proposed in [11, 12, 13, 14, 15] by the modulating
functions methods, the measurement of acceleration is considered, instead of position. Indeed, the
previous ones were constructed based on the measurement of position, they are not applicable to the
case where the measurement of acceleration is considered.

2. Different from the estimator proposed in [4, 5, 6]:

(a) The considered system is more general, which is modeled by a set of differential equations which
can be coupled.

(b) Thanks to the properties of the generalized modulating functions, the estimators of positions and
velocities are directly given. However, the ones proposed in [4, 5, 6] were obtained by solving
a linear system depending on the system parameters. This can produce singularities when the
parameters are not exactly known.

(c) Computation schemes are provided to construct the desired generalized modulating functions,
which provide more choices on the required modulating functions.

(d) A strategy is given to show how to choose the modulating functions and the length of the sliding
integration window in order to reduce estimation errors. Indeed, there was a lack of such analysis
in [4, 5, 6].

The rest of the paper is organized as follows. Section 2 presents the problem statement and some intro-
ductions of modulating functions. The main results are given in Section 3. First, by applying the generalized
modulating functions method, algebraic integral formulas are provided for positions and velocities. Then, it
is shown how to construct the required modulating functions containing two design parameters. Moreover,
some error analysis is given, which is useful to choose the design parameters. In Section 4, numerical results
are given to illustrate the efficiency of the proposed method. Finally, conclusions are outlined in Section 5.

2. Preliminaries

Throughout this framework, the following notations are adopted:

• R+ denotes the set of positive real numbers,

• R∗ denotes the set of non-zero real numbers,
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• N∗ denotes the set of positive integers,

• I denotes an interval of R+ ∪ {0} of length lI ,

• CL(I) (L ∈ N) denotes the set of functions L times continuously differentiable on I,

• IT := {t ∈ I | [t− T, t] ⊂ I} with T ∈ R+ and T < lI .

2.1. Motivation and Problem statement

Before stating the problem to be solved in this paper, let us present a machine tool model which motivates
this work. The dynamical model of a machine tool or its component can usually be described by a set of
second order linear differential equations [1, 2, 3]. Recall that 30%− 50% of the rigidity of a machine tool is
determined by the characteristics of contact stiffness, and more than 90% of the damping of a machine tool
comes from joint interfaces [20, 21]. Hence, by considering the contact between machine tool and foundation,
and the one between foundation and soil, which has a great influence on a machine tool [22, 23], the machine
tool-foundation mechanical system can be described by Fig. 1, where m1 and m2 refer to the masses of
the foundation and the machine tool respectively, k1, c1 are the stiffness and damping of the foundation
and soil contact, k2, c2 are the ones of the machine tool and the foundation contact, and f1 and f2 are the
forces acting on the foundation and the machine tool respectively. Moreover, the machine tool-foundation

Figure 1: Machine tool-foundation mechanical system.

mechanical system can be modelled by the following equations: ∀ t ∈ I,
m1ẍ1(t) + (c1 + c2)ẋ1(t)− c2ẋ2(t) + (k1 + k2)x1(t)− k2x2(t) = f1(t),

m2ẍ2(t)− c2ẋ1(t) + c2ẋ2(t)− k2x1(t) + k2x2(t) = f2(t),
y1(t) = ẍ1(t),
y2(t) = ẍ2(t).

(1)

Motivated by the previous example of machine tool model, the following linear dynamical system defined
by a set of second order linear differential equations is considered in this work: ∀ t ∈ I,{

Mẍ(t) + Cẋ(t) +Kx(t) = f(t),
y(t) = ẍ(t),

(2)

where M,C,K ∈ Rn×n with components mij , cij , kij , n ∈ N∗, x = (x1, . . . , xn)
⊤ is the vector of positions,

f = (f1, . . . , fn)
⊤ is the input vector which is assumed to be known, y = (y1, . . . , yn)

⊤ is the measurable
output vector.

The objective of this work is to estimate the position vector x and the velocity vector ẋ using the input
vector f and the measured output vector of ẍ in noisy environment.
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Remark 1 If the matrices M , C and K are all diagonal, then the equations of the system defined in (2) are
independent, otherwise the system is coupled. If a system is coupled, it can be decoupled by applying classical
modal analysis with a sufficient condition: C = αM +βK for some constants α and β [24], and a sufficient
and necessary condition: CM−1K = KM−1C [25], where M , C and K are assumed to be Symmetric
Positive Definite (SPD). Without the assumption of SPD, a coupled system can be decoupled by applying
phase synchronization where M is assumed to be invertible [26], or by applying isospectral transformation
for a singular M [27]. However, the two later methods require the initial values x(0) and ẋ(0) which are
usually unknown in practice. In this paper, the considered system can be coupled. Hence, neither the restrict
conditions on M , C and K, nor the initial values are required to decouple the system.

2.2. Modulating functions

Let us recall the definition of the modulating functions and the generalized ones.

Definition 1 Let [a, b] ⊂ R, L ∈ N∗, n ∈ N with n ≤ L − 1, g and gn be two functions defined on [a, b]
between which gn depends on n.

1. If g satisfies the properties: ∀ k ∈ {0, . . . , L− 1},
(P1) : g ∈ CL([a, b]),

(P2) : g(k)(a) = 0,

(P3) : g(k)(b) = 0.

Then, g is called Lth order modulating function on [a, b] [8].

2. If g only satisfies (P1)–(P2) (resp. (P1), (P3)), then g is called left-sided (resp. right-sided) Lth order
modulating function on [a, b] [16].

3. If g only satisfies (P1)–(P2) (resp. (P1), (P3)) and the following property: ∀k ∈ {0, . . . , L− 1},
(P4) : g(k)(b) ̸= 0 (resp. g(k)(a) ̸= 0),

then g is called strict left-sided (resp. strict right-sided) Lth order modulating function on [a, b] [17].

4. If gn satisfies (P1)–(P2) and the following property: ∀k ∈ {0, . . . , L− 1},

(P5) : g
(k)
n (b) = 1, if k = n, g

(k)
n (b) = 0, else.

Then, gn is called (L, n)th order (generalized) modulating function on [a, b] [13].

Recall that the previous generalized modulating functions were applied to design fractional order differ-
entiators in [15, 16] and the references therein. These functions will be applied in this paper. Independently,
the strict left-sided modulating functions were applied to estimate the state for a class of nonlinear systems
in [17], and to estimate the velocity and position from the measurement of acceleration in [6].

Based on Definition 1, we can get the following lemmas.

Lemma 1 Under the conditions of Definition 1, let gn be a (L, n)th order modulating function on [a, b],
then gn,a(·) := gn(·+ a) is a (L, n)th order modulating function on [0, b− a].

Lemma 2 Under the conditions of Definition 1, let gn be a (L, n)th order modulating function on [a, b] and
L′ ∈ N with L′ < L. Then, gn is a (L′, n)th order modulating function on [a, b] if n ≤ L′ − 1, and gn is a
(L′)th order modulating function on [a, b], else.

One indispensable step of the modulating functions method is to apply the integration by parts formula,
which is recalled in the following lemma.

Lemma 3 Let f ∈ Cl(R) and g ∈ Cm(R), where l,m ∈ N∗ with m ≤ l. Then, for any interval [a, b] ⊂ R,
we have: ∫ b

a

g(t) f (l)(t) dt = (−1)m
∫ b

a

g(m)(t) f (l−m)(t) dt+

m−1∑
k=0

(−1)k
[
g(k)(t)f (l−1−k)(t)

]t=b

t=a
. (3)
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3. Main results

In this section, the main results of this paper will be given in the following subsections.

3.1. Algebraic integral formulas for positions and velocities

The classical modulating functions was originally extended to design integer order differentiators by
introducing generalized modulating functions in [11]. Then, it was developed to design fractional order
differentiators in [12, 13, 14, 15]. Inspired by these works, the generalized modulating functions method will
be extended in this subsection to provide algebraic integral formulas for the position and velocity vectors of
the system defined in (2). Different from the previous works, the acceleration ẍ is involved in the obtained
formulas. Moreover, the studied model contains a set of differential equations.

Now, we are ready to introduce the first main result of this paper, by considering the following assump-
tion.

Assumption 1 It is assumed that the matrix K in (2) is invertible.

Remark that the machine tool-foundation mechanical system defined in (1) with k1 ̸= 0 and k2 ̸= 0
fulfills Assumption 1.

Theorem 1 For i = 1, . . . , n, d = 0, 1, let Ti,d ∈ R+ with Ti,d < lI . For t ∈
⋂1

d=0

⋂n
i=1 ITi,d

, let gi,d be

(2, d)th order modulating functions on [t − Ti,d, t]. Then, under Assumption 1, the velocity vector of the
system defined in (2) can be given by algebraic integral formulas as follows: for i = 1, . . . , n,

ẋi(t) =−
∫ Ti,0

0

g̈i,0(t− Ti,0 + τ)f̂i(t− Ti,0 + τ) dτ

+

∫ Ti,0

0

g̈i,0(t− Ti,0 + τ)

n∑
j=1

m̂ij yj(t− Ti,0 + τ) dτ

−
∫ Ti,0

0

ġi,0(t− Ti,0 + τ)

n∑
j=1

ĉij yj(t− Ti,0 + τ) dτ

+

∫ Ti,0

0

gi,0(t− Ti,0 + τ) yi(t− Ti,0 + τ) dτ,

(4)

where ĉij, m̂ij and f̂i are the components of K−1C, K−1M and K−1f , respectively. Moreover, the position
vector of the system defined in (2) can be given by algebraic integral formulas as follows: for i = 1, . . . , n,

xi(t) =

∫ Ti,1

0

g̈i,1(t− Ti,1 + τ)f̂i(t− Ti,1 + τ) dτ

−
∫ Ti,1

0

g̈i,1(t− Ti,1 + τ)

n∑
j=1

m̂ij yj(t− Ti,1 + τ) dτ

+

∫ Ti,1

0

ġi,1(t− Ti,1 + τ)

n∑
j=1

ĉij yj(t− Ti,1 + τ) dτ

−
∫ Ti,1

0

gi,1(t− Ti,1 + τ) yi(t− Ti,1 + τ) dτ −
n∑

j=1

ĉij ẋj(t).

(5)

Proof. If K is invertible, then the system defined in (2) can be transformed as follows: ∀ t ∈ I,

M̂ẍ(t) + Ĉẋ(t) + x(t) = f̂(t), (6)
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where M̂ = K−1M , Ĉ = K−1C and f̂ = K−1f . Then, this proof can be completed by the following steps:
Step 1. Multiplication and integration: For i = 1, . . . , n, let Ti ∈ R+ with Ti < lI , and gi ∈ C2([t −
Ti, t]) for t ∈

⋂n
i=1 ITi . Then, by multiplying each equation in (6) by g̈i and integrating from t− Ti to t, we

get: for i = 1, . . . , n,

∫ t

t−Ti

g̈i(τ)

 n∑
j=1

ĉij ẋj(τ) + xi(τ)

 dτ =

∫ t

t−Ti

g̈i(τ)

f̂i(τ)−
n∑

j=1

m̂ij ẍj(τ)

 dτ. (7)

Step 2. Integration by parts: In order to introduce ẍj for j = 1, . . . , n, by applying the integration by
parts formula given in (3) to (7), we obtain: for i = 1, . . . , n,

∫ t

t−Ti

g̈i(τ)

n∑
j=1

ĉij ẋj(τ) dτ =−
∫ t

t−Ti

ġi(τ)

n∑
j=1

ĉij ẍj(τ) dτ +

ġi(τ) n∑
j=1

ĉij ẋj(τ)

t

t−T1

, (8)

and ∫ t

t−Ti

g̈i(τ)xi(τ) dτ =

∫ t

t−Ti

gi(τ) ẍi(τ) dτ + [ġi(τ)xi(τ)]
t
t−Ti

− [gi(τ) ẋi(τ)]
t
t−Ti

. (9)

Step 3. Eliminating unknown boundary values: In order to eliminate the unknown boundary values
of xj , ẋj on t− Ti for i, j = 1, . . . , n in (8)-(9), we assume gi(t− Ti) = ġi(t− Ti) = 0. Hence, using (7)-(9)
we get: for i = 1, . . . , n

ġi(t)

n∑
j=1

ĉij ẋj(t) + ġi(t)xi(t)− gi(t) ẋi(t)

=

∫ t

t−Ti

ġi(τ)

n∑
j=1

ĉij ẍj(τ) dτ −
∫ t

t−Ti

gi(τ) ẍi(τ) dτ

+

∫ t

t−Ti

g̈i(τ)

f̂i(τ)−
n∑

j=1

m̂ij ẍj(τ)

 dτ.

(10)

Step 4. Algebraic integral formulas of ẋi(t): In order to get the formulas of ẋi(t) for i = 1, . . . , n, we

replace gi by gi,0 and Ti by Ti,0 in (10), where gi,0 are (2, 0)th order modulating functions on [t − Ti,0, t].
Thus, ẋi(t) can be given by algebraic integral formulas as follows: for i = 1, . . . , n,

ẋi(t) =−
∫ t

t−Ti,0

g̈i,0(τ)

f̂i(τ)−
n∑

j=1

m̂ij ẍj(τ)

 dτ

−
∫ t

t−Ti,0

ġi,0(τ)

n∑
j=1

ĉij ẍj(τ) dτ +

∫ t

t−Ti,0

gi,0(τ) ẍi(τ) dτ.

(11)

Step 5. Algebraic integral formulas of xi(t): In order to get the formulas of xi(t) for i = 1, . . . , n, we

replace gi by gi,1 and Ti by Ti,1 in (10), where gi,1 are (2, 1)th order modulating functions on [t − Ti,1, t].
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Thus, xi(t) can be given by algebraic integral formulas by: for i = 1, . . . , n,

xi(t) =

∫ t

t−Ti,1

g̈i,1(τ)

f̂i(τ)−
n∑

j=1

m̂ij ẍj(τ)

 dτ

+

∫ t

t−Ti,1

ġi,1(τ)

n∑
j=1

ĉij ẍj(τ) dτ

−
∫ t

t−Ti,1

gi,1(τ) ẍi(τ) dτ −
n∑

j=1

ĉij ẋj(t).

(12)

Step 6. Substitution and changes of variables: Finally, this proof can be finished by substituting ẍi

by yi in (11)-(12) and by applying the changes of variables τ → τ + t− Ti,d, for i = 1, . . . , n, d = 0, 1. �
The previous result is based on Assumption 1. If the matrix K in (2) is singular, let us introduce the

following lemma.

Lemma 4 If the matrix K in (2) is singular with rank (K) = r < n, there exist P,Q ∈ Rn×n such that

K̄ = PKQ =

(
Ir 0
0 0

)
where Ir ∈ Rr×r is the identity matrix, and Q is invertible. Then, the system

model given in (2) can be transformed as follows: ∀ t ∈ I, M̄hz̈(t) + C̄hż(t) + zh(t) = f̄h(t),
M̄lz̈(t) + C̄lż(t) = f̄l(t),

ȳ(t) = z̈(t),
(13)

where z = Q−1x with zh = (z1, . . . , zr)
⊤, zl = (zr+1, . . . , zn)

⊤, ȳ = Q−1y, M̄ = PMQ =

(
M̄h

M̄l

)
,

C̄ = PCQ =

(
C̄h

C̄l

)
, and f̄ = Pf =

(
f̄h
f̄l

)
.

Proof. If rank (K) = r < n, then there exist two elementary matrices P and Q such that K̄ = PKQ [28].
Hence, by defining z = Q−1x, (2) is transformed as follows: ∀ t ∈ I,{

M̄ z̈(t) + C̄ż(t) + K̄z(t) = f̄(t),
y(t) = Qz̈(t).

(14)

Thus, this proof is completed. �
Based on the previous lemma, let us give the second main result of this paper, by considering the following

assumption.

Assumption 2 If the matrix K in (2) is singular with rank (K) = r < n, then it is assumed that C̄l,r ∈
R(n−r)×(n−r) is invertible, where C̄l =

(
C̄l,l C̄l,r

)
is given in Lemma 4.

Theorem 2 For i = 1, . . . , n, let Ti,0 ∈ R+ with Ti,0 < lI . For t ∈
⋂n

i=1 ITi,0
, let gi,0 be (2, 0)th order

modulating functions on [t − Ti,0, t] for i = 1, . . . , r, and gi,0 be (1, 0)th order modulating functions on
[t− Ti,0, t] for i = r+ 1, . . . , n. Then, under Assumption 2, the velocity vector of the system defined in (13)
can be given by algebraic integral formulas using a recursive way as follows:

7



• for i = 1, . . . , r,

żi(t) =−
∫ Ti,0

0

g̈i,0(t− Ti,0 + τ)f̄i(t− Ti,0 + τ) dτ

+

∫ Ti,0

0

g̈i,0(t− Ti,0 + τ)

n∑
j=1

m̄ij ȳj(t− Ti,0 + τ) dτ

−
∫ Ti,0

0

ġi,0(t− Ti,0 + τ)

n∑
j=1

c̄ij ȳj(t− Ti,0 + τ) dτ

+

∫ Ti,0

0

gi,0(t− Ti,0 + τ) ȳi(t− Ti,0 + τ) dτ,

(15)

where m̄ij, c̄ij, and f̄i are the components of M̄h, C̄h, and f̄h, respectively,
• for i = r + 1, . . . , n,

żi(t) =

∫ Ti,0

0

ġi,0(t− Ti,0 + τ)f̃i−r(t− Ti,0 + τ) dτ

−
∫ Ti,0

0

ġi,0(t− Ti,0 + τ)

n∑
j=1

m̃(i−r)j ȳj(t− Ti,0 + τ) dτ

+

∫ Ti,0

0

gi,0(t− Ti,0 + τ)

r∑
j=1

c̃(i−r)j ȳj(t− Ti,0 + τ) dτ

+

∫ Ti,0

0

gi,0(t− Ti,0 + τ)ȳi(t− Ti,0 + τ) dτ −
r∑

j=1

c̃(i−r)j żj(t),

(16)

where m̃(i−r)j, c̃(i−r)j, and f̃i−r(t) are the components of C̄−1
l,r M̄l, C̄

−1
l,r C̄l,l and C̄−1

l,r f̄l, respectively.
Moreover, the velocity vector of the system defined in (2) can be given by ẋ = Qż, respectively, where ż is
given by (15)-(16).

Proof. This proof can be completed using a similar way as done in the proof of Theorem 1.
On the one hand, by applying Step 1 - Step 4 and Step 6 in the proof of Theorem 1 to the first r

equations in (13), similar to (4), (15) can be obtained.
On the other hand, let us consider the (r + 1)th to the nth equations in (13), which can be given as

follows:
M̄lz̈(t) + C̄l,r żl(t) = f̄l(t)− C̄l,lżh(t). (17)

Then, under Assumption 2, we get:

M̃lz̈(t) + żl(t) = f̃l(t)− C̃l,lżh(t), (18)

where M̃l = C̄−1
l,r M̄l, f̃l = C̄−1

l,r f̄l and C̃l,l = C̄−1
l,r C̄l,l. Hence, we have: for i = r + 1, . . . , n,

n∑
j=1

m̃(i−r)j z̈j(t) + żi(t) = f̃i−r(t)−
r∑

j=1

c̃(i−r)j żj(t). (19)

Hence, by multiplying ġi,0 to (19) and applying Step 1 - Step 4 and Step 6 in the proof of Theorem 1,
(16) can be obtained. Thus, this proof is completed using ẋ = Qż. �

Remark 2 It can be seen in Theorem 1 that the essential idea of the proposed method is to remove the
derivative operations from the modulating functions to x and ẋ such that the values of position and velocity
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can be produced. It does not depend on the invertibility of M and C. However, without Assumption 1, the
position vector x of the system defined in (2) cannot be obtained by the proposed method. In fact, the system
given in (13) is not algebraically observable [29] (see [4] for a simple example), hence nighter the one defined
in (2). This is why only the first r components of ż and z can be obtained in Theorem 2. Then, under
Assumption 2, the last n− r components of ż can be obtained such that the velocity vector ẋ can be also.

Consequently, algebraic integral formulas are obtained in Theorem 1 and Theorem 2, which do not
contain any sources of errors. Moreover, it can be seen in Theorem 1 that ẋi for i = 1, . . . , n, are given by
the sum of integrals involving y and f , then xi for i = 1, . . . , n, are given using ẋj for j = 1, . . . , n. Hence,
they are also given by the sum of integrals involving y and f . Moreover, when we calculate xi(t) using (4),

the lengths of the integration windows for ẋj(t) for j = 1, . . . , n are also taken to Ti,1. Consequently, x
(d)
i

for i = 1, . . . , n, d = 0, 1, are calculated by the sum of integrals involving y and f of length Ti,d. Thus, for

each t ∈
⋂1

d=0

⋂n
i=1 ITi,d

, the desired position and velocity values are calculated using sliding integration
windows on [t− Ti,d, t]. Similarly, for each t ∈

⋂n
i=1 ITi,0 , the values of żi(t) for i = 1, . . . , n, are calculated

using sliding integration windows on [t−Ti,0, t] in Theorem 2. Then, ẋ(t) is given by Qż(t). This advantage
of using a sliding integration window can provide fast estimations for on-line applications. The length Ti,d

is a design parameter for x
(d)
i , the selection of which will be studied later.

3.2. Constructions of modulating functions

There exist several kinds of modulating functions in the literature [7, 9, 13, 30], such as sinusoidal
functions, Hermite functions, Poisson moment functionals, and polynomials, etc. However, only generalized
modulating functions of polynomial type were constructed in the literature [11, 12, 13, 15]. In following
proposition, a computation scheme is provided to show how to construct generalized modulating functions
in a more general case based on left-sided modulating functions.

Proposition 1 Let T ∈ R+, L ∈ N∗, n ∈ N with n ≤ L− 1. For i = 0, . . . , L− 1, let gi be a left-sided Lth

order modulating function on [0, T ]. Then, let us consider the following function: ∀ τ ∈ [0, t],

g(τ) =

L−1∑
i=0

λi gi(τ). (20)

If the coefficient vector λ = (λ0, . . . , λL−1)
⊤ is the unique solution of the following linear system:

Bλ = bn, (21)

where B ∈ RL×L assumed to be invertible, and bn ∈ RL are defined as follows: for k, i = 0, . . . , L− 1,

B(k, i) = g
(k)
i (T ), (22)

and for k = 0, . . . , L− 1,

bn(k) =

{
1, if k = n
0, else,

(23)

then g is a (L, n)th order modulating function on [0, T ].

Proof. Since g is a linear combination of functions satisfying (P1)–(P2), g also satisfies (P1)–(P2). Hence,
it is necessary to verify g satisfies (P4). By calculating the kth derivative of g at τ = T , we obtain: for
k = 0, . . . , L− 1,

g(k)(T ) =

L−1∑
i=0

λi g
(k)
i (T ). (24)

Thus, if the coefficient vector λ is the solution of the system in (21) where the matrix B is invertible, then
for k = 0, . . . , L− 1, g(k)(T ) = 1 if k = n, g(k)(T ) = 0 else, i.e. (P4) is fulfilled. Consequently, this proof is
completed. �
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Consequently, by applying Proposition 1, the left-sided modulating functions involving exponential func-
tions considered in [17, 31] can also be used to construct generalized modulating functions. Now, if
modulating functions of polynomial type are considered in Theorem 1 and Theorem 2, then the following
corollary can be deduced.

Corollary 1 Let T ∈ R+, m ∈ N∗. Then, we have:

1. if m ≥ 1, q0,m is a (1, 0)th order modulating function on [0, T ]: ∀ τ ∈ [0, t],

q0,m(τ) =
τm

Tm
, (25)

2. if m ≥ 2, p0,m is a (2, 0)th order modulating function on [0, T ]: ∀ τ ∈ [0, t],

p0,m(τ) = (m+ 1)
τm

Tm
−m

τm+1

Tm+1
, (26)

3. if m ≥ 2, p1,m is a (2, 1)th order modulating function on [0, T ]: ∀ τ ∈ [0, t],

p1,m(τ) =
τm+1

Tm
− τm

Tm−1
. (27)

Proof. First, it can be easily verified that q0,m is a (1, 0)th order modulating function on [0, T ]. Second, for
n = 0, 1, let us consider the following functions: ∀ τ ∈ [0, T ],

pn,m(τ) =

1∑
i=0

λi gi(τ), (28)

where gi(τ) = Tn−m−iτm+i. Then, let us define the following matrix:

Bm =

(
g0(T ) g1(T )
ġ0(T ) ġ1(T )

)
= Tn−1

(
T T
m m+ 1

)
. (29)

Hence, we obtain: det(Bm) = T 2n−1 ̸= 0, and the inverse of Bm is given by:

B−1
m =

1

Tn

(
m+ 1 −T
−m T

)
. (30)

It can be verified that gi for i = 0, 1, satisfy (P1)-(P2). Hence, according to Proposition 1, pn,m is a (2, n)th

order modulating function on [0, T ] with λ = B−1
m bn. Thus, this proof is completed. �

According to Lemma 2, on the one hand, p0,m is also a (1, 0)th order modulating function on [0, T ]. On
the other hand, a (L, 0)th (with 2 ≤ L) order modulating function on [0, T ] can also be used in Theorem 1
and Theorem 2. Consequently, by applying Proposition 1, more polynomials can be constructed for Theorem
1 and Theorem 2.

It can be seen that the generalized modulating functions constructed in Corollary 1 depend on two
parameters m and T . The way of the parameter selection will be presented in numerical simulations using
the error bound provided in the next subsection.

3.3. Error analysis in discrete noisy cases

From now on, the discrete noisy observation yϖ of y on I is considered: for j = 1, . . . , n,

yϖj (ti) = yj(ti) +ϖj(ti), (31)

where ti = iTs, for i = 0, 1, . . . , S, with an equidistant sampling period Ts = lI
S , and ϖ = (ϖ1, . . . , ϖn)

⊤ is
the corrupting noise vector. Then, the algebraic integral formulas provided in Theorem 1 and Theorem 2
will be applied in the discrete noisy case, where y is replaced by its observation yϖ. For this, a numerical
integration method needs to be used to approximate the integrals. Consequently, it can be deduced that
the estimators proposed in Theorem 1 and Theorem 2 contain two sources of errors:
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1. the numerical errors due to the used numerical integration method;

2. the noise error contributions due to the noise vector ϖ.

Let us give some error analysis for the estimators proposed in Theorem 1. Similar results can be deduced

for the ones proposed in Theorem 2. It is shown in Theorem 1 that x
(d)
i for i = 1, . . . , n, d = 0, 1, are in fact

given by the sum of integrals involving y and f of length Ti,d. In order to simplify the presentation, let us

denote the integral formulas of x
(d)
i by a unified expression as follows:

x
(d)
i (t) = ITi,d

{y}(t) +
∫ Ti,d

0

n∑
j=1

pi,d,j(τ) fj(t− Ti,d + τ) dτ, (32)

where

ITi,d
{y}(t) :=

∫ Ti,d

0

n∑
j=1

qi,d,j(τ) yj(t− Ti,d + τ) dτ, (33)

pi,d,j and qi,d,j are the associated functions to fj and yj respectively, which are linear combinations of the
adopted modulating functions and their derivatives. Then, by taking Ti,d = si,dTs with si,d ∈ N∗, ITi,d

{y}(t)
can be approximated in the discrete noisy case by:

STi,d
{yϖ}(t) := STi,d

{y}(t) + STi,d
{ϖ}(t), (34)

where

STi,d{y}(t) := Ts

si,d∑
k=0

wk

n∑
j=1

qi,d,j(kTs) yj(t− Ti,d + kTs), (35)

STi,d{ϖ}(t) := Ts

si,d∑
k=0

wk

n∑
j=1

qi,d,j(kTs)ϖj(t− Ti,d + kTs), (36)

where wk ∈ R+ are the weights of a used numerical integration method. It is well known that the numerical
errors between ITi,d

{y}(t) and STi,d
{y}(t) converge to zero when Ts → 0 (see, e.g. [32]).

Let us assume that the noise {ϖ(t), t ∈ I} is a vector of continuous stochastic processes, which satisfies
the following conditions:

(C1) : for any s, t ∈ I, s ̸= t, ϖj(s) and ϖj(t) are independent;

(C2) : for any i, j ∈ {1, . . . , n}, i ̸= j, ϖi(t) and ϖj(t) are independent;

(C3) : for any s, t ∈ I, s ̸= t, for any i, j ∈ {1, . . . , n}, i ̸= j, ϖi(s) and ϖj(t) are independent;

(C4) : the mean value function of {ϖj(t), t ∈ I} denoted by E[·] is equal to zero;

(C5) : the variance function of {ϖj(t), t ∈ I} denoted by Var[·] is bounded on I, i.e. ∃ δj ∈ R+,∀ t ∈
I,Var[ϖj(t)] ≤ δj .

Then, it can be verified that:

E
[
STi,d

{ϖ}(t)
]
= 0, (37)

Var
[
STi,d

{ϖ}(t)
]
≤ T 2

s

si,d∑
k=0

w2
k

n∑
j=1

δj q
2
i,d,j(kTs). (38)

Hence, using a similar technique as done in [12, 13], the convergence in mean square of the noise error
contributions STi,d

{ϖ}(t) can be deduced:

E
[(
STi,d

{ϖ}(t)
)2] −−−−→

Ts→0
0. (39)
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Consequently, both the numerical errors and the noise error contributions in the proposed estimators
can be reduced by decreasing the sampling period Ts.

When the sampling period is set, using (37) STi,d
{ϖ}(t) can be bounded using the Bienaymé-Chebyshev

inequality as follows: ∀ γ ∈ R∗
+,

Pr
(∣∣STi,d

{ϖ}(t)
∣∣ < γ

(
Var[STi,d

{ϖ}(t)]
) 1

2

)
> 1− 1

γ2
, (40)

i.e. the probability for
∣∣STi,d

{ϖ}(t)
∣∣ to be smaller than γ

(
Var[STi,d

{ϖ}(t)]
) 1

2 is larger than 1 − 1
γ2 . Thus,

the following error bound is deduced from (38) and (40):

∣∣STi,d
{ϖ}(t)

∣∣ pγ

< δ
1
2 γTs

si,d∑
k=0

w2
k

n∑
j=1

q2i,d,j(kTs)

 1
2

, (41)

where δ = max
j=1,...,n

(δj), a
pγ

< b means that the probability for a real number b to be larger than another real

number a is equal to pγ with pγ > 1− 1
γ2 .

Thanks to the probability property, the noise error bound obtained in (41) is sharp. Once the required
modulating functions are constructed, for example using Corollary 1, their derivatives can be analytically
calculated, then as well as can qi,d,j . Since the constructed modulating functions depend on the design
parameters, so do qi,d,j and the error bound. Consequently, in order to reduce the noise error contribution,
the design parameters can be chosen in the way to minimize the error bound. Thus, the property of
robustness of the proposed method can be guaranteed. Moreover, since the error bound is linear with
respect to δ

1
2 γ, the location of its minimum does not depend on the value of δ

1
2 γ. Consequently, this

analysis can done in an off-line work without knowing the noise levels.
Once the design parameters are selected, qi,d,j are calculated in an off-line work, then they are presented

by vectors in discrete case. Thus, STi,d
{yϖ}(t) can be calculated just by dot products of vectors of qi,d,j and

yϖ. On the other hand, since the input vector f is known, the integrals involving f can also be approximated
using dot products of vectors in discrete case. Consequently, the proposed estimators can be realized by
dot products of the vectors of yϖ, f , and the ones depending on the modulating functions designed in an
off-line work. Thus, the computation effect is significantly reduced for on-line applications (such idea was
also used in a similar context in [33]).

Let us summarize how to apply the proposed method using the matrices M , C, K, the input vector f ,
the output vector y and the sampling period Ts:

Step 1: verify if K is invertible. If K is invertible, calculate K−1 and follow Step 1 – Step 5. Otherwise,
follow Step 6-Step 9.

Step 2: apply Proposition 1 to construct the required modulating functions gi,d for i = 1, . . . , n, d = 0, 1.

Step 3: apply Theorem 1 to find pi,d,j and qi,d,j for x
(d)
i for i, j = 1, . . . , n, d = 0, 1, using K−1 and gi,d.

Step 4: apply the error bound given in (41) to select design parameters m and Ti,d for x
(d)
i for i = 1, . . . , n,

d = 0, 1, using Ts, qi,d,j and a numerical integration method, where we can take δ = 1 and γ = 3.

Step 5: use the selected design parameters to estimate x
(d)
i by calculating the sum of the dot products of

the vectors pi,d,j and f and the ones of qi,d,j and y.

Step 6: calculate the rank of K, and find P , Q. Then, calculate Q−1, ȳ, f̄ , M̄ and C̄ using Lemma 4.

Step 7: under Assumption 2, calculate C̄−1
l,r .
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Step 8: similar to Step 2 – Step 4, find the required vectors by applying Theorem 2, which involve the
modulating functions constructed by applying Proposition 1 with the parameters selected by using
(41).

Step 9: estimate ż by calculating the dot products of ȳ and f̄ with the vectors found in Step 8, respectively.
Then, estimate ẋ = Qż.

Recall that Step 1 – Step 4 and Step 6 – Step 8 can be done in off-line work, and Step 5 and Step
9 are done in on-line work.

Finally, let us remark that on the one hand the proposed algorithm works in the case where some
components of f are identical to zero. Indeed, the algebraic integral formulas obtained in Theorem 1 and
Theorem 2 always hold if some components of f are identical to zero. On the other hand, the proposed
algorithm also works if the components of f contain some kind of PD-controls using the estimated values
of position and velocity as done in [34]. Indeed, the controller value at time instant t is designed based on
the estimated values of position and velocity at t − Ts. The previous two cases will be considered in the
numerical tests in the following section.

4. Numerical tests

In this section, the efficiency and robustness of the proposed method will be shown in numerical simu-
lations. For this purpose, two examples are considered.

Example 1.
Let us take the following parameters in (1): m1 = 0.1, m2 = 0.6, c1 = 0.5, c2 = 0.4, k1 = 0.3 and

k2 = 0.2. Then, we assume the system is excited by f(t) = (sin(2t), cos(t))⊤ on I = [0, 50] with the
following initial conditions x1(0) = 0, x2(0) = 0, ẋ1(0) = 0 and ẋ2(0) = 0. Moreover, we assume the
accelerations ẍ1 and ẍ2 are measured by discrete noisy observations: yϖj (ti) = yj(ti)+σjϖj(ti) for j = 1, 2,

with ti = iTs and Ts = 0.001. The noise ϖ = (ϖ1, ϖ2)
⊤ is a vector of continuous stochastic process and

satisfies (C1)-(C5), where each ϖj is a zero-mean white Gaussian noise, and the values of σj is taken to 0.5.
Then, the output vector y and its noisy observation yϖ on [0, 20] are shown in Fig. 2, where y is obtained by
the well-known finite difference method [36]. Hence, the algebraic integral formulas obtained in (4)-(5) are
applied to estimate x1, x2, ẋ1 and ẋ2 from the discrete noisy output observation yϖ, where the trapezoidal
numerical integration method is used.

First, the required modulating functions are constructed using Corollary 1. Then, the error bound given
in (41) is used to select the design parameter m and Ti,d for i = 1, 2 and d = 0, 1. For this, we take γ = 3,
δ = 1 which is unknown in practice, then we study the variations of the error bounds with respect to m and
Ti,d, and we take the optimal values which minimize the error bounds. The variations are shown in Fig. 3,
where m = 2, . . . , 6 and Ti,d = 1, 1 + Ts, . . . , 10. Consequently, the following parameter values are selected:

1. for x1, when t ∈]Ts, 5], m = 2 and T1,1 = iTs, then m = 3 and T1,1 = 5,

2. for x2, when t ∈]Ts, 5.5], m = 2 and T2,1 = iTs, then m = 2 and T2,1 = 5.5,

3. for ẋ1, when t ∈]Ts, 5.5], m = 2 and T1,0 = iTs, then m = 4 and T1,0 = 5.5,

4. for ẋ2, when t ∈]Ts, 6.5], m = 2 and T2,0 = iTs, when t ∈]6.5, 8.5], m = 3 and T2,0 = iTs, then m = 4
and T2,0 = 8.5.

In fact, when the time t is smaller than the optimal length of the sliding integration window, the length is
taken equal to t with optimal value of m.

Second, using the selected design parameter values, the estimated positions and velocities on [0, 20] are
shown in Fig. 4, where the ones calculated by the finite difference method in noise free case are used to
verify the accuracy of the proposed method. Consequently, it can be seen that the proposed method provides
reliable estimation results against the corrupting noises. Moreover, in order to verify the efficiency of the
proposed error bounds, the associated noise errors and the corresponding error bounds obtained by taking
δ = 0.5 and γ = 3 according to the empirical rule [37] are shown in Fig. 5.
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Third, a PD-controller is designed to the system on [20, 50] in order to stabilize the system by eliminating
the influence of f . For this purpose, we take: for i = 1, 2, ui(t) = Kpiei(t)+Kdi ėi(t), where ei = ri(t)−x̃i(t),
ėi = ṙi(t)− ˜̇xi(t), the reference is ri(t) = 0, x̃i(t) and ˜̇xi(t) are estimated with the previous design parameters.
Finally, the position trajectories are shown in Fig. 6, which are obtained by taking Kp1

= 50, Kd1
= 10,

Kp2
= 50 and Kd2

= 10.
Example 2.

Let us take the following parameter and matrices in (2): n = 3, M =

 1.9259 1.7539 2.2229
1.3083 1.2223 1.4568
2.1476 2.2102 2.4447

,

C =

 2.1342 3.0594 3.0594
1.6716 2.1342 2.1342
3.3431 4.2684 4.2684

, K =

 7.0000 4.0000 7.0000
4.0000 2.5000 4.0000
5.0000 3.5000 5.0000

. Then, we assume the system

is excited by f(t) = (cos(
√
(t)), e− sin(t), 0)⊤ on I = [0, 20] with the following initial conditions x1(0) =

0.1, x2(0) = −0.2, x3(0) = 0.3, ẋ1(0) = −0.4, ẋ2(0) = 0.7 and ẋ3(0) = 0.6. Moreover, in order to
better show the robustness of the proposed method, we assume there exist perturbations in the system:
Mẍ(t) + Cẋ(t) + Kx(t) + d(t) = f(t) with d(t) = (0.3(d1(t) + 1),−0.23(d2(t) + 1), 0.42(d3(t) + 1))⊤, and
the accelerations ẍ1, ẍ2, ẍ3 are measured by discrete noisy observations: yϖj (ti) = yj(ti) + σjϖj(ti) for
j = 1, 2, 3, with ti = iTs and Ts = 0.0005, where y is the output of the system with perturbations. The
perturbations dj and the noises ϖj for j = 1, 2, 3 are simulated using zero-mean white Gaussian noises,
and the value of σj is adjusted such that the Signal-to-Noise Ratio (SNR) [35] is equal to 20 dB, 15 dB, and
20 dB, respectively. Remark that a constant term is considered in each perturbation in d(t), which can not
be estimated only using the acceleration measurements. Moreover, there is no bias term considered in the
acceleration measurements in this paper, the reader can see [6] for this study.

It can be calculated that rank(K) = 2 with P =

 1 0 −1
−4 0 2
0 1 −1

, Q =

 0 0 1
1 1 −1
−1 0 1

 and C̄l,r is

invertible. Hence, the algebraic integral formulas obtained in (15)-(16) are applied to estimate ẋ1, ẋ2 and
ẋ3 from the discrete noisy output observation yϖ, where the trapezoidal numerical integration method is
used. Then, using a similar way as done in Example 1, the required modulating functions are constructed
using Corollary 1, and by using the error bound given in (41), the following parameter values are selected:

1. for ẋ1, when t ∈]Ts, 5], m = 2 and T1,0 = iTs, then m = 3 and T1,0 = 5,

2. for ẋ2, when t ∈]Ts, 5], m = 2 and T2,0 = iTs, then m = 2 and T2,0 = 5,

3. for ẋ3, when t ∈]Ts, 5], m = 2 and T2,0 = iTs, then m = 2 and T2,0 = 5.

Finally, the noisy outputs and the estimated velocities are shown in Fig. 7 and Fig. 8, respectively.

5. Conclusions

Motivated by a machine tool-foundation mechanical system, the modulating functions method recently
generalized for state and derivative estimation was adopted in this paper to fast and robustly estimate the
positions and velocities from the measured noisy accelerations for a class of dynamical systems modelled by
a set of second order linear differential equations. First, after transforming the considered equations, the
generalized modulating functions method was applied to obtain algebraic integral formulas for the positions
and velocities using a recursive way. These formulas can give fast estimations using sliding integration win-
dows. Second, a general computation scheme was provided to construct the required generalized modulating
functions. In particular, modulating functions of polynomial type were constructed, which depend on two
design parameters including the length of the sliding integration window. Third, an error analysis was given
to show the property of robustness of the proposed method. Moreover, an error bound was introduced to
guide the parameter selection in order to minimize the noise error contributions. Finally, the accuracy and
robustness of the proposed method was illustrated in numerical simulations. In this paper, a linear system
model was considered to introduce the proposed method by giving the strategy of constructing the required

14



0 2 4 6 8 10 12 14 16 18 20

t

-4

-3

-2

-1

0

1

2

3

4

5
y

1
̟

y
1

(a) y1 and its discrete noisy observation.

0 2 4 6 8 10 12 14 16 18 20

t

-5

-4

-3

-2

-1

0

1

2

3

4
y

2
̟

y
2

(b) y2 and its discrete noisy observation.

Figure 2: Example 1 : output y in discrete noisy case.

modulating functions and selecting the design parameters. The non-linear case will be studied in a future
work.
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(c) Parameter selection for ẋ1.
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Figure 3: Noise error bounds with respect to different values of m and Ti,d.
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Estimated ẋ1
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Figure 4: Positions and velocities estimation.
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Figure 5: Noise error contributions and the corresponding noise errors bounds.

18



0 5 10 15 20 25 30 35 40 45 50

t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

x
1

Reference
Proposed method

(a) Trajectory of x1.

0 5 10 15 20 25 30 35 40 45 50

t

-3

-2

-1

0

1

2

3

x
2

Reference
Proposed method

(b) Trajectory of x2.

Figure 6: Position trajectories before and after adding a controller.
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(c) y3 and its discrete noisy observation.

Figure 7: Example 2 : output y in discrete noisy case.
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Figure 8: Velocities estimations.
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