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Extension of Einstein’s Law for Power-Law Fluid to Describe
a Suspension of Spherical Particles: Application to Recycled
Polymer Flow

Ghinwa El Hajj Sleiman, Isabelle Petit, Nadine Allanic, Sofiane Belhabib, Yannick Madec, Rémi Deterre
Laboratoire GEPEA, UMR CNRS 6144, Université – IUT de Nantes (site de Carquefou), Nantes 44475, France

In this work, Einstein’s equation is extended considering a
power-law suspending fluid without any Newtonian approxi-
mation. To validate the developed equation, an experimental
setup is carried out. Polypropylene (PP) and polyethylene
(PE) are injected at different volume fractions. The pressure
drops measured in a cylindrical die are analyzed. The results
show that the developed relationship allows better prediction
of the viscosity of PP/PE blends compared to existing laws.
During the recycling of PP, some pollutants are likely to be
present in the polymer, mostly PE which tends to form a het-
erogeneous melt with PP. At low volume fractions, PE dis-
perses mostly as solid spheres in PP due to its higher
viscosity, but the viscosity of the PP/PE mixtures is hard to
predict. Several studies have derived equivalent viscosity
equations for dispersed spherical suspensions in shear-
thinning polymers. Nevertheless, these equations mainly refer
to Einstein’s equation for suspended spheres in Newtonian
fluids. POLYM. ENG. SCI., 59:E387–E396, 2019. © 2019 Society of
Plastics Engineers

INTRODUCTION

Heterogeneous systems consisting of particles suspended in a
fluid medium make up a wide variety of materials of practical
interest, both natural (slurries, debris flows, lavas, etc.) or man-
made (concretes, food pastes, paints, etc.). This abundance
explains why the behavior of these materials has been extensively
studied from both, a theoretical and an experimental point of view
[1, 2]. However, obtaining a material with desired rheological
characteristics, from components having known properties, is still
challenging.

Given that filled polymers are very complex systems, they have
been a research topic for the last decades. Often the filled polymers
are processed in their molten state, thus the flow properties of the
polymer-particle mixture are of great interest to the processing of
the polymers and the final properties of the products [3, 4]. Despite
the complexity of the filled polymers, mixtures of polymers of dif-
ferent viscosities are considered to be more complex. Most of the
polymer blends are immiscible [5]. So, by mixing two polymers,
complex interfaces are formed due to deformation, breakup and coa-
lescence of droplets caused by shear and interfacial tension. For that
reason, the morphological development of the polymer blends is dif-
ficult to predict [6–8] and their rheological properties can be written
in function of the matrix fluid viscosity ηm, the dispersed polymer

viscosity ηd, the volume fraction ϕ and the surface tension γ [9, 10].
Of these factors, the ratio of the viscosities as well as the volume
fraction will be of a great interest in the present work concerned by
recycled polymers.

The increasing consumption of plastics inevitably leads to the
production of large amount of plastic waste. But due to their unique
properties, plastics can hardly be substituted by other materials,
therefore, their collection and recycling is the only way, for the time
being, to avoid environmental pollution. Knowing that Polypropyl-
ene (PP) and Polyethylene (PE) make up to 45% of the plastic pro-
duction in the world [11], the study of the recycled matter behavior
derived from these two polymers is therefore of great importance
[12]. Combination of PP and PE is frequently found in polymer
waste streams since they are used together in the manufacturing of
many products like household items for instance but cannot be easily
separated from each other [13]. Even though different methods of
post-consumed polymer separation and sorting have been developed,
the final product will always contain impurities and pollutants (up to
5% [14]) that will affect the mechanical and physical properties of
the processed parts. As a consequence, we have studied in the pre-
sent work the case of recycled PP, especially recycled PP polluted
with PE. Most of the time, the recycled PP is made up of PP grade
injection (low viscosity) containing a little amount of PE extrusion
grade (high viscosity).

According to previous studies [15], at low volume fractions
(ϕ < 0.2), the ratio of the viscosity of the dispersed phase to that of
the continuous phase greatly influence the morphology of different
blends, where a droplet-dispersed phase structure occurs at a high
viscosity ratio (κ = ηd/ηm > > 1). As the volume fraction ϕ
increases, a tendency towards great irregularity is present with
increasing shear rate. In this study, PP/PE mixtures are considered
to behave as dilute blends where the PE polymer of higher viscos-
ity is of low volume fraction (ϕ < 0.2). Thus, PE is considered to
be dispersed in PP matrix in the form of spherical droplets [16].

Einstein [17] was the first to study theoretically the suspension
behavior in the dilute limit, where he derived—at low volume
fractions (ϕ < 0.03)—an analytical solution for the hydrodynam-
ics around an isolated sphere which yields to Eq. 1:

ηhom = 1 + η½ �:ϕð Þηm ð1Þ

where ηhom is the homogenized viscosity of the suspension fluid
and [η] symbol is variously referred to as the “intrinsic viscosity”
which takes the value [η] = 2.5 for a Newtonian matrix fluid. The
value of the coefficient [η] has not been incontrovertibly vali-
dated, with different researchers favoring values covering the
range 1.5 ≲ [η] ≲ 5 [18].

For volume fractions up to ϕ ~ 0.1, the Einstein equation was
extended by Batchelor [19, 20] into Eq. 2:
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ηhom = 1 + 2:5ϕ + 6:2ϕ2
� �

ηm ð2Þ

In their Eqs. (1) and (2), both Einstein and Batchelor studied
the viscosity of fluids containing solid spheres.

In 1932, Taylor [21] extended Einstein’s work to liquids con-
taining small drops of another liquid in suspension. In his work,
Taylor made several assumptions:

1. The drops are so small that they remain nearly spherical.
2. There is no slipping at the surface of the drop.

The tangential stress parallel to the surface is continuous at the
surface of the drop, so that any film which may exist between the
two liquids merely transmits tangential stress from one fluid to
another.

Thus, he replaced in Einstein (Eq. 1) the viscosity of a fluid con-
taining solid spheres by a term containing the viscosities of the two
fluids, considering by that the spheres as fluids, as shown in Eq. 3:

ηhom = 1 + 2:5ϕ
ηd +

2
5ηm

ηd + ηm

� �� �
ηm ð3Þ

As it is known, the above expressions were all carried out in the
case of Newtonian fluid. However, polymers are in general viscoelas-
tic and often show nonlinear (shear-thinning) behavior at high shear
rates [22, 23], which is the case especially in injection process. In this
case, the polymer is called pseudo-plastic [24] and its rheological
behavior can be described by the power-law equation as in Eq. 4:

η =K _γn−1 ð4Þ

where n is the power-law index (smaller than unity) and K is the
consistency index (constant).

For that, researchers started to study the behavior of the sus-
pensions in non-Newtonian fluids.

Chateau et al. [25] obtained, in a framework for nonlinear
homogenization, the following linear-estimate for the equivalent vis-
cosity of a dilute-suspension with a power-law matrix fluid (Eq. 5):

ηhom = 1 +
7n+ 3
4

ϕ

� �
ηm ð5Þ

In 2012, Domurath et al. [26] proposed another approach for
determining the equivalent viscosity in a nonlinear behavior of
polymers. They named this approach the stress and strain amplifi-
cation approach (SSAA; Eq. 6), where both the stress and the
strain terms are amplified by different factors: as and ad (Eq. 6)

ηhom = as:a
2
d:ηm ad _γ0Þð ð6Þ

The stress and the strain amplification factors are represented
in Eqs. (7) and (8) respectively:

as = 1 + 0:5ϕ ð7Þ

ad =
1

1−ϕ
ð8Þ

As a continuation of their work, Domurath et al. [27] per-
formed in 2015 a numerical study of a dilute suspension based on

a Bird-Carreau model. An elongation flow of a Bird-Carreau fluid
around a sphere was simulated and the effective viscosity of the
dilute suspension for different applied rates of deformation and
different power-law indices was obtained. Then, from the simula-
tion results, they computed the intrinsic viscosity found in Eq. 9:

η½ �= 2:5 + 47
20

n−1ð Þ + 3
10

n−1ð Þ2 ð9Þ

In this article, we have reviewed the most recent theories con-
cerning rigid particles suspended in non-Newtonian fluids. How-
ever, the calculation of both Domurath [26] and Chateau [25]
refer to Einstein’s equation. In particular, Domurath uses Einstein
equation for a Newtonian fluid (Eq. 1) in order to calculate his
stress amplification factor. Concerning the equation of Chateau,
he developed his relation (Eq. 5) for dilute suspensions, by using
Einstein’s relation in the case of Newtonian suspending fluid
(Eq. 1). Concerning the most recent work of Domurath [27],
although his work was numerical, he referred to Einstein equation
in order to calculate some parameters.

For larger values of the volume fraction ϕ, relations due to
Mooney [28] (Eq. 10) and Krieger & Dougherty [29] (Eq. 11) are
often used for determining the viscosity ηhom, although these
equations are empirical.

ηhom = exp
5
2ϕ

1− ϕ
ϕmax

 !
ð10Þ

ηhom = 1−
ϕ

ϕmax

� �−2:5ϕmax

ð11Þ

where ϕmax is the volume fraction at maximum packing.
In this study, we recalculate the equation of Einstein consider-

ing the suspending fluid as a power-law fluid without any Newto-
nian approximation or numerical approach. We calculate the
equivalent viscosity by equating the macroscopic energy with the
microscopic one based on a previous study [30]. This approach
applies to dilute suspensions of hard spherical particles where the
interactions between particles can be neglected.

EXTENSION OF EINSTEIN EQUATION FOR A POWER-LAW

FLUID

In order to understand the effect of the suspensions on the vis-
cosity of a power-law behaving fluid, we have taken a similar
approach to that studied in a previous paper for Newtonian fluid
[30] and transposed it to the case of a power-law fluid. The appli-
cation of this concept in the case of recycled polymers is the same
as considering that PP as the medium fluid (matrix), while PE dis-
perses as non-colloidal spherical rigid particles in PP.

Based on Einstein approach by Lauffer [30], we used the con-
cept of an equivalent homogeneous fluid which exhibits the same
flowing behavior as the polymer suspension. In his approach, Lauf-
fer considers a representative elementary volume where he studies
the rotation of the liquid without a change in the relative positions
of the particles of the liquid, in addition to the viscous dissipation
of the matrix liquid due to the displacement of the particles of the
liquid. In our study, the viscosity of the equivalent fluid is defined
as ηhom and the shear rate of this flow is defined as _γ0.
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Then, by equating the macroscopic energy dissipated by the
homogenized suspended fluid and the microscopic energy, we are
able to conclude an equation relating the equivalent viscosity ηhom

with the volume fraction of the suspensions ϕ, the power-law
index n and the viscosity of the medium fluid ηm.

Viscosity of a Suspension of Spheres

According to Domurath et al. [26] and Smallwood [31], the
local tensor of the shear rate _γ, can be written as a function of the
macroscopic shear rate _γ0 as follows (Eq. 12):

_γ =
1

1−ϕ
_γ0 ð12Þ

By replacing the suspended pseudo-plastic fluid by a fluid pre-
senting an equivalent viscosity ηhom, then the total energy dissi-
pated in this fluid is the sum of the energy due to the viscous
dissipation of the matrix fluid (W1) plus the dissipated energy by
the sphere rotation in the viscous fluid (W2; Eq. 13).

W =W1 +W2 ð13Þ

Considering a simple shear flow of a viscous fluid (viscos-
ity = ηhom), the speed of the lower layer that is in contact with
the fixed plate is considered to be zero while the upper layer
that is in contact with the moving plate is considered to move
with the speed U (Fig. 1).

Thus, the shear rate between the two plates is (Eq. 12):

_γ =
du

dy
ð14Þ

The energy corresponding to the viscous dissipation is consid-
ered as the kinetic energy of the fluid in movement. This energy
is determined multiplying the force (F; Fig. 1) by the displace-
ment of the fluid (x; Fig. 1) [32] (Eq. 13).

W1 =F:x ð15Þ

The force of a viscous fluid can be written as follow (Eq. 16):

F = η _γS ð16Þ

Hence, by substituting Eq. 16 in Eq. 15, we get the expression
for the energy W1 (Eq. 17):

W1 =F:x = η _γS:x ð17Þ

The energy of the viscous dissipation in a pseudoplastic matrix
fluid (W1) is (Eq. 18):

W1 = ηm _γS:x=K _γn−1 _γS:x ð18Þ

Where S is the surface of the plate and L is the distance
between the two plates (Fig. 1).

As we have mentioned before, x is the distance crossed by the
moving plate, hence x can be written as follow (Eq. 19):

x =V :t = _γLt ð19Þ

FIG. 1. Simple shear flow.

FIG. 2. (a) Sphere in rotation and (b) cross sectional diagram of a sphere rotating about a vertical axis divided into
infinitesimal rings.
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After introducing the particles, the distance between the two
plates corresponding to the fluid that can be deformed is
reduced to L(1 − ϕ). Hence, Eq. 18 can be written as fol-
low (Eq. 20):

W1 =K _γn−1 _γS: _γL 1−ϕð Þt ð20Þ

By replacing the shear rate term from Eq. 12 in Eq. 20, we
get (Eq. 21):

W1 =K
_γn+ 10

1−ϕð ÞnSLt ð21Þ

Energy Dissipated by the Sphere Rotation

In a cylindrical coordinate system, we consider a sphere of
radius r1 (representing the PE droplet), rotating about the vertical
axis (z) with an angular velocity Ω (rd/s) (Fig. 2a).

The surface of the sphere can be divided into a very large num-
ber of rings of radius (Fig. 2b), r1.sinθ, and of small finite thick-
ness, r1.δθ, rotating about the vertical axis (z). At a distance r from
the center of the sphere for a particular value of θ, a liquid ring

(representing PP) of radius r.sin θ and thickness r.δθ is consid-
ered (Fig. 3).

Thus, the area of the shearing surface, δA (Fig. 4), of this liq-
uid ring is (Eq. 22):

δA= 2:π:r:sin θ:r:δθ = 2:π:r2:sin θ:δθ ð22Þ

To calculate the shear rate (Eq. 23), we consider the flow of
fluid in a Couette geometry (Fig. 4a), where the surface of the
sphere is considered as the rotating inner cylinder with a rota-
tional speed of Ω, while the distant liquid (r ! ∞), which
describes a dilute solution, is considered as the stationary outer
cylinder (Fig. 4b).

In a cylindrical coordinate system, the shear rate is as follows
[33] (Eq. 23):

_γ rð Þ = v rð Þ
r

−
dv rð Þ
dr

ð23Þ

where v(r) is the tangential velocity of the liquid ring.
Considering a Couette flow (Fig. 5), the tangential velocity

v(r) can be calculated as follows [33] (Eq. 24):

v rð Þ= R
2
n
1Ω

R
2
n
2−R

2
n
1

R
2
n
2−r

2
n

r
2−n
n

" #
ð24Þ

If we consider the infinitesimal surface δA from Fig. 3 as a
Couette flow with the coordinates presented in Fig. 4b, then the
parameters of Eq. 24 must be replaced as follows: R1 is replaced
by r1 sin θ, r is replaced by r sin θ and R2 is replaced by r2 sin θ,
which yields to Eq. 25.

v rð Þ = r1 sinθ
2
nΩ

r2 sinθ
2
n−r1 sinθ

2
n

r2 sinθ
2
n−r sinθ

2
n

r sinθ
2−n
n

" #
ð25Þ

In the case of dilute little spherical particles, r2 is considered
as infinite [17]. This leads to the following simplified form of v
(r) (Eq. 26):

FIG. 3. Three-dimensional diagram of the sphere and the liquid rings.

FIG. 4. (a) Flow in a classical Couette and (b) flow in a Couette where spherical rings are considered cylinders.
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v rð Þ = r1
2
n sinθΩ

r
2−n
n

ð26Þ

According to Eq. 23, the tangential velocity expression
(Eq. 26) allows us to calculate the shear rate _γ rð Þ (Eq. 27):

_γ rð Þ = r1
2
n sinθ

r
2
n

Ω
2
n

� �
ð27Þ

The shear rate in the fluid at the surface of the sphere is
_γ r = r1ð Þ and calculated in Eq. 28:

_γ =Ω
2
n

� �
sinθ ð28Þ

The infinitesimal tangential friction force δF exerted at the sur-
face of the ring at the surface of the sphere (δA at the position
r = r1) is the mathematical product of the viscosity by the surface
and by the shear rate (Eq. 29):

δF = 2πKr1
2 Ω

2
n

� �
sinθ

� �n
sinθ δθ ð29Þ

The infinitesimal torque δM exerted at the surface of the ring
from the sphere, is the mathematical product of the force by the
distance to the z axis (Eq. 30):

δM = δF r1 sinθ = 2πKr1
3Ωn 2

n

� �n

sinθn+ 2δθ ð30Þ

The energy concerning the volume of the spherical particles,
exerted during a rotation is the mathematical product of the torque
δM by the rotation speed Ω per the sphere volume in the same
time interval t (Eq. 31):

δW2 =
3
2

2
n

� �n

KΩn+ 1 sinθn+ 2δθt ð31Þ

By replacing the rotation speed Ω by the relationship versus
the shear rate (Eq. 28), we get the expression of the energy
exerted on a sphere annulus (Eq. 32):

δW2 =
3
2

n

2

� 	
K _γn+ 1 sinθδθt ð32Þ

In order to get the energy dissipated on the whole sphere, we
integrate the local energy δW for θ varying from 0 to π, (Eq. 33):

ΔW2 =
3
2
nK _γn + 1t ð33Þ

Considering that there are m spheres of radius r1 in the fluid
and by introducing the value of the volume fraction ϕ, the whole
energy dissipated by the m spheres can be written as fol-
lows (Eq. 34):

W2 =m
Vspheres

Vt
Δ _W2 =ϕΔ _W2 =

3
2
nϕK _γn+ 1t ð34Þ

If we replace _γ by its expression depending on _γ0 according to
Eq. 21, we get Eq. 35:

FIG. 5. The viscosities of pure high density polyethylene (HDPE), HDPE with fibers 10% weight fraction, HDPE with
fibers 50% weight fraction compared with the viscosities predicted by the Einstein power law model.

TABLE 1. Physical and rheological properties of PP and PE.

Cp

J.Kg−1.K−1
ρ

Kg.m−3
λ

W.m−1.K−1 n K

PPC 9642 2,720 905 0.17 0.332 4,636
PE 2042E 2,360 795 0.30 0.258 47,707

PE, polyethylene; PP, polypropylene.
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W2 =
3
2
nϕK

_γ0
n + 1

1−ϕð Þn+ 1Vtt ð35Þ

As said in Eq. 11, the total energy W is equal to the sum of the
W1 and W2, this leads to (Eq. 36):

W =W1 +W2 =K
_γn+ 10

1−ϕð ÞnSLt +
3
2
nϕK

_γ0
n+ 1

1−ϕð Þn+ 1Vtt

ηhom _γ
2
0 =K _γn+ 10

1
1−ϕð Þn +

3
2
n

ϕ

1−ϕð Þn + 1
" #

ð36Þ

Considering Eq. 30, we can identify the equivalent viscosity as
follows (Eq. 37):

ηhom = ηm
1

1−ϕð Þn 1 +
3
2
n

ϕ

1−ϕð Þ
� �

ð37Þ

Where ηm is the viscosity of the fluid matrix and is represented
by the power-law relation: ηm =K _γn−10 .

Considering that ϕ � 1, we can use the limited development
of (1 − ϕ), which leads to Eq. 38:

ηhom = ηm 1 + nϕð Þ 1 +
3
2
nϕ 1−ϕð Þ

� �
ð38Þ

Considering that ϕ � 1 leads also to neglect the terms
depending on ϕi with i ≥ 2, then Eq. 38 reduces to Eq. 39:

ηhom = ηm 1 + 2:5nϕð Þ ð39Þ

This relation was also observed experimentally by antecedent
studies [34, 35] where they indicated that the intrinsic viscosity is
approximately 5

2n.
We remark that if n = 1, then Eq. 39 becomes equal to Ein-

stein’s equation (Eq. 40):

ηhom = ηm 1 + 2:5ϕð Þ ð40Þ

Polychronopoulos et al. [36] have studied the viscosity of
heavily filled high density polyethylene (HDPE) with natural
fibers. In their work, they have measured the viscosity of

FIG. 6. The viscosities of PP and PE as a function of the shear rate. PE, polyethylene; PP, polypropylene.

FIG. 7. Instrumented die for measuring the pressure drop.
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filled HDPE at different weight fractions. So, in order to
validate our equation, we have compared the viscosities pre-
dicted with our model, with the viscosities measured in the
Polychronopoulos et al.’s work. The results are presented
in Fig. 5.

The results in Fig. 5 show that the viscosities predicted by the
equation developed in this work are in good agreement with the
viscosities measured in the study of Polychronopoulos et al. for
volume fractions <10%. As the volume fraction increases, the Epl
model departs from the experimental results which can be
explained by the fact that as the volume fraction increases, the
particle-particle interactions as well as the differences in the mor-
phological development can no longer be neglected.

EXPERIMENTAL SECTION

Despite the validation of the model with experimental results
found in literature, we have decided to validate the improvement
brought by the Epl “Einstein power-law” (Eq. 39) presented in
the section “Extension Of Einstein Equation For A Power-Law
Fluid”, with our own experimental results. The used experimental
setup is described below.

Materials

The materials used in this work are PPC 9642 Total Petro-
chemicals and PE DOWLEX 2042E (Table 1). The density (ρ) of
the material is measured as the ratio on the mass flow rate and the
volume flow rate by the melt flow index (MFI) apparatus at
190�C, the specific heat (Cp) is measured by the differential

FIG. 8. Amplification of the viscosity in a suspension fluid.

FIG. 9. The pressure drop in the die at different injection speeds compared to the mixing laws Epl, Chateau, Domur-
ath, and Einstein (a: ϕ = 0.1, b: ϕ = 0.15, c: ϕ = 0.2, and d: ϕ = 0.3).
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scanning calorimetry (DSC) [37] while the value of the thermal
conductivity (λ) is taken from literature. [38]

On the other, we have measured the viscosities of PP and PE
with a rheometer that was developed in a previous study [39].
The rheological behavior of the different polymers is presented
in Fig. 6.

At low shear rates, the viscosities of each polymer were mea-
sured with a rheometer plan. In Fig. 6, we have showed the evolu-
tion of the viscosity as a function of the shear rate for PP and PE
at 190�C.

Table 1 represents the physical and rheological properties of
the polymers PP and PE used in this study.

Experimental Setup

The aim of the experimental setup is to allow the measurement
of the pressure drop, which is tightly related to the viscosity, of
the injected PE/PP mixtures. A die that was developed in our lab-
oratory in a previous work [40] (Fig. 7) is used in this study.

The device is a cylindrical die of 300 mm length with outer and
inner diameters of 50 and 10 mm respectively. Hot wires of 2 mm
diameter are used to regulate the temperature of the device. The
heating system is divided into five zones allowing effective temper-
ature control. The die is equipped with two pressure sensors of type
KISTLER 6159A. The first is located at the inlet while the second
is located at the outlet, so as to measure the pressure drop during
the test. In his work, Launay [40] developed this setup with two
temperature measuring cells (TMC) implemented in the die. These
TMCs, that allow the measurement of the temperature in the flow,
are not used in this work given their intrusive nature. We use the
designed device (Fig. 7) as a pressure measuring device. The die is
mounted at the exit of a process machine—in our case an injection
molding (Milacron Elektron 50).

RESULTS AND DISCUSSION

The flow tests are performed by varying the injection speed V
from 20 to 50 mm/s. During the experiments, the injection mold-
ing and runner temperatures are controlled in order to get the most
homogeneous temperature of the polymer melt around 190�C.
The different laws introduced in section 1 are used to predict the
pressure drop and then compared to experiment. The effect of

adding rigid spheres on the viscosity is studied at a constant shear
rate [26] (Fig. 8) where [η] is the intrinsic viscosity.

So, by substituting η by τ/ _γ, where the shear stress is given
by Eq. 41:

τ=
ΔP:R
2L

ð41Þ

We get the relation in terms of pressure drop (Eq. 42):

ΔPhom = 1 + 2:5nϕð ÞΔPm ð42Þ

Figure 9a–d shows the pressure drop predicted by the different
mixing laws—discussed in section “Introduction”—compared to
the measured one in the die at different injection speeds for vari-
ous volume fractions ϕ = 0.1, 0.15, 0.2, and 0.3.

Whatever the different volume fractions and the different injec-
tion speeds are, Einstein Newtonian model is the worst to predict
the pressure drop. Despite, the improvement brought by Domur-
ath 2012 model and Chateau model, the predictions remain quite
unsatisfactory. However, Domurath 2015 and Epl models give the
closest prediction with respect to the measured pressure drop with
a better prediction brought by the latter developed in this work.

In Fig. 10, we plot the difference between the predicted pressure
drops by Epl model and the experimental results. As we can see,
the difference increases as the volume fraction increases. This dis-
crepancy is due to the fact that the conditions taken into
consideration—namely small volume fraction and spherical rigid
particles—in developing the Epl model no longer exist and new
phenomenon such as particles interaction and coalescence might be
taking place [41]. The difference also increases by increasing the
injection speed hence increasing the shear rate. Indeed, this behav-
ior can be explained by the fact that as the shear rate increases the
dispersed particles will stretch, thus losing their spherical shape.

CONCLUSION

In the present article, we established a relationship in order to
describe the equivalent viscosity in the case of suspended rigid
spheres in a power-law behaving fluid. Unlike the reported models
in literature, our calculation is based on the principle used by
Einstein in his model but without any Newtonian approximation.
The obtained equation predicts the equivalent viscosity taking into
consideration the power-law index and the volume fraction.

The physics used here does not include any effects related to
particles interaction, visco-elasticity, particle deformation or any
other physicochemical effect. For that reason, its scope is limited
to the cases where the interaction between the particles and the
matrix fluid is purely hydrodynamic.

Due to the high viscosity ratio between PE and PP (κ > > 1),
PE is assumed to behave as dispersed rigid particles in PP. We
have shown that the equation developed in this work is in good
agreement, for concentrations up to ϕ ~ 0.2, with the experimen-
tal results and predicts the pressure drop better than the models
found in literature which the authors are aware of. Moreover,
the intrinsic viscosity of the developed model in this work
([η] = 2.5n) matches also the intrinsic viscosity found experimen-
tally by other authors [42].

However, the developed equation Epl has limits when it comes
to fluid mixtures of similar viscosities where the morphology of

FIG. 10. Variation of the difference between Epl model and experimental
results as a function of the volume fraction at different injection speeds.
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the blend changes as well as at high volume fractions where the
interaction forces between the particles are no longer negligible.

For future work, improvement of this equation can be made by
taking into consideration the viscosity of the dispersed particles
and the deformation of the particles dispersed as well.
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ABBREVIATIONS
DSC differential scanning calorimetry
Epl Einstein power-law
MFI melt flow index
PE polyethylene
PP polypropylene
SSAA stress and strain amplification approach

NOTATION
γ surface tension (N/m)
_γ macroscopic shear rate (s−1)
_γ0 applied rate-of-strain (s−1)
ηhom equivalent viscosity (Pa.s)
ηd viscosity of the dispersed polymer (Pa.s)
ηm viscosity of the matrix polymer (Pa.s)
[η] intrinsic viscosity (reverse concentration)
θ angle between a sphere ring and the axis of rotation (rd)
κ viscosity ratio (1)
v tangential speed in Couette (m/s)
ϕ volume fraction of the dispersed polymer
Ω rotational speed at the surface of the rigid sphere (rd/s)

Symbols
A shearing area (m2)
as stress amplification factor
ad strain amplification factor
F tangential frictional force (N)
K consistency index (Pa.sn + 1)
M Torque on the surface of the rigid sphere (N.m)
m number of the suspended spheres
n power-law index
ΔP pressure drop (Pa)
R radius of the flow channel (m)
r radius of the liquid sphere (m)
r1 radius of the rigid sphere (m)
W total energy dissipated in the equivalent homogeneous fluid (J)
W1 viscous dissipation of the fluid matrix (J)
W2 energy dissipated by the flow of the fluid around m spheres (J)
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