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Abstract 

Recent inflation dynamics in the United States (US) questioned the role of driving forces of 

inflation in the long run. Although the US recorded one of the longest economic recovery 

periods and the labor market conditions improved after the Global crisis, the inflation level 

remained relatively low. Starting from this evidence, the purpose of our paper is to shed light 

to the influence of inflation uncertainty and labor market conditions on the US inflation level. 

To this end, we first use two bounded measures of inflation uncertainty, relying on Chan et al.’s 

(2013) and Chan’s (2017) unobserved component models. Second, we compare a linear with 

an asymmetric Autoregressive Distributed Lag (ARDL) framework. We show that both 

inflation uncertainty and labor market conditions explain the long-run US inflation. However, 

these results are sensitive to the way the inflation uncertainty is computed. Moreover, contrary 

to the recent affirmations regarding the vanishing role of labor market in explaining the US 

inflation in the long run, we show that the labor market influence is stronger in the post-crisis, 

compared with the pre-crisis period. Therefore, the monetary policymakers cannot make 

abstraction of labor market developments in anticipating the US inflation level.   
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1. Introduction 

After the 1973 oil crisis and the setup of the stagflation phenomenon in the United States 

(US), the Phillips curve theory represented the subject of notable debates related to the long-

run neutrality of the monetary policy1. As a matter of fact, the “monetary-policy invariance 

hypothesis” advanced by Friedman (1968) in his speech delivered in December 1967 to the 

American Economic Association, underlines the role of inflation expectations and recommends 

an augmented right-side hand Phillips curve with inflation uncertainty (Hall and Sargent, 2018). 

Ten years later, Friedman (1977) explains the non-stable trade-off between inflation and 

unemployment and argues that higher inflation causes an increase in inflation uncertainty which 

generates an economic downturn. Nevertheless, the literature dealing with the underlying 

theoretical mechanisms as well as the empirical works focus mainly on the interactions between 

inflation and inflation uncertainty, making rather abstraction of labor market conditions2. 

Recently, Janet Yellen3, the former chair of the Federal Reserve, questions the role of 

inflation expectations as driving force of inflation. On the one hand, notwithstanding the 

unexpected movements in oil prices and US dollar exchange rates observed after the crisis 

which affect the inflation expectations, the long-run inflation projections made by private 

forecasters were largely stable for a long period. This evidence might witness a low inflation 

uncertainty climate. On the other hand, the inflation rate remains low after 2009, although the 

labor market conditions improved in the US4. This evidence rises concerns about the reliability 

of fundamentals forces (e.g. labor market) in explaining the inflation developments on the long 

run. As Yellen (2017) mentions, the “low inflation likely reflects factors whose influence 

should fade over time”. Starting from this evidence, the purpose of our paper is to inquire the 

role of driving forces of US inflation in the short and long runs, with a focus on inflation 

uncertainty and labor market conditions.  

The literature on inflation – inflation uncertainty nexus is articulated around two sets of 

competing theories. The first set of theories addresses the impact the inflation has on the 

inflation uncertainty level. In this line, Friedman (1977) states that a high level of inflation 

 
1 According to the FRED database, the inflation rate shifted from 6% in 1973 to more than 10% in 1974, while the 

US economic contraction installed since 1974 (-0.5%). At the same time, the unemployment rate in the US 

increased from 4.9% in 1973 to 5.6% in 1974, and afterwards, to 8.5% in 1975. 
2 Please refer to the recent papers of Albulescu et al. (2019), Balcilar and Özdemir (2013), Caporale et al. (2012), 

Chowdhury (2014), Ferreira and Palma (2016), Kontonikas (2004). 
3 The question was raised during the speech delivered on September 26, 2017 at the 59th Annual Meeting of the 

National Association for Business Economics in Cleveland. 
4 The Bureau of Labor Statistics shows that the unemployment rate in the US diminished from 9.6% in 2010, to 

4.4% in 2017. 
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creates a strong incentive for the policymakers to counter it generating thus higher uncertainty. 

Given the existence of two explicit objectives of policymakers, namely a highly stable 

employment rate and price stabilization, the policy decisions could be controversial and 

transmit thus confusing signals in the market. According to Friedman (1977), the economic 

policy “goes from one direction to the other” and determines high variations in the anticipated 

rate of inflation, which generate an increased uncertainty about the inflation level. Building 

upon Friedman (1977), Ball (1992) formalizes this mechanism (the Friedman-Ball hypothesis) 

and shows that, under high inflation regimes, the private agents hardly anticipate the nature of 

the monetary decisions, i.e. expansionary or restrictive, generating thus highly uncertainty in 

the market. This theory is validated by several empirical works both for the US (Grier and Perry, 

2000; Albulescu et al., 2019), and for the G7 group of countries (Grier and Perry, 1998; Daal 

et al., 2005). The second theory analyzing the impact of the inflation on the inflation uncertainty 

is advanced by Pourgerami and Maskus (1987). The authors show that, contrary to the 

Friedman’s (1977) hypothesis, the inflation has a negative impact on the inflation uncertainty. 

The explanation is based on the pioneering work of Frohman et al. (1981) and relies on the fact 

that an increasing inflation-associated costs, i.e. during inflationary periods, could straighten 

the efforts made by the private agents to accurately forecast the inflation rate. Therefore, the 

inflation uncertainty decreases in periods with high inflation. Hwang (2001) empirically 

validates this hypothesis for the US. 

The second set of theories addresses the impact of inflation uncertainty on the inflation 

level. The first theory is proposed by Cukierman and Meltzer (1986) and relies on the fact that 

the monetary authorities could be tempted to generate inflation surprises to encourage economic 

activity. The perspective of such inflation surprises induces an increased uncertainty regarding 

the level of inflation. Consequently, even if monetary policymakers have no incentive to 

stimulate a price increase, i.e. they are only interested in stimulating the economic activity, the 

inflation appears as an externality of the process. This hypothesis is empirically tested and 

validated for the US (Berument et al., 2009; Balcilar et al., 2011), for the G7 countries (Fountas 

and Karanasos, 2007), and for a set of industrial countries (Fountas, 2010). The second theory, 

developed by Holland (1995), put forward the timing of the relationship between inflation and 

its uncertainty. Indeed, if inflationary periods precede uncertainty periods, the monetary 

authority could implement a restrictive policy allowing to reduce the magnitude of inflation. 

Consequently, a period with high inflation uncertainty might be followed by a reduced inflation 

period. Balcilar and Özdemir (2013) empirically validate this “stabilization motive” hypothesis 

in the case of G7 countries.  
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Based on the second set of theories, the impact of inflation uncertainty on the inflation 

level can thus be either positive or negative. On the one side, if the uncertainty is high during 

slow economic growth periods, the inflation might rise following monetary policy surprises 

created by the policymakers in order to foster the economic activity. On the other side, during 

and after crisis periods, the uncertainty is generally very high, implying thus a contraction of 

economic activity (e.g. consumption and investment), generating a reduction in the level of 

inflation. Therefore, our paper aims to test the impact of inflation uncertainty on the US 

inflation level by taking explicitly into consideration the role of labor market conditions. As far 

as we know, none of the previous works addressing the inflation – uncertainty nexus, have 

investigated the role of labor market conditions as a driving force of inflation dynamics. We 

can thus test the Yellen’s (2017) assumption stating that there is a long run disconnection of the 

US inflation rate from its fundamentals. The contribution of our paper to the existing literature 

is threefold.  

First, unlike the classic approaches which associate inflation uncertainty with inflation 

variability and use Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

specifications to model the uncertainty, our paper considers an unobserved component approach 

with stochastic volatility to compute inflation uncertainty. Relying on Chan et al. (2013), this 

approach presents the advantage that allows the inflation uncertainty to be high, even in low 

inflation-volatility periods (Evans, 1991). In addition, it presents a better accuracy in 

forecasting the dynamics of inflation uncertainty (Ftiti and Jawadi, 2019). Moreover, this 

approach bounds the inflation uncertainty in an interval very closed to an inflation-targeting 

band US5.  Another benefit of this methodology is represented by the fact that it leads to a more 

complete robustness analysis. As alternative measure for the inflation uncertainty, we can thus 

use the recent approach proposed by Chan (2017). Building upon Stock and Watson (2007), the 

author proposes an unobserved component model with a stochastic volatility in mean. The 

benefit of this specification resides in its ability to investigate the inflation volatility feedback, 

i.e. how the inflation is affected by its volatility. Both Chan et al.’s (2013) and Chan’s (2017) 

approaches are used by Albulescu et al. (2019), which examines the historical relationship 

between inflation and inflation uncertainty in the US in a time-frequency framework. 

Nevertheless, this study does not explicitly consider the role of labor market conditions in 

 
5 According to Thornton (2012), the Federal Reserve implemented a de facto inflation-targeting regime after the 

global crisis. 
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influencing this relationship. Moreover, this paper does not take into consideration the recent 

inflation developments in the US6. 

Second, we use the Labor Market Condition Index (LMCI) as a proxy for the labor market 

conditions in the US. As Yellen (2017) admits, the unemployment rate represents “probably the 

best single summary measure of labor utilization” but cannot characterize by itself the labor 

market dynamics. In order to capture these dynamics, several structural indicators can be 

considered as the number of prime-age and part-time workers, household perceptions of job 

availability, difficulties encountered by small firms to hire peoples, jobs opening rate, wages, 

etc. The Federal Reserve has introduced the LMCI in 20147 and, even this index is negatively 

correlated with the unemployment rate, it represents the outcome of a dynamic factor model 

including 19 individual indicators, offering thus a broader picture of US labor market. 

Third, given the presence of a unit root process in our inflation series and the bound 

characteristics of the inflation uncertainty series, we use an Autoregressive Distributed Lag 

(ARDL) framework proposed by Pesaran et al. (2001) in order to analyze the long-run 

relationship between inflation, inflation uncertainty and labor market conditions. Moreover, as 

inflation uncertainty could theoretically have both a negative or a positive effect on the level of 

inflation, it is possible that positive shocks in uncertainty could have a significantly different 

impact on inflation compared with negative shocks. Consequently, in order to capture such 

potential asymmetries between inflation and its uncertainty, we also use a nonlinear ARDL 

(NARDL) model proposed by Shin et al. (2014). Previous studies using regime switching 

models (Kim, 1993), or, more recently, wavelet approaches (Albulescu et al., 2019), underline 

the nonlinearities that characterize the inflation – uncertainty relationship. However, these 

studies neither take explicitly into consideration the asymmetries in both short and long-run 

relationship, nor consider the role of positive and negative changes in uncertainty in explaining 

the inflation level. 

The next section of the paper describes the data used in the empirical approach. The 

subsequent section presents the methodology employed for computing the inflation uncertainty 

and the ARDL and NARDL models. Section 4 highlights the main empirical findings and 

Section 5 the robustness checks. The last part of the paper concludes. 

 

 

 
6 Starting from January 2012, the Federal Open Market Committee’s long-run inflation objective was established 

at 2%.  
7 Backdated data series are available starting with 1976. 
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2. Data 

Our monthly data comes from FRED database and covers the period 1976M08-

2017M06.8 The inflation rate is calculated starting from the Consumer Price Index (CPI) for 

Urban Consumers, considering a year-on-year percentage change (πy-o-y). For robustness 

purpose, as in Albulescu et al. (2019) and Ferreira and Palma (2016), we compute the month-

on-month percent change in CPI (πm-o-m), using the formula 1200×ln(
CPIt

CPIt-1
).  

The dynamics of inflation and LMCI are presented in Figure 1. We can notice that an 

increase in the inflation rate is accompanied by an improvement of the labor market conditions, 

except for the period 1978-1983 and the beginning of the 1990s. At the same time, Figure 2 

shows that the inflation uncertainty computed following Chan et al (2013) is very high when 

the inflation and LMCI series are decoupling. Further, Chan’s (2017) approach allows a higher 

variability in the uncertainty series and shows that the period before and during the recent 

Global crisis is characterized by a higher inflation uncertainty in the US.    

[Insert Figure 1 about here] 

[Insert Figure 2 about here] 

We perform two tests to check for the presence of unit root and stationarity in our data 

series. We use thus ADF and KPSS tests, respectively. The results are presented in Table 1 and 

shows that the inflation series computed based on a year-on-year percentage change is not 

stationary (result confirmed by both tests), whereas the LMCI series is stationary. Most of the 

inflation uncertainty series are stationary, apart from the uncertainty computed following Chan 

(2017) based on the year-on-year percentage change in CPI (ϑy-o-y
2017

). Therefore, we conclude 

that our series are either I(0) or I(1), which requires the use of an ARDL specification to avoid 

the issue of spurious regressions. 

[Insert Table 1 about here] 

 

3. Methodology 

3.1. Inflation uncertainty 

We use two different approaches to derive the inflation uncertainty, both relying on 

unobserved component models with stochastic volatility, where the inflation uncertainty is 

bounded to a specific interval. These approaches allow for a time-varying inflation process in 

 
8 The timespan is restricted by the LMCI computation, starting with 1976M08. In July 2017, the Board started to 

discontinued update the index. Therefore, our LMCI series stop in 2017M06. 
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the state equation (Chan et al., 2013) and in the conditional mean (Chan, 2017). In line with 

other similar papers, we consider Chan et al.’s (2013) approach as baseline, and we use Chan’s 

(2017) methodology for comparison purpose. The later approach has the advantage to 

incorporate the inflation volatility feedback and allows for time changes in inflation – inflation 

uncertainty relationship. However, this method generates a higher variability in the uncertainty 

series, variability induced by the inflation volatility.9   

  To compute the inflation uncertainty, Chan et al. (2013) start from Cogley et al.’s (2010) 

approach of modelling the time-varying inflation process. First, this approach allows for 

stochastic volatility in the state equation. Second, this approach restricts the autoregressive 

parameter to avoid the generation of “explosive” series. The Cogley et al.’s (2010) inflation 

specification is: 

πt=χ
0t-1

+χ
1t-1

πt-1+εtexp (
ϑt

2
),         (1) 

where: πt is the level of inflation, χ
t
=χ

t-1
+εt

χ
 represents the vector of coefficients, and ϑt=ϑt-1+εt

ϑ, 

with εt~N(0,1) and εt
ϑ~N(0,σϑ

2). 

Following Stock and Watson (2007), the inflation series is decomposed in an inflation 

trend and an inflation gap as follows: 

πt=τt+λt,           (2) 

where: τt=
χ

0t

1-χ
1t

 is the inflation trend and λt=τt+1-
χ

0t

1-χ
1t

  is the inflation gap. 

The associated model specification for the inflation gap becomes: 

λt+1=χ
1t

(πt-
χ

0t

1-χ
1t

) +εt+1exp (
ϑt+1

2
).        (3) 

Chan et al. (2013) modify the transitory component in Eq. (1) by introducing an 

autoregressive term. Moreover, like in Stock and Watson (2007), the new specification relies 

on an unobserved components model: 

(πt-τt)=λt(πt-1-τt-1)+εtexp (
ϑt

2
) ,        (4) 

where: τt=τt-1+εt
τ and λt=λt-1+εt

γ
. 

However, different from Stock and Watson (2007), Chan et al. (2013) bound both the 

inflation trend and inflation gap, making an innovation in the state equation. For the inflation 

trend, we have: 

εt
τ~TN(a-τt-1,b-τt-1;0,στ

2),         (5) 

 
9 See the critic of Evans (1991) showing that higher volatility does not necessarily mean higher inflation 

uncertainty. 
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where: TN(a,b;μ,σ2) represents the normal distribution with the mean  μ and the variance σ2 

truncated to the interval (a,b), Et[τt+1]=τt+στ [
χ(

a-τt
σt

)-χ(
b-τt
στ

)

Φ(
b-τt
στ

)-Φ(
a-τt
στ

)
] is the conditional expectation, 

and a≤τt≤b.  

For the inflation gap, the bounds are generated to satisfy the zero-convergence condition 

in the long run: 

εt
λ~TN(aλ-λt-1,bλ-λt-1;0,σλ

2),         (6)  

where: the conditional expectation becomes Et[λt+1]=λt+σλ [
∅(

xλ-λt

σλ
)-∅(

yλ-λt

σλ
)

Φ(
yλ-λt

σλ
)-Φ(

xλ-λt

σλ
)
] , with xλ≤λt≤y

λ
, the 

inflation gap being therefore limited in order to lie inside the unit circle. 

The inflation uncertainty is than captured by the posterior mean of volatility (ϑ), starting 

from Eq. (4). 

Different from Chan et al. (2013), Chan (2017) adopts recently a stochastic volatility in 

mean approach following Koopman and Hol Uspensky (2002). Its approach allows for time-

varying coefficients in the conditional mean using the same departure point of unobserved 

components model of Stock and Watson (2007). Specifically: 

πt=τt+αtexpϑt+εt
π, with εt

π~N(0,expϑt),        (7) 

and 

ϑt=μ+ϕ(ϑt-1-μ)+β
t
πt-1+εt

ϑ, with εt
ϑ~N(0,σϑ

2),       (8) 

where: αt and β
t
 are time-varying parameters, the log-volatility of inflation ϑt represents an 

AR(1) stationary process, with ϑ1~N(μ, σ2/(1-ϕ
2
)), and εt

π and εt
ϑ are serially uncorrelated. 

The coefficients’ vector (δt) follows a random walk process: 

δt=δt-1+εt
δ , with εt

δ~N(0,Ω),         (9) 

where: δt=(αt,τt)', Ω represents a 2×2 covariance matrix. 

Chan (2017) states that, since expϑt  represents the transitory component variance, αt might 

be associated with the impact of the transitory volatility on the inflation level. Again, inflation 

uncertainty is captured by the posterior mean of volatility (ϑ). 

 

3.2. ARDL and NARDL bound tests 

In order to test the relationship between inflation, uncertainty and labor conditions, we 

first use the ARDL model of Pesaran et al. (2001). This framework is compatible with both I(0) 

and I(1) series and allows the integration of short-run adjustments into the long-run equilibrium 

by resorting to an error correction mechanism (ECM) through a linear transformation: 
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∆πt=c+δππt-1+δϑϑt-1+δlmcilmcit-1+ ∑ αi∆πt-i
p

i=1 + ∑ β
i
∆ϑt-i

p

i=0 + ∑ γ
i
∆lmcit-i

p

i=0 +θECTt-i+ε
t
 (10) 

where: π, ϑ and LMCI represent the inflation, inflation uncertainty and the labor market 

condition index respectively; c and ε are the intercept and the error term respectively. The short-

run relationship is represented by ∆-terms whereas the long-run relationship is represented by 

δ-terms. p represents the maximum number of lags (established to six in our case) and ECT is 

the error correction term (θ should have a negative sign and be significant to validate the long-

run relationship). 

We test the existence of a long-run relationship resorting to the F-statistic where the null 

hypothesis of no cointegration is  δπ=δϑ=δlmci=0. The optimal number of lags is chosen based 

on the Akaike Information Criteria (AIC) automatic selection criterion. 

The theory and the empirical evidence show that the inflation uncertainty could have both 

a positive or a negative impact on the inflation level. Hence, we use Shin et al.’s (2014) 

approach to decompose this variable ϑt into positive (+) and negative (-) partial sums. This 

approach allows to capture the long-run asymmetries by δ
+
 and δ

-
, whereas the short-run 

asymmetries are highlighted by β
+
 and β

-
. Therefore, we obtain a nonlinear (asymmetric) 

ARDL model (NARDL) as follows:  

∆πt=c+δππt-1+δϑ
+
ϑt-1

+
+δϑ

-
ϑt-1

-
+δlmcilmcit-1+ ∑ αi∆πt-i

p

i=1 + ∑ (β
i

+
∆ϑt-i

+p

i=0 +β
i

-
∆ϑt-i

-
)  

+ ∑ γ
i
∆lmcit-i

p

i=0 +θECTt-i+ε
t
          (11) 

The long run relationship between inflation (π) and its uncertainty (ϑ) is estimated by 

computing the long-run coefficients L+=-δϑ
+
/δπ and L-=-δϑ

-
/δπ. Given the fact that we compare 

the ARDL and the NARDL specifications, we test for the asymmetry presence using the Wald 

test for the null hypothesis that β
i

+
=β

i

-
 for all i=0,…,p. If the asymmetry is present, the NARDL 

model offers more insights about the tested relationship. We perform a series of post-estimation 

tests to check for the residual serial correlation (Breusch-Godfrey LM test)10, the presence of 

ARCH effects (Engle ARCH-LM test), and normality (Jarque-Bera test). We also test the 

stability of our coefficients (Ramsey and CUSUM tests). 

 

 

 

 

 
10 Pesaran et al. (2001) show that ARDL models are free from residual correlation. Therefore, there are not 

endogeneity issues related to appropriate lag selection. 
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4. Results 

Our main results present the relationship between inflation, uncertainty and labor 

conditions, where the inflation uncertainty is computed starting from the year-on-year inflation 

series. We compare on the one hand the linear and nonlinear ARDL specifications and, on the 

other hand, the results of the two approaches measuring the uncertainty, i.e. according to Chan 

et al. (2013) (Model 1) and Chan (2017) (Model 2) respectively.  

We first apply the bound tests (Table 2) to check for the existence of a long-run 

relationship. The test assumes a lower bound for I(0) series and an upper bound for I(1) series. 

The critical values are derived from Narayan (2005) and the F-statistics indicate the 

cointegration if their values are higher than the critical value of the upper bound. 

[Insert Table 2 about here] 

We notice that the long-run relationship is validated for both ARDL and NARDL models, 

and for both specifications of inflation uncertainty, relying on Chan et al. (2013) (ϑy-o-y
2013

) and 

Chan (2017) (ϑy-o-y
2017

). 

In the next step, we estimate the ARDL models (Table 3). For Model 1 relying on Chan 

et al.’s (2013) approach, a positive long run connection between inflation uncertainty and 

inflation level is observed using the linear ARDL. This result validates the Cukierman and 

Meltzer’s (1986) hypothesis supposing that, during high uncertainty periods, monetary 

authorities might create inflation surprises leading to an increased inflation rate. These findings 

confirm the early results reported by Balcilar et al. (2011). The labor market conditions have in 

turn a positive impact on inflation, although its amount is reduced compared to the impact of 

the inflation uncertainty. This result holds only in the long run.  

The NARDL specification shows that, in the long run, both positive and negative 

variations of inflation uncertainty have a positive impact on the level of inflation. The Holland’s 

(1995) hypothesis is thus confirmed. Consequently, a period with lower inflation uncertainty 

might be followed by a period with higher inflation if an expansionary monetary policy is 

implemented. Our results are thus in line with those reported for the G7 countries by Balcilar 

and Özdemir (2013), and show in addition that negative shocks in the inflation uncertainty have 

a slightly larger impact on inflation compared with positive shocks. This result can be explained 

by the fact that a strong reduction of uncertainty has a direct and strong effect on consumption 

and investment which could generate inflation pressures. The residual diagnostics tests show 

no autocorrelation issues, although some ARCH effects persist. Nevertheless, according to the 

Ramsey and CUSUM tests, the model is stable. The Wald test indicate the presence of 



11 

 

asymmetries and thus, the NARDL specification provides more information about the 

investigated relationship.  

[Insert Table 3 about here] 

For the second model (Model 2) relying on Chan’s (2017) methodology for computing 

the inflation uncertainty, we notice that there is no significant relationship in the long run 

between inflation, its uncertainty and labor market. Nevertheless, in the short run, the 

uncertainty has a positive impact on inflation. This result confirms the intuition of Yellen 

(2017), stating that the influence of the factors explaining the level of inflation in the US, fades 

over time. Nevertheless, Model 2 suffers from the presence of ARCH effects and residual 

autocorrelation which raise questions about its stability. This can be the result of the feedback 

effect generated by the inflation volatility on the uncertainty level. Moreover, the two models 

reveal notable differences in terms of Granger causality between our variables. While Model 1 

shows the existence of a bi-directional causality between inflation, its uncertainty and labor 

market conditions, Model 2 indicates the absence of a such bi-directional causality. 

Nevertheless, it states that inflation uncertainty and labor conditions Granger cause inflation in 

the long run. 

[Insert Table 4 about here] 

All in all, these opposite results between Model 1 and 2 confirm the findings of Albulescu 

et al. (2019) showing that the results “are sensitive to the way inflation uncertainty is 

computed”. Therefore, several robustness checks are necessary to obtain a clearer picture about 

the role of uncertainty and labor market in explaining US long-run inflation. On the one hand, 

the way inflation is computed (i.e. year-on-year basis or month-on-month basis) might also 

influence the results. On the other hand, during the investigated time horizon, the inflation 

context has strongly changed. It is especially the case of the recent global crisis affecting the 

inflation expectations. 

 

5. Robustness check 

Two categories of robustness checks will be developed. First, we use month-on-month 

inflation series to compute inflation uncertainty relying on Chan et al.’s (2013) approach 

(ϑm-o-m
2013

). Second, we perform a Chow breakpoint tests in the inflation series over the period 

1976M08 to 2017M06 which indicates 2008M11 as the moment of a structural break11. 

 
11 F-statistic = 146.9 with the associated p-value = 0.000. 
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Consequently, using the year-on-year base inflation and Chan et al.’s (2013) approach for 

computing the uncertainty, we investigate the long-run relationship before and after the crisis. 

 

5.1. Month-on-month CPI inflation 

We first present the results of the bound tests for the ARDL cointegration. As in the main 

results, F-statistics show the presence of cointegration for both linear and asymmetric ARDL 

specifications. Nevertheless, compared to Table 2, the values of F-statistics presented in Table 

5 are smaller, indicating a less strong cointegrating relationship. 

[Insert Table 5 about here] 

Concerning the estimation of linear and nonlinear ARDL models (Table 6), we observe 

that, in the long run, only the labor market has a positive, but marginal significant influence on 

the inflation. At the same time, the inflation uncertainty has no significant impact, either we 

look to the linear or nonlinear ARDL results. In the short run, the inflation uncertainty positively 

impacts the inflation. The Granger causality tests (Table A1 – Appendix) point in the favor of 

a bi-directional causality between inflation and its uncertainty, whereas mixed findings can be 

identified in the case of labor market conditions. 

[Insert Table 6 about here] 

 

5.2. Before and after the crisis 

In the second set of robustness checks, we use year-on-year inflation rate and Chan et 

al.’s (2013) measure of uncertainty (ϑy-o-y
2013

) to compare the relationship between inflation, 

uncertainty and labor market before and after the crisis. Table 7 shows evidence in the favor of 

a cointegrating relationship for both sub-periods.  

[Insert Table 7 about here] 

Moreover, Table 8 shows that, before the crisis, both inflation uncertainty and labor 

market conditions impact positively the level of inflation in the long-run. This results confirm 

the main findings reported in Section 4 for the Chan et al.’s (2013) approach. Nevertheless, in 

the NARDL specification, the influence of LMCI is no longer significant before the crisis. These 

results are validated by the residual diagnostics tests we perform. 

After the crisis, opposite findings are revealed by the ARDL and NARDL specifications. 

Concerning the NARDL asymmetry (recommended by the Wald test), we clearly observe that 

both an amelioration of labor market conditions and positive and negative variations in the 

uncertainty, lead to an increase in US price levels. Therefore, it seems that the labor market 
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conditions better explain the inflation dynamic after the crisis consolidating thus the role of the 

LMCI for the orientation of the monetary policy decisions. Indeed, as the dynamics of inflation 

and labor conditions are very closed starting with 2008 (see Figure 1), the fact that the 

considerably decrease in the unemployment rate is not accompanied by higher inflation could 

indicate that other structural indicators characterizing the US labor market “shown less 

improvement since the financial crisis” (Yellen, 2017). 

[Insert Table 8 about here] 

To sum up, we have noticed that both inflation uncertainty and labor market conditions 

have a positive impact on inflation in the long run, even if the results seem sensitive to the way 

inflation and its uncertainty are computed. Moreover, our results suggest that both positive and 

negative variations in the uncertainty level positively affect the level of inflation, which could 

explain the mixed findings reported in the earlier literature. Contrary to the recent ideas about 

the role of labor market conditions in explaining the long-run inflation in the US, we show that 

LMCI have a positive and a stronger impact on US inflation after the 2008-2009 global crisis. 

 

6. Conclusion 

The sustained low US CPI inflation, or more precisely, the lack of inflation dynamics 

after the global crisis, generated a series of questions about the role of fundamentals in 

explaining the long-run inflation developments. Whereas the average economic growth rate in 

the US after the crisis is around 2.5%, the inflation rate remains low, with a small variation 

between 0 and 2%. A possible explanation of this situation could be represented both by the 

low inflation expectations, - i.e. the expectations are influenced by relatively stable inflation 

projections made by private forecasters -, and by a decoupling phenomenon between inflation 

and US labor market conditions in the long run.  

In this context, the purpose of our paper is to test the role of driving forces of US inflation, 

namely the inflation uncertainty and labor market conditions, according to the distinction 

between short and long-run time horizon and considering the asymmetric influence that the 

inflation uncertainty could have on the inflation level. Methodologically, we resort to two recent 

bounded approaches proposed by Chan et al. (2013) and Chan (2017) to measure the inflation 

uncertainty, both relying on the unobserved component models with stochastic volatility. 

Moreover, the analysis is built upon both linear and nonlinear ARDL models and takes 

explicitly into consideration the crisis structural effect by using two sub-periods of estimation, 

i.e. before and after the crisis. 
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Our empirical findings show that both uncertainty and labor market conditions have a 

positive long-run influence on the US inflation level. Therefore, we state that the driving forces 

of inflation are still at work in the US, contrary to the recent assumptions. Moreover, the results 

suggest that both positive and negative variations in the uncertainty level influence the inflation 

rate. Nevertheless, in line with other researches, we show that the findings are sensitive to the 

way uncertainty is computed. Although both Chan et al.’s (2013) and Chan’s (2017) approaches 

rely on a bounded unobserved component model and underline an increased uncertainty during 

the 1973-1974 oil crisis and during the 2008-2009 global crisis, the second approach introduce 

additional variations in the inflation uncertainty series allowing for time-varying coefficients in 

the conditional mean. Our robustness checks underline the fact that the results are also sensitive 

to the way the inflation is computed, using a year-on-year or a month-on-month basis. At the 

same time, the results are different when we compare the pre-crisis with the post-crisis periods, 

where the dominant NARDL models show that the labor conditions are important for explaining 

inflation in the long run, but only after the crisis. 

The policy implications derived from our findings are twofold. First, we show that the 

driving forces of long-run inflation are still at work in the US, and the role of labor market 

cannot be neglected. Second, our results prove that not only the inflation uncertainty level, but 

also positive and negative variabilities in the uncertainty series have a positive influence on 

inflation. Therefore, both positive and negative shocks that characterize the uncertainty might 

generate a higher inflation. All these mechanisms have to be taken into consideration by the 

monetary authorities within the framework of the decision-making process. 

These findings open some directions for further research issues. As the inflation dynamics 

are largely influenced by the evolution of oil prices and the US dollar exchange rate, it could 

be interesting to assess the long-run impact of inflation uncertainty and labor market conditions, 

making abstraction of these transitory influences. A potential extension can thus focus on US 

CORE inflation, which has also fallen persistently short of 2%. Moreover, as Istrefi and Piloiu 

(2014) have stated, the inflation expectations might be largely influenced by the policy-induced 

economic uncertainty both in the short and long runs. Therefore, an interesting extension of our 

paper could consist in measuring the impact on the inflation level induced by the monetary 

policy shocks.  
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Appendix 

Table A1 

Granger causality results (robustness m-o-m) 

Model 1: ϑm-o-m
2013

 – Chan et al. (2013) 

Null hypothesis F-stat (p-value) 

ϑm-o-m
2013

 does not Granger Cause πm-o-m    3.480 (0.002) 

πm-o-m does not Granger Cause ϑm-o-m
2013

  4.475 (0.000) 

lmci does not Granger Cause πm-o-m    1.467 (0.187) 

πm-o-m does not Granger Cause lmci  2.176 (0.044) 

lmci does not Granger Cause ϑm-o-m
2013

  1.176 (0.317) 

ϑm-o-m
2013

 does not Granger Cause lmci  2.606 (0.017) 
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Figures 

Figure 1 

Inflation and labor market conditions in the US 

 

 
Source: FRED statistics and own computations 

 

 

Figure 2 

Inflation uncertainty 

 
Source: FRED statistics and own computations 
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Tables 

Table 1 

ADF unit root and KPSS stationarity tests 

 
 Level First difference 

ADF KPSS ADF KPSS 

πy-o-y  -1.459 1.465*** -5.232*** 0.036 

πm-o-m  -3.023** 1.589*** -9.890*** 0.406* 

ϑy-o-y
2013

  -3.661*** 0.725** -4.474*** 0.037 

ϑy-o-y
2017

  -2.606* 0.307 -21.84*** 0.041 

ϑm-o-m
2013

  -2.809* 0.984*** -10.02*** 0.035 

ϑm-o-m
2017

  -3.433** 1.113*** -17.59*** 0.025 

lmci  -6.026*** 0.034 -14.52*** 0.019 

Notes: (i) ***, ** and * means significance at 1%, 5% and 10%; (ii) for the ADF test the null hypothesis 

is the presence of unit roots whereas for the KPSS the null is the stationarity; (iii) the intercept is included 

for both test and the optimal lag selection for the ADF test is based on AIC information criterion; (iv) 

πy-o-y is the monthly inflation computed on a year-on-year basis, πm-o-m is the monthly inflation computed 

on a month-on-month basis, ϑy-o-y
2013

 and ϑy-o-y
2017

 are the year-on-year inflation uncertainty following Chan et 

al. (2013) and Chan (2017) respectively, ϑm-o-m
2013

 and ϑm-o-m
2017

 are the a month-on-month inflation 

uncertainties, lmci is the labor market conditions index.  

 

 

 

Table 2 

Bounds test results for linear and nonlinear ARDL cointegration (main findings) 

Model 

specification 

F-statistics Lower bound 

(I(0)) 

Upper bound 

(I(1)) 

Conclusion 

ϑy-o-y
2013

 – Chan et al. (2013) 

Linear  13.40 3.79 4.85 cointegration 

Nonlinear 12.77 3.23 4.35 cointegration 

ϑy-o-y
2017

 – Chan (2017) 

Linear  9.77 3.79 4.85 cointegration 

Nonlinear 7.24 3.23 4.35 cointegration 

Notes: (i) the critical values (at 5% significance level) are derived from Narayan (2005); (ii) the 

maximum lag for the independent and dependent variables was established at 6 whereas the optimal lag 

is automatically selected based on AIC criterion; (iii) ϑ is the inflation uncertainty.  
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Table 3 

Estimation on ARDL and NARDL models (main findings) 

 

 Model 1: ϑy-o-y
2013

 – Chan et al. (2013)   Model 2: ϑy-o-y
2017

 – Chan (2017) 

ARDL NARDL   ARDL NARDL 

Long-run specification 

ϑy-o-y
2013

  0.699*** [0.093]    ϑy-o-y
2017

  6.466 [18.20]   

lmci  0.174*** [0.058]  0.115*** [0.044]  lmci  1.038 [0.058]  0.504 [0.332] 

ϑy-o-y
2013+

    0.316*** [0.120]  ϑy-o-y
2017+

   -9.819 [25.81] 

ϑy-o-y
2013-

    0.517*** [0.089]  ϑy-o-y
2017-

   -8.427 [25.89] 

Short-run specification 

c  0.095*** [0.022]  0.458*** [0.067]   c  0.013 [0.015]  0.058** [0.023] 

∆πy-o-yt-1
  0.444*** [0.043]  0.448*** [0.043]  ∆πy-o-yt-1

  0.421*** [0.044]  0.435*** [0.044] 

∆πy-o-yt-2
 -0.158*** [0.043] -0.145*** [0.043]  ∆πy-o-yt-2

 -0.148*** [0.044] -0.146*** [0.043] 

∆ϑuy-o-y
2013

  0.126** [0.059]    ∆ϑy-o-y
2017

 -0.001 [0.487]   

∆lmci  0.003 [0.004]  0.003 [0.004]  ∆ϑy-o-yt-1

2017
  1.138** [0.486]   

∆lmcit-1 -0.006 [0.004] -0.006 [0.004]  ∆ϑy-o-yt-2

2017
  1.975*** [0.482]   

∆ϑy-o-y
2013+

   -1.368** [0.535]  ∆ϑy-o-yt-3

2017
  0.820* [0.490]   

∆ϑy-o-yt-1

2013+

    1.427*** [0.534]  ∆ϑy-o-yt-4

2017
  0.945* [0.496]   

      ∆ϑy-o-yt-5

2017
  0.858* [0.490]   

      ∆ϑy-o-y
2017+

    0.446 [0.846] 

      ∆ϑy-o-yt-1

2017+

    1.159 [0.872] 

      ∆ϑy-o-yt-2

2017+

    3.137*** [0.864] 

      ∆ϑy-o-yt-3

2017+

    1.502* [0.907] 

      ∆ϑy-o-yt-4

2017+

   -0.738 [0.896] 

      ∆ϑy-o-yt-5

2017+

    2.256*** [0.858] 

      ∆ϑy-o-y
2017-

   -0.389 [0.870] 

      ∆ϑy-o-yt-1

2017-

    1.574* [0.851] 

      ∆ϑy-o-yt-2

2017-

    0.840 [0.837] 

      ∆ϑy-o-yt-3

2017-

    0.019 [0.827] 

      ∆ϑy-o-yt-4

2017-

    2.653*** [0.817] 

ECTt-1 -0.042*** [0.006] -0.057*** [0.007]  ECTt-1 -0.007*** [0.001] -0.013*** [0.002] 

Tests 

LM test 0.654 0.705  LM 2.397** 2.839** 

ARCH 6.538** 2.178**  ARCH 1.959* 2.430** 

JB 465.3*** 295.6***  JB 212.6*** 132.5*** 

Ramsey  0.753 2.464  Ramsey  14.59*** 21.82*** 

CUSUM  stable stable  CUSUM  stable stable 

Wald  

test 

 4.882** 

(asymmetry) 

 Wald  0.003 

(symmetry) 

Notes: (i) ***, ** and * means significance at 1%, 5% and 10%; (ii) standard deviations are in square brackets; 

(iii) Breusch-Godfrey LM test for serial correlation is used; (iv) ARCH effects rely on Engle’s (1982) test for 

conditional heteroscedasticity (with 6 lags); (v) JB means the Jarque-Bera test for normality; (vi) Ramsey and 

CUSUM are stability tests; (vii) Wald test is applied for detecting long- and short-run asymmetry (if asymmetry, 

the NARDL specification is recommended); (viii) π is the inflation, ϑ is the inflation uncertainty and  

lmci represents the labor market conditions index. 
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Table 4 

Granger causality results (main findings) 

Model 1: ϑy-o-y
2013

 – Chan et al. (2013) Model 2: ϑy-o-y
2017

 – Chan (2017) 

Null hypothesis F-stat (p-value) Null hypothesis F-stat (p-value) 

ϑy-o-y
2013

 does not Granger Cause πy-o-y    4.119 (0.000) ϑy-o-y
2017

 does not Granger Cause πy-o-y    4.087 (0.000) 

πy-o-y does not Granger Cause ϑy-o-y
2013

  3.440 (0.002) πy-o-y does not Granger Cause ϑy-o-y
2017

  1.714 (0.115) 

lmci does not Granger Cause πy-o-y    3.180 (0.004) lmci does not Granger Cause πy-o-y    3.180 (0.004) 

πy-o-y does not Granger Cause lmci  2.347 (0.030) πy-o-y does not Granger Cause lmci  2.347 (0.030) 

lmci does not Granger Cause ϑy-o-y
2013

  2.746 (0.012) lmci does not Granger Cause ϑy-o-y
2017

  0.556 (0.764) 

ϑy-o-y
2013

 does not Granger Cause lmci  3.456 (0.002) ϑy-o-y
2017

 does not Granger Cause lmci  1.725 (0.113) 

 

 

 

 

 

 

Table 5 

Bounds test results for linear and nonlinear ARDL cointegration (robustness m-o-m) 

Model 

specification 

F-statistics Lower bound 

(I(0)) 

Upper bound 

(I(1)) 

Conclusion 

ϑm-o-m
2013

 – Chan et al. (2013) 

Linear  7.33 3.79 4.85 cointegration 

Nonlinear 7.97 3.23 4.35 cointegration 

Notes: (i) the critical values (at 5% significance level) are derived from Narayan (2005); (ii) the 

maximum lag for the independent and dependent variables was established at 6 whereas the optimal lag 

is automatically selected based on AIC criterion; (iii) ϑ is the inflation uncertainty. 
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Table 6 

Estimation on ARDL and NARDL models (robustness m-o-m) 

 

 ϑm-o-m
2013

 – Chan et al. (2013) 

ARDL NARDL 

Long-run specification 

ϑm-o-m
2013

 -0.004 [0.009]   

lmci  0.015* [0.008]  0.008** [0.004] 

ϑm-o-m
2013+

    0.010 [0.009] 

ϑm-o-m
2013-

    0.015 [0.010] 

Short-run specification 

c  0.054*** [0.015]  0.149*** [0.029] 

∆πm-o-mt-1
 -0.257*** [0.051] -0.162*** [0.057] 

∆πm-o-mt-2
 -0.342*** [0.051] -0.260*** [0.055] 

∆πm-o-mt-3
 -0.231*** [0.050] -0.158*** [0.053] 

∆πm-o-mt-4
 -0.132*** [0.047] -0.094* [0.048] 

∆πm-o-mt-5
 -0.139*** [0.044] -0.102** [0.044] 

∆ϑm-o-m
2013   0.041** [0.019]   

∆ϑm-o-mt-1

2013
 -0.074*** [0.021]   

∆ϑm-o-mt-2

2013
 -0.038* [0.022]   

∆ϑm-o-mt-3

2013
  0.036* [0.019]   

∆ϑm-o-m
2013+

    0.079** [0.032] 

∆ϑm-o-mt-1

2013+

   -0.084** [0.035] 

∆ϑm-o-mt-2

2013+

   -0.085** [0.036] 

∆ϑum-o-mt-3

2013+

   -0.001 [0.036] 

∆ϑm-o-mt-4

2013+

    0.104*** [0.036] 

∆ϑm-o-mt-5

2013+

   -0.076** [0.034] 

∆ϑm-o-m
2013-

    0.039 [0.029] 

∆ϑm-o-mt-1

2013-

   -0.067** [0.029] 

ECTt-1 -0.163*** [0.034] -0.284*** [0.050] 

Tests 

LM test 0.654*** 3.525*** 

ARCH 8.035** 5.693** 

JB 177.1*** 278.7*** 

Ramsey  1.909 0.236 

CUSUM  stable stable 

Wald  

test 

 9.673*** 

(asymmetry) 

Notes: (i) ***, ** and * means significance at 1%, 5% and 

10%; (ii) standard deviations are in square brackets; (iii) 

Breusch-Godfrey LM test for serial correlation is used; (iv) 

ARCH effects rely on Engle’s (1982) test for conditional 

heteroscedasticity (with 6 lags); (v) JB means the Jarque-

Bera test for normality; (vi) Ramsey and CUSUM are 

stability tests; (vii) Wald test is applied for detecting long- 

and short-run asymmetry (if asymmetry, the NARDL 

specification is recommended); (viii) π is the inflation, ϑ is 

the inflation uncertainty and lmci  represents the labor 

market conditions index. 
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Table 7 

Bounds test results for linear and nonlinear ARDL cointegration (robustness structural break) 

Model 

specification 

F-statistics Lower bound 

(I(0)) 

Upper bound 

(I(1)) 

Conclusion 

Before the crisis (1976M08–2008M10) 

Linear  8.17 3.79 4.85 cointegration 

Nonlinear 10.75 3.23 4.35 cointegration 

After the crisis (2008M11–2017M06) 

Linear  5.24 3.79 4.85 cointegration 

Nonlinear 12.77 3.23 4.35 cointegration 

Notes: (i) the critical values (at 5% significance level) are derived from Narayan (2005); (ii) the 

maximum lag for the independent and dependent variables was established at 6 whereas the optimal lag 

is automatically selected based on AIC criterion; (iii) ϑ is the inflation uncertainty.  
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Table 8 

Estimation on ARDL and NARDL models (robustness structural break) 

 

 Before the crisis (1976M08 – 2008M10)   After the crisis (2008M11 – 2017M06) 

ARDL NARDL   ARDL NARDL 

Long-run specification 

ϑy-o-y
2013

  0.664*** [0.077]    ϑy-o-y
2013

 -2.968* [1.497]   

lmci  0.088* [0.049]  0.054 [0.041]  lmci -0.112 [0.101]  0.115*** [0.044] 

ϑy-o-y
2013+

    0.620*** [0.159]  ϑy-o-y
2013+

    0.316*** [0.120] 

ϑy-o-y
2013-

    0.735*** [0.128]  ϑy-o-y
2013-

    0.517*** [0.089] 

Short-run specification 

c  0.147*** [0.034]  0.427*** [0.064]   c  0.252*** [0.083]  0.458*** [0.067] 

∆πy-o-yt-1
  0.380*** [0.050]  0.377*** [0.049]  ∆πy-o-yt-1

  0.284*** [0.090]  0.448*** [0.043] 

∆πy-o-yt-2
 -0.223*** [0.051] -0.204*** [0.050]  ∆πy-o-yt-2

 -0.144 [0.095] -0.145*** [0.043] 

∆ϑy-o-y
2013

  0.361 [0.506]    ∆πy-o-yt-3
 -0.142* [0.081]   

∆ϑy-o-yt-1

2013
 -1.480 [0.910]    ∆ϑy-o-y

2017
 -1.420*** [0.425] -1.368** [0.535] 

∆ϑy-o-yt-2

2013
  2.913*** [0.907]    ∆ϑy-o-yt-1

2017
 -0.401 [0.492]  1.427*** [0.534] 

∆ϑy-o-yt-3

2013
 -1.577*** [0500]    ∆ϑy-o-yt-2

2017
 -0.690 [0.455]   

∆lmci -0.001 [0.004] -0.004 [0.004]  ∆lmci  0.041*** [0.012]  0.001 [0.004] 

∆lmcit-1 -0.006 [0.004]    ∆lmcit-1   -0.006 [0.004] 

∆ϑy-o-y
2013-

    1.072* [0.605]       

∆ϑy-o-yt-1

2013-

   -2.061* [1.056]       

∆ϑy-o-yt-2

2013-

    2.276** [1.015]       

∆ϑy-o-yt-3

2013-

    0.221 [1.035]       

∆ϑy-o-yt-4

2013-

   -1.191** [0.598]       

ECTt-1 -0.053*** [0.010] -0.061*** [0.009]  ECTt-1 -0.085*** [0.021] -0.057*** [0.007] 

Tests 

LM test 0.548 0.434  LM 1.527 0.631 

ARCH 0.676 1.489  ARCH 1.760 2.178** 

JB 257.0*** 213.8***  JB 0.311 295.6*** 

Ramsey  7.773*** 0.934  Ramsey  1.868 2.464 

CUSUM  stable stable  CUSUM  stable stable 

Wald  

test 

 3.100* 

(asymmetry) 

 Wald  4.882** 

(asymmetry) 

Notes: (i) ***, ** and * means significance at 1%, 5% and 10%; (ii) standard deviations are in square brackets; 

(iii) Breusch-Godfrey LM test for serial correlation is used; (iv) ARCH effects rely on Engle’s (1982) test for 

conditional heteroscedasticity (with 6 lags); (v) JB means the Jarque-Bera test for normality; (vi) Ramsey and 

CUSUM are stability tests; (vii) Wald test is applied for detecting long- and short-run asymmetry (if asymmetry, 

the NARDL specification is recommended); (viii) π is the inflation, ϑ is the inflation uncertainty and  

lmci represents the labor market conditions index. 

 


