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2 )sin 2 (x π 2 ) , q ∈ 2N * + 1. And I deduce the proof of the Syracuse conjecture.

Introduction, notations et définitions :

La conjecture de Syracuse, introduite par Lothar Collatz et ouverte depuis 1928 ( [START_REF] Delahaye | La conjecture de syracuse[END_REF], [START_REF] Pochon | La suite de syracuse, un monde de conjectures[END_REF], [START_REF] Crandall | On the "3x + 1" problem[END_REF]) est encore appelée conjecture de Collatz, conjecture d'Ulam, conjecture tchèque ou problème 3x+1.

Le but de cet article est de démontrer cette belle conjecture dont Paul Erdos a dit [START_REF] Guy | Don't try to solve these problems ![END_REF] " les mathématiques ne sont pas encore prêtes pour de tels problèmes " .

La suite de Syracuse d'un nombre entier N est définie par récurrence, de la manière suivante :

u 0 = N , et pour tout entier n ≥ 0, u n+1 =      un 2
si u n est pair 3u n + 1 si u n est impair Je définis la fonction S définie sur R + par S(x) = x 2 + (x + 1 2 )sin 2 (x π 2 ). O S (x) = {S n (x), n ∈ N * } est l'orbite de x sous l'action de S.

Si ∃m ∈ N * tel que S m (x) = x, alors l'orbite O S (x) = {S 1 (x), • • • , S m (x)} est dite un cycle de cardinale m.

On dit qu'une orbite est convergente si elle rencontre un cycle . Et on dit qu'une orbite converge vers a si elle converge vers un cycle contenant a. D'abord dans le corollaire 2 je démontre que l'orbite de tout nombre non nul est fini si il ne passe pas par le nombre 1. Puis dans le corollaire 3 je démontre que le seul cycle qui puisse exister sous l'action de la force syracausienne est le cycle {1, 2} (classiquement c'est le cycle 1 → 4 → 2 ). Et on conclut que tout nombre non nul (assimilé à un corps), sous l'action de l'attraction de la force Syracusienne, finira par tomber sur 1 dans le vaste océan des nombres. La preuve de ce théorème 1 va résulter de cette proposition 4 : Proposition 1 (Théorème de Sghiar-Collatz). Soit S la fonction définie sur

R + par S(x) = x 2 + (x + 1 2 )sin 2 (x π 2 ). Si x ∈ N * , alors 1 ∈ O S (x) Lemme 1. Si S est la fonction définie sur R + par S(x) = x 2 + (x + 1 2 )sin 2 (x π 2 ), alors S(x) = x -x 2 cos(xπ) + 1 4 -1 4 cos(xπ)
Démonstration. Il suffit d'utiliser le fait que cos(2a) = 1 -2sin 2 (a)

Lemme 2.

S n (x) 0

S(t)dt = 1 2 (S n (x)) 2 + 1 4 S n (x)-1 4π sin(πS n (x))-1 2π S n (x)sin(πS n (x))+ 1 2π 2 cos(πS n (x)) -1 2π
Démonstration. D'après le lemme 1, on a : Démonstration. On a : January 2, 2019 Démonstration. En utilisant le lemme 3 deux cas se présentent :

S(t) = t -t 2 cos(tπ) + 1 4 -1 4 cos(tπ), donc S n (x) 0 S(t)dt = S n (x) 0 (t -t 2 cos(tπ) + 1 4 -1 4 cos(tπ))dt
t 2 ≤ S(t) ≤ 3t+1 2 . Donc a 2 ≤ t 2 ≤ S(t) ≤ 3t+1 2 ≤ 3b+1 2 , soit S(a) ≤ S(t) ≤ S(b), ∀t ∈]a, b[ si a est pair. Et ∀t ∈]a + 1, b[ on a : a+1 2 ≤ t 2 ≤ S(t) ≤ 3t+1 2 ≤ 3b+1 2 , soit S(a + 1) ≤ S(t) ≤ S(b), ∀t ∈]a + 1, b[ si a est impair. (Voir Figure 1 ) Lemme 4. Si S n (x) = 1 ∀n ∈ N, alors S(S m-1 (x)) S(S m-1 (x)-1) S(t) (S m (x)) 2 dt ≥ 1 32 pour S m-1 (x) impair. Volume 17, Issue 1-2, Page 37-49,
Cas 1 : Si S(S m-1 (x) -1) est pair : S(S m-1 (x)) S(S m-1 (x)-1) S(t) (S m (x)) 2 dt ≥ (S(S m-1 (x)) -S(S m-1 (x) -1)) S(S(S m-1 (x)-1)) (S m (x)) 2 . Or S(S m-1 (x))-S(S m-1 (x)-1) = S m-1 (x)+ 1 2 ≥ S m-1 (x) et S(S(S m-1 (x)-1)) (S m (x)) 2 = 1 2 S m-1 (x)-1 2 (S m (x)) 2 , et par suite (S(S m-1 (x)) -S(S m-1 (x) -1)) S(S(S m-1 (x)-1)) (S m (x)) 2 ≥ 1 4 ( S m-1 (x) S m (x) ) 2 (1- 1 S m-1 (x) ) ≥ 1 8 ( S m-1 (x) S m (x) ) 2 car S m-1 (x) ≥ 2 puisque S m-1 (x) = 1. Et comme S m-1 (x) est impair, alors S m (x) = 3S m-1 (x)+1 2 . Et par suite 1 8 ( S m-1 (x) S m (x) ) 2 ≥ 1 8 ( 2 3+ 1 S m-1 (x) ) 2 ≥ 1 32 . Cas 2 : Si S(S m-1 (x) -1) est impair : S(S m-1 (x)) S(S m-1 (x)-1) S(t) (S m (x)) 2 dt ≥ (S(S m-1 (x)) -S(S m-1 (x) -1)) S(S(S m-1 (x)-1)+1) (S m (x)) 2 . Or S(S m-1 (x))-S(S m-1 (x)-1) = S m-1 (x)+ 1 2 ≥ S m-1 (x) et S(S(S m-1 (x)-1)+1) (S m (x)) 2 = 1 2 S(S m-1 (x)-1)+1 (S m (x)) 2 ≥ 1 2 S(S m-1 (x)-1) (S m (x)) 2 = 1 2 3(S m-1 (x)-1)+1 2 (S m (x)) 2
, et par suite (S(S m-1 (x))-

S(S m-1 (x) -1)) S(S(S m-1 (x)-1)) (S m (x)) 2 ≥ 3 4 ( S m-1 (x) S m (x) ) 2 (1 - 1 S m-1 (x) ) ≥ 3 8 ( S m-1 (x) S m (x) ) 2 car S m-1 (x) ≥ 2 puisque S m-1 (x) = 1. Et comme S m-1 (x) est impair, alors S m (x) = 3S m-1 (x)+1 2 . Et par suite 3 8 ( S m-1 (x) S m (x) ) 2 ≥ 3 8 ( 2 3+ 1 S m-1 (x) ) 2 ≥ 3 32 . D'où le résultat. Remarque 1. En prolongeant R par R =< R, +∞, -∞ > le plus petit anneau contenant R , +∞ et -∞ . +∞ et -∞ sont considérés comme des nombres
et on peut effectuer dans R le même calcul que dans R, en particulier on a :

1 × (-∞) = -∞, 1 × (+∞) = +∞, a(-∞) = -a(+∞), a(+∞) + b(+∞) = (a + b)(+∞), a(+∞) × b(+∞) = (a × b)(+∞) 2 , a(+∞) c(+∞) = a c , ∀(a, b, c) ∈ R × R × R * .
On peut même aller plus loin : Par exemple :

1 2 = x 0 t x 2 dt et lim x→+∞ x 0 t x 2 dt = lim x→+∞ ( 1 x 2 × x 0 tdt) = lim x→+∞ ( 1 x 2 ) × lim x→+∞ x 0 tdt = 1 (+∞) 2 × +∞ 0 tdt = 1 (+∞) 2 × 1 2 (+∞) 2 = 1 2 .
En utilisant la remarque 1, on va montrer le corollaire 2 suivant :

Corollaire 2. Si x ∈ N * , et si 1 / ∈ O S (x), alors card(O S (x)) < +∞.
Démonstration. En effet, si card(O S (x)) = +∞ alors l' ensemble I = {m ∈ N, S m-1 (x) est impair } est fini car sinon en utilisant le corollaire 1 et la remarque 1 on a : 1 2 = lim

S n (x)→+∞ S n (x) 0 S(t) (S n (x)) 2 dt = lim S n (x)→+∞ +∞ 0 S(t) (S n (x)) 2 dt ≥ m∈I ( S(S m-1 (x)) S(S m-1 (x)-1) S(t) (S n (x)) 2 dt) ≥ m∈I,S m (x)≥S n (x) ( S(S m-1 (x)) S(S m-1 (x)-1) S(t) (S m (x)) 2 dt) ≥ 32 × 1
32 ≥ 1 (d'après le lemme 4), ce qui est absurde, et il s'en suit que P = {m ∈ N, S m-1 (x) est pair } est fini. Donc card(O S (x)) = +∞, ce qui est absurde.

Lemme 5. Si S n (x) = x avec x ∈ N + * alors ∀i ∈ {0, . . . , n -1}, il existe un unique couple (A n-i , B n-i ) tel que S n-i (x) = A n-i x + B n-i avec B n-i + 1 ≤ A n-i , A n = 1 et B n = 0. Et les A n-i sont minimales. De plus si ∃i ∈ {1, . . . , n -2} tel que S n-i (x) = 2S n-{i-1} (x) = 2(A n-{i-1} x + B n-{i-1} ), alors B 1 + 1 A 1 . Enfin (A 1 , B 1 ) = ( 3 2 , 1 2 ) Démonstration. -On a A n = 1, B n = 0, et B n + 1 ≤ A n . Montrons le résultat par récurrence . Si B n-i + 1 ≤ A n-i avec S n-i (x) = A n-i x + B n-i , alors , comme S n-i (x) = S(S n-{i+1} )(x) , on a : Soit S n-{i+1} (x) = 2(A n-i x + B n-i ) = 2A n-i x + 2B n-i = 2S n-i (x) avec 2B n-i + 1 2A n-i Soit S n-{i+1} (x) = 2(An-ix+Bn-i)-1 3 = 2An-i 3 x + 2Bn-i-1 3 avec 2Bn-i-1 3 + 1 ≤ 2An-i 3
Dans le premier cas :

A n-{i+1} = 2A n-i et B n-{i+1} = 2B n-i
Et dans le deuxième cas :

A n-{i+1} = 2An-i 3 et B n-{i+1} = 2Bn-i-1 3 -L'unicité se déduit de la minimalité -S 1 (x) = A 1 x + B 1 = 3 2 x + 1 2 . Donc B 1 = ( 3 2 -A 1 )x + 1 2 . Or B 1 + 1 ≤ A 1 =⇒ ( 3 2 -A 1 )x + 3 2 ≤ A 1 =⇒ 3 2 ≤ A 1 , donc (A 1 , B 1 ) = ( 3 2 , 1 2 ) par minimalité. Corollaire 3. Si x ∈ N\{0, 1, 2} alors S n (x) = x, ∀n ∈ N * Démonstration. 1 cas : Si n ≥ 3 Si S n (x) = x alors du lemme 5, si ∃i ∈ {1, . . . , n -2} tel que S n-i (x) = 2S n-{i-1} (x) = 2(A n-{i-1} x + B n-{i-1} ), alors B 1 + 1 A 1 , or si x est impair , on a B 1 = 1 2 et A 1 = 3 2 (car S(x) = 3 2 × x + 1 2
), mais on n'a pas :

B 1 + 1 A 1 . Et si x est pair alors B 1 = 0 et A 1 = 1 2 (car S(x) = x 2 )
, mais on n'a pas :

B 1 + 1 A 1 Donc ∀i ∈ {1, . . . , n -2}, S n-i (x) = 2(An-ix+Bn-i)-1 3 avec B n-i + 1 ≤ A n-i .
Mais dans ce cas la récurrence impose que ∀i ∈ {1, . . . , n -2}, B n-i ≤ 0 et

A n-i 2 3 pour i ≥ 2. Pour i = 1, on aura : S n-1 (x) ≤ x et S n-1 (x) = 2x-1
3 . En poursuivant comme dans la preuve du lemme 5 on aura

S 1 (x) = A 1 x + B 1 avec B 1 + 1 A 1 . Or du lemme 5 S 1 (x) = 3 2 x + 1
2 mais on a pas B 1 + 1 A 1 . On conclut donc que dans ce cas on ne peut pas avoir S n (x) = x. Si l'on remplace 3n+1 par qn+1 où q ∈ 2N * +1, q ≥ 5 dans la suite de Syracuse on peut trouver (voir [START_REF] Crandall | On the "3x + 1" problem[END_REF], [START_REF] Steiner | On the "qx + 1 problem", q odd[END_REF], [START_REF] Volkov | A probabilistic model for the 5x+1 problem and related maps[END_REF]) des orbites finis qui ne passent pas par 1 : par exemple pour le cas 5n + 1 on a :

13 → 33 → 83 → 208 → 104 → 52 → 26 → 13. 17 → 86 → 43 → 216 → 108 → 54 → 27 → 136 → 68 → 34 → 17
Et l'on peut se demander pourquoi avec qn + 1 où q ∈ 2N * + 1, q ≥ 5 il y a des trajectoires ne passant pas par 1 alors que pour 3n + 1 tout les trajectoires (d'un point non nul) passent par 1 ? la réponse est que dans le raisonnement de la preuve du corollaire 3 (ou du lemme 5 ) on a 1 2 + 1 q 2 alors que pour le cas 3n + 1 on n'a pas 

(x) = x 2 + ( q-1 2 x + 1 
2 )sin 2 (x π 2 ) , q ∈ 2N * + 3. Si x ∈ N * , alors O S (x) est convergent (mais pas toujours vers 1 contrairement au cas q = 3) .

Conclusion :

Les difficultés rencontrés pour démontrer la conjecture de Syracuse, en dépit de l'application acharnée de méthodes mathématiques puissantes par des esprits brillants a conduit certains chercheurs à se demander si la conjecture de Syracuse est un problème indécidable. D'autres, comme Paul Erdos qui a dit de la dite conjecture [START_REF] Guy | Don't try to solve these problems ![END_REF] " les mathématiques ne sont pas encore prêtes pour de tels problèmes " , pensaient que la preuve de cette conjecture ne rentre pas dans les trajectoires mathématiques. J'ai prouvé dans cet article que, comme les nombres qui ne peuvent pas s'échapper à la force Syracusienne et finiront par tomber sur le nombre 1, la preuve de la conjecture Syracusienne, elle aussi, ne peut s'échapper à la force des mathématiques contrairement à se que a dit Paul Erdos et d'autres [START_REF] Guy | Don't try to solve these problems ![END_REF] .
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 113 et le résultat s'en déduit par intégration. Si S n (x) → +∞ alors lim S n (x)→+∞ S n (x) 0 S(t) (S n (x)) 2 dt = Lemme Si (a, b) ∈ N * × (2N + 1), avec a b , alors on a : i-S(a) ≤ S(t) ≤ S(b), ∀t ∈]a, b[ si a est pair. ii-S(a + 1) ≤ S(t) ≤ S(b), ∀t ∈]a + 1, b[ si a est impair. iii-De même S(a -1) ≤ S(t) ≤ S(b), ∀t ∈]a -1, b[ si a est impair.
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  cas : Si n ≤ 2 Dans ce cas S n (x) = x =⇒ x ∈ {0, 1, 2} Preuve de la proposition 4 : Démonstration. Si x ∈ N * , alors 1 ∈ O S (x) : En effet le résultat est évident pour x ∈ {1, 2}. Si x ∈ N\{0, 1, 2}, du corollaire 2, si 1 / ∈ O S (x) alors card(O S (x)) < +∞. Donc il existe un y ∈ O S (x), tel que S n (y) = y avec y ∈ N * (Facile à voir), or du corollaire 3 y ∈ {0, 1, 2} donc y ∈ {1, 2}, et 1 ∈ O S (y). Et par suite 1 ∈ O S (x).

  Autrement dit contrairement au cas 3n+1 , dans le cas qn+1 où q ∈ 2N * +1, q ≥
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	5 , la possible présence des cycles autres que le cycle {1, 2} risque d'empêcher
	l'itération S n (x) d'arriver toujours à 1.
	Par ailleurs pour le cas 5n + 1 la trajectoire du nombre 7 semble être divergente
	car le calcul de ses termes a été poussé jusqu'à son 21 millionième terme sans
	converger (c'est à dire sans rencontrer un cycle fini), cela laisse penser qu'il y a
	des trajectoires divergentes avec 5n+1 2	.
	Un autre remarquable cas [1] est le problème 7n + 1, pour lequel il peut ne pas y
	avoir de trajectoires cycliques infinies. Ce qui rend le problème 7n + 1 d'autant
	plus intéressant, c'est l'observation empirique que le nombre m = 3 donne lieu à
	une trajectoire atteignant 10 2000 sans aucune tendance apparente pour revenir.
	1 2 + 1 3 2 .	

Contrairement à ces apparences, en appliquant les preuves faites dans le cas 3n + 1 on peut annoncer le corollaire osé suivant : Corollaire 4. Soit S la fonction définie sur R + par S

Remerciements :

Je tiens à remercier tout ceux qui ont contribué pour la réussite du résultat de cet article.