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A Semi-incremental Scheme for

Cyclic Damage Computations

Shadi Alameddin, Amélie Fau, David Néron, Pierre Ladevèze

and Udo Nackenhorst

Abstract High fidelity structural problems that involve nonlinear material

behaviour, when subjected to cyclic loading, usually demand infeasible compu-

tational resources; this demonstrates the need for efficient model order reduction

(MOR) techniques in order to shrink these demands to fit into the available means.

The solution of cyclic damage problems in a model order reduction framework is

investigated in this chapter. A semi-incremental framework based on a large time in-

crement (LATIN) approach is proposed to tackle cyclic damage computations under

variable amplitude and frequency loadings. The involved MOR approach provides

a low-rank approximation in terms of proper generalised decomposition (PGD) of

the solution. The generated PGD basis can be interpreted as a set of linear subspaces

altered on the fly to the current problem settings. The adaptation of PGD to new set-

tings is based on a greedy algorithm that may lead to a large-sized reduced order basis

(ROB). Thus, different orthonormalisation and compression techniques were eval-

uated to ensure the optimality of the generated ROB in [1] and will be overviewed

here. The proposed implementation and a displacement formulated finite element

(FE) incremental framework are compared to illustrate their differences in terms of

memory footprint and computational time. Numerical examples with variable load-

ings are discussed, and a typical implementation is provided as open-source code,

available at https://gitlab.com/shadialameddin/romfem.

1 Introduction

Fatigue damage is one of the primary failure mechanisms of structural components

where the material fails below its nominal strength, and it is often hard to tell with

simple observations when such failure may occur. Therefore, this phenomenon is
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of great interest for many researchers and engineers [2]. The fatigue life can be

expressed as the number of loading cycles required to initiate a macrocrack and cause

its propagation up to a specific limit where the nucleation, growth and coalescence

of the microscopic cavities lead to the initiation of a mesocrack [2]. As indicated by

experimental observations, at high-stress amplitude, i.e., low-cycle fatigue, fatigue

cracks start to develop in the early cycles, whereas at low-stress levels: high-cycle

fatigue, the crack initiation period may consume a significant percentage of the usable

fatigue life [3]. In metallic alloys of steel and nickel, for instance, crack initiation

accounts for more than 70–80% of the total fatigue life of the structure [4, 5] and the

corresponding critical damage value mostly belongs to [0.2–0.5] [2]. It was noted

in [6] that a life-prediction rule for fatigue damage accumulation under variable-

amplitude loading does not exist yet. Hence, it is of interest to develop numerical

techniques that can predict fatigue damage [7].

Numerical simulations appeal as an attractive augmentation to experiments to

design and analyse mechanical structures. Despite the recent developments in com-

putational resources that makes it feasible to solve systems with a substantial number

of degrees of freedom efficiently, it is of common interest to reduce the numerical

cost of numerical models throughout model order reduction strategies [8]. The per-

formance of MOR techniques has been shown in different fields such as their appli-

cation to nonlinear problems [9, 10], real-time computations [11] or for performing

cyclic, parametric or probabilistic computations in which the information provided

by some queries can be efficiently reused to respond to other queries that exhibit

some similarities [12, 13].

In MOR, posteriori techniques such as the proper orthogonal decomposition

(POD) are built on a data extraction phase where the dominant characteristics of

the high fidelity model are extracted, offline, to build a ROB [14]. Then, the lin-

ear solver is restricted to search for a solution in the space spanned by the given

ROB, which leads to high savings in the numerical cost [8]. The generation of the

ROB in the offline phase limits the model flexibility toward variabilities in the online

stage. Hence, adaptive strategies that enrich generated ROB to tackle nonlinearities

are required [15]. Another way to ensure flexibility is the usage of a priori MOR

techniques such as the proper generalised decomposition (PGD) where a low-rank

approximation of the quantities of interest is assumed a priori while the actual search

for this approximation is done in the online phase [16]. The optimality of the PGD

basis is traded for its flexibility, which might lead to large sized reduced order bases

reaching hundreds or even thousands of modes [17, 18]. Hence, efficient compres-

sion stages are appealing to be coupled with PGD. However, classical compression

steps are computationally expensive, which prohibit their direct implementation in

online phases. Deterministic and probabilistic compression algorithms that exploit

the low-rank assumption are investigated in this work within a PGD framework.

PGD does not have any prior knowledge of the system behaviour, but it builds

and enriches the knowledge of the system just-in-time. A PGD method coupled

with a semi-explicit finite element scheme was used to obtain a stabilised cycle for

an elastoplastic material in [17]. Another technique that uses PGD, since its early

stages, is the LATIN method [19]. LATIN is a linearisation scheme that simplifies
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the introduction of PGD in nonlinear mechanical computations. A review of the

LATIN-PGD method and some of its recent extensions to nonlinear solid mechanics

problems can be found in [16, 20].

Contrary to the classical LATIN formulations [10, 20], a semi-incremental for-

mulation is proposed here where the temporal domain is divided into intervals that

are solved consecutively instead of simultaneously. Thus, time integration is tackled

over small domains compared to the whole time history, and data recycling plays a

vital role in the efficiency of the scheme. This work shall address sophisticated vis-

coplastic damage model subjected to variable loading. The goal of this contribution

is to extend the LATIN-PGD framework suggested in [21] to tackle general nonlin-

ear constitutive models subjected to variable loading that causes some convergence

issues which shall be tackled.

This chapter is structured as follows. An overview of the utilised LATIN scheme

is detailed in Sect. 2 followed by its semi-incremental extension in Sect. 3. After

that, modal optimisation techniques are investigated in Sect. 4. At the end, different

numerical examples are discussed, in Sect. 5, to illustrate the robustness and efficiency

of the proposed scheme.

1.1 Notation

The notation, used in this work, for different tensor types is summarised in Table 1.

The symmetric second order tensors such as σ is identified by its correspond-

ing six-dimensional vector σ ∈ R
6. The same applies to fourth order tensors, e.g.,

C ↔ C ∈ R
6×6. In a three-dimensional Euclidean space E

3 with an orthonormal

basis {e1, e2, e3}, the dot product of two vectors is written as x · y = xT y, and the

following contractions are defined

Table 1 Symbols and their representation

Symbolic representation Verbal representation

a, ϕ Scalars: lowercase letters

u, x First-order tensors: lowercase boldface letters

I, N Second-order tensors: uppercase boldface letters

σ , ε Second-order tensors: greek boldface letters

C, H Fourth-order tensor: blackboard bold letters

a Column vector

A Matrix
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σ : ε =

3
∑

i, j=1

σi j εi j ,

C : ε =

3
∑

i, j,k,l=1

Ci jkl εkl ei ⊗ e j ,

σ · n =

3
∑

i, j=1

σi j n j ei .

(1)

The partial derivative operator ∇ is defined as ∇ =

[
∂

∂x1

,
∂

∂x2

,
∂

∂x3

]T

. Then, the

divergence differential operator of a vector field u(x) is denoted by ∇·u = ∇x · u

while the gradient operator is defined as a right gradient via

∇u = u ⊗ ∇x . (2)

After that, a symmetric gradient operator is denoted by

∇su =
1

2
(u ⊗ ∇x + ∇x ⊗ u) =

1

2

(

∇u + (∇u)T

)

. (3)

2 An Overview of the LATIN-PGD Method

Within an infinitesimal strain and isothermal quasi-static framework, the deforma-

tion of an isotropic solid material occupying the domain � ⊂ R
d , with the spatial

dimension d = 3, is described in terms of the Cauchy stress tensor σ : � → R
d×d ,

the strain tensor ε : � → R
d×d , the volumetric force density b : � → R

d and the

displacement field u : � → R
d . The balance of linear and angular momentum lead

to the definition of an initial boundary value problem (IBVP) which is stated in the

strong formulation as [22]

∇·σ (x, t) + b = 0 ∀(x, t) ∈ � × I,

u = ū on ∂�D × I, (4)

σ · n = t̄ on ∂�N × I,

u(x, t)|t=0 = u0(x) in � at t = 0,

where n represents the outward unit normal,I = [0, T ], ∂�D ∪ ∂�N = ∂�, ∂�D ∩

∂�N = ∅ and σ = σ
T, ε = ∇su. The stress is related to displacement through a con-

stitutive model σ = f̃ (ε(u), q), q(x, t)|t=0 = q0(x). Here, the Neumann boundary

conditions are assumed to be homogeneous by taking t̄ = 0 on ∂�N .
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The equilibrium and kinematic equations, in LATIN, are solved simultaneously

ahead of the evaluation of the constitutive relations, (evolution and state laws [23]),

in the next step. Then, these two steps are repeated iteratively until a solution that

satisfies all governing equations is found. Throughout the iterations, feedback be-

tween the two stages mentioned above is achieved via what is called search direction

equations. With the LATIN scheme, the highest computational complexity is con-

fined to the solution of the linear global equilibrium system that may benefit from

MOR schemes such as PGD to produce an efficient scheme [16].

In PGD, the quantity of interest, the displacement field for instance, may be

approximated by a finite sum of separated functions via

u(x, t) ≈

N
∑

j=1

v j (x) ◦ λ j (t), v j (x) : � → R
d , λ j (t) : I→ R

d , (5)

where N ∈ N+ and ◦ is the entry-wise Hadamard product [16, 24]. Terms of Eq. (5)

are generated on-the-fly throughout a greedy algorithm that aims at reducing the

approximation error [25].

The viscoplastic damage model, utilised in this work, is based on the Helmholtz

free energy density function ψ(ε, εp, q) and the dissipation potential φ(σ , Q), where

σ is the Cauchy stress, ε
p denotes the plastic strain, q is a vector field of additional

internal variables such as hardening and damage, and Q contains the conjugate

variables of q. The state equations are derived from the free energy as

σ = f (ψ(ε, εp, q)), Q = g(ψ(ε, εp, q)), (6)

while the evolution of the internal variables is linked to the dissipation potential via

ε̇
p = f̂ (φ(σ , Q)), q̇ = ĝ(φ(σ , Q)). (7)

Starting with an elastic initialisation, the LATIN scheme seeks a solution through-

out two consecutive stages, the local and global ones. The solution at each step is

denoted by s = {X, Ẏ }, where X = {σ , Q} contains the dynamic conjugate variables

and Ẏ = {ε̇p, q̇} contains the evolution of the internal variables.

The boundary conditions are addressed in the elastic solution s0 = {X0, Ẏ = 0}

while the following iterations compute corrections to s0.

2.1 Local Stage

The evolution and state equations, Eqs. (6) and (7), in addition to the additive split of

the infinitesimal strain are solved within the local stage at every space-time point. The

initial conditions for Ẏ in � at t = 0 are addressed here. The local search direction

equation reads
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(σ̂ i − σ i ) + H
+ : (ε̂i − εi ) = 0, (8)

where σ i and εi come from the previous global stage, σ̂ i and ε̂i are the outcome of

the current local stage and H
+ is the direction of ascent. The resulting approximation

ŝi is used in the following global step to produce si+1.

2.2 Global Stage

The admissibility equations are what is left to the global stage. Deriving the strain as

the symmetric gradient of the displacement field ε = ∇su with u = ū on ∂�D × I

and u(x, 0) = 0 satisfies the kinematic admissibility while the static admissibility

condition is obtained via applying the Hamilton law of varying action [26] on Eq.

(4), leading to the following weak form

∫

�×I

σ : ε
∗ d� dt =

∫

�×I

b · u∗ d� dt +

∫

∂�N ×I

t̄ · u∗ dS dt ∀u∗ ∈ U0, (9)

where the test space is a Bochner space, defined as U0 = {u(x, t) | u(x, t) ∈

L2(I;
[

H 1
0 (�)

]d
) ≡ L2(I) ⊗

[

H 1
0 (�)

]d
, u = 0 on ∂�D × I}. The corrections in

each iteration, in terms of displacement, are defined as 	ui+1 = ui+1 − ui where

the subscripts refer to the previous and the current global stage.

The global search direction equation is defined as

(σ i+1 − σ̂ i ) − H
− : (εi+1 − ε̂i ) = 0, (10)

where σ̂ i and ε̂i belong to the last local stage and H
− is the direction of descent.

Here, H
− is assumed to be a scaled version of the elasticity tensor, i.e., H

− = α C,

where α ∈ [0, 1]. The parameter α is taken as constant in the following derivations.

In order to reduce the computational cost of Eq. (9), a PGD representation of the

displacement field is introduced as

	u = v(x) ◦ λ(t), v(x) : � → R
d , λ(t) : I→ R

d . (11)

The temporal functions are chosen to be identical for all the spatial coordinates, i.e.,

λx (t) = λy(t) = λz(t), leading to

	u = v(x) λ(t), 	ε = ∇s
v(x) λ(t), v(x) : � → R

d , λ(t) : I→ R.

(12)

The subscript i + 1 is dropped for the sake of compact notation and it is assumed that

only one PGD term/pair is generated within one iteration. Following the derivations

in [10, 27] by introducing the PGD scheme into the equilibrium equation and solving

the resulting system via an alternated directions algorithm [16] lead to a spatial and
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temporal problems. After incorporating a Galerkin finite element discretisation, for

� andI, the discrete spatial problem, with homogeneous boundary conditions, reads

γ K v = f γ ∈ R K ∈ R
n×n v, f ∈ R

n with v = 0 on ∂�D. (13)

The temporal problem, with zero initial conditions, is written as

a λT = bT a ∈ R λ, b ∈ R
nt with λ|t=0 = 0, (14)

where (n, nt ) are the spatial and temporal degrees of freedom and (v, λ) are the spatial

and temporal functions. The stiffness matrix K =
∫

�

BTC B d�, where the globally

assembled matrix B ∈ R
6ngp×n contains the derivatives of the shape functions and C

is a sparse matrix with 6 × 6 diagonal blocks representing the elasticity tensor at each

integration point. The scaling factor in front of the stiffness matrix is defined as γ =

α
∫

I

λTλ dt . The right-hand side of Eq. (13) is given via f = −
∫

�

BT (
∫

I

f̂ λ dt) d�,

where f̂ is obtained from the preceding local stage. The temporal problem is defined

by a = α
∫

�

(B v)TC (B v) d� and bT = −
∫

�

(B v)T f̂ d�.

Using μ PGD modes at the (i + 1)th iteration, the discrete displacement is ap-

proximated by

u
i+1

= u
0
+

μ
∑

j=1

v j λT

j , (15)

with u
0

coming from the elastic solution.

The global stage is dominated by the computational demands of the spatial prob-

lem, Eq. (13). Hence, the global stage carries initially a POD-like step that reuses

previously generated spatial modes and updates the temporal ones [21].

2.2.1 Temporal Modes Update

Starting with a certain number (μ) of previously generated PGD modes, the dis-

placement correction reads

	u
i+1

=

μ
∑

j=1

v j
︸︷︷︸

known

	λT

j , (16)

where 	λ j (t) is the correction to λ j (t). Introducing this correction into the temporal

problem, Eq. (14), leads to

Ã 
̃
T

= B̃ Ã ∈ R
μ×μ B̃ ∈ R

μ×nt , (17)
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 where ˜ = [	λ1, . . . , 	λμ] and

Ãkl = α

∫

�

(B vk)
TC (B vl) d�, B̃kl = −

∫

�

(B vk)
T f̂

|t=tl
d�. (18)

The computational cost of this update depends only on the temporal discretisation

nt and the size of the ROB measured by μ.

Note that the displacement spatial modes {v j }
μ

j=1 are not stored. However,

the corresponding strain spatial modes {B v j }
μ

j=1 are the ones stored and

orthonormalised afterwards.

When the update step introduces a significant change to the original temporal

modes, measured by

(

‖	λ j‖I/‖λ j‖I, with ‖λ‖I =

√
∫

T
λTλ dt

)

, no expansion of

the ROB is required and the algorithm returns from the global stage.

3 Variable Amplitude and Frequency Loading

A semi-incremental extension to the classical LATIN formulation is proposed here

where the temporal domain is divided into intervals, and the solution is computed

for each interval consecutively instead of solving all of them simultaneously.

The solution involving multiple cycles with variable loads starts by dividing the

temporal domain into subintervals with an equal number of time points in each one,

for simplicity. Then the linearity in the elastic initialisation is exploited by scaling

the previous elastic solution without the need to assemble the stiffness matrix again

or solve the elastic problem once more. Other information from previous cycles is

recycled as well, such as the generated PGD pairs. In such case, the temporal modes

have to be scaled (based on the new load) and shifted to ensure continuity of the

obtained solutions across all cycles or time intervals, i.e., the modified and shifted

final solution of cycle n is used as an initial guess s0 for cycle n + 1.

Starting from a given temporal mode λn , that belongs to a previously simulated

cycle, the temporal mode of the next cycle λn+1 has to be estimated. The load over

two consecutive cycles is assumed cyclic, to simplify the following explanation, with

different amplitudes An, An+1 and different time periods Tn, Tn+1, respectively. In

order to address variable frequencies, the cycles are assumed to be defined over a

dimensionless time coordinate t̃ ∈ [0, 1]. Then a simple way to ensure continuity

and account for variable amplitudes is to define a new temporal mode as a scaled

version of a previous one, with m = An+1/An , plus a linear function of time with

appropriate boundary conditions, e.g.,

8



Fig. 1 Continuity of the

temporal modes

τ n−
1

τ n
=

τ n−
1
+

T n

τ n+
1
=

τ n
+

T n+
1

0

An

An+1

t (sec)

λ
(t

)

λn

λn+1

λ̃n+1(t̃) = m λ̃n(t̃) + g t̃ + h with

λ̃n+1(0) = λ̃n(1), λ̃n+1(1) = λ̃n+1(0).
(19)

The new temporal mode can be scaled to the original time coordinate via λn+1(τn +

Tn+1 t̃) = λ̃n+1(t̃) to obtain the modified temporal mode, as illustrated in Fig. 1.

The previously introduced scheme renders a solution algorithm, for variable load-

ing cases, that involves the assembly of the stiffness matrix only once. Besides, the

computation of each new interval starts with an initial guess from the previous one.

Note that the temporal discretisation does not enter linearly in the model complexity

due to the semi-incremental scheme and the storage requirement is proportional to

the temporal discretisation within one load cycle only and the number of generated

modes.

3.1 Hybrid Search Direction Formulation

Initially the direction of ascent in Eq. (8) is considered to be horizontal, similar to

[28], i.e., H
+ is zero. Hence, due to the assumption of a given stress state, the local

stage renders a straightforward nonlinear function evaluation rather than a nonlinear

system of equations. However, as illustrated in [29], nonexisting or multiple solutions

might be an issue with such formulation. On the other hand, if only the strain is

prescribed from the global stage, with a vertical search direction, i.e., H
+ is infinity,

then the local stage becomes identical to the classical update of internal variables
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usually implemented in incremental linearisation schemes leading to a demanding

stage due to the involved nonlinear system of equations.

Based on the discussion above, a hybrid formulation that involves both horizontal

and vertical search directions is proposed here. In order to ensure the computational

efficiency of the ROM, the scheme uses the horizontal search direction always unless

a convergence issue is detected, then the search direction is switched to the vertical

one for one iteration only. Divergence may be detected based on the utilised error

indicator or based on the damage value exceeding one, for instance. Contrary to other

LATIN implementations, with the presented algorithm here, there is no need for a

relaxation scheme to ensure convergence.

4 Optimality of the Generated ROB

The i th correction or solution of the LATIN algorithm, in an outer-product form [30],

reads

Ũ =

μ
∑

j=1

v j λT

j = V 
T ∈ R
n×nt , (20)

where V = [v1, . . . , vμ] ∈ R
n×μ and 
 = [λ1, . . . , λμ] ∈ R

nt ×μ. Practically, the

spatial functions v j are orthonormalised via an othonormalisation scheme such as

Gram–Schmidt (GS) procedure [10]. However, using a GS scheme with the LATIN

algorithm requires generating many modes to obtain a low approximation error.

Hence, it is not enough to have orthonormal spatial modes to ensure a small sized

PGD ROB [9].

4.1 Randomised Singular Value Decomposition (RSVD)

Compression of PGD Bases

Singular value decomposition provides an optimal, see [31] for details, and straight-

forward decomposition of the full solution by compressing spatial and temporal

information into a minimal set of global functions. However, due to the high cost

of applying a singular value decomposition (SVD) at each LATIN iteration a ran-

domised SVD algorithm [32] is used to compress the PGD expansion. An overview
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of the randomised SVD algorithm applied to a quantity of interest Ũ defined over

� × I is briefed in Algorithm 1.

Algorithm 1: Randomised singular value decomposition (RSVD)

Data: given quantity of interest Ũ ∈ R
n×nt

Result: tuncated SVD of Ũ with size k

Use a a random matrix Q ∈ R
nt ×k to obtain E = Ũ Q ∈ R

n×k

Use GS to orthonormalise the columns of E

Compute a restriction of Ũ via S = ETŨ ∈ R
k×nt

Compute a truncated SVD S ≈ S(k) =
˜̃
V S̃ 
̃

T

Expand S via Ũ ≈ E S(k) =E
˜̃
V S̃ 
̃

T

= Ṽ S̃ 
̃
T

Taking the outer-product form of the PGD into account results in an efficient

orthonormalisation scheme [30]; details are provided in Algorithm 2.

Algorithm 2: Orthonormalisation scheme that exploits the PGD expansion

Data:

Previously generated modes {v j , λ j } ( j = 1, . . . , μ)

New pair of modes {vμ+1, λμ+1}

Required number of modes / truncation threshold k ≤ μ + 1, ǫtol

Result: Enriched basis {v j , λ j } ( j = 1, . . . , k) with vT

l vm = δlm

Use a QR-decomposition to obtain V = Q
v

R
v
,
 = Q

λ
R

λ

Compute R = R
v

RT

λ
∈ R

(μ+1)×(μ+1) and approximate it as
∑k

j=1 s̃ j ṽ j λ̃
T

j

Recover the outer-product representation:

V ← Q
v

Ṽ ∈ R
n×k


 ← Q
λ


̃ S̃
T

∈ R
nt ×k

Further details of deterministic and randomised orthonormalisation algorithms

may be found in [32–34]. However, the aim at this stage is to illustrate the applicability

of the presented algorithms to be combined with the LATIN scheme.

5 Numerical Results

The analysis is carried out on a three-dimensional plate with a central groove. One-

eighth of the plate with symmetric boundary conditions is shown in Fig. 2. The plate

geometry is defined by its length, width and depth being (40, 20, 2) mm while the

length and width of the groove are (10, 4) mm. This plate is subjected to a uniformly

distributed displacement field of the form Ud = U0 sin
(

2π
T

t
)

with t and T being the

time and the time period, respectively. The material used in the following examples

is Cr-Mo steel at 580 ◦C.

Three examples are shown below. Firstly, a comparison with a standard incre-

mental scheme for a cyclic load is presented where the error is computed for the
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quantity of interest (damage) rather than displacement. Then, a comparison between

an SVD and RSVD schemes is provided to illustrate the advantages of randomised

algorithms. At the end, the proposed scheme is analysed on a periodic loading with

variable amplitudes and frequencies.

5.1 Model Verification

The analysis of the plate, shown in Fig. 2, is carried out on a mesh that consists of

387 hexahedron elements, with eight integration points in each element, resulting

in 1884 spatial displacement degrees of freedom. The model is subjected to a uni-

formly distributed displacement field with an amplitude of U0 = 0.004 mm. The time

discretisation is chosen such that the temporal domain of each cycle is discretised

into 200 time steps. Since the whole temporal domain of each cycle is computed at

once, a total of 376,800 degrees of freedom are being sought. The convergence and

the enrichment criteria are taken as tol1 = 10−14 and tol2 = 10−1, respectively. The

simulation of the plate was carried out using a Newton-Raphson incremental scheme

and the LATIN-PGD scheme.

The prescribed load is illustrated in Fig. 3a. The corresponding damage evolution

curve for the integration point with maximum damage as well as the corresponding

error with respect to the incremental scheme are illustrated in Fig. 3b.

A total of four PGD modes, see Fig. 4a, were enough to maintain a relative error,

in the maximum damage, below 0.2%. This error might be an outcome of using dif-

ferent temporal integration schemes between the incremental and semi-incremental

algorithms. The convergence behaviour of the proposed algorithm is illustrated in

Fig. 4b where the number of iterations required to converge in each cycle and their

corresponding error indicator values are depicted. The initial slow decrease in the

error indicator, in the second cycle in Fig. 4b, is due to the update of the temporal

functions before enriching the generated basis.

In these simulations, a speedup factor of 20, in favour of the semi-incremental

scheme is obtained through the provided prototype implementation. The change in

the memory footprint is negligible in the given example. However, it is worth noting

Fig. 2 A plate with a central

groove subjected to cyclic

loading
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Fig. 3 Verification with respect to an incremental scheme. a The prescribed load; b damage evo-

lution w.r.t. time along with the corresponding error
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Fig. 4 Required number of modes and the corresponding error indicator. a Number of generated

PGD modes w.r.t. number of cycles; b error indicator and number of iterations for each cycle

that all the fields are stored over the whole temporal domain to ease the comparison

and postprocessing procedures.

5.2 Comparison Between Deterministic and Randomised

SVD Schemes

Following is an example that illustrates the difference between an SVD scheme and

an RSVD one, as presented in Algorithm 1, in case of two given quantities of interest

stored in the matrices M
1

∈ R
106×102

and M
2

∈ R
106×103

. Note that this example

reproduces results from the literature to give a feeling on possible speedups using

the following MATLAB® implementation.
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Fig. 5 The required time to extract the first 10, 20 and 30 singular vectors using SVD and RSVD.

a Timing of modal extraction from M
1
; b timing of modal extraction from M

2

RSVD implementation in MATLAB®

function [V, S, L] = randomised_svd(A, k)

n = size(A, 2);

random_matrix = randn(n, min(k+5, n));

approximate_basis = A * random_matrix;

orthonormalised_basis = orth(approximate_basis);

A_restricted = transpose(orthonormalised_basis) * A;

[V_restricted, S, L] = svds(A_restricted, k);

V = orthonormalised_basis * V_restricted;

end

The cost to extract the first 10, 20 and 30 singular vectors is recorded and sum-

marised in Fig. 5.

It is seen that when a low-rank approximation is sought, RSVD is very efficient

compared to an SVD, and its cost does not increase linearly with the number of

sought singular values. It is known that the provided timing are resources dependent.

However, their relative performance is expected not to change. The RSVD algorithm

is implemented in MATLAB® and uses its built-in SVD routine.

5.3 Variable Amplitude and Frequency Loading

This example illustrates the capabilities of the proposed scheme and its numerical

efficiency to simulate cyclic loads with variable amplitudes and frequencies. An

increasing-decreasing load is investigated in this example where the higher the load

amplitude, the shorter the time period, as seen in Fig. 6a. The chosen load amplitudes

14
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Fig. 6 Variable amplitude and frequency loading scenario. a Prescribed load; b damage evolution

w.r.t. the number of cycles

belong to [30, 90] × 10−4 mm while the time periods vary in [20, 60] s. The time

discretisation is chosen such that the temporal domain of each cycle is discretised into

40 time steps. The convergence and the enrichment criteria are taken as tol1 = 10−3

and tol2 = 10−1, respectively.

The damage evolution for the integration point with maximum damage is depicted

in Fig. 6. In order to better investigate the damage response in Fig. 6, the damage in-

crement in each load cycle is demonstrated in Fig. 7b. It can be seen that Fig. 7b is not

exactly symmetric due to the nonlinear response, which is driven by different initial

conditions in each cycle and different plastic strain rates. As expected, the maximum

damage increment corresponds to the cycle with maximum load amplitude.

A maximum of eight PGD pairs is enough to obtain the response above. The

number of PGD modes with respect to the number of cycles is shown in Fig. 7a. It

can be seen that the ROB size does not grow linearly with respect to the number

of cycles and after simulating almost half of the cycles and facing all the different

amplitudes and frequencies for the first time, the basis size does not grow any more.

An (R)SVD compression does not only provides optimality of the ROB; it also

leads to not wasting resources in the update of the temporal functions. When the

(R)SVD scheme is invoked at each LATIN iteration, regardless of whether it is an

update or enrichment step as in Fig. 8b, is referred to in the sequel as excessive

(R)SVD and abbreviated by e(R)SVD.

After illustrating the interests of using an optimal orthonormalisation scheme,

the problem is solved again but with finer spatial discretisation to show the benefits

of such a scheme when the problem gets more challenging. The plate model is

discretised into 13,812 hexahedron elements, with eight integration points in each

element, resulting in 50,547 spatial displacement degrees of freedom. The temporal

discretisation consists of 33 time steps in each cycle resulting in 1,668,051 degrees of

freedom in each cycle. The plate is subjected to a uniformly distributed displacement

field with a uniformly distributed random amplitudes in the range of [18, 22] ×
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Fig. 7 ROB size and damage increment with respect to the number of cycles. a The growth of the

PGD basis; b damage increment w.r.t. the number of cycles
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Fig. 8 ROB size using different orthonormalisation algorithms. a Number of PGD modes using

GS; b number of PGD modes using e(R)SVD

10−5 mm and a time period T = 10 s. The convergence criterion is considered to be

10−4.

The growth of the ROB size using GS and SVD algorithms is depicted in Fig. 8.

The usage of a GS algorithm allows the ROB to grow fast and contain 126 modes

while e(R)SVD algorithms do not allow this size to exceed seven modes.

Due to the smaller sized ROB in case of the SVD schemes, the computational

requirements, in terms of time, to update of the temporal functions is significantly

decreased when compared with the GS case; a profiler summary is provided in Fig. 9.
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Fig. 9 The required time to perform the temporal update and the orthonormalisation steps. a Timing

of the temporal functions update; b timing of orthonormalisation schemes

6 Conclusions

A semi-incremental scheme to perform damage computations in case of variable

amplitude and frequency loading scenarios has been presented in this work along with

an optimal proper generalised decomposition. The proposed scheme tackles variable

loadings in a flexible manner, where the temporal domain is divided into intervals

which allow for more data recycling possibilities between these intervals instead of

seeking a solution of the whole time history. The temporal modes had to be treated

carefully to ensure providing a “good” initial guess when carrying out simulations

over new intervals. The flexibility and optimality of the low-rank approximation have

been illustrated through examples with a varying number of degrees of freedom.

The optimality of the proper generalised decomposition is ensured throughout an

orthonormalisation scheme that exploits the fact that the quantity of interest is sought

in an outer-product format; this optimality of the ROB reduces the basis enrichment

to a minimum.
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