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In this paper, we study the opening of a spectral gap for a class of 2-dimensional periodic Hamiltonians which include those modelling multilayer graphene. The kinetic part of the Hamiltonian is given by σ • F (-i∇), where σ denotes the Pauli matrices and F is a sufficiently regular vector-valued function which equals 0 at the origin and grows at infinity. Its spectrum is the whole real line. We prove that a gap appears for perturbations in a certain class of periodic matrix-valued potentials depending on F , and we study how this gap depends on different parameters.

Introduction, model and main result

Graphene is a two-dimensional material made of carbon atoms on a honeycomb lattice. Among its remarkable properties is its energy band structure, with two bands crossing at the Fermi level [START_REF] Castro Neto | The electronic properties of graphene[END_REF]. This particular structure has suggested to model the dynamics of one electron in a graphene sheet by the free massless two-dimensional Dirac operator.

An interesting problem is to study the electronic properties of a material which is not a single sheet of graphene but several stacked layers of graphene. In this case, the dynamics of the electron can be approximated by an effective Hamiltonian which typically is a N th order Dirac-like operator, N being the number of layers (see [START_REF] Mccann | The electronic properties of bilayer graphene[END_REF] and references therein).

One of the major problems linked with graphene is to tune an energy bandgap at the Fermi level, making graphene a semiconductor. To realize this, one of the possibilities is to use the so-called graphene antidot lattices, which consist of a sheet of graphene periodically patterned with obstacles such as holes. In the case of single-layer graphene antidot lattices, the gap opening has been numerically achieved in [START_REF] Fürst | Electronic properties of graphene antidot lattices[END_REF] and was proved in [START_REF] Barbaroux | Spectral gaps in graphene antidot lattices[END_REF] with a mathematical approach. See also [START_REF] Barbaroux | Resolvent Convergence to Dirac Operators on Planar Domains[END_REF][START_REF] Barbaroux | Localization for gapped Dirac Hamiltionians with random perturbations: Application to graphene antidot lattices[END_REF] and references therein for rigorous studies of spectral properties of Dirac operators modelling graphene antidot lattices.

The goal of this article is to generalize such gap opening results to higherorder Hamiltonians, including the ones for multilayer graphene.

Namely, we want to study gap opening in the spectrum under periodic pertubations of the Hamiltonian

H 0 = σ • F (-i∇) on L 2 (R 2 , C 2 )
, where σ = (σ 1 , σ 2 , σ 3 ) denotes the usual Pauli matrices

σ 1 = 0 1 1 0 , σ 2 = 0 -i i 0 , σ 3 = 1 0 0 -1 ,
and F : R 2 → R 3 . More precisely, this means that for any ψ ∈ Dom(H 0 )

H 0 ψ(x) = F -1 [σ • F (•)Fψ] (x),
where F denotes the Fourier transform on L 2 (R 2 , C 2 )

Fψ(p) = 1 2π R 2 e -ip•x ψ(x)dx.
We suppose that the function F fulfils the following assumptions.

Hypothesis 1. (i) F belongs to C 3 (R 2 , R 3 ).

(ii) There exist constants K 0 , K i > 0 such that for all p ∈ R 2 ,

K 0 |p| d |F (p)| K 0 |p| d , |D i F (p)| K i < p > d-|i| (1) 
for some d > 0 and any multi-index i such that 1 |i| 3. Here < p >= 1 + |p| 2 and D i denotes the multi-index partial derivative operator. (iii) There exists a 2 × 3 rank 2 matrix A such that in a neighbourhood of 0,

F (p) = |p| d-1 Ap + O(|p| d+1 ). PROPOSITION 1.
The operator H 0 is unitarily equivalent to a multiplication operator by

σ 3 |F |. It is then self-adjoint on Dom(H 0 ) = F -1 (Dom(|F (•)|))
and its spectrum is given by the essential range of ±|F |, which is R under Hypothesis 1 (i) and (ii).

Proof. The proof, identical to the one for the free Dirac operator, comes directly from the definition of H 0 through the Fourier transform which is unitary (cf. [START_REF] Thaller | The Dirac Equation[END_REF]).

In order to open a gap around the zero energy, we will perturb H 0 with a periodic potential defined as follows. Let

χ = (χ 1 , χ 2 , χ 3 ) : R 2 → R 3
where each χ i is a bounded function with compact support included in the set

Ω =] -1 2 , 1 2 ] 2 . Let β > 0 and α ∈]0, 1]. The perturbed Hamiltonian is H(α, β) = H 0 + β γ∈Z 2 χ x -γ α • σ.
The operator H(α, β) is Z 2 -periodic and self-adjoint on Dom(H 0 ).

Remark 1. In [START_REF] Barbaroux | Spectral gaps in graphene antidot lattices[END_REF], the authors treated the particular case corresponding to the free massless Dirac operator where F (p) = (p 1 , p 2 , 0) and χ 1 = χ 2 = 0.

Let us denote Φ i = Ω χ i (x)dx, 1 i 3, and let us introduce the threedimensional vector

Φ = (Φ i ) 1 i 3 ∈ R 3 .
We denote by Φ || the projection of Φ on Ran(A) and by Φ ⊥ the projection on Ran(A) ⊥ .

Here is the main result of our paper.

THEOREM 2. Suppose that Φ ⊥ = 0. Let d = min(d, 2). There exist some constants λ 0 , C > 0 and δ ∈]0, 1[ with Cδ < |Φ ⊥ | 2 such that for any α ∈]0, 1/2] and β > 0 satisfying α 2 β < λ 0 , α d β < δ we have that the interval

-α 2 β |Φ ⊥ | 2 -Cα d β , α 2 β |Φ ⊥ | 2 -Cα d β
belongs to the resolvent set ρ(H(α, β)).

Remark 3. In [START_REF] Barbaroux | Spectral gaps in graphene antidot lattices[END_REF], this condition is achieved since the kinetic part is in the subspace spanned by σ 1 and σ 2 and the potential is in Span(σ 3 ).

As in [START_REF] Barbaroux | Spectral gaps in graphene antidot lattices[END_REF], we use the Floquet-Bloch transformation to come to a problem on the unit square, where the gradient has a well-known eigenbasis. Then, we use a Feshbach map argument, separating the problem between constant and non-constant modes. While the estimate on the constant subspace is direct, we need to use decay of the resolvent of the free operator and repeated applications of the resolvent equation to prove the invertibility on the orthogonal.

The paper is organized as follows. In Section 2 we perform a detailed analysis of the integral kernel of the free resolvent, including its local singularities and off-diagonal decay. In Section 3 we give the proof of the main theorem, while in the Appendix we summarize the results we need from the Bloch-Floquet transformation.

Resolvent decay and integral kernel

In this chapter, we study the behaviour of the integral kernel for the free resolvent. Due to the expression of the kinetic energy, we do not have an explicit formula for this integral kernel. Nevertheless, we can prove that the integral kernel exists, it has integrable local singularities and has a sufficiently fast off-diagonal polynomial decay.

The result states as follows.

PROPOSITION 2. Let M d be the function defined on R 2 × R 2 by:

M d (x, x ) =      1 |x-x | 2-d + 1 if |x -x | 1 and d = 2; -log |x -x | + 1 if |x -x | 1 and d = 2; 1 |x-x | 3 if |x -x | 1.
The operator (H 0 -i) -1 has an integral kernel, denoted by (H 0 -i) -1 (x, x ), such that

(2) (H 0 -i) -1 (x, x ) M d (x, x ) .
The proof of this Proposition is based on the following Lemma, and is postponed to the end of this section. LEMMA 1. There exists some C > 0 such that for all f and g ∈ L 2 (R 2 , C 2 ) we have 

(3) | f , (H 0 ± i) -1 g | C R 2 R 2 |f (x)|M d (x, x )|g(x )|dxdx .
G(p) = (σ • F (p) -i) -1 .

The operator of multiplication by

G is bounded on L 2 (R 2 , C 2 ).
Remind that < p >= 1 + |p| 2 . We define, for > 0, the regularized kernel

K (x, x ) = 1 2π R 2 e ip•(x-x ) G(p)e -<p> dp = F -1 (Ge -<•> )(x -x ).
The estimates (1) of Hypothesis 1(ii) implies that for any multi-index N such that |N | 3 there exists

C N > 0 such that (4) |D N G(p)| C N < p > |N |+d . For x = (x 1 , x 2 ) and x = (x 1 , x 2 ), choose l ∈ {1, 2} such that |x -x | √ 2|x l -x l |.
By repeated integrations by part, we find that for any integer M 3 we have :

(5)

(x l -x l ) M K (x, x ) = i M 1 2π R 2 e ip•(x-x ) ∂ M ∂p M l G(p)e -<p> dp.
Hence we have

(6) |x l -x l | M |K (x, x )| 1 2π R 2 ∂ M ∂p M l G(p)e -<p> dp.
Pick M = 3. We have then, by product rule and denoting E(p) = e -<p> ,

∂ 3 ∂p 3 l (G(p)E(p)) = ∂ 3 G(p) ∂p 3 l E(p) + 3 ∂ 2 G(p) ∂p 2 l ∂E(p) ∂p l + 3 ∂G(p) ∂p l ∂E(p) 2 ∂p 2 l + G(p) ∂E(p) 3 ∂p 3 l .
Furthermore, we have:

∂E(p) ∂p l = -p l E(p) < p > , ∂ 2 E(p) ∂p 2 l = - E(p) < p > + p 2 l E(p) < p > 3 + 2 p 2 l E(p) < p > 2 , ∂ 3 E(p) ∂p 3 l = 3 p l E(p) < p > 3 + 3 2 p l E(p) < p > 2 -3 p 3 l E(p) < p > 5 -3 2 p 3 l E(p) < p > 4 -3 p 3 l E(p) < p > 3 . (7) 
Moreover, since x k e -x is bounded on R + for all k, there exist some constants c k such that for all > 0 and p ∈ R 2

(8) k e -<p> c k < p > -k .
In the sequel, denoting by C a generic constant independent of , we obtain from [START_REF] Mccann | The electronic properties of bilayer graphene[END_REF], the above bound [START_REF] Muthukumar | Bloch-Floquet transform[END_REF], and the fact that

|E(p)| 1 and |p l | <p> 1, that for j ∈ {1, 2, 3}, (9) 
∂ j E(p)

∂p j l C < p > j .
From ( 4) and ( 9) we obtain for j ∈ {0, 1, 2, 3},

R 2 ∂ j ∂p j j G(p) ∂ 3-j ∂p j 3-j E(p) dp C Hence, according to (6), we have |K (x, x )| C |x l -x l | 3 and thus (10) |K (x, x )| C |x -x | 3 . This estimate is only useful if |x -x | 1.
Let us now study the case |x -x | 1. We write

2πK (x, x ) = |p| 1 e ip•(x-x ) G(p)e -<p> dp + 1 |p| |x-x | -1 e ip•(x-x ) G(p)e -<p> dp + |x-x | -1 |p| e ip•(x-x ) G(p)e -<p> dp. (11) 
We simply bound the first term in the right hand side of ( 11) by ( 12)

|p| 1 e ip•(x-x ) G(p)e -<p> dp |p| 1 |G(p)|dp ,
which is finite and independent of . To bound the second term in the right hand side of (11), we use from Hypothesis

1(ii) that |G(p)| C |p| d which yields (13) 1 |p| |x-x | -1 e ip•(x-x ) G(p)e -<p> dp 2π |x-x | -1 1 C r d rdr which is bounded by C 1 |x-x | 2-d -1 for d = 2 and by C log |x -x | -1 for d = 2.
To estimate the third term in the right hand side of [START_REF] Thaller | The Dirac Equation[END_REF], we need some more care. We choose l ∈ {1, 2} as before such that |x -

x | √ 2|x l -x l |. Let us calculate |p| |x-x | -1 -(x l -x l ) 2 e ip•(x-x ) G(p)e -<p> dp ,
which corresponds to the integral that we want to estimate multiplied by -(x lx l ) 2 . For θ ∈ [0, 2π) we define the vector p

(θ) = (|x-x | -1 cos θ, |x-x | -1 sin θ)
and we denote by p l (θ) its l-th component. Then, integrating by part with respect to the p l variable and applying Gauss divergence theorem, we have

|p| |x-x | -1 -(x l -x l ) 2 e ip•(x-x ) G(p)e -<p> dp = - 2π 0 e -<p(θ)> i(x l -x l )e ip(θ)•(x-x ) G(p(θ))p l (θ)dθ - |p| |x-x | -1 i(x l -x l )e ip•(x-x ) ∂ ∂p l G(p)e -<p> dp. (14) 
Using the estimate (4), we get that the first term is bounded by

(15) 2π C 0 (|x -x | -1 ) d |x -x | -1 |x l -x l | 2πC 0 |x -x | d .
To estimate the second term in the right hand side of ( 14), we use a new integration by parts:

- |p| |x-x | -1 i(x l -x l )e ip•(x-x ) ∂ ∂p l G(p)e -<p> dp = 2π 0 e ip(θ)•(x-x ) ∂ ∂p l Ge -<•> (p(θ))p l (θ)dθ + |p| |x-x | -1 e ip•(x-x ) ∂ 2 ∂p 2 l G(p)e -<p> dp. (16) 
Using again that

∂ ∂p l G(p)e -<p> C |p| d+1 and ∂ 2 ∂p 2 l G(p)e -<p> C |p| d+2 ,
we can bound the first term in the right hand side of ( 16) by

(17) 2π|x -x | -1 C |x -x | -(d+1) = 2πC|x -x | d
and the second one by (18)

|p| |x-x | -1 C |p| d+2 dp = 2πC d |x -x | d
Putting together the estimates (15), ( 17) and (18), we find that

(19) |p| |x-x | -1 e ip•(x-x ) G(p)e -<p> dp C|x -x | d-2 .
Adding the estimates (12), ( 13) and ( 19), we find that there exists a constant C > 0 such that uniformly in

|K (x, x )| C 1 |x -x | 2-d + 1 , if |x -x | 1,
which together with the result (10) which holds for |x -x | 1 allows us to conclude that uniformly in we have

|K (x, x )| CM d (x, x ) ,
where M d is the function defined in the statement of the Lemma.

We are now ready to prove the estimate (3) for (H 0 -i) -1 . Let f and g be in the Schwartz space S (R 2 , C 2 ). Then, 

f , (H 0 -i) -1 g = R 2 f (p)G(p)ĝ
L 1 (R 2 , M 2 (C)) and L 2 (R 2 , C 2 ), R 2 f (p)G(p)e -<p> ĝ(p)dp = R 2 f (x)(K (•, 0) * g)(x)dx = R 2 R 2 f (x)K (x, x )g(x )dxdx . Knowing that ∀ > 0, |K (x, x )| M d (x, x ) , we get, using (20), that | f , (H 0 -i) -1 g | R 2 |f (x)|M d (x, x )|g(x )|dxdx .
This concludes the proof of Lemma 1.

We are now ready to give the proof of Proposition 2.

Proof of Proposition 2. By equation ( 5), we know that for x = x ,

K (x, x ) = i (x l -x l ) 3 1 2π R 2 e ip•(x-x ) ∂ 3 ∂p 3 l G(p)e -<p> dp.
The integrand converges pointwise to e ip•(x-x ) ∂ 3 G(p) ∂p 3 l . Moreover, using (4), it is dominated by some integrable function independent of . Then, by dominated convergence, K converges pointwise to some function of x and x which will be denoted by (H 0 -i) -1 (•, •) and which trivially satisfies Inequality [START_REF] Barbaroux | Resolvent Convergence to Dirac Operators on Planar Domains[END_REF].

Then, by dominated convergence, we have that for all f and g ∈

L 2 (R 2 , C 2 ) f , (H 0 -i) -1 g = R 2 R 2 f (x)(H 0 -i) -1 (x, x )g(x )dxdx , and 
|(H 0 -i) -1 (x, x )| M d (x, x ).

Proof of the main theorem

Let S (R 2 , C) be the Schwartz space of test functions, and let us fix Ω = (-1 2 , 1 2 ] 2 . We define the Bloch-Floquet transformation by the map

U : S (R 2 , C) ⊂ L 2 (R 2 , C) → L 2 (Ω 2 ) (Uψ)(x, k) = γ∈Z 2 e 2iπk•(x+γ) ψ(x + γ) , (21) 
extended by density to L 2 (R 2 , C). It is possible to show (cf. [START_REF] Muthukumar | Bloch-Floquet transform[END_REF]) that U is a unitary operator and that for f ∈ L 2 (Ω 2 ), x ∈ Ω and γ ∈ Z 2 ,

(U * f )(x + γ) = Ω e -2iπk•(x+γ) f (x, k)dk.
We then define the Bloch-Floquet transformation componentwise on L 2 (R 2 , C 2 ) which will be abusively again denoted by U.

Applying this tranformation (see Proposition 4 in the appendix), we find

UH(α, β)U * = ⊕ Ω h k (α, β)dk , h k (α, β) = σ • F (-i∇ per -2πk) + βχ α (x) • σ, (22) 
where for each k the fiber Hamiltonian h k (α, β) is an operator defined on L 2 (Ω, C 2 ). Similarly, we wil denote

h (0) k = σ • F (-i∇ per -2πk
). The operator ∇ per means here the gradient on L 2 (Ω, C 2 ) with periodic boundary conditions and χ α (x) = (χ 1,α (x), χ 2,α (x), χ 3,α (x)) := χ(x/α).

The spectra of H(α, β) and h k (α, β) are related through (see [10, Theorem XIII.85])

Spec(H(α, β)) = k∈Ω Spec(h k (α, β)). (23) 
Picking Ψ m = e 2iπm•x for m ∈ Z 2 and x ∈ Ω, we get that the family of vectors Ψ m is a basis of eigenvectors of F (-i∇ per ) satisfying if we denote

F = (F 1 , F 2 , F 3 ) F i (-i∇ per )Ψ m = F i (2πm)Ψ m for i = 1, 2, 3.
We then define, for m ∈ Z 2 , the projections

P m = |Ψ m Ψ m | ⊗ 1 C 2 and Q 0 = Id -P 0 .
We will use the Feshbach map method (see for example Lemma 6.1 of [START_REF] Nenciu | Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonians[END_REF]) to reduce the spectral problem to problems on

P 0 L 2 (Ω, C 2 ) and Q 0 L 2 (Ω, C 2 ). This method claims that z ∈ ρ(h k (α, β)) if Q 0 (h k (α, β) -z)Q 0 is invertible on Q 0 L 2 (Ω, C 2 )
and the operator F P 0 (z) defined on P 0 L 2 (Ω, C 2 ) and given by (24)

F P 0 (z) = P 0 (h k (α, β)-z)P 0 -β 2 P 0 χ α •σQ 0 (Q 0 (h k (α, β)-z)Q 0 ) -1 Q 0 χ α •σP 0 is also invertible.
We will first prove that P 0 h k (α, β)P 0 has a spectral gap of order α 2 β near 0 and then that the second term in the right hand side of (24) is small enough not to close the gap provided that z is in the interval given in the theorem. To show the invertibility of P 0 (h k (α, β) -z)P 0 , we have to bound from below |F (p) + λΦ|, where we remind that we have denoted Φ = (Φ i ) 1 i 3 , Φ || the projection of Φ on Ran(A) and Φ ⊥ its projection on Ran(A) ⊥ . LEMMA 2. Let α ∈]0, 1[ and β > 0. Then, for every k ∈ Ω and Ψ ∈ P 0 L 2 (Ω, C 2 ), we have for α 2 β small enough:

P 0 h k (α, β)P 0 Ψ |Φ ⊥ | 2 α 2 β Ψ .
Proof. We have, for k ∈ Ω :

P 0 h k (α, β)P 0 = (σ • F (-2πk) + α 2 βΦ • σ)P 0 .
Let us denote λ = α 2 β. For Ψ ∈ P 0 L 2 (Ω, C 2 ),

P 0 h k (α, β)P 0 Ψ 2 = σ • (F (-2πk) + λΦ)P 0 Ψ 2 inf p∈R 2 |F (p) + λΦ| 2 Ψ 2 .
The lower bound in the lemma would follow if we can prove the following statement: there exists λ 0 > 0 such that

inf p∈R 2 |F (p) + λΦ| |Φ ⊥ | 2 λ ,
for 0 λ λ 0 .

In order to prove this, pick M such that

K 0 M d -|Φ| = |Φ ⊥ |
2 where K 0 is the constant appearing in the first inequality in (1) of Hypothesis 1(ii).

For |p| M λ 1/d we have by the first inequality in ( 1):

(25)

|F (p) + λΦ| K 0 |p| d -λ|Φ| (K 0 M d -|Φ|)λ |Φ ⊥ | 2 λ.
For |p| M λ 1/d , by Hypothesis 1(iii), we have for some K > 0 and λ small enough:

|F (p) + λΦ| = |p| d-1 Ap + λΦ || + λΦ ⊥ + O(|p| d+1 ) λ|Φ ⊥ | -K|p| d+1 λ|Φ ⊥ | -KM d+1 λ (d+1)/d . Define λ 0 such that |Φ ⊥ | -KM d+1 λ 1/d 0 = |Φ ⊥ | 2 .
For λ λ 0 , the above estimate implies (26)

|F (p) + λΦ| λ 2 |Φ ⊥ | , for all p ∈ R 2 .
Equations ( 25) and (26) together conclude the proof.

The invertibility of Q

0 (h k (α, β) -z)Q 0 on Q 0 L 2 (Ω, C 2 )
will require more technicality. We begin with the following estimates. Recall that d = min(d, 2). LEMMA 3. There exists C such that for |α| 1 2 and ∀k ∈ Ω we have

|χ α |P 0 α; (27) |χ α | 1/2 (h (0) k -i) -1 |χ α | 1/2 Cα d ; (28) |χ α | 1/2 (h (0) k -i) -1 C √ α d , ( 29 
)
where h (0) k has been defined in Equation (3). Proof. As in [START_REF] Barbaroux | Spectral gaps in graphene antidot lattices[END_REF], in order to show (27) we compute for f , g ∈ L 2 (Ω, C 2 ):

| f , |χ α |P 0 g | | f , |χ α |Ψ 0 | | Ψ 0 , g | χ α 1/2 1 f 2 g 2 α f 2 g 2 .
For the next two inequalities, we need some notation: given an integral operator T , we denote its integral kernel by T (x, x ). We now use the following identity proved in Proposition 3 in the appendix:

(h (0) k -i) -1 (x, x ) = γ∈Z 2 e 2iπk•(x+γ-x ) (H 0 -i) -1 (x + γ, x ).
In the following, we will denote by C any constant independent of α and k. Assume first that d

= 2. Let Υ, Ψ ∈ L 2 (Ω, C 2 ) with Υ with support in Ω α = [-α 2 , α 2 ) 2 .
According to Lemma 1 and Proposition 2, we have:

| Υ, (h (0) k -i) -1 Ψ | γ∈Z 2 Ωα×Ω |Υ(x)||(H 0 -i) -1 |(x + γ, x )|Ψ(x )|dxdx γ =0 Ωα×Ω |Υ(x)| C |x + γ -x | 3 |Ψ(x )|dxdx + Ωα×Ω |Υ(x)| C |x -x | 2-d |Ψ(x )|dxdx .
In order to bound the first term, we see that there exists a constant C such that for all |α| 1 2 , x ∈ Ω α , x ∈ Ω and γ ∈ Z 2 \ {0}, we have

1 |x + γ -x | 3 C |γ| 3 .
Thus the first term is bounded by

C Υ L 1 Ψ L 1 .
For the second term, we have to bound

Ωα×Ω |Υ(x)| 1 |x -x | 2-d |Ψ(x )|dxdx .
Hardy-Littlewood-Sobolev inequality (cf. [START_REF] Lieb | Analysis. CRM Proceedings & Lecture Notes[END_REF]Theorem 4.3]) gives that there exists C such that:

Ωα×Ω |Υ(x)| 1 |x -x | 2-d |Ψ(x )|dxdx C Υ 4 2+d Ψ 4 2+d
. By Hölder's inequality,

|χ α | 1/2 f 4 2+d = Ω |χ α | 2 2+d |f | 4 2+d 2+d 4 |χ α | 2 2+d 2+d d |f | 4 2+d 2+d 2 2+d 4 = |χ α | 1/2 2 d f 2 .
A simple change of variable gives us that

|χ α | 2 d = α d |χ| 2 d α d |χ| ∞ . Hence, picking Υ = Ψ = |χ α | 1/2 f in the above estimates yields f , |χ α | 1/2 (h (0) k ± i) -1 |χ α | 1/2 f C χ α f 2 1 + Cα d f 2 2 .

An application of Cauchy-Schwarz inequality gives that

|χ α |f 1 |χ α | L 2 f 2 √ 3α f 2 .
This concludes the proof of (28). The proof of (29) is similar: we have to take Υ = |χ α |f and Ψ = f . We do not give further details.

If d = 2, we can prove these inequalities for any d < 2 and then take the supremum.

LEMMA 4. For f ∈ Q 0 Dom(h (0) k ), we have h (0) k Q 0 f π d K 0 f .
Proof. As we show in Proposition 4 in the appendix, we have, for m ∈ Z 2 and k ∈ Ω,

P m h (0) k P m = σ • F (2π(m -k))P m .
Hence, according to inequality (1) of Hypothesis 1(ii), we have for

f ∈ Q 0 Dom(h (0) k ) : h (0) k Q 0 f 2 = m =0 σ • F (2π(m -k))P m f 2 K 2 0 m =0 (2π|m -k|) 2d P m f 2 K 2 0 π 2d m =0 P m f 2 .
For a self-adjoint operator T and an orthogonal projection Q, we define the resolvent set

ρ Q (T ) := {z ∈ C such that Q(T -z)Q : RanQ → RanQ is invertible} . We set R 0 (z) := Q 0 (h (0) k -z)Q 0 RanQ 0 -1 , z ∈ ρ Q 0 (h (0) k ), R(z) := (Q 0 (h k (α, β) -z)Q 0 RanQ 0 ) -1 , z ∈ ρ Q 0 (h k (α, β)).
For i ∈ {1, 2, 3}, we define the operators U i : L 2 (Ω, C 2 ) → RanQ 0 and W i : RanQ 0 → L 2 (Ω, C 2 ) by:

W i = β( |χ i,α |σ i )Q 0 and U i = βQ 0 sgn(χ i,α ) |χ i,α |.
LEMMA 5. There exists C > 0 independent of α ∈]0, 1/2] and β > 0 such that for any |z| K 0 π d /2 and any j, l

W j R 0 (z)U l Cα d β.
Proof. Due to Lemma 4, we have for |z| K 0 π d /2,

(30) R 0 (z) 2 K 0 π d .
Using the first resolvent identity, we get for j, l = 1, 2, 3:

W j R 0 (z)U l = W j R 0 (i)U l + (z -i)W j R 0 (i) 2 U l +(z -i) 2 W j R 0 (i)R 0 (z)R 0 (i)U l . (31)
We shall separately estimate each term on the right hand side of (31). Since h (0) k commutes with the projections P m we have (32) R 0 (i) = (h

(0) k -i) -1 -(P 0 (h (0) k -i)P 0 RanP 0 ) -1 .
Note that due to the definition of U l and W j for any z such that |z| K 0 π d /2

(33) W j (P 0 (h

k -z)P 0 RanP 0 ) -1 U l = 0. The identity (32) together with inequality (28) and (33) imply that there exists c > 0, such that for |α| < 1/2 and all k ∈ Ω

W j R 0 (i)U l = W j (h (0) k -i) -1 U l cβα d . (34)
This bounds the first term on the right hand side of (31).

To estimate the second one we first notice that (h

(0) k -i) -2 = (Q 0 (h (0) k -i)Q 0 RanQ 0 ) -2 + (P 0 (h (0) k -i)P 0 RanP 0 ) -2 .
It is easy to see that the equation (33) remains true with a power -2. Then,

(z -i)W j R 0 (i) 2 U l = (z -i)W j (h (0) k -i) -2 U l 1 + K 2 0 π 2d 4 β |χ α |(h (0) k -i) -1 (h (0) k -i) -1 |χ α | Cβα d , (35) 
for some C > 0 independent of α and β, where we used (29) in the last inequality.

Finally, we bound the last term on the right hand side of (31). Observe that from inequalities ( 27) and ( 29) we obtain that there exists c, C > 0 such that for all α 1/2

|χ α |R 0 (i) |χ α |(h (0) k -i) -1 + |χ α |P 0 (P 0 (h k -i)P 0 ) -1 c √ α d + cα C √ α d .
Therefore, using (30) and ( 29)

(z -i) 2 W j R 0 (i)R 0 (z)R 0 (i)U l β|z -i| 2 |χ α |R 0 (i) R 0 (z) R 0 (i) |χ α | Cβ|z -i| 2 α d .
Summing the latter bound together with (34) and (35) (in view of (31)) concludes the proof. LEMMA 6. Let

S = {z ∈ ρ Q 0 (h (0) k ) : sup j,l W j R 0 (z)U l < 1/3}.
Then, for every z ∈ S, we have z ∈ ρ Q 0 (h k (α, β)).

Proof. Let z ∈ S ∩ R. Put z = z + i . The set S being open, for > 0 small enough z ∈ S. We denote U = (U 1 , U 2 , U 3 ) and W = (W 1 , W 2 , W 3 ).

Applying the second resolvent identity several times, we find for any N > 0:

R(z ) = R 0 (z ) N n=0 (-1) n U W T R 0 (z ) n + T N +1 with T N +1 = (-1) N +1 U W T R 0 (z ) N U W T R(z ).
The definition of B P 0 and these equalities give us 2 terms to estimate. On the one hand,

β 2 P 0 χ α • σR 0 (z)χ α • σP 0 β P 0 |χ α | 1/2 i,j W i R 0 (z)U j |χ α | 1/2 P 0 cβ 2 α 2+d ,
where we used Lemma 5 and (27).

On the other hand, assuming that α d β is so small that W T R 0 (z)U < 1/2 we have

β 2 P 0 χ α • σR 0 (z)U (I 3 + W T R 0 (z)U ) -1 W T R 0 (z)χ α • σP 0 β P 0 |χ α | 1/2 i,j W i R 0 (z)U j (I 3 + W T R 0 (z)U ) -1 × i,j W i R 0 (z)U j |χ α | 1/2 P 0 cβ 3 α 2+2d .
The latter inequality together with (3) finishes the proof of the lemma.

Proof of Theorem 2. In view of (23) it is enough to show the invertibility of the Feshbach operator uniformly in k ∈ Ω. Using Lemmas 2 and 8 we get that for any ψ ∈ P 0 L 2 (Ω, C 2 )

F P 0 (z)ψ (P 0 (h k (α, β) -z)P 0 )ψ -B P 0 (z)ψ (βα 2 |Φ| 2 -|z| -cα 2+d β 2 ) ψ .
This concludes the proof by picking α d β so small that |Φ| 2 > cα d β. The theorem is then proven with C = c 2 .

Appendix A. Bloch-Floquet transformation

In this appendix, we study the Bloch-Floquet transformation applied to our operator H(α, β). Because the potential is bounded and Z 2 -periodic, it is enough to study this transformation applied to H 0 . Because H 0 is unbounded, we prefer to work with its resolvent and we start with the following proposition. Recall that we have denoted by (H 0 -i) -1 (x, x ) the integral kernel of (H 0i) -1 . PROPOSITION 3. Let U be the Bloch-Floquet transformation as defined in (21).

U(σ • F (-i∇) -i) -1 U * = ⊕ Ω g k dk ,
where, for k ∈ Ω, the operator g k : L 2 (Ω, C 2 ) → L 2 (Ω, C 2 ) has an integral kernel given by

g k (x, x ) = γ∈Z 2 e 2iπγ•k e 2iπx•k (H 0 -i) -1 (x + γ, x )e -2iπx •k . Proof. Let f ∈ C ∞ (Ω × R 2 ) 2 such that f is Z 2 -
periodic with respect to the second variable and x ∈ R 2 . To avoid heavy notation, we will denote K 0 (x, x ) = (H 0 -i) -1 (x, x ). We can then write

((σ • F (-i∇) -i) -1 U * f )(x) = R 2 K 0 (x, x )(U * f )(x )dx = γ ∈Z 2 Ω K 0 (x, x + γ ) Ω e -2iπ(x +γ )•k f (x , k )dk dx .
The Fourier coefficients f (x , γ ) = Ω e -2iπ(x +γ )•k f (x , k )dk decay faster than any polynomial in γ uniformly in x . The integral kernel K 0 (x+γ, x +γ ) has a decay like |γ -γ | -3 when |γ -γ | is larger than 3 uniformly in x and x . Moreover, K 0 (x + γ, x + γ ) is absolutely integrable with respect to x and To this purpose, we will denote by (e j ) j=1,2 the vectors of the standard basis in C 2 and Ψ m = e 2iπm•x . We will prove that for all m ∈ Z 2 and j ∈ {1, 2} we have This ends the proof of the proposition.

Remark 4 .

 4 If d > 2 then M d is bounded while if d < 2, M d has a local singularity of the type 1 |x-x | 2-d . This is why we denote d = min(d, 2); we can then write if d = 2 M d 2 |x-x | 2-d . Proof of Lemma 1. For p ∈ R 2 , we define the 2 × 2 matrix

2 fR 2 f

 22 (p)dp by Parseval's identity. By dominated convergence, we have (20) R (p)G(p)ĝ(p)dp = lim →0 + (p)G(p)e -<p> ĝ(p)dp and, by Parseval's identity again and denoting by * the convolution product between

Ω 2 eγ ∈Z 2 γ∈Z 2 eγ ∈Z 2 γ∈Z 2 eγ∈Z 2 e 2 e 2 ek

 222222 |K 0 (x + γ, x + γ )|dx Cuniformly in x ∈ Ω and |γ -γ | 3. These facts justify the interchange of the various series below:(U(σ • F (-i∇) -i) -1 U * f )(x, k) = γ∈Z 2iπk•(x+γ) γ ∈Z 2 Ω K 0 (x + γ, x + γ ) f (x , γ )dx = 2iπk•x e 2iπk•(γ-γ ) Ω K 0 (x + (γ -γ ), x )e 2iπγ •k f (x , γ )dx = 2iπk•γ e 2iπk•x Ω K 0 (x + γ, x )e 2iπk•γ f (x , γ )dx = Ω 2iπk•(x-x ) e 2iπk•γ K 0 (x + γ, x ) γ ∈Z 2iπk•(γ +x ) f (x , γ )dx .In the last line, we identify the Fourier series representation of f (x , •) at the point k. We finally obtainΩ γ∈Z 2iπk•(x+γ-x ) K 0 (x + γ, x )f (x , k)dx = Ω g k (x, x )f (x , k)dx ,which concludes the proof of Proposition 3. PROPOSITION 4. We haveUH 0 U * = = σ • F (-i∇ per -2πk).Proof. According to Theorem XIII.85 of[START_REF] Reed | Methods of Modern Mathematical Physics, volume IV : Analysis of operators[END_REF], to prove (22), we need to show that, for k ∈ Ω g k : L 2 (Ω, C 2 ) → L 2 (Ω, C 2 ) satisfiesg k = (h (0) k -i) -1 .

2 e

 2 g k (Ψ m ⊗ e j ) = (h (0) k -i) -1 (Ψ m ⊗ e j ) = (σ • F (2π(m -k)) -i) -1 (Ψ m ⊗ e j ). Recall the notation G(p) = (σ • F (p) -i) -1 ∈ B(C 2 ). We have that {g k (Ψ m ⊗ e j )}(x) = Ω g k (x, x )(Ψ m ⊗ e j )(x )dx = Ψ m (x) Ω dx γ∈Z 2iπk•(x+γ-x ) e 2iπm•(-x+x ) 1 2π F -1 (G)(x -x + γ)e j .(37)Because both m and γ are in Z 2 we have e 2πim•γ = 1, hence in (37) we can replace e 2iπm•(-x+x ) with e -2iπm•(x+γ-x ) . Thus, after a change of variables we obtain{g k (Ψ m ⊗ e j )}(x) = Ψ m (x) 1 2π R 2 e -2iπ(m-k)•y F -1 (G)(y)dy e j = G(2π(m -k)) (Ψ m ⊗ e j )(x).
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But we have that

and then

which tends to 0 as N → ∞ since z ∈ S.

Then, at fixed , we have

Using the definition of S and equation (30), we obtain that this resolvent is bounded uniformly in , so we can take the limit → 0 and thus

We are now ready to study the invertibility of Feshbach's operator F P 0 (z) for α d β small enough. To this purpose, we use the two following lemmas (similar to Lemmas 2.2 and 2.3 of [START_REF] Barbaroux | Spectral gaps in graphene antidot lattices[END_REF]): LEMMA 7. There exists a constant δ ∈]0, 1[ such that, for all α ∈]0, 1/2[ and

Proof. Notice that the proof of this lemma follows from Lemma 6 since z ∈ S provided α d β is small enough, according to Lemma 5.

Put

LEMMA 8. There exist two constants δ ∈]0, 1[ and C > 0 such that, for all α ∈]0, 1/2[ and β > 0 satisfying α d β < δ, we have

Proof. According to equation (36), we have that

We remark that W T R 0 (z)U is an operator acting on L 2 (Ω, C 2 ) 3 .