NON-BINARY LIFE CONDITIONS STUDIES: APPLYING GENDER AS METHODOLOGY

Luana Batista-Goulart

luana.batista-goulart@cepam.cnrs.fr

EAA 2019

1st « poster-distributing » woman, septembre 1908 : [photographie de presse] / [Agence Rol] – Bibliothèque Nationale de France

Agenda

- Gender and Inequalities: Introduction
- Methodological implications
- Examples

GENDER AND INEQUALITIES

Introduction

3

- Fluid
- Variable
- Depending on the society and time.
- Concerns cultural aspects that may affect physical development and wellbeing.
- Important role in determining food access which, in its turn, affects nutritional status.

- <u>∝ Exac</u>t
- <u>- Invariable</u>
- Equal in all societies and time
- Socially constructed
- Concerns biological aspects, but can be influenced by culture and environment:
 - Stature
 - Nutritional status

Considering their interaction is important to understand past populations' life conditions.

"She glanced at him, surprised, mildly offended, and thought it a perfect blog post, how this stranger decided she was fat. She would file the post under the tag 'race, gender and body size'"

Inequalities:

- Differential structural conditions, and power to control material and human resources or information (Granados, in press);
- Social differentiation, followed by different moral evaluation (Fournier et al, 2015);
- Gender, occupation, origin, religion, etc.

Intersectionality:

- Interaction of multiple causes of inequalities;
- Other factors influence "gender experience" someone lives.

Le Repas (1891), Gauguin

Diet and nutrition

- Suitable to identify gender and social inequalities;
- Biosocial approach: interaction of biological and social aspects;
- Extrapolates nutritional needs and differentiates groups according to age, gender, religion or social status, for example;
- Influences growth and development;
- Can be one of the causes of biological plasticity.

Chimanda N. Adiche, Americanah (2016)

Le déjeuner des canotiers (1875), Renoir

Racial map of Brazil (patadata.org)

- White population
- Brown population
- Black population
- Yellow population
- Native population

Inequalities

Proporção de pessoas abaixo da linha de pobreza

Por Unidades da Federação - 2017

Poverty map - 2017 (IBGE)

South – less than 15% under poverty line

North – more than 45% under poverty line

Poverty map – Brazil - 2017 (IBGE) (proportion)

- $\,\circ\,$ 26.5% less than US\$ 5.5 / day
- Regions with non-white
 majority: highest concentration
 of people living below the
 poverty line
- Among single brown women
 with children 64.4%
- Among single white women
 with children 41.5%
- Couples with children 30.4%
- Couples with no children 10%

Gender bias in food access

- Ginnaio (2011)
- Pellagra epidemics caused by lack of vitamin B3
- Italy (18th to 20th centuries)
- Most affected: women from lower social classes living in the countryside
- Meat was reserved to men
- Men had preferential access to medical treatments
- Higher mortality among females

Marseille, Senegalese [carrying a dish of food and smoking a pipe](1914), Gallica

- Ambrose (et al, 2003)
- USA (1050 1150 BC)
- Female from lower social classes presented more stress markers than the other groups
- White (2005)
- Belize (1250 BC-250 AD, 1520-1670 AD))
- Diet reconstruction stable isotopes analysis
- Men higher consumption of animal proteins
- Female ate more varied sources of proteins
- Larger gender differences in lower social classes

METHODOLOGICAL IMPLICATIONS

Studies of stress markers/life conditions

Female/male differences

- Age/period/site
- Markers analysed separately
- Ubelaker and Pap, 2009; Kacki, 2016,
- Social status based on funerary context
 - Female/male differences
 - Ambrose et al, 2003; Vercelotti, 2011
- Population considered "socially homogenous" (e.g. slavery context)
 - Female/males differences
 - Corruccini et al, 1982; Kelly and Angel, 1987;

- Importance of comparing female/male conditions
 - Knowing women's past
- However:
 - Binary division of the sample
 - Hide other social aspects influence life conditions

What to do when we cannot obtain information about social status from the archaeological context?

Martigues and Marseilles - source package R: ggmaps

- Mass graves of victims of the Great Plague of Marseilles (1720-1722);
- Primary multiple tombs;
- Not possible to identify social status;
- Located at the city of Martigues (Provence - France) (Tzortzis, 2009);
- Suffered several starvation episodes before the epidemic (Séguy, 2016).

Data analysis

- Femur dimension analysis aiming to identify nutritional differences
- Exploratory study with/without sex as "a priori variable"
- Sample: 95 adults
- Methods:
 - Factorial analysis of mixed data and hierarchical clustering
 - Variables: femur length, femur diameter and sex

Image: Stéfan Tzortzis (2009: 137).

- Variables: femur length and diameter
 - Mixed groups
 - Females concentrated in group 3
 - Males concentrated in group 4

	F	F? A	٨	M? I	ND	Total
Group 1	1	2	2	5	0	10
Group 2	6	4	8	6	1	25
Group 3	25	9	1	1	4	41
Group 4	1	1	13	4	1	20
Total	33	16	24	16	6	95

- Variables: femur length and diameter, binary sex
 - All females together
 - All males together
 - No individuals grouped with other sex

	F	F? A	٨	M?	ND	Total
Group 1	0	0	6	6	0	13
Group 2	18	10	0	0	0	28
Group 3	15	6	0	0	0	21
Group 4	0	0	18	10	0	28
Total	33	16	24	17	0	89

Results

- Variables: femur length and diameter, sex (4 categories)
 - Females and probable females together (g. 2 and 3)
 - Males and probable males separately
 - Just 1 male grouped with females

	F	F? /	Μ	M?	IND	Total
Group 1	0	0	0	6	0	7
Group 2	17	9	1	0	0	27
Group 3	15	6	0	0	0	21
Group 4	1	1	14	0	0	16
Group 5	0	0	0	10	0	10
Group 6	0	0	9	0	0	9
Total	33	16	24	16	0	89

- Different groups composition
- Adding sex as variable forces a binary division

Stress markers

• Porotic hyperostosis of cranial vault (n=86)

- Females and males affected similarly
- Differences between age groups (20-30y more affected)
- Differences between sexes in two age groups

0		20-30 y		30-40 y		40-50 y		50 + y	
		Non-aff	Affected	Non-aff	Affected	Non-aff	Affected	Non-aff	Affected
	Fem	3	7	7	2	12	2	5	1
	Male	5	1	8	3	2	5	9	4
	p-value	0,05944		0,6045		0,01729		0,4796	

• Cribra orbitalia (n=61)

• Affected mainly non-adults

	Female	Male	Ind	Immature
Affected	34	30	1	25
Non-aff	7	4	0	24

Linear enamel hypoplasia

• Linear enamel hypoplasia (n=72)

- More males affected than females;
- No differences between ages

12

Results

 Factorial analysis of mixed data and hierarchical clustering (n=62)

Variables

- Cribra orbitalia (CO)
- Porotic hyperostosis of cranial vault (HP)
- Linear enamel hypoplasia (LEH)
- Stature (binary)
 - Small stature: $SM \leq (mean_{sex} SD_{sex})$

	Fem	nale	Мс	ale	CO	HP	LEH	small stature
	n	%	n	%	%	%	%	%
1	12	32.4	13	52	0	0	100	0
2	9	24.3	6	24	0	80	100	40
3	10	27.0	4	16	0	28.57	0	14.29
4	6	16.2	2	8	100	37.5	75	25

- Not possible to identify age patterns
- Non-binary gender division:
 - Majority of male concentrated in first group
 - Female more disperse
- Next step: compare results with historic-demographical data

Final remarks

Diet and life conditions studies

- When gender differences become inequalities
- Methodological tools:
- Biological sex as variable:
 - A priori: general differences F/M
 - A posteriori:
 - intersectional approach
 - identify gendered discriminations
 - inequalities inside each gender group

Acknowledgements

The organisers of the session

Isabelle Séguy, Gérald Quatrehomme, Stéfan Tzortzis, Henri Caussinus, Henrique Goulart

Further reading

Ambrose SH, Buikstra J, Krueger HW. 2003. Status and gender differences in diet at Mound 72, Cahokia, revealed by isotopic analysis of bone. J Anthropol Archaeol 22:217–226.

Fournier T, Jarty J, Lapeyre N, Touraille P. 2015. L'alimentation, arme du genre. J des Anthropol 141:19–49.

Ginnaio M. 2011. La pellagre en Italie à la fin du XIX e siècle : les effets d'une maladie de carence. Population-F 66:671–698.

Séguy I. 2016. De Charybde en Sylla : les Provençaux à l'épreuve des calamités (fin XVIIe-début X<mark>VIIIe siècle). In: Bellis G, Brown E, Cordazzo P, Luc</mark>a V De, Parant A, editors. Les populations vulnérables. Aix-en-Provenc<mark>e. p Chapiter 3.11.</mark>

Tzortzis S, Signoli M. 2009. Les tranchées des Capucins de Ferrières (Martigues, Bouches-du-Rhône, France). Un charnier de l'épidémie de peste de 1720 à 1722 en Provence. Comptes Rendus - Palevol 8:749–760.

Vercellotti G, Stout SD, Boano R, Sciulli PW. 2011. Intrapopulation variation in stature and body proportions: Social status and sex differences in an Italian medieval population (Trino Vercellese, VC). Am J Phys Anthropol 145:203–214.

White CD. 2005. Gendered food behaviour among the Maya: Time, place, status and ritual. J Soc Archaeol , 5:356–382.

Contact: luana.batista-goulart@cepam.cnrs.fr

Academia: Luana Batista Goulart