
HAL Id: hal-02463797
https://hal.science/hal-02463797

Submitted on 1 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CeCar: A platform for research, development and
education on autonomous and cooperative driving

Carsten Thomas, Joachim Wegener, Frank Bauernöppel, Thomas Baar, Heide
Brandtstädter

To cite this version:
Carsten Thomas, Joachim Wegener, Frank Bauernöppel, Thomas Baar, Heide Brandtstädter. CeCar:
A platform for research, development and education on autonomous and cooperative driving. 10th
European Congress on Embedded Real Time Software and Systems (ERTS 2020), Jan 2020, Toulouse,
France. �hal-02463797�

https://hal.science/hal-02463797
https://hal.archives-ouvertes.fr


CeCar: A platform for research, development and 
education on autonomous and cooperative driving 

 

Carsten Thomas*, Joachim Wegener**, Frank Bauernöppel*, Thomas Baar*, Heide Brandtstädter* 
* HTW Berlin, University of Applied Sciences,  

Berlin, Germany 
[name.surname]@htw-berlin.de 

** Expleo Group,  
Berlin, Germany 

joachim.wegener@expleogroup.com 
 
 

Abstract – In this paper, we introduce CeCar as an affordable 
model-car based platform supporting research, development and 
education in the field of autonomous and cooperative driving. We 
present the application-oriented use cases and key platform re-
quirements, and explain the logical and technical architecture of 
the CeCar platform, alongside with details on the underlying mod-
ularity concept. Subsequently, we introduce CeCar application 
scenarios for the areas research, development and education, and 
provide relevant application examples. Further, we discuss the 
CeCar platform concept in comparison with other model-car 
based education and research platforms, and outline planned fu-
ture work on the CeCar platform. 

Keywords – autonomous driving; cooperative driving; systems 
engineering;  education. 

I.  INTRODUCTION  
Autonomous and cooperative driving of passenger cars and 

trucks has been a research area since many years. Initial work 
goes back to the early nineties, with the Carnegie Mellon 
NAVLAB project and others spearheading the development [1]. 
Now, almost 30 years later, the technology is about to enter eve-
ryday life, with first products already available on the market 
and many others in the pipeline. Consequently, autonomous and 
cooperative driving is currently one of the most vibrant research 
and development topics. Research and development projects re-
quire adequate and affordable platforms for developing novel 
functionalities – a combination that is difficult to satisfy. In ad-
dition, the market calls for engineers with sufficient background 
in related technologies. Universities currently struggle to fulfill 
this demand, amongst other reasons also because they lack af-
fordable means to perform education in this field. 

Autonomous and cooperative driving brings together many 
individual technologies and concepts, which at some point have 
to be integrated and tested in real-life scenarios. For doing this, 
engineers often rely on full-scale testbeds, i.e. commercially 
available vehicles that they equip with the required sensors, 
computation means and actuation devices. Even though engi-
neers are trying to reduce cost of such full-size development 
platforms, they are inducing significant effort for realization and 
operation. 

As an alternative, developers use simulation to develop al-
gorithms and to perform initial experiments. In such environ-
ments, developers often focus on selected aspects of autono-
mous driving, such as obstacle recognition and autonomous de-

cision-making. Yet, some powerful end-to-end simulation plat-
forms for autonomous driving research and development do ex-
ist, e.g. CARLA [2] and AutonoVis-Sim [3].  

In some areas, neither full-size-car testbeds nor simulation-
based approaches are appropriate. Simulators often concentrate 
on specific aspects and lack the multi-aspects fidelity required 
to perform end-to-end experimentation and validation of auton-
omous driving solutions. Full-size experimental cars excellently 
cover these multiple aspects, but are prohibitively expensive 
concerning realization and operation. 

We propose to use model cars as an affordable yet powerful 
platform for performing research and development in the field 
of autonomous and cooperative driving. In this paper, we intro-
duce a modular platform that provides core capabilities for this 
purpose, including driving, self-protection, positioning, environ-
ment sensing and communication. On top of these core capabil-
ities, researchers, developers and students can build their own 
solutions. The modularity of the platform ensures that we can 
tailor individual vehicles to specific applications and use cases, 
whilst keeping overall architecture and the larger part of pre-
available functionality intact. On this basis, we can equally sup-
port the diverse challenges of research, development in commer-
cial projects, and education with one single modular platform. 

As an affordable and accessible experimentation platform, 
the CeCar platform lends itself to implementing novel solutions 
for automated and cooperative driving as part of research activ-
ities. Due to its good degree of representativeness, the platform 
also supports prototyping and validation of concepts and algo-
rithms as part of commercial development work (but without 
taking credit on those activities for the final product-related ver-
ification work). In education, the platform allows students to 
work on challenging multi-disciplinary development projects 
that reflect key elements of the state-of-the-art in industry, and 
to live through all project phases as part of their curriculum. 

II. CECAR USE CASES 
With CeCar as a multi-purpose experimental platform, we 

target a wide range of use cases. An initial set of use cases covers 
basic car functionalities that are necessary as a functional foun-
dation (Figure 1).  

This basic set includes use cases for functionalities such as 
driving, communicating, self-monitoring and self-protecting, 
which are relevant for all potential applications. Other use cases 
also cover basic functionalities, but are not relevant for all appli-
cations. An example for these is the use case on position data 



acquisition, because (absolute) position data are not relevant in 
some application scenarios. 

 
Figure 1: Basic use cases 

On top of these basic use cases, we defined a set of higher-
level use cases, supporting driver assistance scenarios and auto-
mated driving scenarios. The use cases on driver assistance 
(Figure 2) include well-known applications like speed control, 
adaptive cruise control and traffic-sign assistance. The use cases 
on automated driving include applications where a single car op-
erates autonomously, and applications where a car cooperates 
with other cars and/or with the wayside installations like traffic 
lights (see Figure 3 for examples). 

 
Figure 2: Driver assistance use cases  

These sets of use cases cover a wide range of intended CeCar 
applications. Somewhat orthogonal to this view on use cases, we 
also had to consider aspects relevant for the use of CeCar as 
white-box, extensible, representative and affordable experi-
mental platform for research, development and education. This 
resulted in specific requirements on modularity, size and cost, 
and in pre-settings on selected technical solutions. 

III. CECAR ARCHITECTURE 
We developed the CeCar architecture based on an earlier 

model car platform named VeloxCar that the Expleo team de-
signed in the context of the EU-funded research project AMASS 

[4]. To cover the full set of use cases and requirements, we de-
fined a modular architecture that we can adapt and extend for 
specific applications. 

 
Figure 3: Automated driving use cases (examples) 

A. Logical system architecture 
The basic logical system architecture of CeCar (Figure 4) is 

similar to the VeloxCar system architecture. We use encoder and 
IMU data to compute direction and speed information that feeds 
into Direction Control and Velocity Control, and is shared via 
the Communication function with external systems. External 
systems (including but not limited to a human operator con-
nected via a Control Device) may provide driving commands. 
We pre-process such driving commands in the OpMode Control 
function according to the operation mode of the CeCar.  

The operation mode depends on (1) the CeCar configuration, 
(2) the current health status of the car, and (3) situational data 
(influencing the situational adequacy of certain operations). The 
car configuration is related to the general availability of certain 
functionality (see the discussion on modularity in section IV), 
and determines the ability of a configured car to support specific 
use cases. The health status of the car influences the momentary 
availability of functionality; the operation mode thereby also re-
flects the degradation status of the car. Situational data are inter-
nal and external states that influence the situational adequacy of 
certain operations. For example, the Self-Protection function 
processes car direction and car speed (internal data), and the dis-
tance of objects to the car (external data) to compute the risk of 
the car hitting the detected objects. As a result, the Self-Protec-
tion function yields protection commands, that influence the op-
erational mode of the car and define if a certain operation (con-
tinued driving into the current direction) is appropriate. 

We extend this basic logical architecture with additional 
functionality as required to support additional use cases. E.g., for 
the “Drive and steer based on visual information” use case, we 
add a Visual Perception function, and a cascade of video pro-
cessing, path planning and path execution functions (Figure 5). 



 
Figure 4: Basic logical system architecture (simplified) 

To protect the modularity of the approach, we strive to define 
purely additive architecture extensions, i.e., extensions that keep 
existing functions and their interfaces untouched. In cases where 
such additive extension is not possible, we must introduce new 
versions of existing functions, which puts additional strain on 
configuration control for CeCar.  

 
Figure 5: Logical system architecture for vision-based driving (simplified, ad-
ditional functions in grey color) 

B. Technical system architecture 
We based CeCar on a commercially available 1/8-scale 

model racecar kit. To improve driving characteristics of the ve-
hicle, especially to increase its controllable velocity range, we 
replaced the built-in motor and steering control. We separated 
low-level and high-level computation onto two control boards, 
and added multiple sensors, including wheel encoders, accel-
erometer, ultrasonic and optical distance sensors. Further, we 
implemented provisions for mounting advanced sensors like li-
dar and stereo camera. For powering the drive motor, we use a 
high-current lithium polymer accumulator, while we insert a 

multiple-voltage power bank to support the controller boards 
and other components.  

 
Figure 6: The CeCar platform 

In addition, we modified the mechanical construction of the 
commercial racecar kit. The added electronic components had 
increased the car weight significantly, so we adapted the suspen-
sion system to this higher weight. In addition, we added mount-
ing points for sensors on top of the model car (lidar) and at its 
front (stereo camera), as well as at all side panels (ultrasonic and 
optical distance sensors).  

For computation, CeCar features two control boards: One 
real-time control board (the Real-time Control Unit – RCU) – an 
STM32-based board running FreeRTOS – encapsulating the 
lower-level control tasks, and one NVIDIA Jetson TX2 board 
(the Master Control Unit – MCU) for higher-level control, vi-
sion-based navigation and similar tasks.  

 
Figure 7: CeCar hardware concept 

We decided to use the Robot Operating System (ROS) to im-
plement the MCU software. ROS [5] is a software framework 
for building robots and clusters of robots, which comprises basic 
functionality such as hardware abstraction, device drivers and 
communication, as well as predefined software modules for 
commonly used functionality, and associated tools.  A ROS sys-
tem consists of a number of independent nodes, each of which 
communicates with other nodes using a publish-subscribe mes-
saging model. ROS excellently supports software modularity 

lidar 

stereo camera master control unit 
ultrasonic sensors 

wheel encoders 



and allows us to tap into a vast pool of preexisting software mod-
ules for sensor data preprocessing and vehicle control. For 
CeCar, we implemented the MCU software as a set of ROS 
nodes, thereby mapping relevant parts of the logical system ar-
chitecture to the MCU ROS node architecture.  

The MCU links to the RCU via MAVLink. The RCU hosts 
all timing-critical software components, including lower-level 
control functions like Direction Control and Velocity Control, 
and high-speed perception functions like Wheel Encoder Pro-
cessing and Optical Distance Sensor Processing. The RCU also 
hosts one part of the OpMode Control function, which is neces-
sary to handle potential failures of the MCU or of the communi-
cation between RCU and MCU.  

The MCU carries all higher-level functions and all functions 
that require high computational performance. This includes, e.g., 
the Visual Preprocessing, Path Planning and Path Execution 
functions introduced in Figure 5, but also the Communication 
function that enables data exchange with other CeCar vehicles, 
with infrastructure devices such as traffic lights, and with hu-
man-machine interfaces. It as well hosts the Self-Observation 
function (that creates status information on the car itself and on 
its environment by merging all available sensor data), and the 
Self-Protection function (that implements safety features based 
on status information).  

Since the higher-level control software hosted on the MCU 
is realized in ROS, we use the ROS publish-subscribe mecha-
nisms for car-internal communication. For communication be-
tween individual cars, and between cars and infrastructure de-
vices, we originally focused on ROS-compatible communica-
tion frameworks such as Coaty [6]. In the future, we will turn to 
ROS2 and its built-in communication features for car-to-car and 
car-to-infrastructure communication.  

IV. MODULARITY 
To cater for the very different application scenarios, we have 

put special emphasis onto modularity. We clustered the CeCar 
functionality into modules that we allocated into two layers: The 
Capability Layer implementing all basic functionalities that de-
velopers and students can readily use, and the Application Layer, 
hosting all specific functions developed by the users of the plat-
form.  

A. Capability Layer 
The Capability Layer contains several capability sets, each 

of these containing RCU and MCU software modules and asso-
ciated hardware: The first set, Foundation, provides the basic 
platform capabilities, like driving, steering, self-protection, and 
communication.  

Other capability sets provide additional features that devel-
opers can use as pre-available building blocks. Examples are the 
Positioning capability set which includes the lidar hardware and 
associated mapping and positioning software, and the Vision ca-
pability set that contains the stereo camera hardware and basic 
video processing software functions. 

B. Application Layer 
Using the features available through the capability layer, us-

ers can build their own solutions and place them into the Appli-
cation Layer. Applying the CeCar platform, researchers, devel-
opers and students have done this already for various autono-
mous and cooperative driving functionalities, including cooper-
ative adaptive cruise control with connected cars and vision-
based autonomous driving. In Section V, we will present some 
of these CeCar application cases in more detail. 

The modularity concept also supports steady evolution of the 
platform and its growth into additional application areas such as 
platooning, ad-hoc cooperation, and AI based driving.  

C. Product line engineering aspects 
There are multiple configurational dependencies between 

Application Layer solutions and capability sets (hardware mod-
ules, RCU software modules and MCU software modules) con-
tained in the Capability Layer. There are “requires” and “con-
tains” relationships, but also “excludes” and other rather com-
plex dependencies.  

To systematically analyze and describe system variants and 
the resulting subsystem / component configuration dependen-
cies, developers often use product line engineering methods and 
tools. For CeCar, we applied the concepts of product line engi-
neering, but did not yet formally document the configurational 
dependencies in a variant model. We plan to do this as one of 
the steps to make the CeCar experimental platform accessible to 
a larger group of researchers and developers. Likely, we will ap-
ply the SysML-based variant modeling method described in [7] 
for this purpose.  

V. PLATFORM APPLICATION  

A. Application for Research 
In the frame of the AMASS research project [4], the Expleo 

team designed a model car platform named VeloxCar and used 
that to design, implement and demonstrate algorithms for coop-
erative driving, applying novel specification approaches like 
contract-based design [8]. Since then, we have adapted and ex-
tended the platform, amending the platform capabilities and im-
proving its modularity.  

We now use the VeloxCar and CeCar platform in several 
other projects focusing on autonomous and connected driving 
research, including the nationally funded projects CrESt [9] and 
SiReSS [10]. Two aspects of the CeCar platform are specifically 
advantageous for this type of application: Firstly, the application 
of ROS as the foundation for communication allows applying all 
features and tools of the ROS framework, including ROS-bag 
playback for development and testing, and ROS 2D and 3D sim-
ulators and visualizations for “model-car-in-the-loop” or even 
“model-car-fleet-in-the-loop” experiments. Secondly, the provi-
sion of a communication layer above the individual ROS-based 
model cars allows to easily implement cooperative scenarios 
with V2V (vehicle-to-vehicle) and V2I (vehicle-to-infrastruc-
ture) communication.  

In addition, the modular design approach lends itself easily 
to stepwise functionality enhancements, and allows research 
teams to focus solely on the core aspects of their research, re-



using the platform functionality as a strong and proven founda-
tion for their solutions and related experiments and demonstra-
tions. 

One example of such research application is the planned 
demonstration of system-of-systems reconfiguration capabilities 
in the SiReSS research project. The SiReSS project aims at de-
veloping methods for negotiating shared objectives and optimal 
configurations within systems-of-systems, for applications in, 
e.g., car platooning scenarios. Using CeCar as a demonstrator 
platform, the project team can implement their reconfiguration 
method as Application Layer solution, consisting of SiReSS-
specific ROS nodes and re-using all required capability sets pro-
vided by the CeCar platform.   

As a white-box platform with fully accessible and under-
stood dynamic behavior, CeCar also lends itself to another type 
of research work: Rigorous validation of underlying control 
models and formal verification of important safety properties. 
One typical example is the verification of the Velocity Control 
function. It has to be shown that the car is able to stop always in 
time under all possible circumstances. The Velocity Control 
function implements a control loop taking into account the cur-
rent velocity as well as the car's weight and its dynamics during 
acceleration and deceleration. The physical model underlying 
the control loop had to be validated rigorously in numerous tests. 
Once we were sure the physical entity car behaves as predicted 
by the physical model used in the control loop, we could start to 
analyze the decision-making algorithms used within the control 
loop. Prior to applying the theorem prover KeYmaera [11] to 
formally verify certain safety properties of the algorithms con-
trolling the car, we had to translate our control model (mainly 
specified in MATLAB) into a model understood by the theorem 
prover. One of the biggest challenges was to master the com-
plexity of the resulting model in the notion of Hybrid Automata 
[12]. In this research application, CeCar serves as a very acces-
sible example system to experiment and demonstrate the ap-
plicability of novel engineering techniques to real-world prob-
lems. 

B. Application for Development 
As for research work, we can use CeCar also for develop-

ment work in a commercial environment. We use the platform 
primarily for pre-development and pre-validation of algorithms, 
before we bring these onto full-size test cars for validation in the 
real environment. Due to the affordability of the platform, this 
approach allows to scale and parallelize development activities, 
without the need to invest into many full-size test vehicles. 

This approach works well for camera-related algorithms. We 
prototype algorithms on the CeCar platform that we can apply 
on full-size cars with few adaptations. Key for representative-
ness in this field and for correlation of results between model 
environment and real world is the use of qualitatively similar 
camera sensors on CeCar and on the full-size test cars.  

Also for prototyping of connected-car algorithms, the CeCar 
provides a good and affordable testbed. This group of algorithms 
is not very dependent on hardware and size aspects; therefore, 
correlation between model-car test results and real-world test re-
sults is high.  

In this context, the white-box nature of the CeCar platform 
is important. We sufficiently understand the dynamics of the 
model car and its “drive train”, and capture that in simulation 
models. When re-using algorithms that we pre-develop on the 
CeCar platform on the full-size cars, we are therefore able to 
adapt their parameters according to the differences between the 
dynamic model of the CeCar platform and the dynamic model 
of the full-size car. 

On the contrary, representativeness is difficult to achieve for 
environmental sensing algorithms, which strongly depend on the 
quality and physical positioning of sensors (e.g., ultrasonic sen-
sors, radar, or lidar). Here, the model car and its sensors deviate 
strongly from the full-size test cars, and hamper comparability 
and portability of algorithms. 

C. Application for Education 
Curricula at universities often contain project phases, to al-

low students to apply their acquired knowledge in multidiscipli-
nary settings, and to expose them to the real-world challenges of 
executing complex development projects in settings with time 
pressure and mutual dependencies between individuals and 
teams. 

At HTW Berlin, we use the CeCar platform in a master stu-
dent’s course where groups of 5 to 10 students develop a com-
plex technical system over a period of up to 3 semesters. In the 
first cycle, a student team has extended the core CeCar function-
ality by adding self-protection and positioning features to the ca-
pability layer. In a second cycle, a different team has added vi-
sion capability, and is currently working on a vision-based auto-
mated driving function using traditional (i.e., non-machine-
learning) obstacle detection and route-finding algorithms.  

There are several advantages connected to this setting: 
• Students do real-world development, using a platform 

as basis for their work, which reflects the current state-
of-the-art in industry. The nature of the platform allows 
them to focus on low-level technology aspects (real-
time computation, communication protocols, sensor in-
tegration etc.) as well as on high-level aspects (system 
architecture, cooperation and reconfiguration concepts 
etc.).  

• Reusing an existing platform design as starting point for 
own developments, and being forced to document own 
solutions properly such that others in turn can build on 
that is a very typical setting for development in industry, 
and therefore helps to prepare students for their future 
professional life. 

• Building their own solutions on top of an existing plat-
form enables the students to develop very attractive de-
monstrable products within the restricted timeframe of 
the course. 

Ideally, these projects require very different professions and 
specializations, such that the students have a chance to contrib-
ute all knowledge that they have acquired in their studies, plus 
additional expertise they might have. The projects require skills 
from the core computer engineering curriculum, like hardware 
development and real-time software development, but often also 
things like control systems development, web-centric user inter-
face design, and design and manufacturing of 3D parts. 



In parallel to such group work in projects, we allow individ-
ual students to perform bachelor and master theses focusing on 
specific questions in automated and collaborative driving. 
Through their thesis works, these students also contribute to the 
continuous growth of CeCar capabilities.  

D. Affordability and Representativeness  
The total cost of a single CeCar is in the range of a few thou-

sand Euro. In comparison, a full-size experimental car has an 
initial cost that is likely 10 times higher, and in addition induces 
significant operational cost. 

Despite the low cost, the CeCar platform is very representa-
tive of highly automated cars, with respect to dynamic features, 
available sensors, and computing architecture. Representative-
ness is limited in areas that relate to model scale, detailed place-
ment of sensors, and certain aspects of vehicle dynamics. In con-
sequence, CeCar is very useful for experimental exploration of 
algorithms for (highly) automated driving that do not depend on 
such topics. Specifically for studies on cooperative driving – that 
usually require several cars to participate in experiments – ap-
plication of the CeCar platform permits considerable savings. 
Additional advantages arise from the fact that due to the scale of 
cars, experiments can be performed inside of buildings or on 
small test tracks, and require neither protected test circuits nor 
lengthy authorization processes for the use of public streets. 

VI. DISCUSSION 
Model car concepts for experimentation and education al-

ready exist elsewhere. Probably the most well-known is the MIT 
RACECAR. The MIT team developed the original version of 
this model car around 2015, based on a commercial 1/10-scale 
model racecar kit, and equipped with a Jetson TK1 processor 
board, stereo camera and lidar sensor [13]. The team promotes 
the MIT RACECAR for use in education, with students devel-
oping software for autonomous driving and performing compe-
titions on this basis. The platform has technologically pro-
gressed over time, with alternative versions relying the more 
powerful Jetson AGX Xavier board and the capable and afford-
able Jetson TX Nano board announced in 2019 [14].  

Other universities have developed similar platforms. In [15], 
the author presents a concept for a standardized experimental 
platform that was developed at Chalmers based on a systematic 
literature review and in-depth analysis of miniature car concepts 
that have been successful in self-driving car challenges. The 
software architecture of the platform is modular and uses stand-
ardized software interfaces to support adaptation for new or 
changed application scenarios. On the hardware side, the plat-
form relies on a standardized sensor set that is expected to match 
a large variety of use cases.  

Another example is the MOPED platform developed at 
SICS, that is fully oriented towards applications for education 
[16]. Aiming to be representative w.r.t. industrial development 
challenges, the platform software is intentionally distributed 
onto three Raspberry Pi controller boards, two of them operating 
under the AUTOSAR automotive operating system. Whilst this 
platform is conceptually extensible, it provides only low-level 
control functions for speed and direction control, such that users 
of the platform must develop all higher-level functionality on 
top.  

A similar platform is described in [17]. Here, the authors aim 
to provide a hands-on platform that allows building self-driving 
model vehicles with minimal effort. Whilst in some areas, for 
instance on accurate positioning, they excellently provide the re-
quired functionality, they stay silent on other required function-
ality (like vision-based perception and associated processing 
functions).  

Different to these existing model car platforms, we propose 
a truly modular system that strictly differentiates between the 
Capability Layer providing the basic features of the platform, 
and the Application Layer hosting the use-case-specific solu-
tions built on top. Consistent with this modular approach, we 
separate the control algorithms influencing the core vehicle dy-
namics, host them on a specific real-time-capable control unit, 
and keep them stable over time. Thereby we encapsulate the dy-
namic behavior of the model car, which enables us to capture it 
in vehicle dynamics models and to rely on this behavior when 
developing higher-level control functionality. 

The CeCar platform supports the same basic objectives as 
other existing model car experimental platforms, such as repre-
sentativeness, accessibility, and extensibility. With its pre-de-
fined and managed approach on modularity, CeCar lends itself 
to stepwise extension and adaptation, and can therefore address 
the needs of three different application areas in parallel: re-
search, development, and education. Core technical features of 
the platform, such as its 1/8 scale and the computational power 
of the MCU enable integration of further hardware components 
and support functionality growth for the coming years. 

VII. SUMMARY AND FUTURE WORK 
CeCar is a very affordable platform for autonomous and co-

operative driving. Due to its modularity and the full accessibility 
of its vehicle dynamics, engineers can easily tailor it to support 
very different research, development and education objectives.  

We plan to increase the usefulness and coverage of the plat-
form further by placing the development data and documenta-
tion online (in GitHub or alike), and by formally documenting 
product line aspects of the CeCar platform using SysML. Fol-
lowing such step, we expect that the existing community of users 
will start to grow rapidly and that users will make new capability 
sets and solutions available to the community.  

With the lifetime of ROS ending, we plan to port the CeCar 
platform to ROS2. Whilst this is requiring considerable effort, it 
will allow redefining and simplifying the CeCar concepts for 
V2V and V2I communication, and the replacement of Coaty by 
ROS2-native mechanisms. 
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