
HAL Id: hal-02463797
https://hal.science/hal-02463797

Submitted on 1 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CeCar: A platform for research, development and
education on autonomous and cooperative driving

Carsten Thomas, Joachim Wegener, Frank Bauernöppel, Thomas Baar, Heide
Brandtstädter

To cite this version:
Carsten Thomas, Joachim Wegener, Frank Bauernöppel, Thomas Baar, Heide Brandtstädter. CeCar:
A platform for research, development and education on autonomous and cooperative driving. 10th
European Congress on Embedded Real Time Software and Systems (ERTS 2020), Jan 2020, Toulouse,
France. �hal-02463797�

https://hal.science/hal-02463797
https://hal.archives-ouvertes.fr

CeCar: A platform for research, development and
education on autonomous and cooperative driving

Carsten Thomas*, Joachim Wegener**, Frank Bauernöppel*, Thomas Baar*, Heide Brandtstädter*
* HTW Berlin, University of Applied Sciences,

Berlin, Germany
[name.surname]@htw-berlin.de

** Expleo Group,
Berlin, Germany

joachim.wegener@expleogroup.com

Abstract – In this paper, we introduce CeCar as an affordable
model-car based platform supporting research, development and
education in the field of autonomous and cooperative driving. We
present the application-oriented use cases and key platform re-
quirements, and explain the logical and technical architecture of
the CeCar platform, alongside with details on the underlying mod-
ularity concept. Subsequently, we introduce CeCar application
scenarios for the areas research, development and education, and
provide relevant application examples. Further, we discuss the
CeCar platform concept in comparison with other model-car
based education and research platforms, and outline planned fu-
ture work on the CeCar platform.

Keywords – autonomous driving; cooperative driving; systems
engineering; education.

I. INTRODUCTION
Autonomous and cooperative driving of passenger cars and

trucks has been a research area since many years. Initial work
goes back to the early nineties, with the Carnegie Mellon
NAVLAB project and others spearheading the development [1].
Now, almost 30 years later, the technology is about to enter eve-
ryday life, with first products already available on the market
and many others in the pipeline. Consequently, autonomous and
cooperative driving is currently one of the most vibrant research
and development topics. Research and development projects re-
quire adequate and affordable platforms for developing novel
functionalities – a combination that is difficult to satisfy. In ad-
dition, the market calls for engineers with sufficient background
in related technologies. Universities currently struggle to fulfill
this demand, amongst other reasons also because they lack af-
fordable means to perform education in this field.

Autonomous and cooperative driving brings together many
individual technologies and concepts, which at some point have
to be integrated and tested in real-life scenarios. For doing this,
engineers often rely on full-scale testbeds, i.e. commercially
available vehicles that they equip with the required sensors,
computation means and actuation devices. Even though engi-
neers are trying to reduce cost of such full-size development
platforms, they are inducing significant effort for realization and
operation.

As an alternative, developers use simulation to develop al-
gorithms and to perform initial experiments. In such environ-
ments, developers often focus on selected aspects of autono-
mous driving, such as obstacle recognition and autonomous de-

cision-making. Yet, some powerful end-to-end simulation plat-
forms for autonomous driving research and development do ex-
ist, e.g. CARLA [2] and AutonoVis-Sim [3].

In some areas, neither full-size-car testbeds nor simulation-
based approaches are appropriate. Simulators often concentrate
on specific aspects and lack the multi-aspects fidelity required
to perform end-to-end experimentation and validation of auton-
omous driving solutions. Full-size experimental cars excellently
cover these multiple aspects, but are prohibitively expensive
concerning realization and operation.

We propose to use model cars as an affordable yet powerful
platform for performing research and development in the field
of autonomous and cooperative driving. In this paper, we intro-
duce a modular platform that provides core capabilities for this
purpose, including driving, self-protection, positioning, environ-
ment sensing and communication. On top of these core capabil-
ities, researchers, developers and students can build their own
solutions. The modularity of the platform ensures that we can
tailor individual vehicles to specific applications and use cases,
whilst keeping overall architecture and the larger part of pre-
available functionality intact. On this basis, we can equally sup-
port the diverse challenges of research, development in commer-
cial projects, and education with one single modular platform.

As an affordable and accessible experimentation platform,
the CeCar platform lends itself to implementing novel solutions
for automated and cooperative driving as part of research activ-
ities. Due to its good degree of representativeness, the platform
also supports prototyping and validation of concepts and algo-
rithms as part of commercial development work (but without
taking credit on those activities for the final product-related ver-
ification work). In education, the platform allows students to
work on challenging multi-disciplinary development projects
that reflect key elements of the state-of-the-art in industry, and
to live through all project phases as part of their curriculum.

II. CECAR USE CASES
With CeCar as a multi-purpose experimental platform, we

target a wide range of use cases. An initial set of use cases covers
basic car functionalities that are necessary as a functional foun-
dation (Figure 1).

This basic set includes use cases for functionalities such as
driving, communicating, self-monitoring and self-protecting,
which are relevant for all potential applications. Other use cases
also cover basic functionalities, but are not relevant for all appli-
cations. An example for these is the use case on position data

acquisition, because (absolute) position data are not relevant in
some application scenarios.

Figure 1: Basic use cases

On top of these basic use cases, we defined a set of higher-
level use cases, supporting driver assistance scenarios and auto-
mated driving scenarios. The use cases on driver assistance
(Figure 2) include well-known applications like speed control,
adaptive cruise control and traffic-sign assistance. The use cases
on automated driving include applications where a single car op-
erates autonomously, and applications where a car cooperates
with other cars and/or with the wayside installations like traffic
lights (see Figure 3 for examples).

Figure 2: Driver assistance use cases

These sets of use cases cover a wide range of intended CeCar
applications. Somewhat orthogonal to this view on use cases, we
also had to consider aspects relevant for the use of CeCar as
white-box, extensible, representative and affordable experi-
mental platform for research, development and education. This
resulted in specific requirements on modularity, size and cost,
and in pre-settings on selected technical solutions.

III. CECAR ARCHITECTURE
We developed the CeCar architecture based on an earlier

model car platform named VeloxCar that the Expleo team de-
signed in the context of the EU-funded research project AMASS

[4]. To cover the full set of use cases and requirements, we de-
fined a modular architecture that we can adapt and extend for
specific applications.

Figure 3: Automated driving use cases (examples)

A. Logical system architecture
The basic logical system architecture of CeCar (Figure 4) is

similar to the VeloxCar system architecture. We use encoder and
IMU data to compute direction and speed information that feeds
into Direction Control and Velocity Control, and is shared via
the Communication function with external systems. External
systems (including but not limited to a human operator con-
nected via a Control Device) may provide driving commands.
We pre-process such driving commands in the OpMode Control
function according to the operation mode of the CeCar.

The operation mode depends on (1) the CeCar configuration,
(2) the current health status of the car, and (3) situational data
(influencing the situational adequacy of certain operations). The
car configuration is related to the general availability of certain
functionality (see the discussion on modularity in section IV),
and determines the ability of a configured car to support specific
use cases. The health status of the car influences the momentary
availability of functionality; the operation mode thereby also re-
flects the degradation status of the car. Situational data are inter-
nal and external states that influence the situational adequacy of
certain operations. For example, the Self-Protection function
processes car direction and car speed (internal data), and the dis-
tance of objects to the car (external data) to compute the risk of
the car hitting the detected objects. As a result, the Self-Protec-
tion function yields protection commands, that influence the op-
erational mode of the car and define if a certain operation (con-
tinued driving into the current direction) is appropriate.

We extend this basic logical architecture with additional
functionality as required to support additional use cases. E.g., for
the “Drive and steer based on visual information” use case, we
add a Visual Perception function, and a cascade of video pro-
cessing, path planning and path execution functions (Figure 5).

Figure 4: Basic logical system architecture (simplified)

To protect the modularity of the approach, we strive to define
purely additive architecture extensions, i.e., extensions that keep
existing functions and their interfaces untouched. In cases where
such additive extension is not possible, we must introduce new
versions of existing functions, which puts additional strain on
configuration control for CeCar.

Figure 5: Logical system architecture for vision-based driving (simplified, ad-
ditional functions in grey color)

B. Technical system architecture
We based CeCar on a commercially available 1/8-scale

model racecar kit. To improve driving characteristics of the ve-
hicle, especially to increase its controllable velocity range, we
replaced the built-in motor and steering control. We separated
low-level and high-level computation onto two control boards,
and added multiple sensors, including wheel encoders, accel-
erometer, ultrasonic and optical distance sensors. Further, we
implemented provisions for mounting advanced sensors like li-
dar and stereo camera. For powering the drive motor, we use a
high-current lithium polymer accumulator, while we insert a

multiple-voltage power bank to support the controller boards
and other components.

Figure 6: The CeCar platform

In addition, we modified the mechanical construction of the
commercial racecar kit. The added electronic components had
increased the car weight significantly, so we adapted the suspen-
sion system to this higher weight. In addition, we added mount-
ing points for sensors on top of the model car (lidar) and at its
front (stereo camera), as well as at all side panels (ultrasonic and
optical distance sensors).

For computation, CeCar features two control boards: One
real-time control board (the Real-time Control Unit – RCU) – an
STM32-based board running FreeRTOS – encapsulating the
lower-level control tasks, and one NVIDIA Jetson TX2 board
(the Master Control Unit – MCU) for higher-level control, vi-
sion-based navigation and similar tasks.

Figure 7: CeCar hardware concept

We decided to use the Robot Operating System (ROS) to im-
plement the MCU software. ROS [5] is a software framework
for building robots and clusters of robots, which comprises basic
functionality such as hardware abstraction, device drivers and
communication, as well as predefined software modules for
commonly used functionality, and associated tools. A ROS sys-
tem consists of a number of independent nodes, each of which
communicates with other nodes using a publish-subscribe mes-
saging model. ROS excellently supports software modularity

lidar

stereo camera master control unit
ultrasonic sensors

wheel encoders

and allows us to tap into a vast pool of preexisting software mod-
ules for sensor data preprocessing and vehicle control. For
CeCar, we implemented the MCU software as a set of ROS
nodes, thereby mapping relevant parts of the logical system ar-
chitecture to the MCU ROS node architecture.

The MCU links to the RCU via MAVLink. The RCU hosts
all timing-critical software components, including lower-level
control functions like Direction Control and Velocity Control,
and high-speed perception functions like Wheel Encoder Pro-
cessing and Optical Distance Sensor Processing. The RCU also
hosts one part of the OpMode Control function, which is neces-
sary to handle potential failures of the MCU or of the communi-
cation between RCU and MCU.

The MCU carries all higher-level functions and all functions
that require high computational performance. This includes, e.g.,
the Visual Preprocessing, Path Planning and Path Execution
functions introduced in Figure 5, but also the Communication
function that enables data exchange with other CeCar vehicles,
with infrastructure devices such as traffic lights, and with hu-
man-machine interfaces. It as well hosts the Self-Observation
function (that creates status information on the car itself and on
its environment by merging all available sensor data), and the
Self-Protection function (that implements safety features based
on status information).

Since the higher-level control software hosted on the MCU
is realized in ROS, we use the ROS publish-subscribe mecha-
nisms for car-internal communication. For communication be-
tween individual cars, and between cars and infrastructure de-
vices, we originally focused on ROS-compatible communica-
tion frameworks such as Coaty [6]. In the future, we will turn to
ROS2 and its built-in communication features for car-to-car and
car-to-infrastructure communication.

IV. MODULARITY
To cater for the very different application scenarios, we have

put special emphasis onto modularity. We clustered the CeCar
functionality into modules that we allocated into two layers: The
Capability Layer implementing all basic functionalities that de-
velopers and students can readily use, and the Application Layer,
hosting all specific functions developed by the users of the plat-
form.

A. Capability Layer
The Capability Layer contains several capability sets, each

of these containing RCU and MCU software modules and asso-
ciated hardware: The first set, Foundation, provides the basic
platform capabilities, like driving, steering, self-protection, and
communication.

Other capability sets provide additional features that devel-
opers can use as pre-available building blocks. Examples are the
Positioning capability set which includes the lidar hardware and
associated mapping and positioning software, and the Vision ca-
pability set that contains the stereo camera hardware and basic
video processing software functions.

B. Application Layer
Using the features available through the capability layer, us-

ers can build their own solutions and place them into the Appli-
cation Layer. Applying the CeCar platform, researchers, devel-
opers and students have done this already for various autono-
mous and cooperative driving functionalities, including cooper-
ative adaptive cruise control with connected cars and vision-
based autonomous driving. In Section V, we will present some
of these CeCar application cases in more detail.

The modularity concept also supports steady evolution of the
platform and its growth into additional application areas such as
platooning, ad-hoc cooperation, and AI based driving.

C. Product line engineering aspects
There are multiple configurational dependencies between

Application Layer solutions and capability sets (hardware mod-
ules, RCU software modules and MCU software modules) con-
tained in the Capability Layer. There are “requires” and “con-
tains” relationships, but also “excludes” and other rather com-
plex dependencies.

To systematically analyze and describe system variants and
the resulting subsystem / component configuration dependen-
cies, developers often use product line engineering methods and
tools. For CeCar, we applied the concepts of product line engi-
neering, but did not yet formally document the configurational
dependencies in a variant model. We plan to do this as one of
the steps to make the CeCar experimental platform accessible to
a larger group of researchers and developers. Likely, we will ap-
ply the SysML-based variant modeling method described in [7]
for this purpose.

V. PLATFORM APPLICATION

A. Application for Research
In the frame of the AMASS research project [4], the Expleo

team designed a model car platform named VeloxCar and used
that to design, implement and demonstrate algorithms for coop-
erative driving, applying novel specification approaches like
contract-based design [8]. Since then, we have adapted and ex-
tended the platform, amending the platform capabilities and im-
proving its modularity.

We now use the VeloxCar and CeCar platform in several
other projects focusing on autonomous and connected driving
research, including the nationally funded projects CrESt [9] and
SiReSS [10]. Two aspects of the CeCar platform are specifically
advantageous for this type of application: Firstly, the application
of ROS as the foundation for communication allows applying all
features and tools of the ROS framework, including ROS-bag
playback for development and testing, and ROS 2D and 3D sim-
ulators and visualizations for “model-car-in-the-loop” or even
“model-car-fleet-in-the-loop” experiments. Secondly, the provi-
sion of a communication layer above the individual ROS-based
model cars allows to easily implement cooperative scenarios
with V2V (vehicle-to-vehicle) and V2I (vehicle-to-infrastruc-
ture) communication.

In addition, the modular design approach lends itself easily
to stepwise functionality enhancements, and allows research
teams to focus solely on the core aspects of their research, re-

using the platform functionality as a strong and proven founda-
tion for their solutions and related experiments and demonstra-
tions.

One example of such research application is the planned
demonstration of system-of-systems reconfiguration capabilities
in the SiReSS research project. The SiReSS project aims at de-
veloping methods for negotiating shared objectives and optimal
configurations within systems-of-systems, for applications in,
e.g., car platooning scenarios. Using CeCar as a demonstrator
platform, the project team can implement their reconfiguration
method as Application Layer solution, consisting of SiReSS-
specific ROS nodes and re-using all required capability sets pro-
vided by the CeCar platform.

As a white-box platform with fully accessible and under-
stood dynamic behavior, CeCar also lends itself to another type
of research work: Rigorous validation of underlying control
models and formal verification of important safety properties.
One typical example is the verification of the Velocity Control
function. It has to be shown that the car is able to stop always in
time under all possible circumstances. The Velocity Control
function implements a control loop taking into account the cur-
rent velocity as well as the car's weight and its dynamics during
acceleration and deceleration. The physical model underlying
the control loop had to be validated rigorously in numerous tests.
Once we were sure the physical entity car behaves as predicted
by the physical model used in the control loop, we could start to
analyze the decision-making algorithms used within the control
loop. Prior to applying the theorem prover KeYmaera [11] to
formally verify certain safety properties of the algorithms con-
trolling the car, we had to translate our control model (mainly
specified in MATLAB) into a model understood by the theorem
prover. One of the biggest challenges was to master the com-
plexity of the resulting model in the notion of Hybrid Automata
[12]. In this research application, CeCar serves as a very acces-
sible example system to experiment and demonstrate the ap-
plicability of novel engineering techniques to real-world prob-
lems.

B. Application for Development
As for research work, we can use CeCar also for develop-

ment work in a commercial environment. We use the platform
primarily for pre-development and pre-validation of algorithms,
before we bring these onto full-size test cars for validation in the
real environment. Due to the affordability of the platform, this
approach allows to scale and parallelize development activities,
without the need to invest into many full-size test vehicles.

This approach works well for camera-related algorithms. We
prototype algorithms on the CeCar platform that we can apply
on full-size cars with few adaptations. Key for representative-
ness in this field and for correlation of results between model
environment and real world is the use of qualitatively similar
camera sensors on CeCar and on the full-size test cars.

Also for prototyping of connected-car algorithms, the CeCar
provides a good and affordable testbed. This group of algorithms
is not very dependent on hardware and size aspects; therefore,
correlation between model-car test results and real-world test re-
sults is high.

In this context, the white-box nature of the CeCar platform
is important. We sufficiently understand the dynamics of the
model car and its “drive train”, and capture that in simulation
models. When re-using algorithms that we pre-develop on the
CeCar platform on the full-size cars, we are therefore able to
adapt their parameters according to the differences between the
dynamic model of the CeCar platform and the dynamic model
of the full-size car.

On the contrary, representativeness is difficult to achieve for
environmental sensing algorithms, which strongly depend on the
quality and physical positioning of sensors (e.g., ultrasonic sen-
sors, radar, or lidar). Here, the model car and its sensors deviate
strongly from the full-size test cars, and hamper comparability
and portability of algorithms.

C. Application for Education
Curricula at universities often contain project phases, to al-

low students to apply their acquired knowledge in multidiscipli-
nary settings, and to expose them to the real-world challenges of
executing complex development projects in settings with time
pressure and mutual dependencies between individuals and
teams.

At HTW Berlin, we use the CeCar platform in a master stu-
dent’s course where groups of 5 to 10 students develop a com-
plex technical system over a period of up to 3 semesters. In the
first cycle, a student team has extended the core CeCar function-
ality by adding self-protection and positioning features to the ca-
pability layer. In a second cycle, a different team has added vi-
sion capability, and is currently working on a vision-based auto-
mated driving function using traditional (i.e., non-machine-
learning) obstacle detection and route-finding algorithms.

There are several advantages connected to this setting:
• Students do real-world development, using a platform

as basis for their work, which reflects the current state-
of-the-art in industry. The nature of the platform allows
them to focus on low-level technology aspects (real-
time computation, communication protocols, sensor in-
tegration etc.) as well as on high-level aspects (system
architecture, cooperation and reconfiguration concepts
etc.).

• Reusing an existing platform design as starting point for
own developments, and being forced to document own
solutions properly such that others in turn can build on
that is a very typical setting for development in industry,
and therefore helps to prepare students for their future
professional life.

• Building their own solutions on top of an existing plat-
form enables the students to develop very attractive de-
monstrable products within the restricted timeframe of
the course.

Ideally, these projects require very different professions and
specializations, such that the students have a chance to contrib-
ute all knowledge that they have acquired in their studies, plus
additional expertise they might have. The projects require skills
from the core computer engineering curriculum, like hardware
development and real-time software development, but often also
things like control systems development, web-centric user inter-
face design, and design and manufacturing of 3D parts.

In parallel to such group work in projects, we allow individ-
ual students to perform bachelor and master theses focusing on
specific questions in automated and collaborative driving.
Through their thesis works, these students also contribute to the
continuous growth of CeCar capabilities.

D. Affordability and Representativeness
The total cost of a single CeCar is in the range of a few thou-

sand Euro. In comparison, a full-size experimental car has an
initial cost that is likely 10 times higher, and in addition induces
significant operational cost.

Despite the low cost, the CeCar platform is very representa-
tive of highly automated cars, with respect to dynamic features,
available sensors, and computing architecture. Representative-
ness is limited in areas that relate to model scale, detailed place-
ment of sensors, and certain aspects of vehicle dynamics. In con-
sequence, CeCar is very useful for experimental exploration of
algorithms for (highly) automated driving that do not depend on
such topics. Specifically for studies on cooperative driving – that
usually require several cars to participate in experiments – ap-
plication of the CeCar platform permits considerable savings.
Additional advantages arise from the fact that due to the scale of
cars, experiments can be performed inside of buildings or on
small test tracks, and require neither protected test circuits nor
lengthy authorization processes for the use of public streets.

VI. DISCUSSION
Model car concepts for experimentation and education al-

ready exist elsewhere. Probably the most well-known is the MIT
RACECAR. The MIT team developed the original version of
this model car around 2015, based on a commercial 1/10-scale
model racecar kit, and equipped with a Jetson TK1 processor
board, stereo camera and lidar sensor [13]. The team promotes
the MIT RACECAR for use in education, with students devel-
oping software for autonomous driving and performing compe-
titions on this basis. The platform has technologically pro-
gressed over time, with alternative versions relying the more
powerful Jetson AGX Xavier board and the capable and afford-
able Jetson TX Nano board announced in 2019 [14].

Other universities have developed similar platforms. In [15],
the author presents a concept for a standardized experimental
platform that was developed at Chalmers based on a systematic
literature review and in-depth analysis of miniature car concepts
that have been successful in self-driving car challenges. The
software architecture of the platform is modular and uses stand-
ardized software interfaces to support adaptation for new or
changed application scenarios. On the hardware side, the plat-
form relies on a standardized sensor set that is expected to match
a large variety of use cases.

Another example is the MOPED platform developed at
SICS, that is fully oriented towards applications for education
[16]. Aiming to be representative w.r.t. industrial development
challenges, the platform software is intentionally distributed
onto three Raspberry Pi controller boards, two of them operating
under the AUTOSAR automotive operating system. Whilst this
platform is conceptually extensible, it provides only low-level
control functions for speed and direction control, such that users
of the platform must develop all higher-level functionality on
top.

A similar platform is described in [17]. Here, the authors aim
to provide a hands-on platform that allows building self-driving
model vehicles with minimal effort. Whilst in some areas, for
instance on accurate positioning, they excellently provide the re-
quired functionality, they stay silent on other required function-
ality (like vision-based perception and associated processing
functions).

Different to these existing model car platforms, we propose
a truly modular system that strictly differentiates between the
Capability Layer providing the basic features of the platform,
and the Application Layer hosting the use-case-specific solu-
tions built on top. Consistent with this modular approach, we
separate the control algorithms influencing the core vehicle dy-
namics, host them on a specific real-time-capable control unit,
and keep them stable over time. Thereby we encapsulate the dy-
namic behavior of the model car, which enables us to capture it
in vehicle dynamics models and to rely on this behavior when
developing higher-level control functionality.

The CeCar platform supports the same basic objectives as
other existing model car experimental platforms, such as repre-
sentativeness, accessibility, and extensibility. With its pre-de-
fined and managed approach on modularity, CeCar lends itself
to stepwise extension and adaptation, and can therefore address
the needs of three different application areas in parallel: re-
search, development, and education. Core technical features of
the platform, such as its 1/8 scale and the computational power
of the MCU enable integration of further hardware components
and support functionality growth for the coming years.

VII. SUMMARY AND FUTURE WORK
CeCar is a very affordable platform for autonomous and co-

operative driving. Due to its modularity and the full accessibility
of its vehicle dynamics, engineers can easily tailor it to support
very different research, development and education objectives.

We plan to increase the usefulness and coverage of the plat-
form further by placing the development data and documenta-
tion online (in GitHub or alike), and by formally documenting
product line aspects of the CeCar platform using SysML. Fol-
lowing such step, we expect that the existing community of users
will start to grow rapidly and that users will make new capability
sets and solutions available to the community.

With the lifetime of ROS ending, we plan to port the CeCar
platform to ROS2. Whilst this is requiring considerable effort, it
will allow redefining and simplifying the CeCar concepts for
V2V and V2I communication, and the replacement of Coaty by
ROS2-native mechanisms.

VIII. ACKNOWLEDGEMENTS
We are grateful for the contributions that researchers and stu-

dents at Expleo, HTW Berlin and other universities have pro-
vided for the CeCar platform and its VeloxCar predecessor.

The work presented in this paper is funded by the Berlin In-
stitute for Applied Research (IFAF).

IX. REFERENCES

[1] D. Pomerleau, "Alvinn: An autonomous land vehicle in

a neural network," in Advances in Neural Information
Processing Systems, Denver, CO, USA, 1988.

[2] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez and V.
Koltun, "CARLA: An Open Urban Driving Simulator,"
in Proceedings of the 1st Annual Conference on Robot
Learning, 2017.

[3] A. Best, S. Narang, L. Pasqualin, D. Barber and D.
Manocha, "AutonoVi-SIm: Autonomous Vehicle
Simulation Platform with Waether, Sensing and Traffic
Control," in 2018 IEEE/CVS Conference on Computer
Vision and Pattern Recognition Workshops, 2018.

[4] Technalia, "Assurance and Certification of CPS," 2019.
[Online]. Available: https://www.amass-ecsel.eu/.
[Accessed 21 June 2019].

[5] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler and A. Y. Ng, "ROS: An open-
source Robot Operating System," in ICRA Workshop on
Open Source Software, 2009.

[6] Siemens, "Coaty - The lightweight open-source
framework for Collaborative IoT," 2018. [Online].
Available: https://coaty.io/. [Accessed 21 June 2019].

[7] T. Weilkiens, Variant Modeling with SysML, 2016.
[8] B. Zarrouki, V. Klös, M. Grabowski and S. Glesner,

"Fault-Tolerance by Graceful Degradation for Car
Platoons," in Workshop on Autonomous Systems Design,
Schloss Dagstuhl, Germany, 2019.

[9] TU Munich, "CrESt - Collaborative Embedded
Systems," 2018. [Online]. Available:
https://crest.in.tum.de/. [Accessed 21 June 2019].

[10] IFAF, "SiReSS - Sicherheitsrelevante
Rekonfigurierende Systems of Systems," 01 April 2019.
[Online]. Available: https://www.ifaf-
berlin.de/projekte/siress/. [Accessed 21 June 2019].

[11] J.-D. Quesel, S. Mitsch, S. Loos and A. Platzer, "How to
model and prove hybrid systems with KeYmaera: a
tutorial on safety," International Journal on Software
Tools for Technology Transfer, vol. 18, no. 1, pp. 67-91,
February 2016.

[12] T. Baar and S. Staroletov, "A Control Flow Graph
Based Approach to Make the Verification of Cyber-
Physical Systems Using KeYmaera Easier," Modeling
and Analysis of Information Systems, pp. 465-480, 2018.

[13] MIT Aero Astro, "Students' autonomous robots race in
MIT tunnels," 6 April 2015. [Online]. Available:
https://news.mit.edu/2015/students-autonomous-robots-
race-mit-tunnels-0406. [Accessed 21 June 2019].

[14] MIT Aero Astro, "MIT RaceCar Platforms," 24 May
2019. [Online]. Available: https://mit-
racecar.github.io/icra2019-workshop/platform.
[Accessed 21 June 2019].

[15] C. Berger, "From a Competition for Self-Driving
Miniature Cars to a Standardized Experimental
Platform: Concept, Models, Architecture, and
Evaluation," Journal of Software Engineering for
Robotics, pp. 63-79, May 2014.

[16] J. Axelsson, A. Kobetski, Z. Ni, S. Zhang and E.
Johansson, "MOPED: A Mobile Open Platform for
Experimental Design of Cyber-Physical Systems," in
40th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), 2014.

[17] B. Vedder, J. Vinter and M. Jonsson, "A Low-Cost
Model Vehicle Testbed with Accurate Positioning for
Autonomous Driving," Journal of Robotics, pp. 1-10,
November 2018.

	I. Introduction
	II. CeCar Use Cases
	III. CeCar Architecture
	A. Logical system architecture
	B. Technical system architecture

	IV. Modularity
	A. Capability Layer
	B. Application Layer
	C. Product line engineering aspects

	V. Platform Application
	A. Application for Research
	B. Application for Development
	C. Application for Education
	D. Affordability and Representativeness

	VI. Discussion
	VII. Summary and Future Work
	VIII. Acknowledgements
	IX. References

