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Introduction

Lectins are ubiquitous protein receptors able to bind complex oligosaccharides (Lis & Sharon, 2002). They display a large panel of biological functions and many lectins are useful in biotechnology and biomedecine applications. Lectins are generally multivalent, that is, they contain several binding sites for the simultaneous attachment to several target carbohydrates. While multivalency is usually associated with strong avidity for glycoconjugates, the topology of the binding sites in space is also of importance for generating high specificity, for example, towards the branches of N-glycans and for biological function. Recently, it was demonstrated that specific arrangements of lectin binding sites favour glycolipid clusters and therefore affect the structure and dynamics of the cell membranes [START_REF] Arnaud | Membrane deformation by neolectins with engineered glycolipid binding sites[END_REF].

The multivalent properties of proteins relate to their highly symmetrical shapes. Most of the time, the symmetry of a protein structure stems from the oligomerisation of identical protomers. In oligomeric lectins, the carbohydrate-binding sites are generally spread in different directions resulting in structures with dihedral (D2 to D8) or tetrahedral symmetry (Fig. 1). In contrast, the cyclic symmetry Cn generates structures where all binding sites are on the same side, therefore perfectly fitted to bind glycosylated surfaces, such as cell membranes. Few oligomeric cyclic lectins are observed and they adopt C2 to C7 symmetry (Fig. 1). Other lectins generate multivalency yet through a different strategy, using tandem repeats of a single motif to create cyclic and dihedral symmetries. In such case, the evolutionary origin of structure symmetry has been demonstrated to occur through gene duplication and fusion events [START_REF] Blaber | Emergence of symmetric protein architecture from a simple peptide motif: evolutionary models[END_REF]. The Lectin3D database [START_REF] Pérez | Imberty A: 3D-Lectin Database[END_REF] that gathers all known 3D-structures of lectins has been recently updated and remodeled as Unilectin3D [4]**. It contains more than 2000 structures in over 100 lectin families (i.e. unrelated sequences). While most are oligomeric, several different lectin families contain tandem repeats. A two-fold repeat with C2 symmetry is observed in some members of the βprism I (e.g, banana lectin, griffithsin), cyanovirin and few other families. Tandem repeats with C3 cyclic symmetry are observed in the β-prism II (e.g., piocyn, monocot lectins) and -trefoil families and is expected to occur in many lectins with the novel β-prism III fold [5]. Higher cyclic symmetry (Cn) is the hallmark of β-propellers lectins. Combination of tandem repeat and oligomerization result in even higher valency (Fig. 1).

Tandem repeat lectins and their symmetry are of high interest for understanding protein evolution but also for the design of "neo-lectins" with engineered structures and binding sites. In the emerging domain of synthetic glycobiology [6], engineering lectins provide powerful tools for deciphering the glycocode, but can also be applied in biotechnology for quality control of recombinant therapeutic glycoproteins, or in clinics as biomarkers for histopathology. Engineering strategies have been developed with some success [7] [8]**. In this review, we focus on the two families of tandem repeat lectins that have been demonstrated to be the most promising scaffold for engineering novel lectins, i.e. β-propellers and βtrefoils. 

Engineering β-trefoil structures and specificity

The plasticity of β-trefoil lectins makes them a convenient tool to study evolution. The construction of artificial lectins, mimicking their evolutionary pathways, was attempted for both plant and invertebrate proteins. A consensus sequence was designed based on the lactosebinding ricin B. The sequence was repeated to obtain the three-fold globular protein named ThreeFoil [49]. The resulting structure is almost perfectly symmetrical and exhibits high thermal stability. Interestingly, the carbohydrate ligand, i.e. lactose, acts as a chaperone and helps in the folding of the artificial lectin [50]*.

MytiLec is also an excellent candidate for engineering artificial lectins thanks to its high internal similarity and the presence of one active sugar-binding site in each lobe of the trefoil structure. In its native form, Mytilec consists of a tight homodimer and its specificity towards cancer antigen is of interest in biotechnology. The substitution of apolar residues by polar ones at the dimerization interface, resulted in a monomeric mutant, albeit with low stability [48]*. The loss of cytotoxic activity demonstrated that dimerization is crucial for cellular impact, as confirmed for the toxicity of CGL2 [43]**. The ancestral reconstruction method was used to create a threefold perfectly symmetrical protein derived from Mytilec and called Mitsuba (three-leaf in Japanese) [START_REF] Terada | Computational design of a symmetrical β-trefoil lectin with cancer cell binding activity[END_REF]**. Mitsuba interacts with cells which express globotriose on their surfaces and shows good stability but only weak anti-cancer activity.

Yabe et al. demonstrated the process of natural evolution mimicry by changing the specificity of earthworm EW29Ch lectin from galactose to sialic acid. The lectin was engineered by error-prone PCR with a reinforced ribosome display system and the original lactose-binding pocket was extended to adapt sialylation on the galactose ligand. With this approach, the authors created the first sialic acid specific R-type lectin [52]. In 2012, this method was further developed by Hu et al. [START_REF] Hu | Directed evolution of lectins with sugarbinding specificity for 6-sulfo-galactose[END_REF], who improved the process by introducing a high-throughput screening system with glycoconjugate microarrays. The engineered mutant is the first receptor specific for 6-sulfogalactose terminated glycans, and is a potential marker for various disease. Further analysis showed that the change of specificity was reached just by a single E20K point mutation.

. Conclusion and discussion

Tandem-repeat lectins originate from an evolution strategy based on gene duplication resulting in the multiplication of binding sites with ideal topology for binding to substrates. The identification of repeated short peptides with carbohydrate-binding activities is difficult and it is likely that novel lectin families are yet to be identified in Nature. For the known folds, such as β-propellers, appropriate bioinformatics tools turned out essential for efficient search in genomic databases [12]**.

Tandem-repeat lectins such as β-propellers and βtrefoils are excellent tools as bio-markers due to their strong avidity for glycoconjugates presented on cell membranes. Engineering strategies, from single point mutation to incorporation of noncanonical amino acids, or directed evolution, are now available for designing and controlling the specificity and the topology of such lectins. Creating such multivalent receptors through artificially constructed tandem repeats is a route of interest. It generally strongly enhances the receptor affinity for its ligand [START_REF] Connaris | Enhancing the receptor affinity of the sialic acid-binding domain of Vibrio cholerae sialidase through multivalency[END_REF][START_REF] Ribeiro | Characterization of a high-affinity sialic acid specific CBM40 from Clostridium perfringens and engineering of divalent form[END_REF]. It has also been demonstrated that expression as tandem-repeat sequences improves the production of recombinant algal lectins in bacterial systems [START_REF] Hwang | Induction of recombinant lectin expression by an artificially constructed tandem repeat structure: A case study using Bryopsis plumosa mannose-binding lectin[END_REF]. This is a definite option for the future development of artificial lectins, molecules that will have many applications in health science and biotechnology. Ligands are represented using the Symbol Nomenclature for Glycans [START_REF] Neelamegham | Updates to the Symbol Nomenclature for Glycans guidelines[END_REF]. B) Sugar binding sites of the same lectins as in section A with hydrogen bonds as blue lines, water molecule and calcium ions as red and green balls, respectively. C) Schematic representation of different architecture associated with β-trefoil lectins, including monomer, covalent or non-covalent dimers, and multimer (hemolytic lectin CEL-III). 
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 1 Figure 1. Schematic representation of different types of symmetry observed in A/ oligomeric lectins, B/ tandem-repeat lectins, anc C/ hybrid types. Lectin domain with identical peptide sequences are represented by identical color.
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 234 Figure 2. Representation of selected β-propeller lectins. A) Schematic representation of the different folds and assemblies observed in lectins. B) Structure of representative lectins in each family with carbohydrate ligands. C) Different types of functional assemblies of the β-propeller lectins Figure 3. Engineering of propellers. Schematic representation of deconstruction/construction of neo-lectin (left) and janus lectin (right) from the propeller architecture Figure 4. Representation of selected β-trefoil lectins. A) Variations of structure and specificity observed in β-trefoil lectins for bacteria (botulin toxin and actinohivin), fungi (CCL2 and MOA, plants (amaranthus agglutinin and ricin) and animals (mussel CGL and sea cucumber CEL-III).Ligands are represented using the Symbol Nomenclature for Glycans[START_REF] Neelamegham | Updates to the Symbol Nomenclature for Glycans guidelines[END_REF]. B) Sugar binding sites of the same lectins as in section A with hydrogen bonds as blue lines, water molecule and calcium ions as red and green balls, respectively. C) Schematic representation of different architecture associated with β-trefoil lectins, including monomer, covalent or non-covalent dimers, and multimer (hemolytic lectin CEL-III).

  Furthermore, β-propeller lectins are powerful tools for studying membrane dynamics as they can cluster glycan heads and invaginate the membrane. Decreasing the valency of the RSL lectin from six to three binding sites resulted in the loss of capacity to invaginate the cell membrane of giant vesicles decorated with Lewis a -pseudolipids[30]. The construction of a library of neolectins with systematic variations of the number and localization of binding sites demonstrated the crucial importance of distances between the binding sites, i.e. the effect of the lectin topology on the dynamics of targeted glycolipids[START_REF] Arnaud | Membrane deformation by neolectins with engineered glycolipid binding sites[END_REF].

	independent amplification and diversification pathways from an ancestral peptide [19]. The β-3 β-Trefoil lectins	2 -Propeller lectins functions. Both Mytilec and the related Crenomytilus grayanus CGL lectin bind with high
	galloprovincialis has antibacterial and antifungal pathogens. Mytilec from the mussel Mytilus interest due to their role in the protection against Lectins from marine invertebrates are of special 2.2 β-Propellers: scaffolds for engineering symmetry and multivalency The β-propeller fold has been an excellent scaffold for understanding and reproducing Evolution and several groups demonstrated the possibility to reconstruct symmetrical proteins. The Pizza protein was computationally designed and produced as a perfectly symmetrical 6-fold propeller [25], followed by the Tako and Ika peptides that self-assemble as symmetrical 8-fold propellers [26]. Tachylectin-2, the only propeller lectin with five blades, has been also used due to the remarkable conservation of amino acids among the blades. Genetic library screening by phage display resulted in the identification of 2-blade fragments that could assemble as new lectins with sugar-binding activity [27]. A novel approach was proposed through the alignment of Tachylectin-2 and Nematostella vectensis lectin sequences and the reconstruction of an ancestor blade, a 43 amino acid sequence that self-assembles in a 5-blade lectin able to efficiently bind glycoconjugates (Fig. peptide [46]. oligomannose in the three bindings sites of the structure of the lectin confirms the presence of envelope glycoprotein [45]. Indeed, the crystal against HIV-1 infection that targets the gp120 Actinomycetes is a broadly-neutralizing lectin group B epitope [44]. Actinohivin in lectin recognizing specifically α-galactose in blood such as the Marasmius oreades mushroom MOA that can be used for glycan sorting and labeling, useful in biotechnology. Some have fine specificity 3.1 β-Trefoil lectin: structural plasticity for multiple function The function of β-trefoil lectins can vary depending on the organism and ligands but many of them serve as a recognition module for an attached toxin domain, as for ricin-B, the first structure to be determined [42]. The β-trefoil domains often play a role in innate immunity as demonstrated by CCL2 from the Coprinopsis cinerea fungus which is toxic towards nematodes. The dimeric lectin acts by binding a fucosylated epitope present in the worm digestive system [43]**. β-Trefoil lectins are also Aleuria aurantia (AAL) and Aspergillus orizae (AAO) are available from companies and included in lectin arrays [21]. The specificity for terminal [23] [24]*. protozoan lectin [41]. tools for the glycoproteomics of O-GlcNAcylation rhamnose in the structure of a recently solved Agrocybe aegerita (AANL) are very interesting evidenced to bind a variety of sugars, including tissues [22] and both PVL and its homolog in specific for galactose, β-trefoil lectins have been can be used for labeling some cancer cells and binding sites (Fig. 4). While originally described as GlcNAc of the Psathyrella velutina lectin (PVL) present only one or two carbohydrate active can be degenerated and many -trefoil lectins albeit with some exceptions. The 3-fold symmetry each foil in most classes of β-trefoil lectins [40], biotechnology. Fucose-specific lectins from This involves the QxW motif that is repeated in the lab, which explains their wide use in hydrophobic residues are conserved in the core. produce in bacterial fermentation and to handle in sequence conservation is very weak and only a few β-Propeller lectins are robust proteins, easy to enzymes [39]. Whilst very conserved in shape, the prism-II proteins, which include several lectin classes, have been proposed to also share this ancestral peptide [20]. Interestingly, the only oligomeric β-propellers, i.e. possible fossil forms, identified so far are the microbial PropLec6A modules when attached to carbohydrate active by fully amplified peptides during evolution [19]. classified as family 13 of the carbohydrate-binding evolutionary intermediates that have been replaced with toxic or enzymatic activity. They are suggested that they represent less stable and animals and often attached to other proteins lectins (RSL, BambL and KozL). It has been β-Trefoil proteins are composed of a three-lobed architecture consisting of peptide repeats forming a barrel structure at one extremity and a triangular arrangement of hairpins at the other [38]. β-Trefoil lectins are largely spread in bacteria, fungi, plants	2.1 β-propellers lectins: large panel of structure The β-propeller fold is widely spread and results in proteins with four to ten repeats of four-stranded antiparallel β-sheets (i.e., blades of the propeller) assembled in a donut shape [9-11]. Members of the β-propeller family have diverse functions, ranging characterized by their structural rigidity. The known β-propeller lectins have been recently collected, compared and grouped into five classes based on the HMM signature of their blades [12]**. They are characterized by the positioning of five to seven carbohydrate binding sites on the same side of the donut, resulting in very efficient binding to fungal and bacterial proteins and is rather unique with respect to the blade assembly that forms the propeller. While all fungal structures display the classical 6-repeat architecture, the bacterial ones are much shorter and their sequences contain only two or three blades. The β-propeller of lectins of Ralstonia solanacearum (RSL) and Burkholderia ambifaria (BambL) result from the trimerization of short 90 amino acid-long peptides comprising two repeats [17,18] whereas the one found in Kordia zhangzhouensis (KozL) assembles as a dimer of Most recent studies have concluded that all β-propellers have a common monophyletic origin, in spite of the different families stemming from acids on the other face. Such supramolecular associate glyco-vesicles in proto-tissues [37]**. layer with bivalent glyco-compounds and to assembly was demonstrated to form an organized longer peptides comprising three repeats [12]**. able to bind six fucoses on one face and three sialic another bacterium resulted in the first Janus-lectin, RSL peptide with a sialic acid binding domain of elastin-like polypeptides [36]. The fusion of the responsive affinity sugar binders by fusion with used for the development of novel thermo-properties [35]. The RSL peptide has also been that displayed altered carbohydrate-binding 3, 6, or 12 polyethyleneglycol molecules (PEG) functionalization of RSL generated conjugates with hepatocellular carcinoma [34]*. Chemical for glycoconjugates (Fig. 2). The PropLec6A class of β-propellers contains aromatic amino acids (Trp or Tyr) stacking with the fucose, partly due to the interaction between The LecB6 family displays strong affinity for from signalling to enzymatic activity, and they are avidity the αGal1-4Gal epitope present on globotriaosyl ceramide in cancer cells. Both lectins have anti-cancer properties since this binding downregulates cell growth and leads to apoptosis [47]* [48]*.

β-propeller lectins are present in some bacterial and fungal pathogens and involved in infection by targeting glycans on host tissue, such as AFL/FleA in Aspergillus fumigatus that binds fucose and triggers a response from the host [13,14]. They are also involved in the innate immunity of several mushrooms and invertebrates and act by recognizing PAMPs (pathogenassociated molecular patterns) such as Nacetylated or methylated carbohydrates [15]**. Variations also occur at the supramolecular level: the donut-shaped β-propeller frequently associates back-to-back in solution, therefore presenting the carbohydrate-binding sites on opposite faces. Tetramer assemblies of such toruses can result in box-like shapes as in the lectin of Photorhabdus luminescens (PLL) [16] or virus-like shapes as in Tectonin 2 from Laccaria bicolor [15]**. 3) [28]**. Directed mutagenesis has been used for lowering the number of binding sites in β-propeller lectins, particularly in the LecB6 class. An AAL variant produced by site-directed mutagenesis to present only one functional fucose-binding site displayed a decrease in agglutination activity [29]. hydrophobic face of the monosaccharides. In the AAL fungal lectin, only five of the six binding sites bind fucose, and different occupancy of oligosaccharides indicate differences among the five sites. Alanine-mutation mapping on Trp and Tyr residues established that sites 1, 2 and 4 are more efficient for binding [31]. Synthetic biology was used for introducing fluorinated indol analogs of the tryptophan residues at different positions in RSL. Introduction of non-canonical amino acids resulted in lectin variants with altered specificity towards fucosylated blood group oligosaccharides [32]**.

Mutations of other amino acids in the binding sites were also explored and AAL mutants displaying altered binding affinities to different fucosylated oligosaccharides were obtained
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