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Abstract Reproducing the perception of a real-world

scene on a display device is a very challenging task

which requires the understanding of the camera pro-

cessing pipeline, the display process, and the way the

human visual system processes the light it captures.

Mathematical models based on psychophysical and phys-

iological laws on color vision, named Retinex, provide

efficient tools to handle degradations produced during

the camera processing pipeline like the reduction of the

contrast. In particular, Batard and Bertalmı́o [J Math.

Imag. Vis. 60(6), 849-881 (2018)] described some psy-

chophysical laws on brightness perception as covariant

derivatives, included them into a variational model, and

observed that the quality of the color image correction

is correlated with the accuracy of the vision model it

includes.

Based on this observation, we postulate that this

model can be improved by including more accurate

data on vision with a special attention on visual neuro-

science here. Then, inspired by the presence of neurons

responding to different visual attributes in the area V1

of the visual cortex as orientation, color or movement,

to name a few, and horizontal connections modeling

the interactions between those neurons, we construct

two variational models to process both local (edges,
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textures) and global (contrast) features. This is an im-

provement with respect to the model of Batard and

Bertalmı́o as the latter can not process local and global

features independently and simultaneously. Finally, we

conduct experiments on color images which corroborate

the improvement provided by the new models.

Keywords Variational model · Differential geometry ·
Color image processing · Convex/nonconvex analysis ·
Visual neuroscience · Visual perception.

1 Introduction

1.1 On existing models aiming to reproduce the

perception of real-world scenes on standard monitors

and their limits

Due to physical and technological limitations of the ac-

quisition process of a real-world scene by a digital cam-

era and its reproduction on a display device, the image

perceived on a monitor appears as a degraded version

of the original scene. The degradations observed are,

for instance, the presence of noise, mismatch of colors,

and loss of details and contrast to name only a few [11].

Moreover, as the dynamic range of a real-world scene is

much higher than the one of a standard display device,

processing the camera output image so that it repro-

duces the appearance of the original real-world scene is

even more challenging than recovering its light inten-

sity.

One way to tackle the problem is to make use of

knowledge about the functioning of the human visual

system (HVS). The seminal model based on this ap-

proach, named Retinex, aimed to reproduce the per-

ception of scenes using psychophysical laws on color

perception [27]. The proposed formulation turned out
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to perform color cast removal and contrast enhance-

ment, turning it into an image processing model which

improves the visual quality of the images. However, it

suffers from drawbacks, like the generation of noise and

the systematic increase of the intensity values of the

image. Since then, many models inspired by Retinex

have been developed, trying to improve the results of

the original formulation, see e.g. [10],[39] and references

therein. These models are commonly also called Retinex

models.

A connection between Retinex models and visual

neuroscience has been established for the first time by

Cowan and Bressloff [16] through the Wilson-Cowan

(W-C) equations [37],[38], a system of ODEs describ-

ing the temporal evolution of the activity of a popu-

lation of neurons responding to some visual attributes

and located in the area V1 of the visual cortex. Later

on, Bertalmı́o et al. [8] proposed a variational model

for color image correction improving the result of the

original Retinex formulation, and they showed that this

model is related to the W-C equations by showing that

the gradient descent of a differentiable approximation

of the model can be identified with a simplified version

of the W-C equations. Then, Bertalmı́o and Cowan [9]

connected the variational model for color image cor-

rection [8], the so-called kernel-based Retinex [10], and

the simplified W-C equations, establishing a connection

between image processing, visual perception and visual

neuroscience.

More recently, Batard and Bertalmı́o [6] proposed

a variational model on vector bundles for color image

correction which extends the model of Bertalmı́o et al.

[8] in the sense that the latter can be viewed as the Eu-

clidean restriction of the former. In this context, a color

image is considered as a section of a vector bundle of

rank 3 over the image domain, and the image gradient

is encoded into a covariant derivative. This approach

is consistent with Georgiev’s approach of color percep-

tion [21] in which he suggests that the color constancy

property of the HVS is due to the equivariance property

of the perceived gradient of the observed scene with re-

spect to lighting changes, and which turns the perceived

gradient of an image into a covariant derivative. More-

over, it has been shown in [6] that some psychophys-

ical laws like Weber’s and Weber-Fechner’s laws, and

the Helmholtz-Kohlrausch effect arise from connection

1-forms which are solutions of some variational models

constructed in [4]. This suggests that the HVS processes

the light in an optimal manner.

Despite the fact that the image processing models

of Bertalmı́o et al. [8] and Batard and Bertalmı́o [6] are

connected to visual perception and visual neuroscience,

they still suffer from many limitations when trying to

reproduce the perception of real-world scenes as the fol-

lowing two ones.

1. The models only deal with very few perceptual at-

tributes, i.e. the contrast (global feature) and edges, tex-

tures, noise (local features) and they are not able to

process global and local features both independently and

simultaneously. Whereas the parameters chosen in the

model of Bertalmı́o et al. make the model only process

the contrast, Batard and Bertalmı́o use a parameter

which controls the locality of the features that are pro-

cessed, where a large value implies a processing of the

contrast, a small one a processing of the local features,

and a medium value provides a trade-off between local

and global features.

2. The models systematically enhance the perceptual at-

tributes. Whereas an enhancing behavior can be desir-

able when the image to be processed is of low-resolution,

e.g. it is the output image of a low-resolution camera,

recent progresses in technology and imaging, e.g. High

Dynamic Range (HDR) imaging [31], can provide im-

ages of great quality (high contrast, saturated colors,

etc). It can even occur that these images, when dis-

played on standard monitors, have higher contrast than

the original real-world scenes, for instance if the tone

mapping method which enables the HDR image to be

displayed on a standard monitor is not well adjusted

[17],[19]. In such a case, an accurate color image cor-

rection model should be able to regularize the image

features in order to match the perception of the real-

world scene.

1.2 Using neuroscience to overcome drawbacks of color

image correction models

The two limits of the variational models aforementioned

can be overcome by making use of some properties of

the functional architecture of the HVS related to the

W-C equations.

1. The W-C equations can describe the temporal activ-

ity of neurons responding to various visual attributes.

Whereas the original W-C equations deal with neurons

responding to local orientations, it has been suggested

in [15] resp. [34] that the activities of neurons respond-

ing to local features (edges and textures) resp. colors

evolve according to W-C equations as well.

Indeed, in the area V1 of the visual cortex, the presence

of neurons responding to visual attributes, like color,

orientation, movement, etc, and arranged in a hyper-

columnar structure has been discovered by Hubel and
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Wiesel [23],[24]. As a consequence, the set of neurons

responding to such a visual attribute can be represented

as a fiber bundle Ω×F −→ Ω, where Ω denotes the cor-

tical plane and F a set representing the visual attribute

(e.g. F is an opponent space if the visual attribute con-

sidered are the colors). Then, according to the W-C

equations, the activities a(x, f, t) and a(y, f ′, t) at the

time t of the neurons of coordinates (x, f) and (y, f ′)

in Ω ×F are connected through a term of the form

w(x, f, y, f ′)σ [s (a(x, f, t), a(y, f ′, t))] , (1)

where w(x, f, y, f ′) is called the synaptic weight be-

tween the neurons (x, f) and (y, f ′), σ is an activation

function such that σ(0) = 0, and s measures a differ-

ence.

When establishing a connection between their image

processing model and the W-C equations, Bertalmı́o et

al. [8] deal with a simplified version of the term (1)

by removing its dependency with respect to the visual

attribute, yielding a term of the form

w(x, y)σ [s (a(x, t), a(y, t))] (2)

under the identification between the cortical plane and

the image domain. Then, in order for the term (2) to

characterize a visual attribute, the couple of parameters

(w, σ) has to be carefully chosen.

In [5], it has been shown that, there exists a choice

(w1, σ1) which makes the term (2) characterize edges

and textures (local features). On the other hand, it has

been shown in [7] that there exists a choice (w2, σ2)

which makes the term (2) characterize the contrast

(global feature), such that w2 6= w1 and σ2 6= σ1. Based

on this, we propose to combine these two terms in order

to process independently and simultaneously the local

and global features. Note that it has been shown in

[6] that a well-chosen difference measure s can describe

some psychophysical laws.

2. Horizontal connections between columns can have ei-

ther excitatory or inhibitory effect. In the W-C equa-

tions, the synaptic weight (1) is decomposed as

w(x, f, y, f ′) =wver(f, f
′)δ(x− y)

+ γ whor(x, f, y, f
′) (1− δ(x− y)),

where δ is the Dirac delta function, γ ∈ R, wver is

called vertical connection and whor horizontal connec-

tion, see [37,38,15,34] for more details about the shape

of the vertical and horizontal connections. The sign of

γ determines the effect of the horizontal connection, ex-

citatory or inhibitory, and which actually depends on

the contrast in the input signal [13]. Under the simpli-

fication aforementioned, the term (2) takes the form

γ whor(x, y)σ [s (a(x, t), a(y, t))] , (3)

and the sign of γ determines whether the term (3) has

a regularizing or enhancing effect in the subsequent im-

age processing models. Hence, attaching a parameter

γ1 to the term describing the local features and a pa-

rameter γ2 to the term describing the global features

makes the proposed models regularize or enhance the

local features and regularize or enhance the global fea-

tures depending on the signs of γ1 and γ2.

1.3 Contribution of the paper: construction and

analysis of two models processing the local and global

features independently and simultaneously

Because the way the visual input is processed in V1 is

very complex and still not fully understood, we present

in this paper two models for color image correction

based on two different hypothesis. The first model relies

on the idea that chromatic and achromatic information

interact as early as V1 [26], leading to a variational

model composed of three terms: a data term, a term

characterizing edges and textures, and a term charac-

terizing the contrast. The second model is based on

the idea that achromatic and chromatic components are

processed separately and independently in early vision

and only interact at some high perceptual level beyond

V1, as it has been originally proposed by Hering [25]

in the 19th century. Together with the idea that neu-

rons responding to local features are activated by the

achromatic information and neurons responding to col-

ors are activated by the chromatic information of the

visual input, we are led to consider as a second model

a system of two variational models: one similar to the

model in [7] to process the contrast of the chrominance

component, and one similar to the model in [6] to pro-

cess the local features of the achromatic component of

a color image.

The outline of the paper is the following. In section

2, we establish a connection between the image pro-

cessing model [6] and the W-C equations for neurons

responding to edges and textures [15], and between the

model in [7] and the W-C equations for neurons re-

sponding to colors [34]. In section 3, we introduce the

new models, from which we derive new forms of the

W-C equations. Then, we study their properties and

propose a numerical scheme to reach their solutions.

Finally, experiments are conducted in section 4, where

we show the capability of the proposed models to cor-

rect different degradations on color images.
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2 Connection of W-C equations to vision and

image processing

2.1 Mathematical setting

In order to analyze the variational models we introduce

later on, we first need to remind some mathematical

concepts.

Let E be a vector bundle over a manifold M with tan-

gent bundle TM and cotangent bundle T ∗M . By Γ (E)

we denote the set of continuous sections of E and by

pr1(E) the vector bundle over M ×M induced by the

projection

pr1 : M ×M −→M, (x, y) 7−→ x,

i.e.

pr1(E) = {(x, y, p) ∈M ×M × E : x = π(p)},

where π stands for the projection from the fibers to the

base manifold.

Let ∇ be a covariant derivative on E and ω the cor-

responding connection 1-form, i.e. ∇ = d+ ω, where d

stands for the standard differential operator and ω ∈
Γ (T ∗M ⊗ End(E)). By τ we denote the parallel trans-

port map induced by ∇.

A nonlocal covariant derivative induced by ∇ is an

operator ∇NLw : Γ (E) −→ Γ (pr1(E)) defined by

∇NLw a : (x, y) 7−→ w(x, y)
(
τy,x,γy,xa(y)− a(x)

)
,

where w is a smooth, positive, symmetric and normal-

ized kernel as in (8), and τy,x,γy,x stands for the parallel
transport along the path γy,x joining y and x.

A positive definite metric h on E induces an L2

scalar product and an Lp norm on Γ (E), given by

〈a1, a2〉L2(E) =

∫
M

(a1(x), a2(x))h(x) dx,

and

‖a‖Lp(E) =

Å∫
M

‖a(x)‖ph(x) dx
ã1/p

.

The space Lp(E) is defined as the completion of Γ (E)

with respect to ‖ . ‖Lp(E).

Moreover, h induces an L2 scalar product and a Lp

norm on Γ (pr1(E)) given by

〈ζ1, ζ2〉L2(pr1(E)) =

∫
M2

(ζ1(x, y), ζ2(x, y))h(x) dx dy,

and

‖ζ‖Lp(pr1(E)) =

Å∫
M2

‖ζ(x, y)‖ph(x) dx dy
ã1/p

.

The space Lp(pr1(E)) is defined as the completion of

Γ (pr1(E)) with respect to ‖ . ‖Lp(pr1(E)).

The adjoint of the operator ∇NLw is defined as the

operator ∇NLw
∗

: Γ (pr1(E)) −→ Γ (E) satisfying

〈∇NLw
∗
ζ, χ〉L2(E) = 〈ζ,∇NLw χ〉L2(pr1(E))

for all ζ ∈ Γ (pr1(E)), χ ∈ Γ (E). In particular, if ∇ is

compatible with h, i.e. if it satisfies

dvh(a1, a2) = 〈∇va1, a2〉L2(E) + 〈a1,∇va2〉L2(E),

for all v ∈ Γ (TM), then we have

∇NLw
∗
ζ : x 7−→

∫
M

w(x, y)
[
τy,x,γy,xζ(y, x)− ζ(x, y)

]
dy,

see [5] for details of the computation.

Finally, by [5], it holds

‖∇NLw a‖L1(E) = sup
ζ∈K1

〈a, ζ〉L2(E) , (4)

where K1 : ={
∇NLw

∗
η : η ∈ Γ (pr1(E)), ‖η(x, y)‖h(x) ≤ 1 ∀x, y ∈M

}
.

From now on, we consider the image domain, which

we identify to the cortical plane in this paper, as a com-

pact subset Ω of R2, and we denote by E the vector

bundle Ω × R3 −→ Ω. Moreover, we assume that E

is equipped with a positive definite metric h and a co-

variant derivative compatible with h. A color image is

considered as an element of the space Γ (E)∩L2(E). For
shortness, we will write L2(E) instead of Γ (E)∩L2(E).

2.2 W-C equations and visual perception

The W-C equations describe the temporal evolution of

the mean activity a(x, f, t) of a population of neurons

of cortical coordinates x ∈ Ω and feature preference

f ∈ F with the following integro-differential equation

∂a(x, f, t)

∂t
= −α1 a(x, f, t) + a0(x, f, t)

+ α2

∫
Ω

∫
F
w(x, f, y, f ′)σ [s (a(x, f, t), a(y, f ′, t))] dy df ′,

(5)

where α1, α2 > 0 and a0 is the visual input. The other

terms have already been described in sect.1.2. In the

case where the visual attribute corresponds to the lo-

cal features (edges and textures), Chossat and Faugeras

[15] proposed to encode the features space F with the
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set of structure tensors T ∈ SPD(2,R), see [20]. Here,

SPD(2,R) denotes the cone of symmetric positive defi-

nite matrices equipped with the affine invariant metric

and corresponding distance function dSPD(2,R). In the

case where the visual attribute is the colors, Song et al.

[34] proposed to encode F with some color opponent

space Copp ⊂ R3.

Ignoring the dependence of the neuron activity with

respect to the feature, the term (1) is reduced to (3),

and assuming that the input a0 is constant in time, the

W-C equation (5) is reduced to

∂a(x, t)

∂t
= −α1 a(x, t) + a0(x) (6)

+ α2γ

∫
Ω

whor(x, y)σ [s (a(x, t), a(y, t))] dy.

It turns out that there is a strong analogy between the

integral term in (6) and the Retinex theory of visual

perception (see Appendix A.1). Moreover, the percep-

tual difference (with respect to some psychophysical

law) between the pixels x and y can be written as

a(x)− τy,x,γy,xa(y),

for a well-chosen metric h and a covariant derivative

compatible with h (see Appendices A.2 and A.3). As a

consequence, the notion of perceptual difference can be

inserted into the simplified W-C equation (6) under the

identification

s(a(x, t), a(y, t)) = a(x, t)− τy,x,γy,xa(y, t). (7)

2.3 W-C equations and image processing

From now on, we assume that α1 = α2 = 1 in (6),

that the difference function s is the perceptual distance

(7), and that whor is smooth, positive, symmetric, and

normalized as∫
Ω

whor(x, y) dy =

∫
Ω

whor(x, y) dx = 1 (8)

for all x, y ∈ Ω. In this paper, we assume that color

images are expressed in the CIE L∗a∗b∗ color space.

In [8], the authors relate their image processing model

to the original W-C equations, i.e. equation (5) where

the features space F is the set of local orientations.

However, this model processes the contrast of the im-

age and not its local orientations. Hence, we claim that

it would be more accurate to relate this image process-

ing model to the W-C equations describing the activity

of neurons responding to colors, i.e. equation (5) with

F being an opponent color space Copp.

2.3.1 Image processing model related to the W-C

equations for neurons responding to edges and textures

Assuming that the activation function σ in (6) is non-

linear of the form

σ(z) =
z»

‖z‖2h + ε
, ε > 0,

the evolution equation (6) corresponds to the gradient

descent equation of a differentiable approximation of

the variational problem

arg min
a∈L2(E)

1

2

∫
Ω

‖a(x)− a0(x)‖2h(x) dx (9)

− γ

2

∫
Ω2

whor(x, y)‖ τy,x,γy,xa(y)− a(x)‖h(x) dx dy.

The term

‖ τy,x,γy,xa(y)− a(x)‖h(x)
can be considered as the perceptual distance between

the pixels x and y. Note that by compatibility of the

covariant derivative with h, we have

‖ τy,x,γy,xa(y)− a(x)‖h(x) = ‖ τx,y,γx,ya(x)− a(y)‖h(y).

Model (9) has been first studied in [5], where the unique-

ness of the solution has been proved for γ ≤ 0 and the

existence of solutions for γ > 0 and Ω discrete. More-

over, it has been shown that the solutions a can be

written as

a = a0−


arg min
a∗∈K−γ/2

∥∥∥a0 − a∗∥∥∥2
L2(E)

if γ ≤ 0,

arg max
a∗∈Kγ/2

∥∥∥a0 − a∗∥∥∥2
L2(E)

if γ > 0

and Ω is discrete.

In particular, taking whor as the kernel (here discrete)

whor(x, y) =


1

|Ω′(x)|
if y ∈ Ω′(x),

0 otherwise,

(10)

where Ω′(x) is a medium-sized window centered at x,

the model (9) processes the local features of a0. For an

example, see Fig. 1(center), where the model has been

applied with h given by the identity matrix and ω = 0

in the frame L∗a∗b∗. As parameters γ = 10, and Ω′ of

size 41× 41 were chosen.

Hence, by its property of processing the local features of

images, together with the observation described in the

paragraph following formula (8), model (9) with whor
of the form (10) can be related to the W-C equations

describing the activity of neurons responding to the lo-

cal features of the visual input, i.e. equation (5) with

F=SPD(2,R).
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Fig. 1 Different activations and kernels imply the processing of different features. Left: Original image - Middle: Solution of
the model (9) (non-linear activation) with the kernel whor taken as a constant kernel of medium-size support - Right: Solution
of the model (11) (linear activation) with the kernel whor taken as a Gaussian kernel of large variance.

2.3.2 Image processing model related to the W-C

equations for neurons responding to colors

Assuming that the activation function σ is the Iden-

tity map, the evolution equation (6) corresponds to the

gradient descent equation of the variational model

arg min
a∈L2(E)

1

2

∫
Ω

‖a(x)− a0(x)‖2h(x) dx (11)

− γ

4

∫
Ω2

whor(x, y)‖ τy,x,γy,xa(y)− a(x)‖2h(x) dx dy,

which has been introduced in [7], but not studied, and

we propose in what follows to analyze it. We obtain the

following result.

Proposition 1 Let Ω = T2, where T denotes the 1-

torus, i.e., we assume periodic boundary conditions. The

energy in (11) is strictly convex for γ < 1/2. Moreover,

for whor(x, y) = whor(x−y), if the covariant derivative

is flat and if we denote by P a moving frame in which

the corresponding connection 1-form vanishes, then the

unique solution of the problem (11) is given by

P

Å
F−1

Å F(P−1a0)

(1− γ) + γ F(whor)

ãã
, (12)

where F is the Fourier transform on L2(T2), and F−1
its inverse.

Proof Denoting by X the functional in (11), we have

d2

dt2
X(a+ tψ)|t=0 =

∫
Ω

‖ψ(x)‖2h(x) dx (13)

− γ

2

∫
Ω2

whor(x, y)‖τy,x,γy,xψ(y)− ψ(x)‖2h(x)dx dy.

If γ ≤ 0, then we observe that the expression (13) is

positive ∀ψ and vanishes if and only if ψ = 0.

Let us assume that γ > 0. From the triangle inequality

and the compatibility of the covariant derivative with

h, we have

‖τy,x,γy,xψ(y)− ψ(x)‖2h(x) ≤‖ψ(x)‖2h(x) + ‖ψ(y)‖2h(y)
+ 2‖ψ(x)‖h(x)‖ψ(y)‖h(y).

Moreover, using Fubini’s theorem and the fact that

whor is normalized, we have∫
Ω2

whor(x, y)‖ψ(x)‖2h(x)dxdy

=

∫
Ω2

whor(x, y)‖ψ(y)‖2h(y)dxdy

=

∫
Ω

‖ψ(x)‖2h(x)dx.

Hence,∫
Ω2

whor(x, y)‖τy,x,γy,xψ(y)− ψ(x)‖2h(x)dx dy

≤ 2

∫
Ω

‖ψ(x)‖2h(x)dx

+ 2

∫
Ω2

whor(x, y)‖ψ(x)‖h(x)‖ψ(y)‖h(y) dxdy. (14)

Applying the Cauchy-Schwarz inequality yields∫
Ω2

whor(x, y)‖ψ(x)‖h(x)‖ψ(y)‖h(y) dxdy

≤
Å∫

Ω2

whor(x, y)‖ψ(x)‖2h(x)dxdy
ã1/2

×
Å∫

Ω2

whor(x, y)‖ψ(y)‖2h(y)dxdy
ã1/2

≤
∫
Ω2

whor(x, y)‖ψ(x)‖2h(x)dxdy

≤
∫
Ω

‖ψ(x)‖2h(x)dx.

Together with (14), it gives∫
Ω2

whor(x, y)‖τy,x,γy,xψ(y)− ψ(x)‖2h(x)dx dy (15)

≤ 4

∫
Ω

‖ψ(x)‖2h(x) dx,
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from which we deduce that

d2

dt2
X(a+ tψ)|t=0 ≥ (1− 2γ)

∫
Ω

‖ψ(x)‖2h(x) dx,

which means that X is strictly convex if γ < 1/2.

The critical points of X are the solutions of the fol-

lowing gradient equation in the L2 sense

a−a0−γ
Å
a−

∫
Ω

whor(x, y)τy,x,γy,xa(y) dy

ã
= 0. (16)

Assume that whor(x, y) = whor(x− y). In particular, if

the covariant derivative is flat, and denoting by P the

moving frame in which the corresponding connection 1-

form vanishes, equation (16) is expressed in the frame

P as

a− P−1a0 − γ(a− whor ∗ a) = 0,

where ∗ denotes the cyclic convolution and

a(x) = P (x)a(x). The unique solution of the above

equation is given by

a = F−1
Å F(P−1a0)

(1− γ) + γ F(whor)

ã
.

Finally, the solution is expressed in the original frame

by (12). ut

Taking whor as a (periodized) Gaussian kernel of

large variance, model (11) processes the contrast of a0
(see Fig. 1(right), where the model has been applied

with h given by the identity matrix I3 and ω = 0 in

the frame L∗a∗b∗, and with the parameters γ = 0.25

and variance of the Gaussian 2000). In particular, we

observe that only the colors of the original image are

processed and not its local features. Hence, the model

(11) with whor being a Gaussian kernel of large variance

can be related to the W-C equation (5) with F being

an opponent color space Copp, as the model in [8].

3 Variational models to process local and global

features simultaneously and independently

3.1 Different hypothesis on the processing of the visual

input in V1 yield different variational problems

Based on the results shown in Fig. 1, we propose to

combine the models (9) and (11) in order to process

local and global features simultaneously and indepen-

dently.

3.1.1 Achromatic and chromatic components interact

in V1

Under this hypothesis, we propose the following varia-

tional model

arg min
a∈L2(E)

1

2

∫
Ω

‖a(x)− a0(x)‖2h(x) dx

− γ1
2

∫
Ω2

w1(x, y)
∥∥τy,x,γy,xa(y)− a(x)

∥∥
h(x)

dx dy

− γ2
4

∫
Ω2

w2(x, y)
∥∥τy,x,γy,x a(y)− a(x)

∥∥2
h(x)

dx dy,

(17)

where w1 is of the form (10), w2 is a normalized Gaus-

sian kernel, and γ1, γ2 ∈ R.

Following the connection between the W-C equa-

tions and image processing models established in sect. 2,

model (17) can be associated to a new form of the

W-C equations combining the activity of neurons re-

sponding to edges/textures and colors, which we write

a(x, T , c, t), for x ∈ Ω, T ∈ SPD(2,R), c ∈ Copp, and

t ∈ R+. It gives the following integro-differential equa-

tion

∂a(x, T , c, t)
∂t

= −α1 a(x, T , c, t) + a0(x, T , c, t)

+ α2

∫
Ω

Ç∫
Copp

w2(x, c, y, c′)σ2 [s (a(x, T , c, t), a(y, T ′, c′, t))] dc′

+

∫
SPD(2,R)

w1(x, T , y, T ′)σ1 [s (a(x, T , c, t), a(y, T ′, c′, t))] dT ′
å
dy,

where the synaptic weights w1, w2 are of the form

w1(x, T , y, T ′) =w1ver (T , T ′)δ(x− y) (18)

+ γ1 w1hor (x, T , y, T ′) (1− δ(x− y)),

and

w2(x, c, y, c′) =w2ver (c, c
′)δ(x− y) (19)

+ γ2 w2hor (x, c, y, c
′) (1− δ(x− y)).

3.1.2 Achromatic and chromatic components are

processed separately and independently in V1

Under this hypothesis, and together with the idea that

neurons responding to local features are related to the

achromatic component L∗ and neurons responding to

colors to the chrominance component C∗ = (a∗, b∗),

we decompose the vector bundle E = Ω × R3 −→ Ω

as E = E1 ⊕ E2 with E1 is the vector bundle Ω ×
R −→ Ω equipped with a definite positive metric h1
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and a covariant derivative ∇1 compatible with h1, and

E2 is the vector bundle Ω ×R2 −→ Ω equipped with a

definite positive metric h2 and a covariant derivative∇2

compatible with h2. Then, denoting by L0
∗ resp. C0

∗ the

achromatic resp. chromatic component of the image a0,

we propose the following system of variational model


arg min

L∗∈L2(Ω;E1)

1

2
‖L∗(x)− L0

∗(x)‖2L2(E1)
− γ1

2
‖∇NL1w1

L∗‖L1(E1),

arg min
C∗∈L2(Ω;E2)

1

2
‖C∗(x)− C∗0

∗(x)‖2L2(E2)
− γ2

4
‖∇NL2w2

C∗‖2L2(E2)
,

(20)

where w1 is of the form (10), w2 is a normalized Gaus-

sian kernel, and γ1, γ2 ∈ R.

The system (20) can be associated to the following sys-

tem of W-C equations

∂a1(x, T , t)
∂t

= −α11a1(x, T , t) + a01(x, T , t)

+ α12

∫
Ω

∫
SPD(2,R)

w1(x, T , y, T ′)σ1 [s1(a1(x, T , t),

a1(y, T ′, t))] dy dT ′

∂a2(x, c, t)

∂t
= −α21 a2(x, c, t) + a02(x, c, t)

+ α22

∫
Ω

∫
Copp

w2(x, c, y, c′)σ2 [s2(a2(x, c, t),

a2(y, c′, t))] dy dc′,

with a1 denoting the activity of the neurons responding

to edges and textures, and a2 the activity of the neurons

responding to colors. The weights w1 and w2 are given

by (18) and (19).

3.2 On the existence and uniqueness of the solutions

of model (17)

In this section, we assume that the vector bundle in the

model (17) is of any rank n. In this context, the vari-

ational models in the system (20) correspond to par-

ticular cases of the variational model (17) for γ2 = 0

(first model) or γ1 = 0 (second model). Hence, it suf-

fices to study model (17) in what follows. We obtain

the following result.

Proposition 2 The functional in (17) is coercive and

bounded from below for γ2 < 1/2.

Proof Let us denote by X = X1 +X2 the functional in

(17), where

X1(a) =
1

2
‖a− a0‖2L2(E)

− γ1
2

∫
Ω2

w1(x, y)‖ τy,x,γy,xa(y)− a(x)‖h(x) dxdy,

X2(a) = −γ2
4

∫
Ω2

w2(x, y)‖ τy,x,γy,xa(y)−a(x)‖2h(x) dxdy.

We have

1

2
‖a− a0‖2L2(E) ≥

1

2
‖a‖2L2(E) − ‖a‖L2(E)‖a0‖L2(E) (21)

+
1

2
‖a0‖2L2(E)

from Cauchy-Schwarz inequality.

We deduce that

X1(a) ≥ 1

2
‖a‖2L2(E) +

1

2
‖a0‖2L2(E) − ‖a‖L2(E)‖a0‖L2(E)

(22)

if γ1 ≤ 0 as the second term of X1 is positive for all

a ∈ L2(E). It follows from (22) that X1 is coercive and

bounded from below if γ1 ≤ 0.

Let us now assume that γ1 > 0. From the triangle

inequality and the fact that the covariant derivative is

compatible with h, we have

‖τy,x,γy,xa(y)− a(x)‖h(x) ≤ ‖a(x)‖h(x) + ‖a(y)‖h(y).

Then, from Fubini’s theorem and the fact that w1 is

normalized, we have∫
Ω2

w1(x, y)‖a(x)‖h(x)dxdy =

∫
Ω2

w1(x, y)‖a(y)‖h(y)dxdy

=

∫
Ω

‖a(x)‖h(x)dx.

Hence, if γ1 > 0, we have

−γ1
2

∫
Ω2

w1(x, y)‖ τy,x,γy,xa(y)−a(x)‖h(x) dxdy ≥ −γ1‖a‖L1(E),

and together with (21) further

X1(a) ≥1

2
‖a‖2L2(E) +

1

2
‖a0‖2L2(E) − ‖a‖L2(E)‖a0‖L2(E)

− γ1‖a‖L1(E).
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Then, using Hölder’s inequality, we have

‖a‖L1(E) ≤
»
|Ω| ‖a‖L2(E),

which gives

X1(a) ≥ 1

2
‖a‖2L2(E) +

1

2
‖a0‖2L2(E) − ‖a‖L2(E)‖a0‖L2(E)

− γ1
»
|Ω|‖a‖L2(E). (23)

We deduce from (23) that X1 is coercive and bounded

from below for γ1 > 0 as well.

If γ2 ≤ 0, the functional X is coercive and bounded

from below as the sum of the coercive and bounded

from below functional X1 and the positive functional

X2.

Finally, let us assume that γ2 > 0. Then, inequality

(23) together with (15) gives

X(a) ≥1

2
‖a‖2L2(E) +

1

2
‖a0‖2L2(E) − ‖a‖L2(E)‖a0‖L2(E)

− γ1
»
|Ω| ‖a‖L2(E) − γ2‖a‖2L2(E),

which ensures that X is coercive and bounded from

below if γ2 < 1/2. ut

Under the assumption that γ2 < 1/2, the functional in

(17) is continuous, coercive and bounded from below,

which guarantees the existence of a solution of the vari-

ational problem (17).

Moreover, assuming in addition that γ1 ≤ 0, the func-

tional is strictly convex as the sum of a strictly con-

vex functional (see Prop. 1) and a convex functional

(the term (4) is convex as the sup of linear functions),

which guarantees the uniqueness of the solution of the

variational problem (17).

3.3 Numerical solution schemes

In this section, we suggest numerical schemes for finding

a minimizer of (17) for γ2 <
1
2 , where we distinguish

the cases γ1 ≤ 0, where the functional is strictly convex

and γ1 > 0, where the functional is the difference of

two convex functions.

3.3.1 The case γ1 ≤ 0 and γ2 < 1/2

Problem (17) is of the form

min
a∈L2(E)

{G(a) + F (Ka)} (24)

where

G(a) = − 1

γ1
‖a− a0‖2L2(E) +

γ2
2γ1
‖∇NLw2

a‖2
L2(pr1(E))

,

F (Ka) = ‖∇w1

NLa‖L1(pr1(E)). (25)

Here K : L2(E) −→ L2(pr1(E)) is the nonlocal covari-

ant derivative operator ∇NLw1
. Recall that by Proposi-

tion 1 the function G is strictly convex. Let

F ∗(η) = sup
x
{〈x, η〉 − F (x)}

denote the (convex) Fenchel conjugate of F . The dual

formulation of problem (24) is

− min
η∈L2(pr1(E))

{G∗(−K∗η) + F ∗(η)}, (26)

i.e., (24) and (26) have the same value. The function

F ∗ is the indicator function of the set

H1 : =
{
ζ ∈ Γ (pr1(E)), ‖ζ(x, y)‖h(x) ≤ 1 ∀x, y ∈ Ω

}
.

Let us now assume that Ω is a discrete grid. In this

context, the spaces L2(E) and L2(pr1(E)) are finite-

dimensional real vector spaces equipped with an in-

ner product. Moreover, the properties of F,G,K hold

in the discrete case well, i.e. the map K : L2(E) −→
L2(pr1(E)) is a continuous linear operator possessing

an adjoint K∗, and the maps G,F are proper, convex,

lower semi-continuous.

As a consequence, problem (24) can be solved by the

primal-dual hybrid algorithm of Chambolle and Pock

[14] described in Algorithm 1. In our numerical exam-

ples we choose θ = 1. Since F ∗ is the indicator function

of the convex set H1, the proximal operator of σF ∗ is

given by

proxσF∗(ζ) =
ζ

max(1, ‖ζ‖h)
. (27)

By definition, the proximal operator of τG is given by

proxτG(f) = arg min
v∈L2(E)

1

2
‖v − f‖2L2(E) −

τ

γ1
‖v − a0‖2L2(E)

+
τγ2
2γ1
‖∇w2

NLv‖2L2(pr1(E)).

In particular, assuming that the covariant derivative is

flat and denoting by P the moving frame in which the

corresponding connection 1-form vanishes, we have

proxτG(f) = F−1
Ñ

F
(
P−1a0 −

γ1
2τ
f
)

1− γ2 −
γ1
2τ

+ γ2F(w2)

é
,

in the frame P , and the iterative procedure in Algo-

rithm 1 reads

an+1 = F−1
Ñ
F
(
P−1a0 −

γ1
2τ

Ä
an − τ∇w1

NL∗ ηn
ä)

1− γ2 −
γ1
2τ

+ γ2F(w2)

é
,

an = an+1 + θ(an+1 − an),

ηn+1 =
ηn + σ∇w1

NL an

max (1, ‖ηn + σ∇w1

NL an‖2)
.
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Algorithm 1 Primal-Dual Algorithm for the Sum of Convex Functions

1: Initialization: Choose τ, σ > 0 with στ ≤ 1/‖K‖22 and (a0, η0) ∈ L2(E)× L2(pr1(E)), θ ∈ (0, 1]
2: Iterations: For n = 0, 1, . . . until a stopping criterion is reached

an+1 = proxτG(an − τK∗ ηn)

an = an+1 + θ(an+1 − an)

ηn+1 = proxσF∗(η
n + σK an)

Finally, denoting by (a, η) the limit point of the iter-

ation, the solution of the primal problem (24) in the

original frame is Pa.

3.3.2 The case γ1 > 0 and γ2 < 1/2

Problem (17) is of the form

min
a∈L2(E)

{G(a)− F (K a)}, (28)

where

G(a) =
1

γ1
‖a− a0‖2L2(E) −

γ2
2γ1
‖∇NLw2

a‖2
L2(pr1(E))

, (29)

and F ◦ K is defined in (25). Again, by Proposition

1, the function G is strictly convex. Thus, we have to

handle a difference of convex function (DC) problem.

Due to Toland [36], the dual formulation of problem

(28) reads as

min
η∈L2(pr1(E))

{F ∗(η)−G∗(K∗η)}. (30)

It has the same solution as the primal problem and

coincides moreover with the solution of

min
a∈L2(E),η∈L2(pr1(E))

Φ(a, η) := {G(a)+F ∗(η)−〈Ka, η〉}

(31)

see, e.g., [2, Proposition 1]. We call (â, η̂) a critical point

of Φ if

K∗η̂ ∈ ∂G(â) and Kâ ∈ ∂F ∗(η̂). (32)

Since G and F are proper, convex and lower semi-

continuous, this implies by Fenchel duality that

â ∈ ∂G∗(K∗η̂) and η̂ ∈ ∂F (Kâ),

so that actually

Kη̂ ∈ ∂G(â) ∩K∗∂F (Kâ)

and

Kâ ∈ ∂F ∗(η̂) ∩K∂G∗(K∗η̂).

As in [35], we call a point â a critical point of the primal

problem (28) if

Kη̂ ∈ ∂G(â) ∩K∗∂F (Kâ) 6= ∅,

and η̂ a critical point of the dual problem (30) if

Kâ ∈ ∂F ∗(η̂) ∩K∂G∗(K∗η̂) 6= ∅.

Indeed, we see that if (â, η̂) is a critical point of Φ, then

â is a critical point of the primal problem and η̂ of the

dual problem.

A classical approach to iteratively find local extrema

of DC problems was described in [35] and certain accel-

erations and specifications thereof were suggested later.

These algorithms assume that either the convex or the

concave part, or both, are evaluated by one of their sub-

gradients. Recently, a primal-dual proximal algorithm

for a special DC problem which includes our setting

was suggested in [2]. It turns out that this algorithm

is a reinvention of the PALM algorithm [12]. For our

setting, the algorithm in [2] coincides with Algorithm

2 below without extrapolation step 2, i.e., with θ = 0.

In [33] an acceleration of the PALM algorithm, called

iPALM was suggested which uses certain extrapolation

steps. For another algorithm in this direction see [3].

Our Algorithm 2 also employs an extrapolation step

similar to the Chambolle-Pock algorithm which cannot

be deduced as a special case of iPALM.

In our numerical experiments we choose θ = 1. The

proximal operator of σF ∗ is given by formula (27), and

the proximal operator of τG is, by definition,

proxτG(f) = arg min
v∈L2(E)

1

2
‖v − f‖2L2(E) +

τ

γ1
‖v − a0‖2L2(E)

− τγ2
2γ1
‖∇NLw2

v‖2
L2(pr1(E))

.

Assuming that the covariant derivative is flat and de-

noting by P the moving frame in which the correspond-

ing connection 1-form vanishes, we have

proxτG(f) = F−1
Ñ

F
(
P−1a0 +

γ1
2τ
f
)

1− γ2 +
γ1
2τ

+ γ2F(w2)

é
.
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Algorithm 2 Primal-Dual Algorithm for the Difference of Convex Functions

1: Initialization: Choose τ, σ > 0 with στ ≤ 4/(θ‖K‖2)2 and (a0, η0) ∈ L2(E)× L2(pr1(E)), θ ≥ 0
2: Iterations: For n = 0, 1, . . . until a stopping criterion is reached

an+1 = proxτG(an + τK∗ ηn)

an = an+1 + θ(an+1 − an)

ηn+1 = proxσF∗(η
n + σK an)

in the frame P , and the iterative procedure in Algo-

rithm 2 reads

an+1 = F−1
Ñ
F
(
P−1a0 +

γ1
2τ

Ä
an + τ∇w1

NL∗ ηn
ä)

1− γ2 +
γ1
2τ

+ γ2F(w2)

é
,

an = an+1 + θ(an+1 − an),

ηn+1 =
ηn + σ∇NLw1

an

max (1, ‖ηn + σ∇NLw1
an‖2)

.

The following convergence result is based on the

fact that the functions G and F ∗ satisfy the Kurdyka-

 Lojasiewicz (K L) property.

Theorem 1 Let Φ be defined by (31) with G, F and K

as in (29) and (25). Choose θ > 0 and τ, σ > 0 with

στ < 4/(θ‖K‖2)2. Then the sequence {(an, ηn)}n∈N
generated by Algorithm 2 converges to a critical point of

Φ, and consequently, the sequence {an}n∈N converges to

a critical point of the primal problem (28) and {ηn}n∈N
to a critical point of the dual problem (30).

The proof is given in the Appendix B.

4 Application to color image correction

4.1 Processing the local features of the achromatic

component and the contrast of the chromatic

component

As we will see in the experiments, the above processing

seems to be a good strategy to process landscape pho-

tographies. As mentioned in the introduction, standard

digital cameras and display devices have much smaller

dynamic ranges than real-world scenes, meaning that

an image seen on a standard monitor appears a de-

graded version of the original scene. In particular, a

loss of details and contrast can be observed. Hence, en-

hancing the local features and contrast of the image is

desirable in order to make it perceptually closer to the

original scene. It is also well-known that humans have

the tendency to prefer enhanced images.

However, the enhancement model must be carefully

selected. Indeed, in many cases, the range of values of

the achromatic component (lightness, luminance, etc)

of the image is widely spread, with the darkest col-

ors of the scene appearing black and the brightest ones

appearing white. As a consequence, enhancing the con-

trast with a standard model will increase the areas of

black and white regions of the image. As an example

see the top-right image in Fig. 2, where the model (17)

has been applied to the top-left image with h = I3 and

ω = 0 in the L∗a∗b∗ frame and with the parameters

γ1 = 0, γ2 = 0.45.

On the other hand, the range of values of the chro-

matic components is usually small. Indeed, one degra-

dation generated during the acquisition process and re-

lated to the loss of contrast and details is the loss of

colorfulness (saturation, chroma, etc), which makes the

image aesthetically unpleasing.

Then, we propose to address these problems by en-

hancing the local features of the achromatic component

and the contrast of the chromatic components of the

image, as it is done at the bottom right image in Fig. 2,

where the model (20) has been applied to the top-left

image with γ1 = 10, γ2 = 0.55, h1 = I1, ω1 = 0 in frame

L∗, and h2 = I2, ω2 = 0 in the a∗b∗ frame. Compare to

the bottom-left image in Fig. 2, where only the contrast

of the chrominance components has been enhanced, i.e.

the model (20) has been applied to the top-left image,

with γ1 = 0, γ2 = 0.55, and h2 = I2, ω2 = 0 in the

a∗b∗ frame. In Fig. 3, we show more examples of this

approach, where the same parameters have been taken.

4.2 A covariant derivative to process images contrast

while preserving their aspects

4.2.1 A covariant derivative for image processing

inspired by visual perception

Given a color image a0, let us consider the connection 1-

form ωa0 (36) for α = 0 and h = I3 in the L∗a∗b∗ frame,

which vanishes in moving frames of the form (37).

In this context, and assuming that γ1 = 0, the model
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Fig. 2 Landscape photographies enhancement with the models (17) and (20). Top-left: image obtained with a standard camera.
Top-right: Enhancement of the contrast of both the chromatic and achromatic components of the top-left image (model (17)).
Bottom-left: Enhancement of the contrast of the chromatic components of the top-left image (model (20)). Bottom-right:
Enhancement of the contrast of the chromatic components and the local features of the achromatic component of the top-left
image (model (20)).

(17) consists in processing the norm r0 of a0

r0 = ‖a0‖2 =
»

(L∗(a0)
2

+ (a∗(a0))
2

+ (b∗(a0))
2
, (33)

as P−1a0 = (r0, 0, 0), and the solution in the frame

P is then of the form (λr0, 0, 0), for some real-valued

function λ, which means that the solution in the L∗a∗b∗

frame is of the form a = λa0. Then, this model has the

property of preserving the hue of a0 as the hue of a

color is invariant with respect to homotheties.

Finally, let us point out to that the quantity (33)

is perceptually more accurate than the CIE Lightness

L∗ to describe the brightness of a color in the sense

that it encodes one of the properties described by the

Helmholtz-Kohlrausch (H-K) effect [18], which states

that chromatic colors appear brighter than achromatic

colors. Note that it would be perceptually even more

accurate to consider also the second property of the H-K

effect, which states that the brightness is hue dependent

as well (38), but it would make the contrast processing

model lose its hue preserving property. Here we like

to mention that there exist other hue preserving color

enhancement methods based on variational models as

[22,28–30].

4.2.2 Reducing the contrast of (tone-mapped) high

dynamic range images

As mentioned in the introduction, if the tone map-

ping method is not well adjusted, its output image can

look over-enhanced and unrealistic when displayed on

a standard monitor. Then, we claim that reducing the

contrast of the image in an accurate manner can be a

good strategy to overcome those problems. In Fig. 4,

we test this approach on the two left images, available

at

https://unsplash.com/images/stock/hdr. We apply

the model (17) with γ1 = 0 and γ2 = −0.55 for two dif-

ferent covariant derivatives compatible with the metric

h = I3 in the L∗a∗b∗ frame: the one given by ω = 0 (see

Fig. 4(center)), and the one described in sect. 4.2.1 (see

Fig. 4(right)). We observe that both covariant deriva-

tives make the model remove or at least reduce the de-

fects produced by the tone-mapping. However, whereas

the first covariant derivative tends to produce results

with unsaturated colors, the second one produces re-

sults whose colors are more faithful to the colors of the

original image.
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Fig. 3 Landscape photographies enhancement with the model (20). Left: images obtained with a standard camera. Center:
Enhancement of the contrast of the chromatic components of the left images. Right: Enhancement of the contrast of the
chromatic components and the local features of the achromatic component of the left images.

4.2.3 Enhancing the contrast of low dynamic range

images

The degradations generated during the camera acquisi-

tion process also affect the hue, i.e. it produces an im-

age whose hue is not necessarily the one of the original

scene. Hence, if one wants to reproduce the perception

of the real-world scene, it can be desirable that the en-

hancement model modifies the hue of the image.

However, in some situations, the non preservation

of the hue can generate color distortions. For instance,

by applying the model (17) with γ1 = 0, γ2 = 0.45 and

h = I3, ω = 0 in the L∗a∗b∗ frame, we observe that the

white tablecloth in Fig. 5(e) turns blue in Fig. 5(g) and

the orange geometric figure in the cubist style portrait

at the top-right part in Fig. 5(a) turns red in Fig. 5(c).

Moreover, the chosen value of the enhancement pa-

rameter γ2 provides a good lightness contrast but the

chroma contrast is too high, producing over-saturated

colors, e.g. saturated blue at the bottom-right corner

and under-saturated colors, e.g. the words at the bottom-

center dark region are barely readable in Fig. 5(c).

The straightforward way to preserve the hue of the

input image and avoid an over-enhancement of the

chroma contrast consists in processing only the light-

ness of the image but it can produce results with a

lack of colorfulness, see Fig. 5 (b-f) where the model

(17) has been only applied to the L∗ component for

γ1 = 0, γ2 = 0.45. This could also be solved by process-

ing separately the lightness and the chroma and keep

the hue unchanged but it would require the tuning of

two parameters, one for the enhancement of the light-

ness and the other for the enhancement of the chroma.

It turns out that there exists a way to overcome

those issues, which is by considering the model (17)

with the covariant derivative described in sect. 4.2.1,

see Fig. 5 (d-h) where it has been applied with the pa-

rameters γ1 = 0, γ2 = 0.45.
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Fig. 4 Contrast reduction of tone-mapped high dynamic range images. Left: output of a tone-mapping method. Center:
Contrast reduction model (17) induced by the connection 1-form vanishing in the L∗a∗b∗ frame. Right: Contrast reduction
model (17) induced by the“perceptual” connection 1-form described in sect. 4.2.1.

4.3 Simultaneous and independent local features and

contrast processing

We test the model (17) with the connection 1-form

described in sect. 4.2.1 for γ1 ∈ {−8, 0, 8} and γ2 ∈
{−0.25, 0, 0.25}. If γ1 6= 0, we solve the model by the

iterative procedure described in sect. 3.3. In the ex-

periments performed in this section, the image size is

256 × 384, the window size of w1 is 41 × 41, and the

variance of the Gaussian kernel w2 is 1000. Finally, the

parameters τ, σ of the primal dual numerical schemes

are set to 0.1 and the stopping criteria is»
MSE(an+1, an) < 0.001.

As expected, we observe in Fig. 6 that the model does

enhance resp. regularize the local structures for γ1 > 0

resp. γ1 < 0 and the contrast for γ2 > 0 resp. γ2 < 0,

providing some flexibility in the processing of image

features that the models in [6],[8] do not.

5 Conclusion

We have introduced two new models for color image cor-

rection inspired by visual perception through the notion

of perceptual gradient and visual neuroscience through

the W-C equations describing the temporal evolution

of the activity of neurons in the visual cortex. The pro-

posed models are more elaborated than existing varia-

tional models. In particular, they rely on the presence

of neurons responding to different attributes in the vi-

sual cortex: edges/textures and colors, which enabled us

to design image processing models correcting different

types of degradations on the images involving the en-

hancement/regularization of details and contrast. Fur-

ther work will be devoted to generalize our models by

including more visual attributes.

Appendix A. Covariant derivatives and visual

perception

A.1. Interpretation of the Kernel-Based Retinex model

The original Retinex formulation [27] and the Kernel-

Based-Retinex [10] can be formulated as follows: The

perceived color at a given pixel of the image results

from a weighted averaging of the perceptual difference

between the given pixel and the other pixels in the im-

age domain. This suggests that the key object in color

perception is the perceived gradient, and that the accu-

racy of the estimation of the perceived colors depends

on the accuracy of the estimation of the perceived gra-

dient.

More precisely, given an RGB color image

a = (a1, a2, a3) : Ω ⊂ R2 −→ R3, the perceived image

L = (L1, L2, L3) is, according to Kernel-Based Retinex

[10], given for k = 1, 2, 3, by

Lk(x) =

∫
y:ak(y)≥ak(x)

w(x, y)

ñ
A log

Ç
ak(x)

ak(y)

å
+ 1

ô
dy

+

∫
y:ak(y)<ak(x)

w(x, y) dy,
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where w is a Gaussian kernel and A is a constant, which

can be rewritten as

Lk(x) =

∫
y∈Ω

w(x, y) ζ (log[ak(x)]− log[ak(y)]) dy

=

∫
y∈Ω

w(x, y) ζ

Ç∫
γy,x

dγ′y,x(t) log(ak)(γy,x(t))dt

å
dy

for some nonlinear function ζ, and for any path γy,x
joining y and x.

Then, it turns out that the quantity ∇ log(ak) =

dak/ak can be interpreted as the perceived gradient of

the image according to Weber’s law in vision and the

quantity∫
γy,x

dγ′y,x(t) log(ak)(γy,x(t))dt. (34)

as the induced perceptual difference between x and y.

Indeed, given an uniform background of intensity I,

Weber’s law states that the following equality holds

δ I
I

= c,

where δI is the minimum intensity increment of I to

which the human sensitivity distinguish I and I + δI,

and c is a constant. Hence, Weber’s law shows that the

human sensitivity to an intensity increment depends on

the intensity of the background. In particular, it shows

that human perception is more sensitive to intensity

changes in dark backgrounds than in the bright ones.

A.2. Equivariance property of the perceived gradient

Based on the assumption that the color constancy prop-

erty of the HVS comes from an invariance property of

the perceived gradient with respect to lighting changes

and under the identification between these latter and

moving frame changes on a vector bundle, Georgiev

[21] suggested that a covariant derivative is a good

candidate to describe the perceived gradient, due to

the invariance of this differential operator with respect

to moving frame changes. More precisely, given a Lie

group G, a G-associated vector bundle E, and a covari-

ant derivative ∇ : = d + ω on E, we have ∇(Ga) =

G ∇(a) for any G-valued moving frame G and section a

of E.

The perceptual difference formula (34) can then be

modified by means of a covariant derivative, which gives∫
γy,x

∇γ′y,x(t)a(γy,x(t)) dt = τy,x,γy,xa(y)− a(x). (35)

Note that the quantity (35) is independent of the path

γy,x provided that ∇ is flat.

A.3. A perceptual law derived from a covariant deriva-

tive compatible with the metric: Helmholtz-Kohlrausch

effect

The Helmholtz-Kohlrausch effect is a color appearance

phenomena which states that the brightness of a color

depends not only on its achromatic component but also

on its chromatic component. More precisely, it states

that chromatic colors appear brighter than achromatic

colors, and some hues appear brighter than others.

Given a color image a = (a1, a2, a3), let us consider

the SO(h)-associated vector bundle Ω × R3 −→ Ω, for

some metric h, and the connection 1-form ωa given by

0
a1da2 − a2da1

α+ ‖a‖2h
a1da3 − a3da1

α+ ‖a‖2h

−a
1da2 − a2da1

α+ ‖a‖2h
0

a2da3 − a3da2

α+ ‖a‖2h

−a
1da3 − a3da1

α+ ‖a‖2h
−a

2da3 − a3da2

α+ ‖a‖2h
0


,

(36)

for α ≥ 0. Having ω ∈ Γ (T ∗Ω ⊗ so(h)) makes the cor-

responding covariant derivative ∇ be compatible with

h.

At the limit case α = 0, it has been shown in [6]

that the corresponding covariant derivative ∇ is flat,

from which follows the existence of a moving frame

P in which ωa vanishes. More precisely, denoting by

(r sin θ cosϕ, r sin θ sinϕ, r cos θ) the spherical

coordinates of a, then P is of the form (37).

Then, assuming that the coordinates (a1, a2, a3) cor-

respond to the CIE L∗a∗b∗ components of a, and the

metric h is given byà
1 0 0

0 ξ2 0

0 0 ξ2

í
in this frame, where

ξ = (2.5−0.0025L∗)

Å
0.116

∣∣∣∣ sinÅH∗ − 90

2

ã∣∣∣∣+ 0.085

ã
,

for H∗ denoting the hue component. The quantity

r = ‖a‖h =
»

(L∗(a))2 + ξ2 ((a∗(a))2 + (b∗(a))2) (38)

can be identified to the brightness defined by Fairchild

and Pirrotta [18], and which takes into account the

Helmholtz-Kohlrausch effect.
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P =

Ü
cosϕ sin θ −g11 sinϕ− g21 cos θ cosϕ −g12 sinϕ− g22 cos θ cosϕ

sinϕ sin θ g11 cosϕ− g21 sinϕ cos θ g12 cosϕ− g22 sinϕ cos θ

cos θ g21 sin θ g22 sin θ

ê
(37)

with g11, g12, g21, g22 ∈ C1(Ω) satisfying 
g211 + g221 = 1
g212 + g222 = 1

g11g12 + g21g22 = 0
g11 dg12 + g21 dg22 = cos θ dϕ.

As a consequence, the perceptual difference (35), which

is given here by

P−1(y) a(y)− P−1(x) a(x)

in the frame P can be identified to the brightness dif-

ference between a(y) and a(x), as P−1a = (r, 0, 0).

B. Proof of Theorem 1

Semi-algebraic functions are functions which graph is

a semi-algebraic set, i.e., a finite intersections of poly-

nomial sets P (x) = 0 and Q(x) < 0 and finite unions

thereof. Recall that semi-algebraic functions fulfill the

Kurdyka- Lojasiewicz (K L) property, see [12]. In partic-

ular, the function Φ in (31) satisfies the K L property.

Let us assume that after discretization Φ : Rd1×Rd2 →
R ∪ {+∞}.

The following theorem can be found in [1, Theorem

2.9].

Theorem 2 Let f : Rd → R∪{∞} fulfill the K L prop-
erty. Let {xn}n∈N be a sequence which fulfills the fol-

lowing conditions:

i) There exists K1 > 0 such that f(xn+1) − f(xn) ≤
−K1‖xn+1 − xn‖2 for every n ∈ N.

ii) There exists K2 > 0 such that for every n ∈ N there

exists wn+1 ∈ ∂Lf(xn+1) with ‖wn+1‖ ≤ K2‖xn+1−
xn‖, where ∂Lf denotes the Fréchet limiting sub-

differential of f .

iii) There exists a convergent subsequence {xnj}j∈N with

limit x̂ and f(xnj )→ f(x̂).

Then the whole sequence {xn}n∈N converges to point x̂

which fulfills 0 ∈ ∂Lf(x̂).

In the following proof we can partially use argu-

ments from [2].

Proof of Theorem 1: We show that the func-

tion Φ : Rd1 × Rd2 → R ∪ {∞} in (31) and the se-

quence {(an, ηn)}n∈N generated by Algorithm 1 fulfills

the properties i)-iii) of Theorem 2.

i) By the variational inequality of the proximal operator

it holds

G(an+1)−G(a) ≤ 1

τ
〈an + τK∗ηn − an+1, an+1 − a〉

=
1

τ
〈an − an+1, an+1 − a〉

+ 〈K∗ηn, an+1 − a〉,

F ∗(ηn+1)− F ∗(η) ≤ 1

σ
〈ηn + (1 + θ)σKan+1 − θσKan

− ηn+1, ηn+1 − η〉

=
1

σ
〈ηn − ηn+1, ηn+1 − η〉

+ 〈(1 + θ)Kan+1 − θKan, ηn+1 − η〉.

Choosing a = an and η = ηn, this yields

Φ(an+1, ηn)− Φ(an, ηn) = G(an+1)−G(an)

+ 〈K∗ηn, an − an+1〉

≤ −1

τ
‖an − an+1‖22.

Since 2uv ≤ αu2 + 1
αv

2 for an arbitrary α > 0, we get

Φ(an+1, ηn+1)− Φ(an+1, ηn)

= F ∗(ηn+1)− F ∗(ηn) + 〈ηn − ηn+1,Kan+1〉

≤ − 1

σ
‖ηn − ηn+1‖22 + θ〈Kan+1 −Kan, ηn+1 − ηn〉

− 1

τ
‖an − an+1‖22

≤ − 1

σ
‖ηn − ηn+1‖22 + θ‖K‖2‖an − an+1‖2‖ηn − ηn+1‖2

≤
(
− 1

σ
+
θ‖K‖2

2α

)
‖ηn − ηn+1‖22 +

θ‖K‖2α
2

‖an − an+1‖22.
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Adding the two inequalities gives

Φ(an+1, ηn+1)− Φ(an, ηn) (39)

≤
(
− 1

σ
+
θ‖K‖2

2α

)
︸ ︷︷ ︸

c1

‖ηn − ηn+1‖22

+
(
− 1

τ
+
θ‖K‖2α

2

)
︸ ︷︷ ︸

c2

‖an − an+1‖22.

Setting α :=
√
σ/τ we see by στ ≤ 4/(θ‖K‖2)2 that

both c1 < 0 and c2 < 0. Thus, i) in Theorem 2 is

fulfilled with K1 := max {−c1,−c2}. In particular, we

obtain

Φ(an+1, ηn+1) ≤ Φ(an, ηn). (40)

Further, summing up (39) for n = 0, ..., N − 1 we get

Φ(aN , ηN )− Φ(a0, η0) ≤c1
N−1∑
n=0

‖ηn+1 − ηn‖22

+ c2

N−1∑
n=0

‖an+1 − an‖22.

Now the facts, that the left hand side is bounded from

below by infa,η Φ(a, η)−Φ(a0, η0) and that cj < 0, j =

1, 2 yields

N−1∑
n=0

‖an+1 − an‖22 <∞ and
N−1∑
n=0

‖ηn+1 − ηn‖22 <∞.

(41)

ii) The construction of the iterates in the algorithm
fulfill

an−1 − an

τ
+K∗ηn−1 ∈ ∂G(an),

ηn−1 − ηn

σ
+ (1 + θ)Kan − θKan−1 ∈ ∂F ∗(ηn).

Consider the function Φ̃(an, ηn) : Rd1 × Rd2 → R ∪
{+∞}, Φ̃(a, η) = G(a) + F ∗(η). By the calculus of the

convex subdifferential and [32, Proposition 8.12] we get

∂LΦ̃(an, ηn) = ∂G(an)× ∂F ∗(ηn).

By [32, Exercise 8.8] it holds

∂LΦ(an, ηn) = ∂LΦ̃(an, ηn)− (K∗ηn,Kan) (42)

= (∂G(an)−K∗ηn)× (∂F ∗(ηn)−Kan).

Thus we haveÅ
wn1
wn2

ã
:=

Ç
an−1−an

τ +K∗(ηn−1 − ηn)
ηn−1−ηn

σ + θK(an − an−1)

å
∈ ∂LΦ(an, ηn).

With (u + v)2 ≤ 2(u2 + v2) and wn = (wn1 , w
n
2 )T we

obtain

‖wn‖2 ≤
Å

2

τ2
+ θ2‖K‖22

ã
‖an − an−1‖22

+

Å
2

σ2
+ ‖K‖22

ã
‖ηn − ηn−1‖22,

Hence, property ii) in Theorem 2 is fulfilled with K2 :=(
max{ 2

τ2 + θ2‖K‖22, 2
σ2 + ‖K‖22}

) 1
2 .

iii) Since F ∗ is the indicator function of a compact set

H1, G is coercive and strictly convex and K is a linear

operator, we have that the level sets of Φ at (a0, η0)

given by {(a, η) ∈ Rd1 × Rd2 : Φ(a, η) ≤ Φ(a0, η0)} are

bounded from below. By (40), every infinite sequence

{(an, ηn)}n∈N generated by the algorithm is bounded

such that there exists a convergent subsequence

{(anj , ηnj )}j∈N with limit (â, η̂). By Lemma 1, we know

that (â, η̂) is a critical point of Φ. By (42) and (32)

any critical point (â, η̂) of Φ fulfills 0 ∈ ∂LΦ(â, η̂) and

conversely. This finishes the proof. �

Lemma 1 Let {(an, ηn)}n∈N be the sequence generated

by Algorithm 1. Then we have the following:

i) Any cluster point of {(an, ηn)}n∈N is a critical point

of Φ.

ii) (an, ηn) critical point of Φ if and only if (an, ηn) =

(an+1, ηn+1) if and only if Φ(an, ηn) = Φ(an+1, ηn+1).

Proof i) Let (â, η̂) be a cluster point and {(anj , ηnj )}j∈N
a subsequence converging to (â, η̂). By the iteration

scheme we have

anj − anj+1

τ
+K∗ηnj ∈ ∂G(anj+1),

ηnj − ηnj+1

σ
+K

(
(1 + θ)anj+1 − θanj

)
∈ ∂F ∗(ηnj+1).

By (41), the first summands in both expressions tend to

zero as j →∞. Using the closeness of the graphs of ∂G

and ∂F ∗ and passing to the limit, we get K∗η̂ ∈ ∂G(â)

and Kâ ∈ ∂F ∗(η̂). Hence (â, η̂) is a critical point of Φ.

ii) The first two statements in ii) are equivalent by

the following reason: Let (an, ηn) = (an+1, ηn+1). Then

the iteration scheme implies

K∗ηn ∈ ∂G(an)

and

K((1 + θ)an − θan) = Kan ∈ ∂F ∗(ηn),

so that (an, ηn) is a critical point of Φ. Conversely,

if (an, ηn) is a critical point of Φ, then if fulfills the
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above relations and together with the uniqueness of the

proximum we conclude from the iteration scheme that

(an, ηn) = (an+1, ηn+1).

The second two statements in ii) are equivalent by

(39). This proves the second assertion.
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(a) Input image (b) Chrominance preserving method

(c) Channelwise method (d) Moving frame method

(e) Input image (f) Chrominance preserving method

(g) Channelwise method (h) Moving frame method

Fig. 5 Comparison of three contrast enhancement methods: channelwise method (model (17) with γ1 = 0 and ω = 0 in the
L∗a∗b∗ frame)), chrominance preserving method (model (17) applied to the L∗ component with γ1 = 0, h = I1 and ω = 0 in
the L∗ frame), and moving frame method (model (17) with γ1 = 0 and with the connection 1-form described in sect. 4.2.1).
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(a) γ1 = −8, γ2 = −0.25 (b) γ1 = 0, γ2 = −0.25 (c) γ1 = 8, γ2 = −0.25

(d) γ1 = −8, γ2 = 0 (e) γ2 = 0, γ1 = 0 (f) γ1 = 8, γ2 = 0

(g) γ1 = −8, γ2 = 0.25 (h) γ1 = 0, γ2 = 0.25 (i) γ1 = 8, γ2 = 0.25

(j) γ1 = −8, γ2 = −0.35 (k) γ1 = 0, γ2 = −0.35 (l) γ1 = 8, γ2 = −0.35

(m) γ1 = −8, γ2 = 0 (n) γ1 = 0, γ2 = 0 (o) γ1 = 8, γ2 = 0

(p) γ1 = −8, γ2 = 0.35 (q) γ1 = 0, γ2 = 0.35 (r) γ1 = 8, γ2 = 0.35

Fig. 6 Local structures enhancement (γ1 > 0) or regularization (γ1 < 0) coupled with contrast enhancement (γ2 > 0) or
regularization (γ2 < 0) given by the model (17).


